1
|
Derelle R, Verdonck R, Jacob S, Huet M, Akerman I, Philippe H, Legrand D. The macronuclear genomic landscape within Tetrahymena thermophila. Microb Genom 2024; 10:001175. [PMID: 38206129 PMCID: PMC10868616 DOI: 10.1099/mgen.0.001175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The extent of intraspecific genomic variation is key to understanding species evolutionary history, including recent adaptive shifts. Intraspecific genomic variation remains poorly explored in eukaryotic micro-organisms, especially in the nuclear dimorphic ciliates, despite their fundamental role as laboratory model systems and their ecological importance in many ecosystems. We sequenced the macronuclear genome of 22 laboratory strains of the oligohymenophoran Tetrahymena thermophila, a model species in both cellular biology and evolutionary ecology. We explored polymorphisms at the junctions of programmed eliminated sequences, and reveal their utility to barcode very closely related cells. As for other species of the genus Tetrahymena, we confirm micronuclear centromeres as gene diversification centres in T. thermophila, but also reveal a two-speed evolution in these regions. In the rest of the genome, we highlight recent diversification of genes coding for extracellular proteins and cell adhesion. We discuss all these findings in relation to this ciliate's ecology and cellular characteristics.
Collapse
Affiliation(s)
- Romain Derelle
- Station d’Ecologie Théorique et Expérimentale, UAR2029, CNRS, Moulis, France
- Present address: NIHR Health Protection Research Unit in Respiratory Infections, National Heart and Lung Institute, Imperial College London, London, UK
| | - Rik Verdonck
- Station d’Ecologie Théorique et Expérimentale, UAR2029, CNRS, Moulis, France
- Present address: Centre for Environmental Sciences, Environmental Biology, Hasselt University, Diepenbeek, Belgium
| | - Staffan Jacob
- Station d’Ecologie Théorique et Expérimentale, UAR2029, CNRS, Moulis, France
| | - Michèle Huet
- Station d’Ecologie Théorique et Expérimentale, UAR2029, CNRS, Moulis, France
| | - Ildem Akerman
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Hervé Philippe
- Station d’Ecologie Théorique et Expérimentale, UAR2029, CNRS, Moulis, France
| | - Delphine Legrand
- Station d’Ecologie Théorique et Expérimentale, UAR2029, CNRS, Moulis, France
| |
Collapse
|
2
|
Jiang C, Wang G, Zhang J, Gu S, Wang X, Qin W, Chen K, Yuan D, Chai X, Yang M, Zhou F, Xiong J, Miao W. iGDP: An integrated genome decontamination pipeline for wild ciliated microeukaryotes. Mol Ecol Resour 2023. [PMID: 36912756 DOI: 10.1111/1755-0998.13782] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/25/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Ciliates are a large group of ubiquitous and highly diverse single-celled eukaryotes that play an essential role in the functioning of microbial food webs. However, their genomic diversity is far from clear due to the need to develop cultivation methods for most species, so most research is based on wild organisms that almost invariably contain contaminants. Here we establish an integrated Genome Decontamination Pipeline (iGDP) that combines homology search, telomere reads-assisted and clustering approaches to filter contaminated ciliate genome assemblies from wild specimens. We benchmarked the performance of iGDP using genomic data from a contaminated ciliate culture and the results showed that iGDP could recall 91.9% of the target sequences with 96.9% precision. We also used a synthetic dataset to offer guidelines for the application of iGDP in the removal of various groups of contaminants. Compared with several popular metagenome binning tools, iGDP could show better performance. To further validate the effectiveness of iGDP on real-world data, we applied it to decontaminate genome assemblies of three wild ciliate specimens and obtained their genomes with high quality comparable to that of previously well-studied model ciliate genomes. It is anticipated that the newly generated genomes and the established iGDP method will be valuable community resources for detailed studies on ciliate biodiversity, phylogeny, ecology and evolution. The pipeline (https://github.com/GWang2022/iGDP) can be implemented automatically to reduce manual filtering and classification and may be further developed to apply to other microeukaryotes.
