1
|
Nikandrova AA, Petriakova AD, Izzi AR, Petrosyan GA, Tashlitsky VN, Alferova VA, Panova TV, Khrenova MG, Biryukov MV, Zakalyukina YV, Zvereva MI, Lukianov DA, Sergiev PV. Novel Selectable Marker Sesquiterpenoid Antibiotic Pentalenolactone. Int J Mol Sci 2024; 25:13328. [PMID: 39769093 PMCID: PMC11727764 DOI: 10.3390/ijms252413328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Antibiotic resistance has been and remains a major problem in our society. The main solution to this problem is to search and study the mechanisms of antibiotic action. Many groups of secondary metabolites, including antimicrobial ones, are produced by the Actinomycetota phylum. The actinobacterial strains isolated from habitats that have not been well studied are of great interest. Due to high resource competition, antibiotics are now considered a 'trump card in the game of life' due to their presence in natural substrates with limited nutrients. Potentially, strains isolated from such habitats can be producers of novel or poorly studied antibiotics. In the current research, we identified the strain Streptomyces sp. AP22 from the soils of the Akhshatyrsky Gorge, which is capable of producing pentalenolactone. This study describes the phenotypic and morphological characteristics of Streptomyces sp. AP22 and its biological activity. Pentalenolactone is a known inhibitor of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an important enzyme involved in glycolysis. We identified a previously unknown mutation in the gapA gene encoding glyceraldehyde-3-phosphate dehydrogenase that confers resistance to this antibiotic compound. This antibiotic is not used in clinical practice, so its application as a selectable marker will not lead to the creation of pathogens resistant to clinically relevant antibiotics. In this case, the selectable marker is based on a genetic construct containing the glyceraldehyde-3-phosphate dehydrogenase gene with a resistance mutation. The use of this selectable marker can be applied to various genetic and molecular techniques, such as cloning and transformation. This can help to facilitate genetic and molecular biology studies of strains resistant to standard selectable markers such as kanamycin or ampicillin.
Collapse
Affiliation(s)
- Arina A. Nikandrova
- Center for Molecular and Cellular Biology, 121205 Moscow, Russia; (A.A.N.); (A.R.I.); (P.V.S.)
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.D.P.); (M.V.B.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Anna D. Petriakova
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.D.P.); (M.V.B.)
| | - Anton R. Izzi
- Center for Molecular and Cellular Biology, 121205 Moscow, Russia; (A.A.N.); (A.R.I.); (P.V.S.)
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Garegin A. Petrosyan
- Department of Soil Science, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.A.P.); (Y.V.Z.)
| | - Vadim N. Tashlitsky
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.N.T.); (T.V.P.); (M.G.K.); (M.I.Z.)
| | - Vera A. Alferova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, 117997 Moscow, Russia
| | - Tatiana V. Panova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.N.T.); (T.V.P.); (M.G.K.); (M.I.Z.)
| | - Maria G. Khrenova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.N.T.); (T.V.P.); (M.G.K.); (M.I.Z.)
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Mikhail V. Biryukov
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.D.P.); (M.V.B.)
- Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Yuliya V. Zakalyukina
- Department of Soil Science, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.A.P.); (Y.V.Z.)
| | - Maria I. Zvereva
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.N.T.); (T.V.P.); (M.G.K.); (M.I.Z.)
| | - Dmitrii A. Lukianov
- Center for Molecular and Cellular Biology, 121205 Moscow, Russia; (A.A.N.); (A.R.I.); (P.V.S.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.N.T.); (T.V.P.); (M.G.K.); (M.I.Z.)
| | - Petr V. Sergiev
- Center for Molecular and Cellular Biology, 121205 Moscow, Russia; (A.A.N.); (A.R.I.); (P.V.S.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.N.T.); (T.V.P.); (M.G.K.); (M.I.Z.)
| |
Collapse
|
2
|
Eng SW, Muniandy V, Punniamoorthy L, Tew HX, Norazmi MN, Ravichandran M, Lee SY. Live Attenuated Bacterial Vectors as Vehicles for DNA Vaccine Delivery: A Mini Review. Malays J Med Sci 2024; 31:6-20. [PMID: 39830112 PMCID: PMC11740808 DOI: 10.21315/mjms2024.31.6.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/16/2024] [Indexed: 01/22/2025] Open
Abstract
DNA vaccines are third-generation vaccines composed of plasmids that encode vaccine antigens. Their advantages include fast development, safety, stability, and cost effectiveness, which make them an attractive vaccine platform for genetic and infectious diseases. However, the low transfection efficiency of DNA vaccines results in poor performance in both larger animals and humans, thereby limiting their clinical use. To overcome this issue, live attenuated bacterial vector (LABV) has been proposed as a DNA delivery vehicle. LABV is known to improve DNA vaccine transfection efficiency, thus enhancing the immune response. This article highlights recent advancements in the development of LABV DNA vaccines, the design of shuttle plasmids and adjuvants, and the potential applications of LABV candidates.
