1
|
Yang H, Wu X, Li X, Zang W, Zhou Z, Zhou Y, Cui W, Kou Y, Wang L, Hu A, Wu L, Yin Z, Chen Q, Chen Y, Huang Z, Wang Y, Gu B. A commensal protozoan attenuates Clostridioides difficile pathogenesis in mice via arginine-ornithine metabolism and host intestinal immune response. Nat Commun 2024; 15:2842. [PMID: 38565558 PMCID: PMC10987486 DOI: 10.1038/s41467-024-47075-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
Antibiotic-induced dysbiosis is a major risk factor for Clostridioides difficile infection (CDI), and fecal microbiota transplantation (FMT) is recommended for treating CDI. However, the underlying mechanisms remain unclear. Here, we show that Tritrichomonas musculis (T.mu), an integral member of the mouse gut commensal microbiota, reduces CDI-induced intestinal damage by inhibiting neutrophil recruitment and IL-1β secretion, while promoting Th1 cell differentiation and IFN-γ secretion, which in turn enhances goblet cell production and mucin secretion to protect the intestinal mucosa. T.mu can actively metabolize arginine, not only influencing the host's arginine-ornithine metabolic pathway, but also shaping the metabolic environment for the microbial community in the host's intestinal lumen. This leads to a relatively low ornithine state in the intestinal lumen in C. difficile-infected mice. These changes modulate C. difficile's virulence and the host intestinal immune response, and thus collectively alleviating CDI. These findings strongly suggest interactions between an intestinal commensal eukaryote, a pathogenic bacterium, and the host immune system via inter-related arginine-ornithine metabolism in the regulation of pathogenesis and provide further insights for treating CDI.
Collapse
Affiliation(s)
- Huan Yang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoxiao Wu
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao Li
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wanqing Zang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhou Zhou
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuan Zhou
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wenwen Cui
- Xuzhou Center for Disease Control and Prevention, Xuzhou, Jiangsu, China
| | - Yanbo Kou
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liang Wang
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ankang Hu
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lianlian Wu
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhinan Yin
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, China
| | - Quangang Chen
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying Chen
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhutao Huang
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yugang Wang
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Bing Gu
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Powers DA, Jenior ML, Kolling GL, Papin JA. Network analysis of toxin production in Clostridioides difficile identifies key metabolic dependencies. PLoS Comput Biol 2023; 19:e1011076. [PMID: 37099624 PMCID: PMC10166488 DOI: 10.1371/journal.pcbi.1011076] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/08/2023] [Accepted: 04/04/2023] [Indexed: 04/27/2023] Open
Abstract
Clostridioides difficile pathogenesis is mediated through its two toxin proteins, TcdA and TcdB, which induce intestinal epithelial cell death and inflammation. It is possible to alter C. difficile toxin production by changing various metabolite concentrations within the extracellular environment. However, it is unknown which intracellular metabolic pathways are involved and how they regulate toxin production. To investigate the response of intracellular metabolic pathways to diverse nutritional environments and toxin production states, we use previously published genome-scale metabolic models of C. difficile strains CD630 and CDR20291 (iCdG709 and iCdR703). We integrated publicly available transcriptomic data with the models using the RIPTiDe algorithm to create 16 unique contextualized C. difficile models representing a range of nutritional environments and toxin states. We used Random Forest with flux sampling and shadow pricing analyses to identify metabolic patterns correlated with toxin states and environment. Specifically, we found that arginine and ornithine uptake is particularly active in low toxin states. Additionally, uptake of arginine and ornithine is highly dependent on intracellular fatty acid and large polymer metabolite pools. We also applied the metabolic transformation algorithm (MTA) to identify model perturbations that shift metabolism from a high toxin state to a low toxin state. This analysis expands our understanding of toxin production in C. difficile and identifies metabolic dependencies that could be leveraged to mitigate disease severity.
