1
|
Colic L, Sankar A, Goldman DA, Kim JA, Blumberg HP. Towards a neurodevelopmental model of bipolar disorder: a critical review of trait- and state-related functional neuroimaging in adolescents and young adults. Mol Psychiatry 2025; 30:1089-1101. [PMID: 39333385 PMCID: PMC11835756 DOI: 10.1038/s41380-024-02758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Neurodevelopmental mechanisms are increasingly implicated in bipolar disorder (BD), highlighting the importance of their study in young persons. Neuroimaging studies have demonstrated a central role for frontotemporal corticolimbic brain systems that subserve processing and regulation of emotions, and processing of reward in adults with BD. As adolescence and young adulthood (AYA) is a time when fully syndromal BD often emerges, and when these brain systems undergo dynamic maturational changes, the AYA epoch is implicated as a critical period in the neurodevelopment of BD. Functional magnetic resonance imaging (fMRI) studies can be especially informative in identifying the functional neuroanatomy in adolescents and young adults with BD (BDAYA) and at high risk for BD (HR-BDAYA) that is related to acute mood states and trait vulnerability to the disorder. The identification of early emerging brain differences, trait- and state-based, can contribute to the elucidation of the developmental neuropathophysiology of BD, and to the generation of treatment and prevention targets. In this critical review, fMRI studies of BDAYA and HR-BDAYA are discussed, and a preliminary neurodevelopmental model is presented based on a convergence of literature that suggests early emerging dysfunction in subcortical (e.g., amygdalar, striatal, thalamic) and caudal and ventral cortical regions, especially ventral prefrontal cortex (vPFC) and insula, and connections among them, persisting as trait-related features. More rostral and dorsal cortical alterations, and bilaterality progress later, with lateralization, and direction of functional imaging findings differing by mood state. Altered functioning of these brain regions, and regions they are strongly connected to, are implicated in the range of symptoms seen in BD, such as the insula in interoception, precentral gyrus in motor changes, and prefrontal cortex in cognition. Current limitations, and outlook on the future use of neuroimaging evidence to inform interventions and prevent the onset of mood episodes in BDAYA, are outlined.
Collapse
Affiliation(s)
- Lejla Colic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- German Center for Mental Health, partner site Halle-Jena-Magdeburg, Jena, Germany
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Anjali Sankar
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Neurobiology Research Unit, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Danielle A Goldman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
| | - Jihoon A Kim
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Hilary P Blumberg
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.
- Child Study Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Belov V, Erwin-Grabner T, Aghajani M, Aleman A, Amod AR, Basgoze Z, Benedetti F, Besteher B, Bülow R, Ching CRK, Connolly CG, Cullen K, Davey CG, Dima D, Dols A, Evans JW, Fu CHY, Gonul AS, Gotlib IH, Grabe HJ, Groenewold N, Hamilton JP, Harrison BJ, Ho TC, Mwangi B, Jaworska N, Jahanshad N, Klimes-Dougan B, Koopowitz SM, Lancaster T, Li M, Linden DEJ, MacMaster FP, Mehler DMA, Melloni E, Mueller BA, Ojha A, Oudega ML, Penninx BWJH, Poletti S, Pomarol-Clotet E, Portella MJ, Pozzi E, Reneman L, Sacchet MD, Sämann PG, Schrantee A, Sim K, Soares JC, Stein DJ, Thomopoulos SI, Uyar-Demir A, van der Wee NJA, van der Werff SJA, Völzke H, Whittle S, Wittfeld K, Wright MJ, Wu MJ, Yang TT, Zarate C, Veltman DJ, Schmaal L, Thompson PM, Goya-Maldonado R. Multi-site benchmark classification of major depressive disorder using machine learning on cortical and subcortical measures. Sci Rep 2024; 14:1084. [PMID: 38212349 PMCID: PMC10784593 DOI: 10.1038/s41598-023-47934-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 11/19/2023] [Indexed: 01/13/2024] Open
Abstract
Machine learning (ML) techniques have gained popularity in the neuroimaging field due to their potential for classifying neuropsychiatric disorders. However, the diagnostic predictive power of the existing algorithms has been limited by small sample sizes, lack of representativeness, data leakage, and/or overfitting. Here, we overcome these limitations with the largest multi-site sample size to date (N = 5365) to provide a generalizable ML classification benchmark of major depressive disorder (MDD) using shallow linear and non-linear models. Leveraging brain measures from standardized ENIGMA analysis pipelines in FreeSurfer, we were able to classify MDD versus healthy controls (HC) with a balanced accuracy of around 62%. But after harmonizing the data, e.g., using ComBat, the balanced accuracy dropped to approximately 52%. Accuracy results close to random chance levels were also observed in stratified groups according to age of onset, antidepressant use, number of episodes and sex. Future studies incorporating higher dimensional brain imaging/phenotype features, and/or using more advanced machine and deep learning methods may yield more encouraging prospects.