Collapse
Affiliation(s)
- Chuanqi Jiang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Guangying Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jing Zhang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Siyu Gu
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xueyan Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weiwei Qin
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kai Chen
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Dongxia Yuan
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaocui Chai
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Mingkun Yang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Fang Zhou
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Wuhan, China
- CAS Center for Excellence in Animal Evolution and Genetics, Kunming, China
| |
Collapse
|
3
|
Transcriptomic Differences between Free-Living and Parasitic Chilodonella uncinata (Alveolata, Ciliophora). Microorganisms 2022; 10:microorganisms10081646. [PMID: 36014062 PMCID: PMC9416717 DOI: 10.3390/microorganisms10081646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
Chilodonella uncinata is a facultatively parasitic ciliate, which can opportunistically parasitize on fish gills and fins, and sometimes even cause host mortality. Previous molecular studies of C. uncinata mainly focused on genetic diversity and molecular evolution. There are currently no transcriptome reports studying differences between free-living and parasitic C. uncinata. We addressed this by sequencing transcriptomes of these two C. uncinata lifestyle types using Smart-seq2 and Illumina HiSeq technologies. In total, 1040 differentially expressed genes (DEGs) were identified. Compared with the free-living type, 494 genes of the parasitic type were downregulated and 546 genes were upregulated. These DEGs were identified through BLAST with NCBI-nr, Swiss-Port, and Pfam databases and then annotated by GO enrichment and KEGG pathway analysis. The results showed that parasitism-related genes such as heat shock proteins (HSPs), actin I, and leishmanolysin were significantly upregulated in parasitic C. uncinata. The ciliary-related dynein heavy chain also had a higher expression in parasitic C. uncinata. Furthermore, there were significant differences in the amino acid metabolism, fatty acid metabolism, lipid metabolism, and TCA cycle. This study increases the volume of molecular data available for C. uncinata and contributes to our understanding of the mechanisms underlying the transition from a free-living to a parasitic lifestyle.
Collapse
|
4
|
Zhou Y, Fu L, Mochizuki K, Xiong J, Miao W, Wang G. Absolute quantification of chromosome copy numbers in the polyploid macronucleus of Tetrahymena thermophila at the single-cell level. J Eukaryot Microbiol 2022; 69:e12907. [PMID: 35313044 DOI: 10.1111/jeu.12907] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amitosis is widespread among eukaryotes, but the underlying mechanisms are poorly understood. The polyploid macronucleus (MAC) of unicellular ciliates divides by amitosis, making ciliates a potentially valuable model system to study this process. However, a method to accurately quantify the copy number of MAC chromosomes has not yet been established. Here we used droplet digital PCR (ddPCR) to quantify the absolute copy number of the MAC chromosomes in Tetrahymena thermophila. We first confirmed that ddPCR is a sensitive and reproducible method to determine accurate chromosome copy numbers at the single-cell level. We then used ddPCR to determine the copy number of different MAC chromosomes by analyzing individual T. thermophila cells in the G1 and the amitotic (AM) phases. The average copy number of MAC chromosomes was 90.9 at G1 phase, approximately half the number at AM phase (189.8). The copy number of each MAC chromosome varied among individual cells in G1 phase and correlated with cell size, suggesting that amitosis accompanied by unequal cytokinesis causes copy number variability. Furthermore, the fact that MAC chromosome copy number is less variable among AM-phase cells suggests that the copy number is standardized by regulating DNA replication. We also demonstrated that copy numbers differ among different MAC chromosomes and that interchromosomal variations in copy number are consistent across individual cells. Our findings demonstrate that ddPCR can be used to model amitosis in T. thermophila and possibly in other ciliates.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Fu
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kazufumi Mochizuki
- Institute of Human Genetics (IGH), CNRS, University of Montpellier, Montpellier, 34090, France
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,CAS Center for Excellence in Animal Evolution and Genetics, Kunming, 650223, China
| | - Guangying Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
5
|
Cayuela H, Jacob S, Schtickzelle N, Verdonck R, Philippe H, Laporte M, Huet M, Bernatchez L, Legrand D. Transgenerational plasticity of dispersal‐related traits in a ciliate: genotype‐dependency and fitness consequences. OIKOS 2022. [DOI: 10.1111/oik.08846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hugo Cayuela