Collapse
Affiliation(s)
- Sze Wei Eng
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| | - Vilassini Muniandy
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| | - Lohshinni Punniamoorthy
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| | - Hui Xian Tew
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Selangor, Malaysia
| | - Manickam Ravichandran
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- MyGenome Sdn Bhd, Kuala Lumpur, Malaysia
| | - Su Yin Lee
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| |
Collapse
|
3
|
Anny CA, Nouaille S, Fauré R, Schulz C, Spriet C, Huvent I, Biot C, Lefebvre T. A Step-by-Step Guide for the Production of Recombinant Fluorescent TAT-HA-Tagged Proteins and their Transduction into Mammalian Cells. Curr Protoc 2024; 4:e1016. [PMID: 38511507 DOI: 10.1002/cpz1.1016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Investigating the function of target proteins for functional prospection or therapeutic applications typically requires the production and purification of recombinant proteins. The fusion of these proteins with tag peptides and fluorescently derived proteins allows the monitoring of candidate proteins using SDS-PAGE coupled with western blotting and fluorescent microscopy, respectively. However, protein engineering poses a significant challenge for many researchers. In this protocol, we describe step-by-step the engineering of a recombinant protein with various tags: TAT-HA (trans-activator of transduction-hemagglutinin), 6×His and EGFP (enhanced green fluorescent protein) or mCherry. Fusion proteins are produced in E. coli BL21(DE3) cells and purified by immobilized metal affinity chromatography (IMAC) using a Ni-nitrilotriacetic acid (NTA) column. Then, tagged recombinant proteins are introduced into cultured animal cells by using the penetrating peptide TAT-HA. Here, we present a thorough protocol providing a detailed guide encompassing every critical step from plasmid DNA molecular assembly to protein expression and subsequent purification and outlines the conditions necessary for protein transduction technology into animal cells in a comprehensive manner. We believe that this protocol will be a valuable resource for researchers seeking an exhaustive, step-by-step guide for the successful production and purification of recombinant proteins and their entry by transduction within living cells. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: DNA cloning, molecular assembly strategies, and protein production Basic Protocol 2: Protein purification Basic Protocol 3: Protein transduction in mammalian cells.
Collapse
Affiliation(s)
| | | | - Régis Fauré
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Céline Schulz
- Université de Lille, CNRS, UMR 8576 - UGSF, Lille, France
| | - Corentin Spriet
- Université de Lille, CNRS, UMR 8576 - UGSF, Lille, France
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000, Lille, France
| | | | | | - Tony Lefebvre
- Université de Lille, CNRS, UMR 8576 - UGSF, Lille, France
| |
Collapse
|
4
|
Lim X, Zhang C, Chen X. Advances and applications of CRISPR/Cas-mediated interference in Escherichia coli. ENGINEERING MICROBIOLOGY 2024; 4:100123. [PMID: 39628789 PMCID: PMC11611006 DOI: 10.1016/j.engmic.2023.100123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 12/06/2024]
Abstract
The bacterium Escherichia coli (E. coli) is one of the most widely used chassis microbes employed for the biosynthesis of numerous valuable chemical compounds. In the past decade, the metabolic engineering of E. coli has undergone significant advances, although further productivity improvements will require extensive genome modification, multi-dimensional regulation, and multiple metabolic-pathway coordination. In this context, clustered regularly interspaced short palindromic repeats (CRISPR), along with CRISPR-associated protein (Cas) and its inactive variant (dCas), have emerged as notable recombination and transcriptional regulation tools that are particularly useful for multiplex metabolic engineering in E. coli. In this review, we briefly describe the CRISPR/Cas9 technology in E. coli, and then summarize the recent advances in CRISPR/dCas9 interference (CRISPRi) systems in E. coli, particularly the strategies designed to effectively regulate gene repression and overcome retroactivity during multiplexing. Moreover, we discuss recent applications of the CRISPRi system for enhancing metabolite production in E. coli, and finally highlight the major challenges and future perspectives of this technology.