Collapse
Affiliation(s)
- Vladimir Belov
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August University, Von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Tracy Erwin-Grabner
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August University, Von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Moji Aghajani
- Department of Psychiatry, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Institute of Education and Child Studies, Section Forensic Family and Youth Care, Leiden University, Leiden, The Netherlands
| | - Andre Aleman
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alyssa R Amod
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Zeynep Basgoze
- Department of Psychiatry and Behavioral Science, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Francesco Benedetti
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bianca Besteher
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Robin Bülow
- Institute for Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Colm G Connolly
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - Kathryn Cullen
- Department of Psychiatry and Behavioral Science, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Christopher G Davey
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Danai Dima
- Department of Psychology, School of Arts and Social Sciences, City, University of London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Annemiek Dols
- Department of Psychiatry, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jennifer W Evans
- Experimental Therapeutics and Pathophysiology Branch, National Institute for Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia H Y Fu
- School of Psychology, University of East London, London, UK
- Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ali Saffet Gonul
- SoCAT Lab, Department of Psychiatry, School of Medicine, Ege University, Izmir, Turkey
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Nynke Groenewold
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - J Paul Hamilton
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Center for Medical Imaging and Visualization, Linköping University, Linköping, Sweden
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Tiffany C Ho
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Benson Mwangi
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center Of Excellence On Mood Disorders, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Natalia Jaworska
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | | | | | - Thomas Lancaster
- Cardiff University Brain Research Imaging Center, Cardiff University, Cardiff, UK
- MRC Center for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - David E J Linden
- Cardiff University Brain Research Imaging Center, Cardiff University, Cardiff, UK
- MRC Center for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Frank P MacMaster
- Departments of Psychiatry and Pediatrics, University of Calgary, Calgary, AB, Canada
| | - David M A Mehler
- Cardiff University Brain Research Imaging Center, Cardiff University, Cardiff, UK
- MRC Center for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
| | - Elisa Melloni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bryon A Mueller
- Department of Psychiatry and Behavioral Science, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Amar Ojha
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mardien L Oudega
- Department of Psychiatry, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sara Poletti
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Catalonia, Spain
| | - Maria J Portella
- Sant Pau Mental Health Research Group, Institut de Recerca de L'Hospital de La Santa Creu I Sant Pau, Barcelona, Catalonia, Spain
| | - Elena Pozzi
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Liesbeth Reneman
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Matthew D Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Kang Sim
- West Region, Institute of Mental Health, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jair C Soares
- Center Of Excellence On Mood Disorders, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dan J Stein
- SA MRC Research Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Aslihan Uyar-Demir
- SoCAT Lab, Department of Psychiatry, School of Medicine, Ege University, Izmir, Turkey
| | - Nic J A van der Wee
- Leiden Institute for Brain and Cognition, Leiden University Medical Center, Leiden, The Netherlands
| | - Steven J A van der Werff
- Leiden Institute for Brain and Cognition, Leiden University Medical Center, Leiden, The Netherlands
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/ Greifswald, Greifswald, Germany
| | - Margaret J Wright
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Mon-Ju Wu
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center Of Excellence On Mood Disorders, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tony T Yang
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Carlos Zarate
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, Bethesda, MD, USA
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Lianne Schmaal
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Roberto Goya-Maldonado
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August University, Von-Siebold-Str. 5, 37075, Göttingen, Germany.