Collapse
Affiliation(s)
- Deborah A. Powers
- Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Matthew L. Jenior
- Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Glynis L. Kolling
- Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jason A. Papin
- Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
- Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
3
|
Gao Y, Ma L, Su J. Host and microbial-derived metabolites for Clostridioides difficile infection: Contributions, mechanisms and potential applications. Microbiol Res 2022; 263:127113. [PMID: 35841835 DOI: 10.1016/j.micres.2022.127113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 12/23/2022]
Abstract
Clostridioides difficile infection (CDI), which mostly occurs in hospitalized patients, is the most common and costly health care-associated disease. However, the biology of C. difficile remains incompletely understood. Current therapeutics are still challenged by the frequent recurrence of CDI. Advances in metabolomics facilitate our understanding of the etiology of CDI, which is not merely an alteration in the structure of the gut microbial community but also a dysbiosis metabolic setting promoting the germination, expansion and virulence of C. difficile. Therefore, we summarized the gut microbial and metabolic profiles for CDI under different conditions, such as those of postantibiotic treatment and postfecal microbiota transplantation. The current understanding of the role of host and gut microbial-derived metabolites as well as other nutrients in preventing or alleviating the disease symptoms of CDI will also be provided in this review. We hope that a specific nutrient-centric dietary strategy or the administration of certain nutrients to the colon could serve as an alternate line of investigation for the prophylaxis and mitigation of CDI in the future. Nevertheless, rigorously designed basic studies and randomized controlled trials need to be conducted to assess the functional mechanisms and effects of such therapeutics.
Collapse
Affiliation(s)
- Yan Gao
- Department of Clinical Laboratory Diagnostics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Liyan Ma
- Department of Clinical Laboratory Diagnostics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jianrong Su
- Department of Clinical Laboratory Diagnostics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
4
|
Mandu M, Onose G. Hyperimmune yolk extract with Immunoglobulin Y basic active principle as a possible adjuvant treatment in patients who need/benefit from neurorehabilitation, with Clostridium difficile ( Clostridioides difficile) enterocolitis as intercurrent comorbidity - a systematic literature review. J Med Life 2022; 15:162-167. [PMID: 35419106 PMCID: PMC8999091 DOI: 10.25122/jml-2021-0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/11/2021] [Indexed: 11/19/2022] Open
Abstract
The study aims to add a new and beneficial perspective using Immunoinstant G food supplement as an adjuvant treatment. It is essential to study the bibliographic resources in the field to identify the current stage of knowledge on this topic. For this purpose, we have prepared a systematic literature review, focusing on the possibilities of improving the treatment of Clostridium difficile (Clostridioides difficile) enterocolitis in patients who need/benefit from neurorehabilitation. The systematic literature review was prepared using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). We obtained a number of 6 articles that were considered in the elaboration of our systematic literature review. We identified that this field is insufficiently studied and needs additional clinical trials. Our study contributes to increasing this understanding based on the thorough theoretical and practical approach of this topic.
