1
|
Dehghan R, Parikhani AB, Cohan RA, Shokrgozar MA, Mirabzadeh E, Ajdary S, Zeinali S, Ghaderi H, Talebkhan Y, Behdani M. Specific Targeting of Zinc Transporter LIV-1 with Immunocytokine Containing Anti-LIV-1 VHH and Human IL-2 and Evaluation of its In vitro Antitumor Activity. Curr Pharm Des 2024; 30:868-876. [PMID: 38482625 DOI: 10.2174/0113816128295195240305060103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/16/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Interleukin 2 (IL-2) is a vital cytokine in the induction of T and NK cell responses, the proliferation of CD8+ T cells, and the effective treatment of human cancers such as melanoma and renal cell carcinoma. However, widespread use of this cytokine is limited due to its short half-life, severe toxicity, lack of specific tumor targeting, and activation of Treg cells mediated by high-affinity interleukin-2 receptors. OBJECTIVE In this study, a tumor-targeting LIV-1 VHH-mutIL2 immunocytokine with reduced CD25 (α chain of the high-affinity IL-2 receptor) binding activity was developed to improve IL-2 half-life by decreasing its renal infiltration in comparison with wild and mutant IL-2 molecules. METHODS The recombinant immunocytokine was designed and expressed. The biological activity of the purified fusion protein was investigated in in vitro and in vivo experiments. RESULTS The fusion protein represented specific binding to MCF7 (the breast cancer cell line) and more efficient cytotoxicity than wild-type IL-2 and mutant IL-2. The PK parameters of the recombinant immunocytokine were also improved in comparison to the IL-2 molecules. CONCLUSION The observed results showed that LIV1-mIL2 immunocytokine could be considered as an effective agent in the LIV-1-targeted treatment of cancers due to its longer half-life and stronger cytotoxicity.
Collapse
Affiliation(s)
- Rada Dehghan
- Venom and Biotherapeutics Molecules Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Arezoo Beig Parikhani
- Venom and Biotherapeutics Molecules Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Ahangari Cohan
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | | | - Esmat Mirabzadeh
- Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Sirous Zeinali
- Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Hajarossadat Ghaderi
- Venom and Biotherapeutics Molecules Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Yeganeh Talebkhan
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Saravanan R, Balasubramanian V, Swaroop Balamurugan SS, Ezhil I, Afnaan Z, John J, Sundaram S, Gouthaman S, Pakala SB, Rayala SK, Venkatraman G. Zinc transporter LIV1: A promising cell surface target for triple negative breast cancer. J Cell Physiol 2022; 237:4132-4156. [PMID: 36181695 DOI: 10.1002/jcp.30880] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 11/05/2022]
Abstract
Breast cancer is one of the leading causes contributing to the global cancer burden. The triple negative breast cancer (TNBC) molecular subtype accounts for the most aggressive type. Despite progression in therapeutic options and prognosis in breast cancer treatment options, there remains a high rate of distant relapse. With advancements in understanding the role of zinc and zinc carriers in the prognosis and treatment of the disease, the scope of precision treatment/targeted therapy has been expanded. Zinc levels and zinc transporters play a vital role in maintaining cellular homeostasis, tumor surveillance, apoptosis, and immune function. This review focuses on the zinc transporter, LIV1, as an essential target for breast cancer prognosis and emerging treatment options. Previous studies give an insight into the role of LIV1 in fulfilling the most important hallmarks of cancer such as apoptosis, metastasis, invasion, and evading the immune system. Normal tissue expression of LIV1 is limited. Higher expression of LIV1 has been linked to Epithelial-Mesenchymal Transition, histological grade of cancer, and early node metastasis. LIV1 was found to be one of the attractive targets in the therapeutic hunt for TNBCs. TNBCs are an immunogenic breast cancer subtype. As zinc transporters are known to serve as the metabolic gatekeepers of immune cells, this review bridges tumor infiltrating lymphocytes, TNBC and LIV1. In addition, the suitability of LIV1 as an antibody-drug conjugate (Seattle genetics [SGN]-LIV1A) target in TNBC, represents a promising strategy for patients. Early clinical trial results reveal that this novel agent reduces tumor burden by inducing mitotic arrest, immunomodulation, and immunogenic cell death, warranting further investigation of SGN-LIV1A in combination with immuno-oncology agents. Priming the patient's immune response in combination with SGN-LIV1A could eventually change the landscape for the TNBC patient population.
Collapse
Affiliation(s)
- Roshni Saravanan
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Vaishnavi Balasubramanian
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Srikanth Swamy Swaroop Balamurugan
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Inemai Ezhil
- Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, Tamil Nadu, India
| | - Zeba Afnaan
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Jisha John
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Shanmugasundaram Gouthaman
- Department of Surgical Oncology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Suresh B Pakala
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Suresh Kumar Rayala
- Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, Tamil Nadu, India
| | - Ganesh Venkatraman
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Barman SK, Zaman MS, Veljanoski F, Malladi CS, Mahns DA, Wu MJ. Expression profiles of the genes associated with zinc homeostasis in normal and cancerous breast and prostate cells. Metallomics 2022; 14:6601457. [PMID: 35657662 DOI: 10.1093/mtomcs/mfac038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/12/2022] [Indexed: 11/14/2022]
Abstract
Zn2+ dyshomeostasis is an intriguing phenomenon in breast and prostate cancers, with breast cancer cells exhibiting higher intracellular Zn2+ level compared to their corresponding normal epithelial cells, in contrast to the low Zn2+ level in prostate cancer cells. In order to gain molecular insights into the zinc homeostasis of breast and prostate cancer cells, this study profiled the expression of 28 genes, including 14 zinc importer genes (SLC39A1-14) which encode ZIP1-14 to transport Zn2+ into the cytoplasm, 10 zinc exporter genes (SLC30A1-10) which encode ZnT1-10 to transport Zn2+ out of the cytoplasm and 4 metallothionein genes (MT1B, MT1F, MT1X, MT2A) in breast (MCF10A, MCF-7, MDA-MB-231) and prostate (RWPE-1, PC3, DU145) cell lines in response to extracellular zinc exposures at a mild cytotoxic dosage and a benign dosage. The RNA samples were prepared at 0 min (T0), 30 min (T30) and 120 min (T120) in a time course with or without zinc exposure, which were used for profiling the baseline and dynamic gene expression. The up-regulation of MT genes was observed across the breast and prostate cancer cell lines. The expression landscape of SLC39A and SLC30A was revealed by the qRT-PCR data of this study, which sheds light on the divergence of intracellular Zn2+ levels for breast and prostate cancer cells. Taken together, the findings are valuable in unravelling the molecular intricacy of zinc homeostasis in breast and prostate cancer cells.
