1
|
Holmes IA, Grundler MC. Phylogenetically under-dispersed gut microbiomes are not correlated with host genomic heterozygosity in a genetically diverse reptile community. Mol Ecol 2023; 32:258-274. [PMID: 36221927 PMCID: PMC9797449 DOI: 10.1111/mec.16733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 12/31/2022]
Abstract
While key elements of fitness in vertebrate animals are impacted by their microbiomes, the host genetic characteristics that factor into microbiome composition are not fully understood. Here, we correlate host genomic heterozygosity and gut microbiome phylogenetic diversity across a community of reptiles in southwestern New Mexico to test hypotheses about the behaviour of host genes that drive microbiome assembly. We find that microbiome communities are phylogenetically under-dispersed relative to random expectations, and that host heterozygosity is not correlated with microbiome diversity. Our analyses reinforce results from functional genomic work that identify conserved host immune and nonimmune genes as key players in microbiome assembly, rather than gene families that rely on heterozygosity for their function.
Collapse
Affiliation(s)
- Iris A. Holmes
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109 USA
- Cornell Institute of Host Microbe Interactions and Disease and Department of Microbiology, Cornell University, Ithaca, NY 14853 USA
| | - Michael C. Grundler
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109 USA
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095 USA
| |
Collapse
|
2
|
Wittman TN, Carlson TA, Robinson CD, Bhave RS, Cox RM. Experimental removal of nematode parasites increases growth, sprint speed, and mating success in brown anole lizards. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:852-866. [PMID: 35871281 PMCID: PMC9796785 DOI: 10.1002/jez.2644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 01/07/2023]
Abstract
Parasites interact with nearly all free-living organisms and can impose substantial fitness costs by reducing host survival, mating success, and fecundity. Parasites may also indirectly affect host fitness by reducing growth and performance. However, experimentally characterizing these costs of parasitism is challenging in the wild because common antiparasite drug formulations require repeated dosing that is difficult to implement in free-living populations, and because the extended-release formulations that are commercially available for livestock and pets are not suitable for smaller animals. To address these challenges, we developed a method for the long-term removal of nematode parasites from brown anole lizards (Anolis sagrei) using an extended-release formulation of the antiparasite drug ivermectin. This treatment eliminated two common nematode parasites in captive adult males and dramatically reduced the prevalence and intensity of infection by these parasites in wild adult males and females. Experimental parasite removal significantly increased the sprint speed of captive adult males, the mating success of wild adult males, and the growth of wild juveniles of both sexes. Although parasite removal did not have any effect on survival in wild anoles, parasites may influence fitness directly through reduced mating success and indirectly through reduced growth and performance. Our method of long-term parasite manipulation via an extended-release formulation of ivermectin should be readily adaptable to many other small vertebrates, facilitating experimental tests of the extent to which parasites affect host phenotypes, fitness, and eco-evolutionary dynamics in the wild.
Collapse
Affiliation(s)
- Tyler N. Wittman
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Torun A. Carlson
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | | | - Rachana S. Bhave
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Robert M. Cox
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
3
|
Lettoof DC, Thomson VA, Cornelis J, Bateman PW, Aubret F, Gagnon MM, von Takach B. Bioindicator snake shows genomic signatures of natural and anthropogenic barriers to gene flow. PLoS One 2021; 16:e0259124. [PMID: 34714831 PMCID: PMC8555784 DOI: 10.1371/journal.pone.0259124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022] Open
Abstract
Urbanisation alters landscapes, introduces wildlife to novel stressors, and fragments habitats into remnant 'islands'. Within these islands, isolated wildlife populations can experience genetic drift and subsequently suffer from inbreeding depression and reduced adaptive potential. The Western tiger snake (Notechis scutatus occidentalis) is a predator of wetlands in the Swan Coastal Plain, a unique bioregion that has suffered substantial degradation through the development of the city of Perth, Western Australia. Within the urban matrix, tiger snakes now only persist in a handful of wetlands where they are known to bioaccumulate a suite of contaminants, and have recently been suggested as a relevant bioindicator of ecosystem health. Here, we used genome-wide single nucleotide polymorphism (SNP) data to explore the contemporary population genomics of seven tiger snake populations across the urban matrix. Specifically, we used population genomic structure and diversity, effective population sizes (Ne), and heterozygosity-fitness correlations to assess fitness of each population with respect to urbanisation. We found that population genomic structure was strongest across the northern and southern sides of a major river system, with the northern cluster of populations exhibiting lower heterozygosities than the southern cluster, likely due to a lack of historical gene flow. We also observed an increasing signal of inbreeding and genetic drift with increasing geographic isolation due to urbanisation. Effective population sizes (Ne) at most sites were small (< 100), with Ne appearing to reflect the area of available habitat rather than the degree of adjacent urbanisation. This suggests that ecosystem management and restoration may be the best method to buffer the further loss of genetic diversity in urban wetlands. If tiger snake populations continue to decline in urban areas, our results provide a baseline measure of genomic diversity, as well as highlighting which 'islands' of habitat are most in need of management and protection.