Collapse
Affiliation(s)
- Mihaela Mandu
- Department of Physical and Rehabilitation Medicine, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania,Neuromuscular Rehabilitation Clinic Division, Emergency Teaching Hospital Bagdasar-Arseni, Bucharest, Romania,* Corresponding Author: Mihaela Mandu, Department of Physical and Rehabilitation Medicine, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Neuromuscular Rehabilitation Clinic Division, Emergency Teaching Hospital Bagdasar-Arseni, Bucharest, Romania. E-mail:
| | - Gelu Onose
- Department of Physical and Rehabilitation Medicine, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania,Neuromuscular Rehabilitation Clinic Division, Emergency Teaching Hospital Bagdasar-Arseni, Bucharest, Romania
| |
Collapse
|
5
|
Pruss KM, Enam F, Battaglioli E, DeFeo M, Diaz OR, Higginbottom SK, Fischer CR, Hryckowian AJ, Van Treuren W, Dodd D, Kashyap P, Sonnenburg JL. Oxidative ornithine metabolism supports non-inflammatory C. difficile colonization. Nat Metab 2022; 4:19-28. [PMID: 34992297 PMCID: PMC8803604 DOI: 10.1038/s42255-021-00506-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 11/12/2021] [Indexed: 01/08/2023]
Abstract
The enteric pathogen Clostridioides difficile (Cd) is responsible for a toxin-mediated infection that causes more than 200,000 recorded hospitalizations and 13,000 deaths in the United States every year1. However, Cd can colonize the gut in the absence of disease symptoms. Prevalence of asymptomatic colonization by toxigenic Cd in healthy populations is high; asymptomatic carriers are at increased risk of infection compared to noncolonized individuals and may be a reservoir for transmission of Cd infection2,3. Elucidating the molecular mechanisms by which Cd persists in the absence of disease is necessary for understanding pathogenesis and developing refined therapeutic strategies. Here, we show with gut microbiome metatranscriptomic analysis that mice recalcitrant to Cd infection and inflammation exhibit increased community-wide expression of arginine and ornithine metabolic pathways. To query Cd metabolism specifically, we leverage RNA sequencing in gnotobiotic mice infected with two wild-type strains (630 and R20291) and isogenic toxin-deficient mutants of these strains to differentiate inflammation-dependent versus -independent transcriptional states. A single operon encoding oxidative ornithine degradation is consistently upregulated across non-toxigenic Cd strains. Combining untargeted and targeted metabolomics with bacterial and host genetics, we demonstrate that both diet- and host-derived sources of ornithine provide a competitive advantage to Cd, suggesting a mechanism for Cd persistence within a non-inflammatory, healthy gut.
Collapse
Affiliation(s)
- Kali M Pruss
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Fatima Enam
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Eric Battaglioli
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Mary DeFeo
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Oscar R Diaz
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven K Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Curt R Fischer
- ChEM-H, Stanford University, Stanford, CA, USA
- Octant Bio, Emeryville, CA, USA
| | - Andrew J Hryckowian
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - William Van Treuren
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Dylan Dodd
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Purna Kashyap
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
- Center for Human Microbiome Studies, Stanford, CA, USA.
| |
Collapse
|
6
|
Engevik MA, Engevik AC, Engevik KA, Auchtung JM, Chang-Graham AL, Ruan W, Luna RA, Hyser JM, Spinler JK, Versalovic J. Mucin-Degrading Microbes Release Monosaccharides That Chemoattract Clostridioides difficile and Facilitate Colonization of the Human Intestinal Mucus Layer. ACS Infect Dis 2021; 7:1126-1142. [PMID: 33176423 DOI: 10.1021/acsinfecdis.0c00634] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It is widely accepted that the pathogen Clostridioides difficile exploits an intestinal environment with an altered microbiota, but the details of these microbe-microbe interactions are unclear. Adherence and colonization of mucus has been demonstrated for several enteric pathogens and it is possible that mucin-associated microbes may be working in concert with C. difficile. We showed that C. difficile ribotype-027 adheres to MUC2 glycans and using fecal bioreactors, we identified that C. difficile associates with several mucin-degrading microbes. C. difficile was found to chemotax toward intestinal mucus and its glycan components, demonstrating that C. difficile senses the mucus layer. Although C. difficile lacks the glycosyl hydrolases required to degrade mucin glycans, coculturing C. difficile with the mucin-degrading Akkermansia muciniphila, Bacteroides thetaiotaomicron, and Ruminococcus torques allowed C. difficile to grow in media that lacked glucose but contained purified MUC2. Collectively, these studies expand our knowledge on how intestinal microbes support C. difficile.