Collapse
Affiliation(s)
- Shital K Barman
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751
| | - Mohammad S Zaman
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751
| | - Filip Veljanoski
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751
| | - Chandra S Malladi
- Proteomics and Lipidomics Lab, School of Medicine, Western Sydney University, Locked
| | - David A Mahns
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751
| | - Ming J Wu
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751
| |
Collapse
|
4
|
Ghaderi H, Noormohammadi Z, Habibi-Anbouhi M, Kazemi-Lomedasht F, Behdani M. Development of camelid monoclonal nanobody against SLC39A6 zinc transporter protein. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1726-1733. [PMID: 35432806 PMCID: PMC8976899 DOI: 10.22038/ijbms.2021.58542.13003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/30/2021] [Indexed: 11/22/2022]
Abstract
Objectives SLC39A6 (solute carrier family 39) or LIV-1, is a zinc-transporter protein associated with estrogen-positive breast cancer and its metastatic spread. Significantly there is a direct relation between high zinc intake and unregulated cell proliferation and cancers. Blocking SLC39A6 protein may result in reduced metastasis and proliferation in many malignant tumors. This study aimed to develop an anti-SLC39A6 nanobody that is able to detect and block the SLC39A6 protein on the surface of cancerous cells. Materials and Methods The recombinant SLC39A6 was expressed and used for camel immunization. The VHH library was constructed and screened for SLC39A6-specific nanobody. Then, the strength of nanobody in SLC39A6 detection was evaluated by Western blotting and flow cytometry. Results We showed the ability of SLC39A6 specific Nanobody (C3) to detect SLC39A6 by Western blotting and flow cytometry. Furthermore, the C3 nanobody potently inhibits cell proliferation in MTT assay. Conclusion These data show the potential of SLC39A6-specific nanobody for the blockade of zinc transporter protein and provide a basis for the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Hajarossadat Ghaderi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Noormohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Fatemeh Kazemi-Lomedasht
- Biotechnology Research Centre, Venom and Biotherapeutics Molecules Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Behdani
- Biotechnology Research Centre, Venom and Biotherapeutics Molecules Laboratory, Pasteur Institute of Iran, Tehran, Iran, Zoonoses Research Centre, Pasteur Institute of Iran, Amol, Iran,Corresponding author: Mahdi Behdani. Biotechnology Research Centre, Venom and Bio-therapeutics Molecules Laboratory, Pasteur Institute of Iran, Tehran, Iran. Tel: +98-21-66480780; ;
| |
Collapse
|
5
|
Althobiti M, El-sharawy KA, Joseph C, Aleskandarany M, Toss MS, Green AR, Rakha EA. Oestrogen-regulated protein SLC39A6: a biomarker of good prognosis in luminal breast cancer. Breast Cancer Res Treat 2021; 189:621-630. [PMID: 34453638 PMCID: PMC8505289 DOI: 10.1007/s10549-021-06336-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 07/15/2021] [Indexed: 10/27/2022]
Abstract
PURPOSE The outcome of the luminal oestrogen receptor-positive (ER +) subtype of breast cancer (BC) is highly variable and patient stratification needs to be refined. We assessed the prognostic significance of oestrogen-regulated solute carrier family 39 member 6 (SLC39A6) in BC, with emphasis on ER + tumours. MATERIALS AND METHODS SLC39A6 mRNA expression and copy number alterations were assessed using the METABRIC cohort (n = 1980). SLC39A6 protein expression was evaluated in a large (n = 670) and annotated series of early-stage (I-III) operable BC using tissue microarrays and immunohistochemistry. The associations between SLC39A6 expression and clinicopathological parameters, patient outcomes and other ER-related markers were evaluated using Chi-square tests and Kaplan-Meier curves. RESULTS High SLC39A6 mRNA and protein expression was associated with features characteristic of less aggressive tumours in the entire BC cohort and ER + subgroup. SLC39A6 protein expression was detected in the cytoplasm and nuclei of the tumour cells. High SLC39A6 nuclear expression and mRNA levels were positively associated with ER + tumours and expression of ER-related markers, including the progesterone receptor, forkhead box protein A1 and GATA binding protein 3. In the ER + luminal BC, high SLC39A6 expression was independently associated with longer BC-specific survival (BCSS) (P = 0.015, HR 0.678, 95% CI 0.472‒0.972) even in those who did not receive endocrine therapy (P = 0.001, HR 0.701, 95% CI 0.463‒1.062). CONCLUSION SLC39A6 may be prognostic for a better outcome in ER + luminal BC. Further functional studies to investigate the role of SLC39A6 in ER + luminal BC are warranted.
Collapse
Affiliation(s)
- Maryam Althobiti
- grid.4563.40000 0004 1936 8868Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD England ,grid.449644.f0000 0004 0441 5692Department of Clinical Laboratory Science, College of Applied Medical Science, Shaqra University 33, Shaqra, 11961 Saudi Arabia
| | - Khloud A. El-sharawy
- grid.4563.40000 0004 1936 8868Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD England ,grid.462079.e0000 0004 4699 2981Faculty of Science, Damietta University, Damietta, Egypt
| | - Chitra Joseph
- grid.4563.40000 0004 1936 8868Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD England
| | - Mohammed Aleskandarany
- grid.4563.40000 0004 1936 8868Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD England
| | - Michael S. Toss
- grid.4563.40000 0004 1936 8868Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD England
| | - Andrew R. Green
- grid.4563.40000 0004 1936 8868Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD England ,grid.4563.40000 0004 1936 8868Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD England
| | - Emad A. Rakha
- grid.4563.40000 0004 1936 8868Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD England ,grid.4563.40000 0004 1936 8868Present Address: Department of Histopathology, School of Medicine, The University of Nottingham, City Hospital Campus, Hucknall Road, Nottingham, NG5 1PB, UK
| |
Collapse
|
6
|
Hu J. Toward unzipping the ZIP metal transporters: structure, evolution, and implications on drug discovery against cancer. FEBS J 2020; 288:5805-5825. [PMID: 33296542 DOI: 10.1111/febs.15658] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
The Zrt-/Irt-like protein (ZIP) family consists of divalent metal transporters, ubiquitous in all kingdoms of life. Since the discovery of the first ZIPs in the 1990s, the ZIP family has been expanding to contain tens of thousands of members playing key roles in uptake and homeostasis of life-essential trace elements, primarily zinc, iron and manganese. Some family members are also responsible for toxic metal (particularly cadmium) absorption and distribution. Their central roles in trace element biology, and implications in many human diseases, including cancers, have elicited interest across multiple disciplines for potential applications in biomedicine, agriculture and environmental protection. In this review and perspective, selected areas under rapid progress in the last several years, including structural biology, evolution, and drug discovery against cancers, are summarised and commented. Future research to address the most prominent issues associated with transport and regulation mechanisms are also discussed.