Collapse
Affiliation(s)
- Xiaohui Lim
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A∗STAR), 31 Biopolis Way, Level 6, Nanos Building, Singapore 138669, Singapore
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A∗STAR), 31 Biopolis Way, Level 6, Nanos Building, Singapore 138669, Singapore
| | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A∗STAR), 31 Biopolis Way, Level 6, Nanos Building, Singapore 138669, Singapore
| |
Collapse
|
5
|
Khedr M, Khalil KMA, Kabary HA, Hamed AA, Badawy MSEM, Abu-Elghait M. Molecular docking and nucleotide sequencing of successive expressed recombinant fungal peroxidase gene in E.coli. J Genet Eng Biotechnol 2022; 20:94. [PMID: 35776246 PMCID: PMC9249955 DOI: 10.1186/s43141-022-00377-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/25/2022] [Indexed: 11/10/2022]
Abstract
Background Fungal peroxidases are oxidoreductases that utilize hydrogen peroxide to catalyze lignin biodegradation. Results PER-K (peroxidase synthesis codon gene) was transformed from Aspergillus niger strain AN512 deposited in the National Center for Biotechnology Information with the accession number OK323140 to Escherichia coli strain (BL21-T7 with YEp356R recombinant plasmid) via calcium chloride heat-shock method. The impact of four parameters (CaCl2 concentrations, centrifugation time, shaking speed, growth intensity) on the efficacy of the transformation process was evaluated. Furthermore, peroxidase production after optimization was assessed both qualitatively and quantitatively, as well as SDS-PAGE analysis. The optimum conditions for a successful transformation process were as follows: CaCl2 concentrations (50 mM), centrifugation time (20 min), shaking speed (200 rpm), and growth optical density (0.45). PCR and gel electrophoresis detect DNA bands with lengths 175, 179, and 211 bps corresponding to UA3, AmpR, and PER-K genes respectively besides partially sequencing the PER-K gene. Pyrogallol/hydrogen peroxide assay confirmed peroxidase production, and the activity of the enzyme was determined to be 3924 U/L. SDS-PAGE analysis also confirms peroxidase production illustrated by the appearance of a single peroxidase protein band after staining with Coomassie blue R-250. Conclusion A successful peroxidase-gene (PER-K) transformation from fungi to bacteria was performed correctly. The enzyme activity was screened, and partial sequencing of PER-K gene was analyzed successively. The protein 3D structure was generated via in silico homology modeling, and determination of binding sites and biological annotations of the constructed protein were carried out via COACH and COFACTOR based on the I-TASSER structure prediction. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00377-6.
Collapse
Affiliation(s)
- Mohamed Khedr
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Kamal M A Khalil
- Genetic Engineering and Biotechnology Division, Genetics and Cytology Department, National Research Centre, 33 El-Buhouth Street, Dokki, Cairo, 12622, Egypt
| | - Hoda A Kabary
- Agricultural Microbiology Department, National Research Centre, 33 El-Buhouth Street, Dokki, Cairo, 12622, Egypt
| | - Ahmed A Hamed
- Microbial Chemistry Department, National Research Centre, 33 El-Buhouth Street, Dokki, Cairo, 12622, Egypt
| | - Mona Shaban E M Badawy
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Mohammed Abu-Elghait
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt.
| |
Collapse
|
6
|
Miller CA, Ho JML, Bennett MR. Strategies for Improving Small-Molecule Biosensors in Bacteria. BIOSENSORS 2022; 12:bios12020064. [PMID: 35200325 PMCID: PMC8869690 DOI: 10.3390/bios12020064] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 05/03/2023]
Abstract
In recent years, small-molecule biosensors have become increasingly important in synthetic biology and biochemistry, with numerous new applications continuing to be developed throughout the field. For many biosensors, however, their utility is hindered by poor functionality. Here, we review the known types of mechanisms of biosensors within bacterial cells, and the types of approaches for optimizing different biosensor functional parameters. Discussed approaches for improving biosensor functionality include methods of directly engineering biosensor genes, considerations for choosing genetic reporters, approaches for tuning gene expression, and strategies for incorporating additional genetic modules.