Collapse
Affiliation(s)
- Damian C. Lettoof
- Behavioural Ecology Lab, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Vicki A. Thomson
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Jari Cornelis
- Behavioural Ecology Lab, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Philip W. Bateman
- Behavioural Ecology Lab, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Fabien Aubret
- Station d’Ecologie Théorique et Expérimentale, CNRS, Moulis, France
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Marthe M. Gagnon
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Brenton von Takach
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
4
|
Lin JW, Chen YR, Li TW, Shaner PJL, Lin SM. Long-term monitoring reveals invariant clutch size and unequal reproductive costs between sexes in a subtropical lacertid lizard. ZOOLOGICAL LETTERS 2020; 6:1. [PMID: 31921441 PMCID: PMC6945589 DOI: 10.1186/s40851-019-0152-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
Based on 20,000 records representing c. 11,000 individuals from an 8-year capture-mark-recapture (CMR) study, we tested and confirmed a new case of invariant clutch size (ICS) in a sexually dichromatic lacertid lizard, Takydromus viridipunctatus. In the grassland habitat of the early succession stage, females showed strictly low and invariant clutch size, multiple clutches in a breeding season, high reproductive potential, and annual breeding cycles that correspond to the emergence of male courtship coloration. The hatchlings mature quickly, and join the adult cohort for breeding within a few months, whereas adults show low survival rates and a short lifespan, such that most die within one year. Mortality increased in both sexes during the breeding season, especially in females, indicating an unequal cost of reproduction in survival. These life history characters may be explained by two non-exclusive hypotheses of ICS-arboreal hypothesis and predation hypothesis-within the ecological context of their habitat. Our study highlights a confirmed case of ICS, which adapts well to this r-selected grassland habitat that experiences seasonal fluctuation and frequent disturbance.
Collapse
Affiliation(s)
- Jhan-Wei Lin
- School of Life Science, National Taiwan Normal University, No. 88, Sec. 4, Tingzhou Rd., Taipei, Taiwan
- Department of Biology, National Museum of Natural Science, No. 1, Guanqian Rd., Taichung, Taiwan
| | - Ying-Rong Chen
- School of Life Science, National Taiwan Normal University, No. 88, Sec. 4, Tingzhou Rd., Taipei, Taiwan
| | - Tsui-Wen Li
- School of Life Science, National Taiwan Normal University, No. 88, Sec. 4, Tingzhou Rd., Taipei, Taiwan
| | - Pei-Jen L. Shaner
- School of Life Science, National Taiwan Normal University, No. 88, Sec. 4, Tingzhou Rd., Taipei, Taiwan
| | - Si-Min Lin
- School of Life Science, National Taiwan Normal University, No. 88, Sec. 4, Tingzhou Rd., Taipei, Taiwan
| |
Collapse
|
5
|
Abramjan A, Frýdlová P, Jančúchová-Lásková J, Suchomelová P, Landová E, Yavruyan E, Frynta D. Comparing developmental stability in unisexual and bisexual rock lizards of the genus Darevskia. Evol Dev 2019; 21:175-187. [PMID: 30887666 DOI: 10.1111/ede.12286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 02/14/2019] [Accepted: 02/27/2019] [Indexed: 11/28/2022]
Abstract
Parthenogenetic species are usually considered to be short-lived due to the accumulation of adverse mutations, lack of genetic variability, and inability to adapt to changing environment. If so, one may expect that the phenotype of clonal organisms may reflect such genetic and/or environmental stress. To test this hypothesis, we compared the developmental stability of bisexual and parthenogenetic lizards of the genus Darevskia. We assessed asymmetries in three meristic traits: ventral, preanal, and supratemporal scales. Our results suggest that the amount of ventral and preanal asymmetries is significantly higher in clones compared with their maternal, but not paternal, progenitor species. However, it is questionable, whether this is a consequence of clonality, as it may be considered a mild form of outbreeding depression as well. Moreover, most ventral asymmetries were found in the bisexual species Darevskia valentini. We suggest that greater differences in asymmetry levels among bisexuals may be, for instance, a consequence of the population size: the smaller the population, the higher the inbreeding and the developmental instability. On the basis of the traits examined in this study, the parthenogens do not seem to be of significantly poorer quality.