Collapse
Affiliation(s)
- Melinda A. Engevik
- Department of Pathology & Immunology, Baylor College of Medicine Houston Texas 77030, United States
- Department of Pathology, Texas Children’s Hospital Houston Texas 77030, United States
| | - Amy C. Engevik
- Department of Surgery, Vanderbilt University School of Medicine, Nashville Tennessee 37232, United States
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville Tennessee 37232, United States
| | - Kristen A. Engevik
- Department of Molecular Virology and Microbiology, Baylor College of Medicine Houston Texas 77030, United States
| | - Jennifer M. Auchtung
- Department of Molecular Virology and Microbiology, Baylor College of Medicine Houston Texas 77030, United States
- Department of Food Science and Technology, University of Nebraska—Lincoln, Lincoln Nebraska 68588, United States
| | - Alexandra L. Chang-Graham
- Department of Molecular Virology and Microbiology, Baylor College of Medicine Houston Texas 77030, United States
| | - Wenly Ruan
- Department of Pathology & Immunology, Baylor College of Medicine Houston Texas 77030, United States
- Department of Pathology, Texas Children’s Hospital Houston Texas 77030, United States
| | - Ruth Ann Luna
- Department of Pathology & Immunology, Baylor College of Medicine Houston Texas 77030, United States
- Department of Pathology, Texas Children’s Hospital Houston Texas 77030, United States
| | - Joseph M. Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine Houston Texas 77030, United States
| | - Jennifer K. Spinler
- Department of Pathology & Immunology, Baylor College of Medicine Houston Texas 77030, United States
- Department of Pathology, Texas Children’s Hospital Houston Texas 77030, United States
| | - James Versalovic
- Department of Pathology & Immunology, Baylor College of Medicine Houston Texas 77030, United States
- Department of Pathology, Texas Children’s Hospital Houston Texas 77030, United States
| |
Collapse
|
7
|
High-Throughput Characterization of Listeria monocytogenes Using the OmniLog Phenotypic Microarray. Methods Mol Biol 2020. [PMID: 32975769 DOI: 10.1007/978-1-0716-0982-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
High-throughput biochemical screening techniques are an important tool in phenotypic analysis of bacteria. New methods, simultaneously measuring many phenotype responses, increase the output of such investigations and allow a more complete overview of the bacterial phenotype, facilitating large-scale correlation to related genotypes. This chapter describes the application of OmniLog phenotype microarray analysis, a high-throughput assay for the phenotypic characterization of bacterial strains across a variety of different traits such as nutrient utilization and antimicrobial sensitivity, to Listeria species.
Collapse
|
8
|
Farne H, Groves HT, Gill SK, Stokes I, McCulloch S, Karoly E, Trujillo-Torralbo MB, Johnston SL, Mallia P, Tregoning JS. Comparative Metabolomic Sampling of Upper and Lower Airways by Four Different Methods to Identify Biochemicals That May Support Bacterial Growth. Front Cell Infect Microbiol 2018; 8:432. [PMID: 30619778 PMCID: PMC6305596 DOI: 10.3389/fcimb.2018.00432] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/30/2018] [Indexed: 12/16/2022] Open
Abstract
Bacteria need nutrients from the host environment to survive, yet we know little about which biochemicals are present in the airways (the metabolome), which of these biochemicals are essential for bacterial growth and how they change with airway disease. The aims of this pilot study were to develop and compare methodologies for sampling the upper and lower airway metabolomes and to identify biochemicals present in the airways that could potentially support bacterial growth. Eight healthy human volunteers were sampled by four methods: two standard approaches - nasal lavage and induced sputum, and two using a novel platform, synthetic adsorptive matrix (SAM) strips—nasosorption and bronchosorption. Collected samples were analyzed by Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-MS/MS). Five hundred and eighty-one biochemicals were recovered from the airways belonging to a range of metabolomic super-pathways. We observed significant differences between the sampling approaches. Significantly more biochemicals were recovered when SAM strips were used, compared to standard sampling techniques. A range of biochemicals that could support bacterial growth were detected in the different samples. This work demonstrates for the first time that SAM strips are a highly effective method for sampling the airway metabolome. This work will assist further studies to understand how changes in the airway metabolome affect bacterial infection in patients with underlying airway disease.