- Dépt de Biologie, Inst. de Biologie Intégrative et des Systèmes (IBIS), Univ. Laval, Pavillon Charles‐Eugène‐Marchand Québec QC Canada
- Dept of Ecology and Evolution, Univ. of Lausanne Lausanne Switzerland
| | - Staffan Jacob
- Theoretical and Experimental Ecology Station (UAR 2029), National Centre for Scientific Research (CNRS), Paul Sabatier Univ. (UPS) Moulis France
| | - Nicolas Schtickzelle
- Univ. Catholique de Louvain, Earth and Life Inst., Biodiversity Research Centre Louvain‐la‐Neuve Belgium
| | - Rik Verdonck
- Theoretical and Experimental Ecology Station (UAR 2029), National Centre for Scientific Research (CNRS), Paul Sabatier Univ. (UPS) Moulis France
| | - Hervé Philippe
- Theoretical and Experimental Ecology Station (UAR 2029), National Centre for Scientific Research (CNRS), Paul Sabatier Univ. (UPS) Moulis France
- Dépt de Biochimie, Centre Robert‐Cedergren, Univ. de Montréal Montréal QC Canada
| | - Martin Laporte
- Ministère des Forêts, de la Faune et des Parc (MFFP) du Québec Québec QC Canada
| | - Michèle Huet
- Theoretical and Experimental Ecology Station (UAR 2029), National Centre for Scientific Research (CNRS), Paul Sabatier Univ. (UPS) Moulis France
| | - Louis Bernatchez
- Dépt de Biologie, Inst. de Biologie Intégrative et des Systèmes (IBIS), Univ. Laval, Pavillon Charles‐Eugène‐Marchand Québec QC Canada
| | - Delphine Legrand
- Theoretical and Experimental Ecology Station (UAR 2029), National Centre for Scientific Research (CNRS), Paul Sabatier Univ. (UPS) Moulis France
| |
Collapse
|
6
|
Vitali V, Rothering R, Catania F. Fifty Generations of Amitosis: Tracing Asymmetric Allele Segregation in Polyploid Cells with Single-Cell DNA Sequencing. Microorganisms 2021; 9:1979. [PMID: 34576874 PMCID: PMC8467633 DOI: 10.3390/microorganisms9091979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 01/04/2023] Open
Abstract
Amitosis is a widespread form of unbalanced nuclear division whose biomedical and evolutionary significance remain unclear. Traditionally, insights into the genetics of amitosis have been gleaned by assessing the rate of phenotypic assortment. Though powerful, this experimental approach relies on the availability of phenotypic markers. Leveraging Paramecium tetraurelia, a unicellular eukaryote with nuclear dualism and a highly polyploid somatic nucleus, we probe the limits of single-cell whole-genome sequencing to study the consequences of amitosis. To this end, we first evaluate the suitability of single-cell sequencing to study the AT-rich genome of P. tetraurelia, focusing on common sources of genome representation bias. We then asked: can alternative rearrangements of a given locus eventually assort after a number of amitotic divisions? To address this question, we track somatic assortment of developmentally acquired Internal Eliminated Sequences (IESs) up to 50 amitotic divisions post self-fertilization. To further strengthen our observations, we contrast empirical estimates of IES retention levels with in silico predictions obtained through mathematical modeling. In agreement with theoretical expectations, our empirical findings are consistent with a mild increase in variation of IES retention levels across successive amitotic divisions of the macronucleus. The modest levels of somatic assortment in P. tetraurelia suggest that IESs retention levels are largely sculpted at the time of macronuclear development, and remain fairly stable during vegetative growth. In forgoing the requirement for phenotypic assortment, our approach can be applied to a wide variety of amitotic species and could facilitate the identification of environmental and genetic factors affecting amitosis.
Collapse
Affiliation(s)
- Valerio Vitali
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany; (R.R.); (F.C.)
| | | | | |
Collapse
|
7
|
Phenotypic plasticity through disposable genetic adaptation in ciliates. Trends Microbiol 2021; 30:120-130. [PMID: 34275698 DOI: 10.1016/j.tim.2021.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/28/2022]
Abstract
Ciliates have an extraordinary genetic system in which each cell harbors two distinct kinds of nucleus, a transcriptionally active somatic nucleus and a quiescent germline nucleus. The latter undergoes classical, heritable genetic adaptation, while adaptation of the somatic nucleus is only short-term and thus disposable. The ecological and evolutionary relevance of this nuclear dimorphism have never been well formalized, which is surprising given the long history of using ciliates such as Tetrahymena and Paramecium as model organisms. We present a novel, alternative explanation for ciliate nuclear dimorphism which, we argue, should be considered an instrument of phenotypic plasticity by somatic selection on the level of the ciliate clone, as if it were a diffuse multicellular organism. This viewpoint helps to put some enigmatic aspects of ciliate biology into perspective and presents the diversity of ciliates as a large natural experiment that we can exploit to study phenotypic plasticity and organismality.