Collapse
Affiliation(s)
- Jian Hu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.,Department of Chemistry, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
7
|
Prognostic value and underlying mechanism of KIAA0101 in hepatocellular carcinoma: database mining and co-expression analysis. Aging (Albany NY) 2020; 12:16420-16436. [PMID: 32855364 PMCID: PMC7485719 DOI: 10.18632/aging.103704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022]
Abstract
Although KIAA0101 is involved in many diseases, its expression and prognostic value in HCC remain undefined. According to CCLE, KIAA0101 is highly expressed in HCC, with a weak positive correlation between copy number and gene expression. Four studies involving 760 samples in ONCOMINE report elevated KIAA0101 expression in HCC (p=3.11E-22). The KM plotter revealed high KIAA0101 expression to be associated with worse overall survival in HCC (HR=2.09, p=4.1e-05); this prognostic power was stronger for male than female, early-stage than advanced-stage, and Asian than Caucasian patients. RNA sequencing data for 8 pairs of HCC and adjacent tissue samples validated the significantly high KIAA0101 level (p=0.00497). Moreover, functional annotations of 31 KIAA0101-coexpressed genes show enrichment of terms associated with mitosis, cytoskeleton construction, and chromosome segregation. Among 9 genes having STRING-validated protein-protein interactions with KIAA0101, two are involved in virus-related pathways. Alternative splicing analysis indicated higher expression of variant 1 and variant 2 in HCC and no significant differences in exon usage of KIAA0101 between cancer and normal tissues. These findings support that KIAA0101 is a potential prognostic biomarker for HCC and highlight the association between virus infection and the mechanism underlying the process by which KIAA0101 contributes to poor prognosis of patients.
Collapse
|
8
|
Nabih HK. Crosstalk between NRF2 and Dicer through metastasis regulating MicroRNAs; mir-34a, mir-200 family and mir-103/107 family. Arch Biochem Biophys 2020; 686:108326. [DOI: 10.1016/j.abb.2020.108326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 12/16/2022]
|
9
|
Anderson KJ, Cormier RT, Scott PM. Role of ion channels in gastrointestinal cancer. World J Gastroenterol 2019; 25:5732-5772. [PMID: 31636470 PMCID: PMC6801186 DOI: 10.3748/wjg.v25.i38.5732] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/26/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023] Open
Abstract
In their seminal papers Hanahan and Weinberg described oncogenic processes a normal cell undergoes to be transformed into a cancer cell. The functions of ion channels in the gastrointestinal (GI) tract influence a variety of cellular processes, many of which overlap with these hallmarks of cancer. In this review we focus on the roles of the calcium (Ca2+), sodium (Na+), potassium (K+), chloride (Cl-) and zinc (Zn2+) transporters in GI cancer, with a special emphasis on the roles of the KCNQ1 K+ channel and CFTR Cl- channel in colorectal cancer (CRC). Ca2+ is a ubiquitous second messenger, serving as a signaling molecule for a variety of cellular processes such as control of the cell cycle, apoptosis, and migration. Various members of the TRP superfamily, including TRPM8, TRPM7, TRPM6 and TRPM2, have been implicated in GI cancers, especially through overexpression in pancreatic adenocarcinomas and down-regulation in colon cancer. Voltage-gated sodium channels (VGSCs) are classically associated with the initiation and conduction of action potentials in electrically excitable cells such as neurons and muscle cells. The VGSC NaV1.5 is abundantly expressed in human colorectal CRC cell lines as well as being highly expressed in primary CRC samples. Studies have demonstrated that conductance through NaV1.5 contributes significantly to CRC cell invasiveness and cancer progression. Zn2+ transporters of the ZIP/SLC39A and ZnT/SLC30A families are dysregulated in all major GI organ cancers, in particular, ZIP4 up-regulation in pancreatic cancer (PC). More than 70 K+ channel genes, clustered in four families, are found expressed in the GI tract, where they regulate a range of cellular processes, including gastrin secretion in the stomach and anion secretion and fluid balance in the intestinal tract. Several distinct types of K+ channels are found dysregulated in the GI tract. Notable are hERG1 upregulation in PC, gastric cancer (GC) and CRC, leading to enhanced cancer angiogenesis and invasion, and KCNQ1 down-regulation in CRC, where KCNQ1 expression is associated with enhanced disease-free survival in stage II, III, and IV disease. Cl- channels are critical for a range of cellular and tissue processes in the GI tract, especially fluid balance in the colon. Most notable is CFTR, whose deficiency leads to mucus blockage, microbial dysbiosis and inflammation in the intestinal tract. CFTR is a tumor suppressor in several GI cancers. Cystic fibrosis patients are at a significant risk for CRC and low levels of CFTR expression are associated with poor overall disease-free survival in sporadic CRC. Two other classes of chloride channels that are dysregulated in GI cancers are the chloride intracellular channels (CLIC1, 3 & 4) and the chloride channel accessory proteins (CLCA1,2,4). CLIC1 & 4 are upregulated in PC, GC, gallbladder cancer, and CRC, while the CLCA proteins have been reported to be down-regulated in CRC. In summary, it is clear, from the diverse influences of ion channels, that their aberrant expression and/or activity can contribute to malignant transformation and tumor progression. Further, because ion channels are often localized to the plasma membrane and subject to multiple layers of regulation, they represent promising clinical targets for therapeutic intervention including the repurposing of current drugs.
Collapse
Affiliation(s)
- Kyle J Anderson
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| | - Robert T Cormier
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| | - Patricia M Scott
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| |
Collapse
|
10
|
Ziliotto S, Gee JMW, Ellis IO, Green AR, Finlay P, Gobbato A, Taylor KM. Activated zinc transporter ZIP7 as an indicator of anti-hormone resistance in breast cancer. Metallomics 2019; 11:1579-1592. [PMID: 31483418 PMCID: PMC6796783 DOI: 10.1039/c9mt00136k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/22/2019] [Indexed: 12/24/2022]
Abstract
ZIP7, a member of the ZIP family of zinc importers, resides on the endoplasmic reticulum membrane and transports zinc from intracellular stores to the cytoplasm after activation by CK2 phosphorylation on two serine residues (S275 and S276). ZIP7 is known to be required for the growth of anti-hormone resistant breast cancer models, especially those with acquired tamoxifen resistance developed from MCF-7. Using our new pS275S276ZIP7 antibody which only recognises activated ZIP7 (pZIP7), we have demonstrated that the hyperactivation of ZIP7 is prevalent in tamoxifen-resistant breast cancer cells. This evidence suggests that pZIP7 might have potential as a biomarker of acquired resistance to such anti-hormones in breast cancer, a current unmet clinical need. In this regard, we have also developed a new immunohistochemical assay for pZIP7 which allowed pZIP7 to be tested on a small clinical series of breast cancer tissues confirming its prevalence in such tumours and relationship to a variety of clinicopathological parameters and biomarkers previously associated with endocrine resistant phenotypes, notably increased activated MAPK signalling, expression of ErbB2, CD71 and the proto-oncogene c-Fos, as well as with increased tumour grade.