Collapse
Affiliation(s)
- Hugo Farne
- COPD and Asthma, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Helen T Groves
- Mucosal Infection and Immunity, Section of Virology, Imperial College London, London, United Kingdom
| | - Simren K Gill
- Mucosal Infection and Immunity, Section of Virology, Imperial College London, London, United Kingdom
| | - Isobel Stokes
- School of Veterinary Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, United Kingdom
| | | | | | | | - Sebastian L Johnston
- COPD and Asthma, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Patrick Mallia
- COPD and Asthma, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - John S Tregoning
- Mucosal Infection and Immunity, Section of Virology, Imperial College London, London, United Kingdom
| |
Collapse
|
9
|
Immunological Stability of Clostridium difficile Toxins in Clinical Specimens. Infect Control Hosp Epidemiol 2018; 39:434-438. [PMID: 29457584 DOI: 10.1017/ice.2018.20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The impact of storage on stability and detection of Clostridium difficile toxins in feces is poorly understood. The objective of this study was to investigate the immunological stability of C. difficile toxins in clinical stool specimens under different storage conditions by evaluating this stability using toxin detection by enzyme immunoassay (EIA). METHODS Stool specimens positive for C. difficile infection (CDI) by quantitative polymerase chain reaction (qPCR) were used for EIA testing with the C. difficile Tox A/B II kit. The EIA-positive specimens were stored aerobically under refrigerated (4-10°C) and frozen (-30°C and -80°C) conditions. Measurement of toxin quantity was conducting using optical density (OD) on days 0, 14, 30, 60, 90, and 120 of storage. RESULTS Clostridium difficile toxins demonstrated good detection in undiluted stool specimens by EIA up to 120 days of storage. Good detection of the toxins was observed in diluted samples at refrigerated and -80°C temperatures. Dilution detrimentally affected toxin detection at -30°C. CONCLUSION Storage of undiluted clinical stool specimens at refrigerated, -30°C, and -80°C temperatures for up to 120 days has no discernible effect on the immunological stability of C. difficile cytotoxins. However, storage at -30°C has a detrimental effect on C. difficile toxin stability in diluted specimens. Infect Control Hosp Epidemiol 2018;39:434-438.
Collapse
|
10
|
Motaung TE, Saitoh H, Tsilo TJ. Large-scale molecular genetic analysis in plant-pathogenic fungi: a decade of genome-wide functional analysis. MOLECULAR PLANT PATHOLOGY 2017; 18:754-764. [PMID: 27733021 PMCID: PMC6638310 DOI: 10.1111/mpp.12497] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 05/31/2023]
Abstract
Plant-pathogenic fungi cause diseases to all major crop plants world-wide and threaten global food security. Underpinning fungal diseases are virulence genes facilitating plant host colonization that often marks pathogenesis and crop failures, as well as an increase in staple food prices. Fungal molecular genetics is therefore the cornerstone to the sustainable prevention of disease outbreaks. Pathogenicity studies using mutant collections provide immense function-based information regarding virulence genes of economically relevant fungi. These collections are rich in potential targets for existing and new biological control agents. They contribute to host resistance breeding against fungal pathogens and are instrumental in searching for novel resistance genes through the identification of fungal effectors. Therefore, functional analyses of mutant collections propel gene discovery and characterization, and may be incorporated into disease management strategies. In the light of these attributes, mutant collections enhance the development of practical solutions to confront modern agricultural constraints. Here, a critical review of mutant collections constructed by various laboratories during the past decade is provided. We used Magnaporthe oryzae and Fusarium graminearum studies to show how mutant screens contribute to bridge existing knowledge gaps in pathogenicity and fungal-host interactions.