| |
Collapse
|
3
|
Kjærstad HL, Haldorsen T, Vinberg M, Kessing LV, Miskowiak KW. Associations between emotional and non-emotional cognition and subsequent mood episodes in recently diagnosed patients with bipolar disorder: A 16-month follow-up study. J Affect Disord 2023; 324:16-23. [PMID: 36565963 DOI: 10.1016/j.jad.2022.12.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is associated with impairments in both emotional and non-emotional cognition. Recently, cognitive impairments have attracted increasing research interest as markers of prognosis and possible treatment targets in patients with BD. However, there is a paucity of studies investigating cognitive predictors of prognosis in BD. METHODS We assessed 148 recently diagnosed, symptomatically stable patients with BD with a battery of emotional and non-emotional cognitive tests and followed them up over 16 months as part of an ongoing cohort study. Multiple linear regression analyses were conducted to examine the associations between cognitive performance at baseline and the recurrence and duration of (hypo)manic and depressive episodes, respectively, with adjustment for age, sex, subsyndromal symptoms and time between assessments. RESULTS Poorer recognition of negative facial expressions and more negative emotions in neutral daily life scenarios were associated with greater frequency (ps ≤ .04) and longer duration (ps ≤ .03) of subsequent (hypo)manic episodes over the 16-month follow-up period. In addition, poorer global cognition, attention and psychomotor speed, and verbal fluency were associated with more (hypo)manic episodes (ps ≤ .04). Finally, more difficulty down-regulating emotion in negative social scenarios was associated with depressive relapse (p = .007). It was a limitation that patients had a delayed diagnosis of seven years from their first mood episode despite being recently diagnosed. CONCLUSION Trait-related cognitive impairments influence the early course in recently diagnosed patients with BD, particularly (hypo)manic relapse. Early prophylactic strategies targeting cognitive impairments may increase resilience and the course of illness in recently diagnosed patients with BD.
Collapse
Affiliation(s)
- Hanne Lie Kjærstad
- Copenhagen Affective Disorder research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark.
| | - Thea Haldorsen
- Department of Psychology, University of Copenhagen, Denmark
| | - Maj Vinberg
- Mental Health Centre, Northern Zealand, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
| | - Lars Vedel Kessing
- Copenhagen Affective Disorder research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Kamilla Woznica Miskowiak
- Copenhagen Affective Disorder research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark; Department of Psychology, University of Copenhagen, Denmark
| |
Collapse
|
4
|
Zhang ZQ, Yang MH, Guo ZP, Liao D, Sörös P, Li M, Walter M, Wang L, Liu CH. Increased prefrontal cortex connectivity associated with depression vulnerability and relapse. J Affect Disord 2022; 304:133-141. [PMID: 35219743 DOI: 10.1016/j.jad.2022.02.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/28/2022] [Accepted: 02/20/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a highly prevalent mood disorder, characterized by depressed mood, reduced capabilities to concentrate, impaired cognition, as well as a high risk of relapse. Unaffected siblings who have high risks for MDD development and yet without clinical symptoms may be helpful for understanding the neural mechanisms of MDD traits. METHODS We investigated both regional fluctuation and inter-regional synchronization in 31 fully remitted MDD patients, 29 unaffected siblings and 43 age, gender, and educational level matched helathy controls (HCs) using resting-state functional magnetic resonance imaging (rs-fMRI). The 17-item HAMD and neurocognitive scales were performed. Fractional amplitude of low-frequency fluctuation (fALFF) and functional connectivity (FC) strength were investigated. RESULTS Compared with healthy control group, patients with remitted MDD and unaffected siblings showed increased fALFF in the left dorsomedial prefrontal cortex (dmPFC) and increased FC between the left dmPFC and the right ventromedial prefrontal cortex (vmPFC). In addition, a negative correlation was observed between the fALFF value in the left dmPFC and the speed of Trail Making Test in the remitted MDD patients. Higher vmPFC-dmPFC FC was positively correlated with Wisconsin Card Sorting Test (WCST) total correct, and negatively correlated with WCST random errors. CONCLUSIONS In the absence of clinical symptoms, individuals with remitted MDD and unaffected siblings showed increased fALFF in left dmPFC as well as the vmPFC-dmPFC connectivity. These results suggest a specific trait abnormality in the default mode network associated with vulnerability to MDD, which may have implications for developing effective therapies using this network as a target.