Collapse
Affiliation(s)
- Silvia Ziliotto
- Breast Cancer Molecular Pharmacology Unit, School of Pharmacy and Pharmaceutical Sciences, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK.
| | - Julia M W Gee
- Breast Cancer Molecular Pharmacology Unit, School of Pharmacy and Pharmaceutical Sciences, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK.
| | - Ian O Ellis
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham City Hospital, Nottingham, UK
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham City Hospital, Nottingham, UK
| | - Pauline Finlay
- Breast Cancer Molecular Pharmacology Unit, School of Pharmacy and Pharmaceutical Sciences, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK.
| | - Anna Gobbato
- Breast Cancer Molecular Pharmacology Unit, School of Pharmacy and Pharmaceutical Sciences, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK.
| | - Kathryn M Taylor
- Breast Cancer Molecular Pharmacology Unit, School of Pharmacy and Pharmaceutical Sciences, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK.
| |
Collapse
|
11
|
Calap-Quintana P, González-Fernández J, Sebastiá-Ortega N, Llorens JV, Moltó MD. Drosophila melanogaster Models of Metal-Related Human Diseases and Metal Toxicity. Int J Mol Sci 2017; 18:E1456. [PMID: 28684721 PMCID: PMC5535947 DOI: 10.3390/ijms18071456] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 06/27/2017] [Accepted: 06/30/2017] [Indexed: 12/21/2022] Open
Abstract
Iron, copper and zinc are transition metals essential for life because they are required in a multitude of biological processes. Organisms have evolved to acquire metals from nutrition and to maintain adequate levels of each metal to avoid damaging effects associated with its deficiency, excess or misplacement. Interestingly, the main components of metal homeostatic pathways are conserved, with many orthologues of the human metal-related genes having been identified and characterized in Drosophila melanogaster. Drosophila has gained appreciation as a useful model for studying human diseases, including those caused by mutations in pathways controlling cellular metal homeostasis. Flies have many advantages in the laboratory, such as a short life cycle, easy handling and inexpensive maintenance. Furthermore, they can be raised in a large number. In addition, flies are greatly appreciated because they offer a considerable number of genetic tools to address some of the unresolved questions concerning disease pathology, which in turn could contribute to our understanding of the metal metabolism and homeostasis. This review recapitulates the metabolism of the principal transition metals, namely iron, zinc and copper, in Drosophila and the utility of this organism as an experimental model to explore the role of metal dyshomeostasis in different human diseases. Finally, a summary of the contribution of Drosophila as a model for testing metal toxicity is provided.
Collapse
Affiliation(s)
- Pablo Calap-Quintana
- Department of Genetics, University of Valencia, Campus of Burjassot, 46100 Valencia, Spain.
| | - Javier González-Fernández
- Department of Genetics, University of Valencia, Campus of Burjassot, 46100 Valencia, Spain.
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain.
| | - Noelia Sebastiá-Ortega
- Department of Genetics, University of Valencia, Campus of Burjassot, 46100 Valencia, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain.
| | - José Vicente Llorens
- Department of Genetics, University of Valencia, Campus of Burjassot, 46100 Valencia, Spain.
| | - María Dolores Moltó
- Department of Genetics, University of Valencia, Campus of Burjassot, 46100 Valencia, Spain.
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain.
| |
Collapse
|
12
|
Cheng X, Wei L, Huang X, Zheng J, Shao M, Feng T, Li J, Han Y, Tan W, Tan W, Lin D, Wu C. Solute Carrier Family 39 Member 6 Gene Promotes Aggressiveness of Esophageal Carcinoma Cells by Increasing Intracellular Levels of Zinc, Activating Phosphatidylinositol 3-Kinase Signaling, and Up-regulating Genes That Regulate Metastasis. Gastroenterology 2017; 152:1985-1997.e12. [PMID: 28209530 DOI: 10.1053/j.gastro.2017.02.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/04/2017] [Accepted: 02/06/2017] [Indexed: 01/23/2023]
Abstract
BACKGROUND & AIMS A common variant in the solute carrier family 39 member 6 gene (SLC39A6) has been associated with survival times of patients with esophageal squamous cell carcinoma (ESCC). We investigated the function of SLC39A6 and ways in which this variant affects tumor progression by studying ESCC samples and cell lines. METHODS SLC39A6 was expressed or knocked down by expression of short hairpin RNAs in ESCC cells (KYSE30 and KYSE450) and HeLa cells using lentiviral vectors; we analyzed effects on proliferation, colony formation, migration, and invasion in vitro. Cells were grown as xenograft tumors in nude mice and tumor volume and metastases were quantified; tumors were collected and analyzed histologically. Cells were also analyzed for levels of intracellular zinc and messenger RNA (mRNA) expression patterns. We obtained ESCC and adjacent normal esophageal tissues from 94 patients who underwent esophagectomy in China from 2010 through 2014. Survival times of patients were measured from the date of diagnosis to the date of last follow-up or death. We sequenced mRNAs and compared levels between tumor and non-tumor tissues using the Wilcox rank-sum test. Total proteins in cell lines or tissue samples were measured by immunoblotting. We searched publicly available databases for variants of SLC39A6 in human tumor and non-tumor tissues. RESULTS Knockdown of SLC39A6 reduced proliferation of ESCC cells in culture and metastasis of xenograft tumors in mice. Cells that overexpressed SLC39A6 had significant increases in intracellular levels of zinc and were more invasive in assays, activating phosphatidylinositol 3-kinase signaling to AKT serine/threonine kinase 1 and mitogen-activated protein kinase 1. Cells that overexpressed SLC39A6 had increased expression of mRNAs and proteins associated with metastasis, such as matrix metalloproteinase (MMP) 1, MMP3, MYC, and snail family transcriptional repressor 2 (SNAI2 or SLUG). Levels of MMP1, MMP3, MYC, and SLUG mRNAs correlated with levels of SLC39A6 mRNA in ESCC samples from patients. ESCC tissues had increased levels of SLC39A6 mRNA compared with non-tumor tissues; the increase correlated with tumor metastasis to lymph node and reduced patient survival time. CONCLUSIONS In an analysis of ESCC samples and cell lines, we associated increased expression of SLC39A6 with tumor invasiveness, intracellular level of zinc, and patient survival time. ESCC cell lines that overexpress SLC39A6 up-regulate expression MMP1, MMP3, MYC, and SLUG and form metastatic xenograft tumors in mice. Up-regulation of SLC39A6 might be used to determine prognoses of patients with ESCC or as a therapeutic target.