Collapse
Affiliation(s)
- Thabiso E. Motaung
- Agricultural Research Council ‐ Small Grain InstitutePrivate Bag X29Bethlehem9700South Africa
| | - Hiromasa Saitoh
- Iwate Biotechnology Research Center22‐174‐4 NaritaKitakamiIwate024‐0003Japan
| | - Toi J. Tsilo
- Agricultural Research Council ‐ Small Grain InstitutePrivate Bag X29Bethlehem9700South Africa
- Department of Life and Consumer SciencesUniversity of South AfricaPO Box 392Pretoria0003South Africa
| |
Collapse
|
11
|
Monitoring in real time the cytotoxic effect of Clostridium difficile upon the intestinal epithelial cell line HT29. J Microbiol Methods 2015; 119:66-73. [PMID: 26436983 DOI: 10.1016/j.mimet.2015.09.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/29/2015] [Accepted: 09/29/2015] [Indexed: 01/05/2023]
Abstract
The incidence and severity of Clostridium difficile infections (CDI) has been increased not only among hospitalized patients, but also in healthy individuals traditionally considered as low risk population. Current treatment of CDI involves the use of antibiotics to eliminate the pathogen, although recurrent relapses have also been reported. For this reason, the search of new antimicrobials is a very active area of research. The strategy to use inhibitors of toxin's activity has however been less explored in spite of being a promising option. In this regard, the lack of fast and reliable in vitro screening methods to search for novel anti-toxin drugs has hampered this approach. The aim of the current study was to develop a method to monitor in real time the cytotoxicity of C. difficile upon the human colonocyte-like HT29 line, since epithelial intestinal cells are the primary targets of the toxins. The label-free, impedance based RCTA (real time cell analyser) technology was used to follow overtime the behaviour of HT29 in response to C. difficile LMG21717 producing both A and B toxins. Results obtained showed that the selection of the medium to grow the pathogen had a great influence in obtaining toxigenic supernatants, given that some culture media avoided the release of the toxins. A cytotoxic dose- and time-dependent effect of the supernatant obtained from GAM medium upon HT29 and Caco2 cells was detected. The sigmoid-curve fit of data obtained with HT29 allowed the calculation of different toxicological parameters, such as EC50 and LOAEL values. Finally, the modification in the behaviour of HT29 reordered in the RTCA was correlated with the cell rounding effect, typically induced by these toxins, visualized by time-lapsed captures using an optical microscope. Therefore, this RTCA method developed to test cytotoxicity kinetics of C. difficile supernatants upon IEC could be a valuable in vitro model for the screening of new anti-CDI agents.
Collapse
|
12
|
Scaria J, Suzuki H, Ptak CP, Chen JW, Zhu Y, Guo XK, Chang YF. Comparative genomic and phenomic analysis of Clostridium difficile and Clostridium sordellii, two related pathogens with differing host tissue preference. BMC Genomics 2015; 16:448. [PMID: 26059449 PMCID: PMC4462011 DOI: 10.1186/s12864-015-1663-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/29/2015] [Indexed: 01/05/2023] Open
Abstract
Background Clostridium difficile and C. sordellii are two anaerobic, spore forming, gram positive pathogens with a broad host range and the ability to cause lethal infections. Despite strong similarities between the two Clostridial strains, differences in their host tissue preference place C. difficile infections in the gastrointestinal tract and C. sordellii infections in soft tissues. Results In this study, to improve our understanding of C. sordellii and C. difficile virulence and pathogenesis, we have performed a comparative genomic and phenomic analysis of the two. The global phenomes of C. difficile and C. sordellii were compared using Biolog Phenotype microarrays. When compared to C. difficile, C. sordellii was found to better utilize more complex sources of carbon and nitrogen, including peptides. Phenotype microarray comparison also revealed that C. sordellii was better able to grow in acidic pH conditions. Using next generation sequencing technology, we determined the draft genome of C. sordellii strain 8483 and performed comparative genome analysis with C. difficile and other Clostridial genomes. Comparative genome analysis revealed the presence of several enzymes, including the urease gene cluster, specific to the C. sordellii genome that confer the ability of expanded peptide utilization and survival in acidic pH. Conclusions The identified phenotypes of C. sordellii might be important in causing wound and vaginal infections respectively. Proteins involved in the metabolic differences between C. sordellii and C. difficile should be targets for further studies aimed at understanding C. difficile and C. sordellii infection site specificity and pathogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1663-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joy Scaria
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA. .,Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA.