Collapse
|
8
|
Does Intraspecific Variation in rDNA Copy Number Affect Analysis of Microbial Communities? Trends Microbiol 2020; 29:19-27. [PMID: 32593503 DOI: 10.1016/j.tim.2020.05.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/23/2020] [Accepted: 05/28/2020] [Indexed: 01/01/2023]
Abstract
Amplicon sequencing of partial regions of the ribosomal RNA loci (rDNA) is widely used to profile microbial communities. However, the rDNA is dynamic and can exhibit substantial interspecific and intraspecific variation in copy number in prokaryotes and, especially, in microbial eukaryotes. As change in rDNA copy number is a common response to environmental change, rDNA copy number is not necessarily a property of a species. Variation in rDNA copy number, especially the capacity for large intraspecific changes driven by external cues, complicates analyses of rDNA amplicon sequence data. We highlight the need to (i) interpret amplicon sequence data in light of possible interspecific and intraspecific variation, and (ii) examine the potential plasticity in rDNA copy number as an important ecological factor to better understand how microbial communities are structured in heterogeneous environments.
Collapse
|
9
|
Kaloshian I, Teixeira M. Advances in Plant-Nematode Interactions with Emphasis on the Notorious Nematode Genus Meloidogyne. PHYTOPATHOLOGY 2019; 109:1988-1996. [PMID: 31613704 DOI: 10.1094/phyto-05-19-0163-ia] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plant infections by plant-parasitic nematodes (PPNs) continue to be one of the major limitations in agricultural systems. Root-knot nematodes (RKNs), belonging to the genus Meloidogyne, are one of the most important groups of PPNs worldwide. Their wide host range combined with ubiquitous presence, continues to provide challenges for their control and breeding for resistance. Although resistance to RKNs has been identified, incorporation of these resistances into crops and durability of the resistance remains challenging. In addition, progress in cloning of RKN resistance genes has been dismal. Recent identification of pattern-triggered immunity in roots against nematodes, an ascaroside as a nematode-associated molecular pattern (NAMP) and the discovery of a NAMP plant receptor, provide tools and opportunities to develop durable host resistance against nematodes including RKNs.
Collapse
Affiliation(s)
- Isgouhi Kaloshian
- Department of Nematology, University of California, Riverside, CA 92521
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Marcella Teixeira
- Department of Nematology, University of California, Riverside, CA 92521
| |
Collapse
|
10
|
Castagnone‐Sereno P, Mulet K, Danchin EGJ, Koutsovoulos GD, Karaulic M, Da Rocha M, Bailly‐Bechet M, Pratx L, Perfus‐Barbeoch L, Abad P. Gene copy number variations as signatures of adaptive evolution in the parthenogenetic, plant‐parasitic nematode
Meloidogyne incognita. Mol Ecol 2019; 28:2559-2572. [DOI: 10.1111/mec.15095] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 03/11/2019] [Accepted: 04/01/2019] [Indexed: 01/05/2023]
Affiliation(s)
| | - Karine Mulet
- INRAUniversité Côte d'AzurCNRSISA Sophia Antipolis France
| | | | | | | | | | | | - Loris Pratx
- INRAUniversité Côte d'AzurCNRSISA Sophia Antipolis France
| | | | - Pierre Abad
- INRAUniversité Côte d'AzurCNRSISA Sophia Antipolis France
| |
Collapse
|
11
|
Bastos Gomes G, Jerry DR, Miller TL, Hutson KS. Current status of parasitic ciliates Chilodonella spp. (Phyllopharyngea: Chilodonellidae) in freshwater fish aquaculture. JOURNAL OF FISH DISEASES 2017; 40:703-715. [PMID: 27474174 DOI: 10.1111/jfd.12523] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/02/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
Freshwater fish farming contributes to more than two-thirds of global aquaculture production. Parasitic ciliates are one of the largest causes of production loss in freshwater farmed fishes, with species from the genus Chilodonella being particularly problematic. While Chilodonella spp. include 'free-living' fauna, some species are involved in mortality events of fish, particularly in high-density aquaculture. Indeed, chilodonellosis causes major productivity losses in over 16 species of farmed freshwater fishes in more than 14 countries. Traditionally, Chilodonella species are identified based on morphological features; however, the genus comprises yet uncharacterized cryptic species, which indicates the necessity for molecular diagnostic methods. This review synthesizes current knowledge on the biology, ecology and geographic distribution of harmful Chilodonella spp. and examines pathological signs, diagnostic methods and treatments. Recent advances in molecular diagnostics and the ability to culture Chilodonella spp. in vitro will enable the development of preventative management practices and sustained freshwater fish aquaculture production.