Collapse
Affiliation(s)
- Xinxin Cheng
- Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lixuan Wei
- Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xudong Huang
- Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Mingming Shao
- Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Feng
- Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Li
- Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaling Han
- Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenle Tan
- Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen Tan
- Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
13
|
Li Q, Jin J, Liu J, Wang L, He Y. Knockdown of Zinc Transporter ZIP5 by RNA Interference Inhibits Esophageal Cancer Growth In Vivo. Oncol Res 2017; 24:205-14. [PMID: 27458102 PMCID: PMC7838672 DOI: 10.3727/096504016x14648701447896] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We recently found that SLC39A5 (ZIP5), a zinc transporter, is overexpressed in esophageal cancer. Downregulation of ZIP5 inhibited the proliferation, migration, and invasion of the esophageal cancer cell line KYSE170 in vitro. In this study, we found that downregulation of SLC39A5 (ZIP5) by interference resulted in a significant reduction in esophageal cancer tumor volume and weight in vivo. COX2 (cyclooxygenase 2) expression was decreased and E-cadherin expression was increased in the KYSE170K xenografts, which was caused by the downregulation of ZIP5. However, we did not find that the downregulation of ZIP5 caused a change in the relative expressions of cyclin D1, VEGF (vascular endothelial growth factor), MMP9 (matrix metalloprotein 9), and Bcl-2 (B-cell lymphoma/leukmia-2) mRNA or an alteration in the average level of zinc in the peripheral blood and xenografts in vivo. Collectively, these findings indicate that knocking down ZIP5 by small interfering RNA (siRNA) might be a novel treatment strategy for esophageal cancer with ZIP5 overexpression.
Collapse
Affiliation(s)
- Qian Li
- Cancer Institute, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | | | | | | | | |
Collapse
|
14
|
Li B, Huang C. Regulation of EMT by STAT3 in gastrointestinal cancer (Review). Int J Oncol 2017; 50:753-767. [PMID: 28098855 DOI: 10.3892/ijo.2017.3846] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/10/2016] [Indexed: 11/06/2022] Open
Abstract
Gastrointestinal (GI) cancer is characterized by its aggressiveness and tendency to metastasize at early stage. Epithelial-mesenchymal transition (EMT), commonly known as the preparing step of metastasis, may account for the aggressive phenotype of GI cancer cells. The process of EMT is finely orchestrated by multiple layers of regulators. Signal transducer and activator of transcription 3 (STAT3) is a transcription factor constitutively activated in diverse malignancies. Recent studies have suggested an involvement of STAT3 in GI cancer EMT. In this review, we first take an insight into the oncogenic functions of STAT3 in GI cancer, and then summarize the possible mechanisms by which STAT3 regulates the EMT process. Through the extensive interactions with EMT-inducing transcription factors and non-coding RNAs, and crosstalk with other signaling pathways, STAT3 has been demonstrated to promote the mesenchymal and invasive phenotype of GI cancer, which provides rationales for specifically targeting STAT3 to prevent and reverse the progression of GI cancer.
Collapse
Affiliation(s)
- Bo Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Chen Huang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
15
|
Pan Z, Choi S, Ouadid-Ahidouch H, Yang JM, Beattie JH, Korichneva I. Zinc transporters and dysregulated channels in cancers. Front Biosci (Landmark Ed) 2017; 22:623-643. [PMID: 27814637 DOI: 10.2741/4507] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As a nutritionally essential metal ion, zinc (Zn) not only constitutes a structural element for more than 3000 proteins but also plays important regulatory functions in cellular signal transduction. Zn homeostasis is tightly controlled by regulating the flux of Zn across cell membranes through specific transporters, i.e. ZnT and ZIP family proteins. Zn deficiency and malfunction of Zn transporters have been associated with many chronic diseases including cancer. However, the mechanisms underlying Zn regulatory functions in cellular signaling and their impact on the pathogenesis and progression of cancers remain largely unknown. In addition to these acknowledged multifunctions, Zn modulates a wide range of ion channels that in turn may also play an important role in cancer biology. The goal of this review is to propose how zinc deficiency, through modified Zn homeostasis, transporter activity and the putative regulatory function of Zn can influence ion channel activity, and thereby contribute to carcinogenesis and tumorigenesis. This review intends to stimulate interest in, and support for research into the understanding of Zn-modulated channels in cancers, and to search for novel biomarkers facilitating effective clinical stratification of high risk cancer patients as well as improved prevention and therapy in this emerging field.