| | - Haruo Suzuki
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA. .,Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi, Japan.
| | - Christopher P Ptak
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| | - Jenn-Wei Chen
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| | - Yongzhang Zhu
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA. .,Department of Medical Microbiology and Parasitology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xiao-Kui Guo
- Department of Medical Microbiology and Parasitology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
13
|
Scaria J, Chen JW, Useh N, He H, McDonough SP, Mao C, Sobral B, Chang YF. Comparative nutritional and chemical phenome of Clostridium difficile isolates determined using phenotype microarrays. Int J Infect Dis 2014; 27:20-5. [PMID: 25130165 PMCID: PMC4197074 DOI: 10.1016/j.ijid.2014.06.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/11/2014] [Accepted: 06/22/2014] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES Clostridium difficile infection (CDI) is the leading cause of infectious diarrhea in North America and Europe. The risk of CDI increases significantly in the case where antimicrobial treatment reduces the number of competing bacteria in the gut, thus leading to the increased availability of nutrients and loss of colonization resistance. The objective of this study was to determine comprehensive nutritional utilization and the chemical sensitivity profile of historic and newer C. difficile isolates and to examine the possible role of the phenotype diversity in C. difficile virulence. METHODS Phenotype microarrays (PMs) were used to elucidate the complete nutritional and chemical sensitivity profile of six C. difficile isolates. RESULTS Of the 760 nutrient sources tested, 285 compounds were utilized by at least one strain. Among the C. difficile isolates compared, R20291, a recent hypervirulent outbreak-associated strain, appears to have an expanded nutrient utilization profile when compared to all other strains. CONCLUSIONS The expanded nutritional utilization profile of some newer C. difficile strains could be one of the reasons for infections in patients who are not exposed to the hospital environment or not undergoing antibiotic treatment. This nutritional profile could be used to design tube feeding formulas that reduce the risk of CDI.
Collapse
Affiliation(s)
- Joy Scaria
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Jenn-Wei Chen
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Nicodemus Useh
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Hongxuan He
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, USA; Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Sean P McDonough
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, USA
| | - Chunhong Mao
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, USA
| | - Bruno Sobral
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, USA
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
14
|
Darby A, Lertpiriyapong K, Sarkar U, Seneviratne U, Park DS, Gamazon ER, Batchelder C, Cheung C, Buckley EM, Taylor NS, Shen Z, Tannenbaum SR, Wishnok JS, Fox JG. Cytotoxic and pathogenic properties of Klebsiella oxytoca isolated from laboratory animals. PLoS One 2014; 9:e100542. [PMID: 25057966 PMCID: PMC4109914 DOI: 10.1371/journal.pone.0100542] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/28/2014] [Indexed: 02/06/2023] Open
Abstract
Klebsiella oxytoca is an opportunistic pathogen implicated in various clinical diseases in animals and humans. Studies suggest that in humans K. oxytoca exerts its pathogenicity in part through a cytotoxin. However, cytotoxin production in animal isolates of K. oxytoca and its pathogenic properties have not been characterized. Furthermore, neither the identity of the toxin nor a complete repertoire of genes involved in K. oxytoca pathogenesis have been fully elucidated. Here, we showed that several animal isolates of K. oxytoca, including the clinical isolates, produced secreted products in bacterial culture supernatant that display cytotoxicity on HEp-2 and HeLa cells, indicating the ability to produce cytotoxin. Cytotoxin production appears to be regulated by the environment, and soy based product was found to have a strong toxin induction property. The toxin was identified, by liquid chromatography-mass spectrometry and NMR spectroscopy, as low molecular weight heat labile benzodiazepine, tilivalline, previously shown to cause cytotoxicity in several cell lines, including mouse L1210 leukemic cells. Genome sequencing and analyses of a cytotoxin positive K. oxytoca strain isolated from an abscess of a mouse, identified genes previously shown to promote pathogenesis in other enteric bacterial pathogens including ecotin, several genes encoding for type IV and type VI secretion systems, and proteins that show sequence similarity to known bacterial toxins including cholera toxin. To our knowledge, these results demonstrate for the first time, that animal isolates of K. oxytoca, produces a cytotoxin, and that cytotoxin production is under strict environmental regulation. We also confirmed tilivalline as the cytotoxin present in animal K. oxytoca strains. These findings, along with the discovery of a repertoire of genes with virulence potential, provide important insights into the pathogenesis of K. oxytoca. As a novel diagnostic tool, tilivalline may serve as a biomarker for K oxytoca-induced cytotoxicity in humans and animals through detection in various samples from food to diseased samples using LC-MS/MS. Induction of K. oxytoca cytotoxin by consumption of soy may be in part involved in the pathogenesis of gastrointestinal disease.