Collapse
Affiliation(s)
- Corwin A. Miller
- Department of Biosciences, Rice University MS-140, 6100 Main St., Houston, TX 77005, USA; (C.A.M.); (J.M.L.H.)
| | - Joanne M. L. Ho
- Department of Biosciences, Rice University MS-140, 6100 Main St., Houston, TX 77005, USA; (C.A.M.); (J.M.L.H.)
| | - Matthew R. Bennett
- Department of Biosciences, Rice University MS-140, 6100 Main St., Houston, TX 77005, USA; (C.A.M.); (J.M.L.H.)
- Department of Bioengineering, Rice University MS-140, 6100 Main St., Houston, TX 77005, USA
- Correspondence:
| |
Collapse
|
7
|
Expression and Functional Analysis of the Argonaute Protein of Thermus thermophilus (TtAgo) in E. coli BL21(DE3). Biomolecules 2021; 11:biom11040524. [PMID: 33807395 PMCID: PMC8067300 DOI: 10.3390/biom11040524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/24/2022] Open
Abstract
The prokaryotic Argonaute proteins (pAgos) have been reported to cleave or interfere with DNA targets in a guide-dependent or independent manner. It is often difficult to characterize pAgos in vivo due to the extreme environments favored by their hosts. In the present study, we expressed functional Thermus thermophilus pAgo (TtAgo) in E. coli BL21 (DE3) cells at 37 °C. Initial attempts to express TtAgo in BL21(DE3) cells at 37 °C failed. This was not because of TtAgo mediated general toxicity to the host cells, but instead because of TtAgo-induced loss of its expression plasmid. We employed this discovery to establish a screening system for isolating loss-of-function mutants of TtAgo. The E. colifabI gene was used to help select for full-length TtAgo loss of function mutants, as overexpression of fabI renders the cell to be resistant to the triclosan. We isolated and characterized eight mutations in TtAgo that abrogated function. The ability of TtAgo to induce loss of its expression vector in vivo at 37 °C is an unreported function that is mechanistically different from its reported in vitro activity. These results shed light on the mechanisms by which TtAgo functions as a defense against foreign DNA invasion.
Collapse
|
8
|
MgrB Inactivation Is Responsible for Acquired Resistance to Colistin in Enterobacter hormaechei subsp. steigerwaltii. Antimicrob Agents Chemother 2020; 64:AAC.00128-20. [PMID: 32253218 DOI: 10.1128/aac.00128-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/30/2020] [Indexed: 11/20/2022] Open
Abstract
Multidrug-resistant strains belonging to the Enterobacter cloacae complex (ECC) group, and especially those belonging to clusters C-III, C-IV, and C-VIII, have increasingly emerged as a leading cause of health care-associated infections, with colistin used as one of the last lines of treatment. However, colistin-resistant ECC strains have emerged. The aim of this study was to prove that MgrB, the negative regulator of the PhoP/PhoQ two-component regulatory system, is involved in colistin resistance in ECC of cluster C-VIII, formerly referred to as Enterobacter hormaechei subsp. steigerwaltii An in vitro mutant (Eh22-Mut) was selected from a clinical isolate of Eh22. The sequencing analysis of its mgrB gene showed the presence of one nucleotide deletion leading to the formation of a truncated protein of six instead of 47 amino acids. The wild-type mgrB gene from Eh22 and that of a clinical strain of Klebsiella pneumoniae used as controls were cloned, and the corresponding recombinant plasmids were used for complementation assays. The results showed a fully restored susceptibility to colistin and confirmed for the first time that mgrB gene expression plays a key role in acquired resistance to colistin in ECC strains.
Collapse
|
9
|
Mordukhova EA, Pan JG. Construction of a Bacillus subtilis and Escherichia coli shuttle vector harboring the fabL gene as a triclosan selection marker. Heliyon 2020; 6:e03891. [PMID: 32426536 PMCID: PMC7226672 DOI: 10.1016/j.heliyon.2020.e03891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/18/2020] [Accepted: 04/28/2020] [Indexed: 11/17/2022] Open
Abstract
A new plasmid containing a mutated fabL gene from Bacillus subtilis as a triclosan selection marker was developed as a useful B. subtilis/E. coli shuttle vector. The pHT-FabL40 plasmid is stable in both gram-positive and gram-negative hosts with increased plasmid DNA yield in E. coli.