Collapse
Affiliation(s)
- Zui Pan
- The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA,
| | - Sangyong Choi
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Halima Ouadid-Ahidouch
- University of Picardie Jules Verne, UFR Sciences, EA 4667, Laboratory of Cell and Molecular Physiology, SFR CAP-SANTE (FED 4231), Amiens, France
| | - Jin-Ming Yang
- Department of Pharmacology, College of Medicine, Penn State University, 500 University Drive Hershey, PA 17033, USA
| | - John H Beattie
- Rowett Institute of Nutrition and Health, University of Aberdeen, Foresterhill, Bucksburn, Aberdeen AB25 2ZD, Scotland, UK
| | - Irina Korichneva
- University of Picardie Jules Verne, UFR Sciences, EA 4667, Laboratory of Cell and Molecular Physiology, SFR CAP-SANTE (FED 4231), Amiens, France
| |
Collapse
|
16
|
Lian J, Jing Y, Dong Q, Huan L, Chen D, Bao C, Wang Q, Zhao F, Li J, Yao M, Qin L, Liang L, He X. miR-192, a prognostic indicator, targets the SLC39A6/SNAIL pathway to reduce tumor metastasis in human hepatocellular carcinoma. Oncotarget 2016; 7:2672-2683. [PMID: 26684241 PMCID: PMC4823063 DOI: 10.18632/oncotarget.6603] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 11/20/2015] [Indexed: 12/31/2022] Open
Abstract
Metastasis is one of the causes of cancer death. Functions and mechanisms of microRNAs (miRNAs) involved in hepatocellular carcinoma (HCC) metastasis are largely unknown. Here, a miRNA microarray analysis was performed in MHCC-97L, MHCC-97H and HCC-LM3 cells with gradually increasing metastatic potential to disclose crucial miRNAs involved in HCC metastasis. miR-192 expression decreased and negatively correlated with vascular invasion in HCC specimens. Gain and loss of function studies revealed that miR-192 significantly suppressed metastasis of HCC cells in vitro and in vivo. Solute carrier family 39 member 6 (SLC39A6) was identified as a direct and functional target of miR-192. In addition, SLC39A6 negatively correlated with miR-192 in HCC samples and promoted HCC cell migration and invasion. Moreover, miR-192 decreased SLC39A6 expression, subsequently downregulating SNAIL and upregulating E-cadherin expression. Suppression of migration and invasion caused by miR-192 overexpression was alleviated by exogenous Snail expression. Intriguingly, lower miR-192 expression and higher SLC39A6 expression significantly contributed to poorer outcomes in HCC patients. Multivariate analysis indicated that miR-192 was an independent and significant predictor of HCC patient overall survival. In conclusion, we newly determined that miR-192 targeted the SLC39A6/SNAIL pathway to reduce tumor metastasis in HCC cells. This axis provided insights into the mechanism underlying miRNA regulation of HCC metastasis and a novel therapeutic target for HCC treatment.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/prevention & control
- Carcinoma, Hepatocellular/secondary
- Cation Transport Proteins/genetics
- Cation Transport Proteins/metabolism
- Cell Proliferation
- Female
- Follow-Up Studies
- Humans
- Immunoenzyme Techniques
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/prevention & control
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- Middle Aged
- Neoplasm Grading
- Neoplasm Invasiveness
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasm Staging
- Prognosis
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Snail Family Transcription Factors/genetics
- Snail Family Transcription Factors/metabolism
- Survival Rate
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Junwei Lian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Ying Jing
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Qiongzhu Dong
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Lin Huan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Di Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Chunyang Bao
- Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qifeng Wang
- Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fangyu Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Jinjun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Lunxiu Qin
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200032, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Linhui Liang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xianghuo He
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
17
|
Cui XB, Shen YY, Jin TT, Li S, Li TT, Zhang SM, Peng H, Liu CX, Li SG, Yang L, Li N, Hu JM, Jiang JF, Li M, Liang WH, Li Y, Wei YT, Sun ZZ, Wu CY, Chen YZ, Li F. SLC39A6: a potential target for diagnosis and therapy of esophageal carcinoma. J Transl Med 2015; 13:321. [PMID: 26444413 PMCID: PMC4595240 DOI: 10.1186/s12967-015-0681-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 09/24/2015] [Indexed: 02/05/2023] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is a highly lethal cancer, and its underlying molecular mechanisms are poorly understood. Recent large-scale genome-wide association studies in Chinese Han populations have identified an ESCC susceptibility locus within the SLC39A6 gene. Here, we sought to explore the expression and biological function of SLC39A6 in ESCC. Methods Multiethnic validation of SLC39A6 protein expression was performed in different cohorts of patients from Chinese Han and Kazakh populations in the Xinjiang region by immunohistochemistry. The associations among SLC39A6 expression, clinicopathological parameters, and prognosis outcomes of ESCC were analyzed. And the effects of SLC39A6 silencing by siRNA on cell proliferation, apoptosis, and invasiveness, as well as the proteins involved in epithelial-to-mesenchymal transition (EMT) of esophageal cancer cells, were studied. Results SLC39A6 protein expression increased progressively from normal esophageal epithelium (NEE) to low-grade intraepithelial neoplasia to ESCC, and finally reached the highest in high-grade intraepithelial neoplasia from Han ethnic. Similarly, SLC39A6 protein was significantly overexpressed in Kazakh ethnic ESCC compared with that in NEE. Increased expression of SLC39A6 was found to be closely correlated with histological grade and early Tumor-Node-Metastasis stage I/II. High tumorous SLC39A6 expression was significantly correlated with shorter overall survival (OS). Cox regression analysis confirmed that SLC39A6 expression was an independent prognostic factor for poor OS in ESCC. Experimentally, the suppression of SLC39A6 expression promoted ESCC cell apoptosis but abrogated proliferation and invasion, and induced an EMT phenotype that included enhanced expression of E-cadherin, loss of vimentin, and morphological changes in ESCC cells in vitro. Conclusions Combined, our findings highlight a tumor-promoting role for SLC39A6 in ESCC, suggesting that SLC39A6 could serve as an early detector of high-risk subjects and prognostic biomarker. The targeting of SLC39A6 might be a potential therapeutic strategy for blocking ESCC. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0681-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao-Bin Cui
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China. .,Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, 430030, Wuhan, China.
| | - Yao-Yuan Shen
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China. .,Department of Pathology, People Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China.
| | - Ting-Ting Jin
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China.
| | - Su Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China.
| | - Ting-Ting Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China.
| | - Shu-Mao Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China.
| | - Hao Peng
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China.
| | - Chun-Xia Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China.
| | - Shu-Gang Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China.
| | - Lan Yang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China.
| | - Na Li
- Department of Oncology, The First Affiliated Hospital, Shihezi University School of Medicine, 832002, Shihezi, China.
| | - Jian-Ming Hu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China. .,Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, 430030, Wuhan, China.
| | - Jin-Fang Jiang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China.
| | - Man Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China.
| | - Wei-Hua Liang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China.
| | - Yong Li
- Department of CT and MRI, The First Affiliated Hospital, Shihezi University School of Medicine, 832002, Shihezi, China.
| | - Yu-Tao Wei
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital, Shihezi University School of Medicine, 832002, Shihezi, China.
| | - Zhen-Zhu Sun
- Department of Pathology, People Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China.
| | - Chuan-Yue Wu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China. .,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Yun-Zhao Chen
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China.
| | - Feng Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China. .,Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, 430030, Wuhan, China.
| |
Collapse
|
18
|
Kambe T, Tsuji T, Hashimoto A, Itsumura N. The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol Rev 2015; 95:749-84. [DOI: 10.1152/physrev.00035.2014] [Citation(s) in RCA: 709] [Impact Index Per Article: 70.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Zinc is involved in a variety of biological processes, as a structural, catalytic, and intracellular and intercellular signaling component. Thus zinc homeostasis is tightly controlled at the whole body, tissue, cellular, and subcellular levels by a number of proteins, with zinc transporters being particularly important. In metazoan, two zinc transporter families, Zn transporters (ZnT) and Zrt-, Irt-related proteins (ZIP) function in zinc mobilization of influx, efflux, and compartmentalization/sequestration across biological membranes. During the last two decades, significant progress has been made in understanding the molecular properties, expression, regulation, and cellular and physiological roles of ZnT and ZIP transporters, which underpin the multifarious functions of zinc. Moreover, growing evidence indicates that malfunctioning zinc homeostasis due to zinc transporter dysfunction results in the onset and progression of a variety of diseases. This review summarizes current progress in our understanding of each ZnT and ZIP transporter from the perspective of zinc physiology and pathogenesis, discussing challenging issues in their structure and zinc transport mechanisms.