Collapse
Affiliation(s)
- G Bastos Gomes
- Marine Biology and Aquaculture Sciences, College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - D R Jerry
- Marine Biology and Aquaculture Sciences, College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - T L Miller
- Marine Biology and Aquaculture Sciences, College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
- Fish Health Laboratory, Department of Fisheries Western Australia, South Perth, WA, Australia
| | - K S Hutson
- Marine Biology and Aquaculture Sciences, College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
12
|
Morgens DW, Cavalcanti ARO. Amitotic chromosome loss predicts distinct patterns of senescence and non-senescence in ciliates. Protist 2015; 166:224-33. [PMID: 25840368 DOI: 10.1016/j.protis.2015.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 02/24/2015] [Accepted: 03/02/2015] [Indexed: 11/26/2022]
Abstract
Over time and repeated asexual divisions, many ciliate species display the characteristics of senescence, reduced fecundity and increased mortality. Their only path to recovery is sexual conjugation or autogamy. While more traditional models of cellular aging have been proposed, one of the most accepted explanations relies on the faulty mechanism by which ciliates duplicate their somatic nucleus, a process referred to as amitosis. Amitosis involves the random segregation of chromosomes with no consideration for homology. Over subsequent divisions, chromosome copy numbers will fluctuate until an entire chromosome is lost, resulting in death. Via simulations of this process, we find that senescence and death via chromosome loss is not the only possible result of amitosis. Random chromosome loss is less damaging to populations than previously thought, and strict adherence to the model predicts that Paramecium tetraurelia would not senesce. A combination of the reciprocal nature of amitosis and lethal selection against low-copy number chromosomes is responsible for this startling prediction. Additionally, our results provide an alternate explanation to recent evidence for selection on chromosome copy number in Tetrahymena thermophila and peculiar patterns of senescence in Tetrahymena pyriformis.
Collapse
Affiliation(s)
- David W Morgens
- Biology Department, Pomona College, 175W 6(th) Street, Claremont, CA 91711, USA
| | - Andre R O Cavalcanti
- Biology Department, Pomona College, 175W 6(th) Street, Claremont, CA 91711, USA.
| |
Collapse
|
13
|
Huang J, Katz LA. Nanochromosome copy number does not correlate with RNA levels though patterns are conserved between strains of the ciliate morphospecies Chilodonella uncinata. Protist 2014; 165:445-51. [PMID: 24907652 DOI: 10.1016/j.protis.2014.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 04/14/2014] [Accepted: 04/16/2014] [Indexed: 11/29/2022]
Abstract
In some ciliates, extensive genome fragmentation leads to a macronucleus (i.e. somatic nucleus) containing gene-sized chromosomes that vary in copy number. Yet the relationship between copy number and expression level is not well understood as previous work has shown a variety of patterns. For example, nanochromosome copy numbers are positively correlated to mRNA levels in spirotrichous ciliates, while one study of Chilodonella uncinata suggested that they were inversely correlated. To study further copy number and expression levels in C. uncinata, we analyzed 11 members in five gene families (SSU-rDNA, actin, alpha-tubulin, histidine acid phosphatase family protein and a protein kinase domain containing protein) from one strain. We find that macronuclear copy numbers of these genes range from hundreds to thousands per cell, and that copy number does not correlate with expression level as measured by steady-state RNA in predominantly-vegetative cultures. We also compared six of these genes to their orthologs in a second genetically-isolated strain of C. uncinata to reveal that patterns of nanochromosome and transcript copy numbers are conserved between strains. Our data suggest that nanochromosome copy number may be related to a feature like nuclear architecture.
Collapse
Affiliation(s)
- Jie Huang
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA; Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA; Program in Organismic and Evolutionary Biology, UMass-Amherst, Amherst, MA 01003, USA.
| |
Collapse
|