Collapse
Affiliation(s)
- Elena A Mordukhova
- GenoFocus Ltd., 65 Techno 1-ro, Gwanpyeong-dong, Yuseong-gu, Daejeon, 34014, South Korea
| | - Jae-Gu Pan
- GenoFocus Ltd., 65 Techno 1-ro, Gwanpyeong-dong, Yuseong-gu, Daejeon, 34014, South Korea.,Superbacteria Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 111 Gwahangno, Yuseong-gu, Daejeon, 34141, South Korea
| |
Collapse
|
10
|
Sjöberg G, Guevara-Martínez M, van Maris AJA, Gustavsson M. Metabolic engineering applications of the Escherichia coli bacterial artificial chromosome. J Biotechnol 2019; 305:43-50. [PMID: 31505217 DOI: 10.1016/j.jbiotec.2019.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 11/25/2022]
Abstract
In metabolic engineering and synthetic biology, the number of genes expressed to achieve better production and pathway regulation in each strain is steadily increasing. The method of choice for expression in Escherichia coli is usually one or several multi-copy plasmids. Meanwhile, the industry standard for long-term, robust production is chromosomal integration of the desired genes. Despite recent advances, genetic manipulation of the bacterial chromosome remains more time consuming than plasmid construction. To allow screening of different metabolic engineering strategies at a level closer to industry while maintaining the molecular-biology advantages of plasmid-based expression, we have investigated the single-copy bacterial artificial chromosome (BAC) as a development tool for metabolic engineering. Using (R)-3-hydroxybutyrate as a model product, we show that BAC can outperform multi-copy plasmids in terms of yield, productivity and specific growth rate, with respective increases of 12%, 18%, and 5%. We both show that gene expression by the BAC simplifies pathway optimization and that the phenotype of pathway expression from BAC is very close to that of chromosomal expression. From these results, we conclude that the BAC can provide a simple platform for performing pathway design and optimization.
Collapse
Affiliation(s)
- Gustav Sjöberg
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mónica Guevara-Martínez
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden; Faculty of Science and Technology, Center of Biotechnology, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - Antonius J A van Maris
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Martin Gustavsson
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
11
|
Functional screening for triclosan resistance in a wastewater metagenome and isolates of Escherichia coli and Enterococcus spp. from a large Canadian healthcare region. PLoS One 2019; 14:e0211144. [PMID: 30677104 PMCID: PMC6345445 DOI: 10.1371/journal.pone.0211144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/07/2019] [Indexed: 01/31/2023] Open
Abstract
The biocide triclosan is in many consumer products and is a frequent contaminant of wastewater (WW) such that there is concern that triclosan promotes resistance to important antibiotics. This study identified functional mechanisms of triclosan resistance (TCSR) in WW metagenomes, and assessed the frequency of TCSR in WW-derived and clinical isolates of Escherichia coli and Enterococcus spp. Metagenomic DNA extracted from WW was used to profile the microbiome and construct large-insert cosmid libraries, which were screened for TCSR. Resistant cosmids were sequenced and the TCSR determinant identified by transposon mutagenesis. Wastewater Enterococcus spp. (N = 94) and E. coli (N = 99) and clinical Enterococcus spp. (N = 146) and vancomycin-resistant E. faecium (VRE; N = 149) were collected and tested for resistance to triclosan and a comprehensive drug panel. Functional metagenomic screening revealed diverse FabV homologs as major WW TCSR determinants. Resistant clones harboured sequences likely originating from Aeromonas spp., a common WW microbe. The triclosan MIC90s for E. coli, E. faecalis, and E. faecium isolates were 0.125, 32, and 32 mg/L, respectively. For E. coli, there was no correlation between the triclosan MIC and any drug tested. Negative correlations were detected between the triclosan MIC and levofloxacin resistance for E. faecalis, and between triclosan and vancomycin, teicoplanin, and ampicillin resistance for E. faecium. Thus, FabV homologs were the major contributor to the WW triclosan resistome and high-level TCSR was not observed in WW or clinical isolates. Elevated triclosan MICs were not positively correlated with antimicrobial resistance to any drug tested.