Collapse
Affiliation(s)
- Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tokuji Tsuji
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Ayako Hashimoto
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Naoya Itsumura
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
19
|
Kambe T, Hashimoto A, Fujimoto S. Current understanding of ZIP and ZnT zinc transporters in human health and diseases. Cell Mol Life Sci 2014; 71:3281-95. [PMID: 24710731 PMCID: PMC11113243 DOI: 10.1007/s00018-014-1617-0] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/13/2014] [Accepted: 03/20/2014] [Indexed: 12/14/2022]
Abstract
Zinc transporters, the Zrt-, Irt-like protein (ZIP) family and the Zn transporter (ZnT) family transporters, are found in all aspects of life. Increasing evidence has clarified the molecular mechanism, in which both transporters play critical roles in cellular and physiological functions via mobilizing zinc across the cellular membrane. In the last decade, mutations in ZIP and ZnT transporter genes have been shown to be implicated in a number of inherited human diseases. Moreover, dysregulation of expression and activity of both transporters has been suggested to be involved in the pathogenesis and progression of chronic diseases including cancer, immunological impairment, and neurodegenerative diseases, although comprehensive understanding is far from complete. The diverse phenotypes of diseases related to ZIP and ZnT transporters reflect the multifarious biological functions of both transporters. The present review summarizes the current understanding of ZIP and ZnT transporter functions from the standpoint of human health and diseases. The study of zinc transporters is currently of great clinical interest.
Collapse
Affiliation(s)
- Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan,
| | | | | |
Collapse
|
20
|
Davis FM, Stewart TA, Thompson EW, Monteith GR. Targeting EMT in cancer: opportunities for pharmacological intervention. Trends Pharmacol Sci 2014; 35:479-88. [PMID: 25042456 DOI: 10.1016/j.tips.2014.06.006] [Citation(s) in RCA: 263] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 02/09/2023]
Abstract
The spread of cancer cells to distant organs represents a major clinical challenge in the treatment of cancer. Epithelial-mesenchymal transition (EMT) has emerged as a key regulator of metastasis in some cancers by conferring an invasive phenotype. As well as facilitating metastasis, EMT is thought to generate cancer stem cells and contribute to therapy resistance. Therefore, the EMT pathway is of great therapeutic interest in the treatment of cancer and could be targeted either to prevent tumor dissemination in patients at high risk of developing metastatic lesions or to eradicate existing metastatic cancer cells in patients with more advanced disease. In this review, we discuss approaches for the design of EMT-based therapies in cancer, summarize evidence for some of the proposed EMT targets, and review the potential advantages and pitfalls of each approach.
Collapse
Affiliation(s)
- Felicity M Davis
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Teneale A Stewart
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Erik W Thompson
- St. Vincent's Institute, Fitzroy, VIC, Australia; University of Melbourne Department of Surgery, St Vincent's Hospital, Fitzroy, VIC, Australia; Institute of Health and Biomedical Innovation, Queensland Institute of Technology, Kelvin Grove, QLD, Australia
| | - Gregory R Monteith
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
21
|
Takatani-Nakase T, Matsui C, Maeda S, Kawahara S, Takahashi K. High glucose level promotes migration behavior of breast cancer cells through zinc and its transporters. PLoS One 2014; 9:e90136. [PMID: 24587242 PMCID: PMC3938647 DOI: 10.1371/journal.pone.0090136] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/28/2014] [Indexed: 01/15/2023] Open
Abstract
Background The diabetes patients have been associated with an increased risk of mortality by breast cancer and there are difference between the breast cancer patients with diabetes, and their nondiabetic counterparts in the regimen choice and effects of breast cancer treatment. However, the pathophysiological relationships of diabetes and breast cancer have not yet been elucidated in detail. In this study, we investigate the breast cancer cell line, MCF-7 motility, which linked to invasion and metastasis, in high glucose level corresponding to hyperglycemia and the role of Zn and its transporter. Methodology/Principal findings We demonstrated the significant motility of MCF-7 cultured in hyperglycemic level (25 mM glucose) in comparison to normal physiological glucose level (5.5 mM glucose). The other hand, the osmotic control medium, 5.5 mM glucose with 19.5 mM mannitol or fructose had no effect on migratory, suggesting that high glucose level promotes the migration of MCF-7. Moreover, the activity of intracellular Zn2+ uptake significantly increased in high glucose-treated cells in comparison to 5.5 mM glucose, and the mRNA expression of zinc transporters, ZIP6 and ZIP10, was upregulated in 25 mM glucose-treated cells. The deficiency of ZIP6 or ZIP10 and intracellular Zn2+ significantly inhibited the high migration activity in 25 mM glucose medium, indicating that Zn2+ transported via ZIP6 and ZIP10 play an essential role in the promotion of cell motility by high glucose stimulation. Conclusion/Significance Zinc and its transporters, ZIP6 and ZIP10, are required for the motility stimulated with high glucose level. These findings provide the first evidence proposing the novel strategies for the diagnosis and therapy of breast cancer with hyperglycemia.
Collapse
Affiliation(s)
- Tomoka Takatani-Nakase
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
- * E-mail: (TTN); (KT)
| | - Chihiro Matsui
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | - Sachie Maeda
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | - Satomi Kawahara
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | - Koichi Takahashi
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
- * E-mail: (TTN); (KT)
| |
Collapse
|
22
|
Unno J, Masamune A, Hamada S, Shimosegawa T. The zinc transporter LIV-1 is a novel regulator of stemness in pancreatic cancer cells. Scand J Gastroenterol 2014; 49:215-21. [PMID: 24294832 DOI: 10.3109/00365521.2013.865075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Recent studies have identified the existence a portion of cancer cells, called "cancer stem cells", within the entire cancer tissue. Cancer stem cells harbor highly tumorigenic and chemo-resistant phenotypes, which lead to recurrence or re-growth of the tumor after surgery. The mechanisms that regulate the stemness of cancer cells remain largely unknown. We hypothesized that LIV-1, a zinc transporter, regulates the stemness in pancreatic cancer cells. MATERIAL AND METHODS We established two stable Panc-1 pancreatic cancer cell lines in which LIV-1 expression was knocked down by the introduction of siRNA against LIV-1. Expression of cancer stem cell-related molecules was examined by quantitative real-time PCR. Expression of ATP-binding cassette sub-family G member 2 was also determined by flow cytometry. Spheroid culture was performed in low-adhesion coated plates. Cell migration was determined by using a modified 2-chamber migration assay. In vivo tumor formation was assessed in nude mice after the subcutaneous injection of cancer cells. The Agilent's miRNA microarray was used to identify differentially expressed miRNAs. RESULTS Knockdown of LIV-1 expression resulted in (i) decreased expression of cancer stem cell-related molecules such as LIN28 and ATP-binding cassette sub-family G member 2, (ii) decreased spheroid-forming ability, (iii) decreased migration, (iv) decreased incidence of tumor formation in nude mice, and (v) upregulation of miR-7 expression. CONCLUSIONS Our results suggest that LIV-1 might act as a novel regulator of stemness in pancreatic cancer cells.