Collapse
Affiliation(s)
- Alison Darby
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Kvin Lertpiriyapong
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Ujjal Sarkar
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge. Massachusetts, United States of America
| | - Uthpala Seneviratne
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge. Massachusetts, United States of America
| | - Danny S. Park
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, California, United States of America
| | - Eric R. Gamazon
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Chara Batchelder
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Cheryl Cheung
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Ellen M. Buckley
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Nancy S. Taylor
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Zeli Shen
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Steven R. Tannenbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge. Massachusetts, United States of America
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - John S. Wishnok
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge. Massachusetts, United States of America
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge. Massachusetts, United States of America
| |
Collapse
|
15
|
Fox EM, Jordan K. High-throughput characterization of Listeria monocytogenes using the OmniLog Phenotypic Microarray. Methods Mol Biol 2014; 1157:103-108. [PMID: 24792552 DOI: 10.1007/978-1-4939-0703-8_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
High-throughput biochemical screening techniques are an important tool in phenotypic analysis of bacteria. New methods, simultaneously measuring many phenotype responses, increase the output of such investigations and allow a more complete overview of the bacterial phenotype, and how this may relate its genotype. This chapter describes the application of OmniLog Phenotype Microarray analysis, a high-throughput assay for the phenotypic characterization of bacterial strains across a variety of different traits, including nutrient utilization and antimicrobial sensitivity, to Listeria species.
Collapse
Affiliation(s)
- Edward M Fox
- Food Microbiology and Safety Group, Animal, Food and Health Sciences, CSIRO, 671 Sneydes Road, Werribee, VIC, 3030, Australia,
| | | |
Collapse
|
16
|
Scaria J, Mao C, Chen JW, McDonough SP, Sobral B, Chang YF. Differential stress transcriptome landscape of historic and recently emerged hypervirulent strains of Clostridium difficile strains determined using RNA-seq. PLoS One 2013; 8:e78489. [PMID: 24244315 PMCID: PMC3820578 DOI: 10.1371/journal.pone.0078489] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/12/2013] [Indexed: 12/18/2022] Open
Abstract
C. difficile is the most common cause of nosocomial diarrhea in North America and Europe. Genomes of individual strains of C. difficile are highly divergent. To determine how divergent strains respond to environmental changes, the transcriptomes of two historic and two recently isolated hypervirulent strains were analyzed following nutrient shift and osmotic shock. Illumina based RNA-seq was used to sequence these transcriptomes. Our results reveal that although C. difficile strains contain a large number of shared and strain specific genes, the majority of the differentially expressed genes were core genes. We also detected a number of transcriptionally active regions that were not part of the primary genome annotation. Some of these are likely to be small regulatory RNAs.
Collapse
Affiliation(s)
- Joy Scaria
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, United States of America
| | - Chunhong Mao
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Jenn-Wei Chen
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, United States of America
| | - Sean P. McDonough
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America;
| | - Bruno Sobral
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|