Collapse
|
12
|
Zhao H, Fang Y, Wang X, Zhao L, Wang J, Li Y. Increasing L-threonine production in Escherichia coli by engineering the glyoxylate shunt and the L-threonine biosynthesis pathway. Appl Microbiol Biotechnol 2018; 102:5505-5518. [PMID: 29713792 DOI: 10.1007/s00253-018-9024-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 03/20/2018] [Accepted: 04/13/2018] [Indexed: 11/29/2022]
Abstract
L-threonine is an important amino acid that can be added in food, medicine, or feed. Here, the influence of glyoxylate shunt on an L-threonine producing strain Escherichia coli TWF001 has been studied. The gene iclR was deleted, and the native promoter of the aceBA operon was replaced by the trc promoter in the chromosome of TWF001, the resulting strainTWF004 could produce 0.39 g L-threonine from1 g glucose after 36-h flask cultivation. Further replacing the native promoter of aspC by the trc promoter in the chromosome of TWF004 resulted in the strain TWF006. TWF006 could produce 0.42 g L-threonine from 1 g glucose after 36-h flask cultivation. Three key genes in the biosynthetic pathway of L-threonine, thrA * (a mutated thrA), thrB, and thrC were overexpressed in TWF006, resulting the strain TWF006/pFW01-thrA * BC. TWF006/pFW01-thrA * BC could produce 0.49 g L-threonine from 1 g glucose after 36-h flask cultivation. Next, the genes asd, rhtA, rhtC, or thrE were inserted into the plasmid TWF006/pFW01-thrA * BC, and TWF006 was transformed with these plasmids, resulting the strains TWF006/pFW01-thrA * BC-asd, TWF006/pFW01-thrA * BC-rhtA, TWF006/pFW01-thrA * BC-rhtC, and TWF006/pFW01-thrA * BC-thrE, respectively. These four strains could produce more L-threonine than the control strain, and the highest yield was produced by TWF006/pFW01-thrA * BC-asd; after 36-h flask cultivation, TWF006/pFW01-thrA * BC-asd could produce 15.85 g/l L-threonine, i.e., 0.53 g L-threonine per 1 g glucose, which is a 70% increase relative to the control strain TWF001. The results suggested that the combined engineering of glyoxylate shunt and L-threonine biosynthesis pathway could significantly increase the L-threonine production in E. coli.
Collapse
Affiliation(s)
- Hui Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yu Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China. .,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China. .,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
| | - Lei Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Jianli Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Ye Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| |
Collapse
|
13
|
High-Level Resistance to Colistin Mediated by Various Mutations in the crrB Gene among Carbapenemase-Producing Klebsiella pneumoniae. Antimicrob Agents Chemother 2017; 61:AAC.01423-17. [PMID: 28874377 DOI: 10.1128/aac.01423-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/30/2017] [Indexed: 11/20/2022] Open
Abstract
Mutations in crrAB genes encoding a two-component regulator involved in modifications of lipopolysaccharide were searched for among a collection of colistin-resistant Klebsiella pneumoniae isolates. Four isolates, respectively, producing carbapenemases NDM-1, OXA-181, or KPC-2 showed mutated CrrB proteins compared with those in wild-type strains. Complementation assays with a wild-type CrrB protein restored the susceptibility to colistin in all cases, confirming the involvement of the identified substitutions in the resistance phenotype.
Collapse
|
14
|
Kanca O, Bellen HJ, Schnorrer F. Gene Tagging Strategies To Assess Protein Expression, Localization, and Function in Drosophila. Genetics 2017; 207:389-412. [PMID: 28978772 PMCID: PMC5629313 DOI: 10.1534/genetics.117.199968] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/13/2017] [Indexed: 01/15/2023] Open
Abstract
Analysis of gene function in complex organisms relies extensively on tools to detect the cellular and subcellular localization of gene products, especially proteins. Typically, immunostaining with antibodies provides these data. However, due to cost, time, and labor limitations, generating specific antibodies against all proteins of a complex organism is not feasible. Furthermore, antibodies do not enable live imaging studies of protein dynamics. Hence, tagging genes with standardized immunoepitopes or fluorescent tags that permit live imaging has become popular. Importantly, tagging genes present in large genomic clones or at their endogenous locus often reports proper expression, subcellular localization, and dynamics of the encoded protein. Moreover, these tagging approaches allow the generation of elegant protein removal strategies, standardization of visualization protocols, and permit protein interaction studies using mass spectrometry. Here, we summarize available genomic resources and techniques to tag genes and discuss relevant applications that are rarely, if at all, possible with antibodies.