Collapse
Affiliation(s)
- Zhu-Qing Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Chinese Medicine, Beijing 100010, China
| | - Ming-Hao Yang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Chinese Medicine, Beijing 100010, China
| | - Zhi-Peng Guo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Chinese Medicine, Beijing 100010, China
| | - Dan Liao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Chinese Medicine, Beijing 100010, China
| | - Peter Sörös
- Research Center Neurosensory Science, Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
| | - Meng Li
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg 39120, Germany; Department of Psychiatry and Psychotherapy, University Tuebingen, Tuebingen 72074, Germany; Department of Psychiatry and Psychotherapy, University Hospital Jena, Philosophenweg 3, 07743 Jena, Germany
| | - Martin Walter
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg 39120, Germany; Department of Psychiatry and Psychotherapy, University Tuebingen, Tuebingen 72074, Germany; Leibniz Institute for Neurobiology, Magdeburg 39118, Germany; Department of Psychiatry and Psychotherapy, University Hospital Jena, Philosophenweg 3, 07743 Jena, Germany
| | - Lihong Wang
- Department of Psychiatry, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Chun-Hong Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Chinese Medicine, Beijing 100010, China.
| |
Collapse
|
5
|
Miskowiak KW, Mariegaard J, Jahn FS, Kjærstad HL. Associations between cognition and subsequent mood episodes in patients with bipolar disorder and their unaffected relatives: A systematic review. J Affect Disord 2022; 297:176-188. [PMID: 34699850 DOI: 10.1016/j.jad.2021.10.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/13/2021] [Accepted: 10/20/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is highly recurrent and prevention of relapse and illness onset is an urgent treatment priority. This systematic review examined whether cognitive assessments can aid prediction of recurrence in patients with BD and/or illness onset in individuals at familial risk. METHODS The review included longitudinal studies of patients with BD or individuals at familial risk of mood disorder that examined the association between cognitive functions and subsequent relapse or illness onset, respectively. We followed the procedures of the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) 2020 statement. Searches were conducted on PubMed/MEDLINE, EMBASE and PsychInfo databases from inception up until May 10th 2021. RESULTS We identified 19 eligible studies; 12 studies investigated cognitive predictors of recurrence in BD (N = 36-76) and seven investigated cognitive predictors of illness onset in at-risk individuals (N = 84-234). In BD, general cognitive impairment, poorer verbal memory and executive function and positive bias were associated with subsequent (hypo)manic relapse -but with not depressive relapse or mood episodes in general. In first-degree relatives, impairments in attention, verbal memory and executive functions and positive bias were associated with subsequent illness onset. LIMITATIONS The findings should be considered preliminary given the small-to-moderate sample sizes and scarcity of studies. CONCLUSIONS Subject to replication, the associations between cognitive impairment and (hypo)mania relapse and illness onset may provide a platform for personalised treatment and prophylactic strategies.