Collapse
Affiliation(s)
- Andran Abramjan
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petra Frýdlová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | - Petra Suchomelová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Eva Landová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Eduard Yavruyan
- Department of Medical Biochemistry and Biotechnology, Laboratory of Biology, Zoology, and Ecology, Institute of Biomedicine and Pharmacy, Russian-Armenian (Slavonic) University, Yerevan, Armenia
| | - Daniel Frynta
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
6
|
Bichet C, Vedder O, Sauer‐Gürth H, Becker PH, Wink M, Bouwhuis S. Contrasting heterozygosity‐fitness correlations across life in a long‐lived seabird. Mol Ecol 2019; 28:671-685. [DOI: 10.1111/mec.14979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 01/14/2023]
Affiliation(s)
| | - Oscar Vedder
- Institute of Avian Research Wilhelmshaven Germany
- Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | - Hedwig Sauer‐Gürth
- Institute of Pharmacy and Molecular Biotechnology Heidelberg University Heidelberg Germany
| | | | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology Heidelberg University Heidelberg Germany
| | | |
Collapse
|
7
|
Tseng WH, Lin JW, Lou CH, Lee KH, Wu LS, Wang TY, Wang FY, Irschick DJ, Lin SM. Opsin gene expression regulated by testosterone level in a sexually dimorphic lizard. Sci Rep 2018; 8:16055. [PMID: 30375514 PMCID: PMC6207759 DOI: 10.1038/s41598-018-34284-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/15/2018] [Indexed: 11/09/2022] Open
Abstract
Expression of nuptial color is usually energetically costly, and is therefore regarded as an 'honest signal' to reflect mate quality. In order to choose a mate with high quality, both sexes may benefit from the ability to precisely evaluate their mates through optimizing visual systems which is in turn partially regulated by opsin gene modification. However, how terrestrial vertebrates regulate their color vision sensitivity is poorly studied. The green-spotted grass lizard Takydromus viridipunctatus is a sexually dimorphic lizard in which males exhibit prominent green lateral colors in the breeding season. In order to clarify relationships among male coloration, female preference, and chromatic visual sensitivity, we conducted testosterone manipulation with mate choice experiments, and evaluated the change of opsin gene expression from different testosterone treatments and different seasons. The results indicated that males with testosterone supplementation showed a significant increase in nuptial color coverage, and were preferred by females in mate choice experiments. By using quantitative PCR (qPCR), we also found that higher levels of testosterone may lead to an increase in rhodopsin-like 2 (rh2) and a decrease in long-wavelength sensitive (lws) gene expression in males, a pattern which was also observed in wild males undergoing maturation as they approached the breeding season. In contrast, females showed the opposite pattern, with increased lws and decreased rh2 expression in the breeding season. We suggest this alteration may facilitate the ability of male lizards to more effectively evaluate color cues, and also may provide females with the ability to more effectively evaluate the brightness of potential mates. Our findings suggest that both sexes of this chromatically dimorphic lizard regulate their opsin expression seasonally, which might play an important role in the evolution of nuptial coloration.
Collapse
Affiliation(s)
- Wen-Hsuan Tseng
- Department of Life Science, National Taiwan Normal University, Taipei, 116, Taiwan
| | - Jhan-Wei Lin
- Department of Life Science, National Taiwan Normal University, Taipei, 116, Taiwan
| | - Chen-Han Lou
- Department of Life Science, National Taiwan Normal University, Taipei, 116, Taiwan
| | - Ko-Huan Lee
- Department of Life Science, National Taiwan Normal University, Taipei, 116, Taiwan
| | - Leang-Shin Wu
- Department of Animal Science and Technology, National Taiwan University, Taipei, 106, Taiwan
| | - Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Feng-Yu Wang
- National Applied Research Laboratories, Taiwan Ocean Research Institute, Kaohsiung, 801, Taiwan.
| | - Duncan J Irschick
- Department of Biology, 221 Morrill Science Center, University of Massachusetts, Amherst, MA, 01003, USA
| | - Si-Min Lin
- Department of Life Science, National Taiwan Normal University, Taipei, 116, Taiwan.