Collapse
Affiliation(s)
- Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Howard Hughes Medical Institute, Houston, Texas 77030
| | - Frank Schnorrer
- Developmental Biology Institute of Marseille (IBDM), UMR 7288, CNRS, Aix-Marseille Université, 13288, France
| |
Collapse
|
15
|
Ali SA, Chew YW, Omar TC, Azman N. Use of FabV-Triclosan Plasmid Selection System for Efficient Expression and Production of Recombinant Proteins in Escherichia coli. PLoS One 2015; 10:e0144189. [PMID: 26642325 PMCID: PMC4671583 DOI: 10.1371/journal.pone.0144189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/13/2015] [Indexed: 11/21/2022] Open
Abstract
Maintenance of recombinant plasmid vectors in host bacteria relies on the presence of selection antibiotics in the growth media to suppress plasmid -free segregants. However, presence of antibiotic resistance genes and antibiotics themselves is not acceptable in several applications of biotechnology. Previously, we have shown that FabV-Triclosan selection system can be used to select high and medium copy number plasmid vectors in E. coli. Here, we have extended our previous work and demonstrated that expression vectors containing FabV can be used efficiently to express heterologous recombinant proteins in similar or better amounts in E. coli host when compared with expression vectors containing β-lactamase. Use of small amount of non-antibiotic Triclosan as selection agent in growth medium, enhanced plasmid stability, applicability in various culture media, and compatibility with other selection systems for multiple plasmid maintenance are noteworthy features of FabV-Triclosan selection system.
Collapse
Affiliation(s)
- Syed A. Ali
- Oncological and Radiological Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
- * E-mail:
| | - Yik Wei Chew
- Oncological and Radiological Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Tasyriq Che Omar
- Oncological and Radiological Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Nizuwan Azman
- Division of Research Publications, and Innovation, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| |
Collapse
|
16
|
Ali SA, Chew YW. FabV/Triclosan Is an Antibiotic-Free and Cost-Effective Selection System for Efficient Maintenance of High and Medium-Copy Number Plasmids in Escherichia coli. PLoS One 2015; 10:e0129547. [PMID: 26057251 PMCID: PMC4461242 DOI: 10.1371/journal.pone.0129547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/11/2015] [Indexed: 11/19/2022] Open
Abstract
Antibiotic resistance genes and antibiotics are frequently used to maintain plasmid vectors in bacterial hosts such as Escherichia coli. Due to the risk of spread of antibiotic resistance, the regulatory authorities discourage the use of antibiotic resistance genes/antibiotics for the maintenance of plasmid vectors in certain biotechnology applications. Overexpression of E. coli endogenous fabI gene and subsequent selection on Triclosan has been proposed as a practical alternative to traditional antibiotic selection systems. Unfortunately, overexpression of fabI cannot be used to select medium –copy number plasmids, typically used for the expression of heterologous proteins in E. coli. Here we report that Vibrio cholera FabV, a functional homologue of E. coli FabI, can be used as a suitable marker for the selection and maintenance of both high and medium -copy number plasmid vectors in E. coli.
Collapse
Affiliation(s)
- Syed A. Ali
- Oncological and Radiological Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia
- * E-mail:
| | - Yik Wei Chew
- Oncological and Radiological Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia
| |
Collapse
|
17
|
Tee KL, Wong TS. Polishing the craft of genetic diversity creation in directed evolution. Biotechnol Adv 2013; 31:1707-21. [PMID: 24012599 DOI: 10.1016/j.biotechadv.2013.08.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/31/2013] [Accepted: 08/31/2013] [Indexed: 12/25/2022]
Abstract
Genetic diversity creation is a core technology in directed evolution where a high quality mutant library is crucial to its success. Owing to its importance, the technology in genetic diversity creation has seen rapid development over the years and its application has diversified into other fields of scientific research. The advances in molecular cloning and mutagenesis since 2008 were reviewed. Specifically, new cloning techniques were classified based on their principles of complementary overhangs, homologous sequences, overlapping PCR and megaprimers and the advantages, drawbacks and performances of these methods were highlighted. New mutagenesis methods developed for random mutagenesis, focused mutagenesis and DNA recombination were surveyed. The technical requirements of these methods and the mutational spectra were compared and discussed with references to commonly used techniques. The trends of mutant library preparation were summarised. Challenges in genetic diversity creation were discussed with emphases on creating "smart" libraries, controlling the mutagenesis spectrum and specific challenges in each group of mutagenesis methods. An outline of the wider applications of genetic diversity creation includes genome engineering, viral evolution, metagenomics and a study of protein functions. The review ends with an outlook for genetic diversity creation and the prospective developments that can have future impact in this field.
Collapse
Affiliation(s)
- Kang Lan Tee
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, England, United Kingdom
| | | |
Collapse
|