Collapse
Affiliation(s)
- Jun Unno
- Division of Gastroenterology, Tohoku University Graduate School of Medicine , Sendai , Japan
| | | | | | | |
Collapse
|
23
|
Costello LC, Franklin RB. The status of zinc in the development of hepatocellular cancer: an important, but neglected, clinically established relationship. Cancer Biol Ther 2014; 15:353-60. [PMID: 24448510 DOI: 10.4161/cbt.27633] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Liver cancer (hepatocellular carcinoma, HCC) is increasing worldwide. About 75% of HCC cases result in death generally within one year. The factors responsible for the initiation and progression of HCC remain largely unknown and speculative, thereby impeding advancements in the development of effective therapeutic agents and biomarkers for early detection of HCC. A consistent marked decrease in zinc in HCC tumors compared with normal liver is an established clinical relationship, which occurs in virtually all cases of HCC. However, this relationship has been largely ignored by the contemporary clinical and research community. Consequently, the factors and mechanisms involved in this relationship have not been addressed. Thus, the opportunity and potential for its employment as biomarkers for early identification of malignancy, and for development of a chemotherapeutic approach have been lacking. This presentation includes a review of the literature and the description of important recent and new data, which provide the basis for a concept of the role of zinc in the development of HCC. The basis is presented for characterizing HCC malignancy as ZIP14-deficient tumors, and its requirement to prevent zinc cytotoxic effects on the malignant cells. The potential for an efficacious zinc treatment approach for HCC is described. The involvement of zinc in the predisposition for HCC by chronic liver disease/cirrhosis is presented. Hopefully, this presentation will raise the awareness, interest, and support for the much needed research in the implications of zinc in the development and progression of HCC.
Collapse
Affiliation(s)
- Leslie C Costello
- Department of Oncology and Diagnostic Sciences; Dental School; University of Maryland; Baltimore, MD USA; The University of Maryland Greenebaum Cancer Center; Baltimore, MD USA
| | - Renty B Franklin
- Department of Oncology and Diagnostic Sciences; Dental School; University of Maryland; Baltimore, MD USA; The University of Maryland Greenebaum Cancer Center; Baltimore, MD USA
| |
Collapse
|
24
|
Bao YX, Cao Q, Yang Y, Mao R, Xiao L, Zhang H, Zhao HR, Wen H. Expression and prognostic significance of golgiglycoprotein73 (GP73) with epithelial-mesenchymal transition (EMT) related molecules in hepatocellular carcinoma (HCC). Diagn Pathol 2013; 8:197. [PMID: 24313979 PMCID: PMC3924912 DOI: 10.1186/1746-1596-8-197] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/15/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third cause of cancer-related deaths, worldwide. It is essential to develop an effective prognostic biomarker and determine the mechanisms underlying HCC invasion and metastasis. AIMS This study aimed to investigate the expression of Golgi glycoprotein73 (GP73) and Epithelial-mesenchymal transition (EMT) molecules such as E-cadherin and Vimentin in HCC. We also evaluated the prognostic value of GP73 in HCC. METHODS Immunohistochemistry (IHC) was used to determine the expression of GP73 and EMT molecules in 75 HCC specimens and the corresponding paracarcinomatous liver (PCL) tissues. Spearman's correlation test was used to analyze the correlation of GP73 and EMT molecules. Clinicopathological features of the HCC patients were also analyzed. Univariate survival analysis was performed by the Kaplan-Meier method and differences among the groups were analyzed by the Log-rank test. RESULTS GP73 expression in HCC was higher compared with PCL tissues (χ2 = 73.60, P < 0.05). EMT molecules were also detected in HCC and PCL tissues. GP73 was negatively correlated with E-cadherin (r = - 0.49, P < 0.05), but positively correlated with Vimentin (r = 0.46, P < 0.05) in HCC. GP73 was correlated with the clinicopathological features including Edmondson grade, vascular invasion and TNM stage (P < 0.05), which was also associated with overall survival (OS) (P < 0.05). CONCLUSIONS GP73 was negatively with E-cadherin and positively correlated with Vimentin. It might be associated with aggressive behavior of HCC and had influence on patients' OS. Further research is needed to determine the potential of GP73. VIRTUAL SLIDES The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/29 vs/1504046946108618; http://med.motic.com/MoticGallery/Slide?id=3b6a037e-f60e-4c68-9106-41e790de9431&user=2C69F0D6-A478-4A2B-ABF0-BB36763E8025; http://med.motic.com/MoticGallery/Slide?id=a25b5b32-b613-47b0-9f8b-e1e67a95d1bf&user=2C69F0D6-A478-4A2B-ABF0-BB36763E8025.
Collapse
Affiliation(s)
- Yong xing Bao
- Tumor Department, First Affiliated Hospital of Xinjiang Medical University (XJMU), Urumqi, China
| | - Qian Cao
- Tumor Department, First Affiliated Hospital of Xinjiang Medical University (XJMU), Urumqi, China
| | - Ying Yang
- Tumor Department, First Affiliated Hospital of Xinjiang Medical University (XJMU), Urumqi, China
| | - Rui Mao
- Tumor Department, First Affiliated Hospital of Xinjiang Medical University (XJMU), Urumqi, China
| | - Lei Xiao
- Tumor Department, First Affiliated Hospital of Xinjiang Medical University (XJMU), Urumqi, China
| | - Hua Zhang
- Tumor Department, First Affiliated Hospital of Xinjiang Medical University (XJMU), Urumqi, China
| | - Hua-rong Zhao
- Tumor Department, First Affiliated Hospital of Xinjiang Medical University (XJMU), Urumqi, China
| | - Hao Wen
- Tumor Department, First Affiliated Hospital of Xinjiang Medical University (XJMU), Urumqi, China
| |
Collapse
|
25
|
KIAA0101 mRNA overexpression in peripheral blood mononuclear cells acts as predictive marker for hepatic cancer. Tumour Biol 2013; 35:2681-6. [DOI: 10.1007/s13277-013-1353-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 10/23/2013] [Indexed: 12/22/2022] Open
|