| |
Collapse
|
8
|
Judson JLM, Knapp CR, Welch ME. Age-dependent, negative heterozygosity-fitness correlations and local effects in an endangered Caribbean reptile, Iguana delicatissima. Ecol Evol 2018; 8:2088-2096. [PMID: 29468027 PMCID: PMC5817140 DOI: 10.1002/ece3.3826] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 01/15/2023] Open
Abstract
Inbreeding depression can have alarming impacts on threatened species with small population sizes. Assessing inbreeding has therefore become an important focus of conservation research. In this study, heterozygosity-fitness correlations (HFCs) were measured by genotyping 7 loci in 83 adult and 184 hatchling Lesser Antillean Iguanas, Iguana delicatissima, at a communal nesting site in Dominica to assess the role of inbreeding depression on hatchling fitness and recruitment to the adult population in this endangered species. We found insignificant correlations between multilocus heterozygosity and multiple fitness proxies in hatchlings and adults. Further, multilocus heterozygosity did not differ significantly between hatchlings and adults, which suggests that the survivorship of homozygous hatchlings does not differ markedly from that of their heterozygous counterparts. However, genotypes at two individual loci were correlated with hatching date, a finding consistent with the linkage between specific marker loci and segregating deleterious recessive alleles. These results provide only modest evidence that inbreeding depression influences the population dynamics of I. delicatissima on Dominica.
Collapse
Affiliation(s)
| | - Charles R. Knapp
- San Diego Zoo Institute for Conservation ResearchEscondidoCAUSA
- Present address:
Daniel P. Haerter Center for Conservation and ResearchJohn G. Shedd AquariumChicagoILUSA
| | - Mark E. Welch
- Department of Biological SciencesMississippi State UniversityMississippi StateMSUSA
| |
Collapse
|
9
|
Lin JW, Chen YR, Wang YH, Hung KC, Lin SM. Tail regeneration after autotomy revives survival: a case from a long-term monitored lizard population under avian predation. Proc Biol Sci 2018; 284:rspb.2016.2538. [PMID: 28100821 DOI: 10.1098/rspb.2016.2538] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/14/2016] [Indexed: 11/12/2022] Open
Abstract
Caudal autotomy in lizards has intrigued scientists for more than 100 years. Because of the relative lack of literature under natural conditions, the complicated association among field autotomy rate, real predation pressure, the long-term cost of tail loss, and the benefit of regeneration remains equivocal. In this study, we conducted a 7-year capture-mark-recapture (CMR) programme with a wild population of a sexually dichromatic lizard, Takydromus viridipunctatus We used autotomy indexes and a contemporary bird census mega-dataset of four predatory birds as predictors to examine the association between tail loss and predation pressure. We further estimated the survival cost of tail loss and alleviation by regeneration under natural conditions through CMR modelling. We found that large and small avian predators affect lizard survival through the following two routes: the larger-sized cattle egret causes direct mortality while the smaller shrikes and kestrels are the major causes of autotomy. Following autotomy, the survival rate of tailless individuals over the next month was significantly lower than that of tailed individuals, especially males during the breeding season, which showed a decline of greater than 30%. This sex-related difference further demonstrated the importance of reproductive costs for males in this sexually dichromatic species. However, the risk of mortality returned to baseline after the tails were fully grown. This study indicates the benefit of tail regeneration under natural conditions, which increases our understanding of the cost-benefit dynamics of caudal autotomy and further explains the maintenance of this trait as an evolutionarily beneficial adaption to long-term predator-prey interactions.
Collapse
Affiliation(s)
- Jhan-Wei Lin
- Department of Life Science, National Taiwan Normal University, No. 88, Sec. 4, Tingzhou Road, Taipei, Taiwan, Republic of China
| | - Ying-Rong Chen
- Department of Life Science, National Taiwan Normal University, No. 88, Sec. 4, Tingzhou Road, Taipei, Taiwan, Republic of China
| | - Ying-Han Wang
- Department of Life Science, National Taiwan Normal University, No. 88, Sec. 4, Tingzhou Road, Taipei, Taiwan, Republic of China.,Institute of Ecology and Evolutionary Biology, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei, Taiwan, Republic of China
| | - Kuen-Chih Hung
- Chinese Wild Bird Federation, No. 3, Jinglong Street, Taipei, Taiwan, Republic of China
| | - Si-Min Lin
- Department of Life Science, National Taiwan Normal University, No. 88, Sec. 4, Tingzhou Road, Taipei, Taiwan, Republic of China
| |
Collapse
|
10
|
Quinard A, Dechaume-Moncharmont FX, Cézilly F. Pairing patterns in relation to body size, genetic similarity and multilocus heterozygosity in a tropical monogamous bird species. Behav Ecol Sociobiol 2014. [DOI: 10.1007/s00265-014-1780-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|