Collapse
Affiliation(s)
- Kamilla Woznica Miskowiak
- Neurocognition and Emotion in Affective Disorder (NEAD) Group, Copenhagen Affective Disorder research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University hospital, Rigshospitalet, Denmark; Department of Psychology, University of Copenhagen, Copenhagen, Denmark.
| | - Johanna Mariegaard
- Neurocognition and Emotion in Affective Disorder (NEAD) Group, Copenhagen Affective Disorder research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University hospital, Rigshospitalet, Denmark; Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Frida Simon Jahn
- Neurocognition and Emotion in Affective Disorder (NEAD) Group, Copenhagen Affective Disorder research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University hospital, Rigshospitalet, Denmark; Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Hanne Lie Kjærstad
- Neurocognition and Emotion in Affective Disorder (NEAD) Group, Copenhagen Affective Disorder research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University hospital, Rigshospitalet, Denmark
| |
Collapse
|
6
|
Handedness and depression: A meta-analysis across 87 studies. J Affect Disord 2021; 294:200-209. [PMID: 34298226 DOI: 10.1016/j.jad.2021.07.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/07/2021] [Accepted: 07/10/2021] [Indexed: 01/20/2023]
Abstract
Alterations in functional brain lateralization, often indicated by an increased prevalence of left- and/or mixed-handedness, have been demonstrated in several psychiatric and neurodevelopmental disorders like schizophrenia or autism spectrum disorder. For depression, however, this relationship is largely unclear. While a few studies found evidence that handedness and depression are associated, both the effect size and the direction of this association remain elusive. Here, we collected data from 87 studies totaling 35,501 individuals to provide a precise estimate of differences in left-, mixed- and non-right-handedness between depressed and healthy samples and computed odds ratios (ORs) between these groups. Here, an OR > 1 signifies higher rates of atypical handedness in depressed compared to healthy samples. We found no differences in left- (OR = 1.04, 95% CI = [0.95, 1.15], p = .384), mixed- (OR = 1.64, 95% CI = [0.98, 2.74], p = .060) or non-right-handedness (OR = 1.05, 95% CI = [0.96, 1.15], p = .309) between the two groups. We could thus find no link between handedness and depression on the meta-analytical level.
Collapse
|
7
|
Cho CH, Lee T, Lee JB, Seo JY, Jee HJ, Son S, An H, Kim L, Lee HJ. Effectiveness of a Smartphone App With a Wearable Activity Tracker in Preventing the Recurrence of Mood Disorders: Prospective Case-Control Study. JMIR Ment Health 2020; 7:e21283. [PMID: 32755884 PMCID: PMC7439135 DOI: 10.2196/21283] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/19/2020] [Accepted: 07/23/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Smartphones and wearable devices can be used to obtain diverse daily log data related to circadian rhythms. For patients with mood disorders, giving feedback via a smartphone app with appropriate behavioral correction guides could play an important therapeutic role in the real world. OBJECTIVE We aimed to evaluate the effectiveness of a smartphone app named Circadian Rhythm for Mood (CRM), which was developed to prevent mood episodes based on a machine learning algorithm that uses passive digital phenotype data of circadian rhythm behaviors obtained with a wearable activity tracker. The feedback intervention for the CRM app consisted of a trend report of mood prediction, H-score feedback with behavioral guidance, and an alert system triggered when trending toward a high-risk state. METHODS In total, 73 patients with a major mood disorder were recruited and allocated in a nonrandomized fashion into 2 groups: the CRM group (14 patients) and the non-CRM group (59 patients). After the data qualification process, 10 subjects in the CRM group and 33 subjects in the non-CRM group were evaluated over 12 months. Both groups were treated in a similar manner. Patients took their usual medications, wore a wrist-worn activity tracker, and checked their eMoodChart daily. Patients in the CRM group were provided with daily feedback on their mood prediction and health scores based on the algorithm. For the CRM group, warning alerts were given when irregular life patterns were observed. However, these alerts were not given to patients in the non-CRM group. Every 3 months, mood episodes that had occurred in the previous 3 months were assessed based on the completed daily eMoodChart for both groups. The clinical course and prognosis, including mood episodes, were evaluated via face-to-face interviews based on the completed daily eMoodChart. For a 1-year prospective period, the number and duration of mood episodes were compared between the CRM and non-CRM groups using a generalized linear model. RESULTS The CRM group had 96.7% fewer total depressive episodes (n/year; exp β=0.033, P=.03), 99.5% shorter depressive episodes (total; exp β=0.005, P<.001), 96.1% shorter manic or hypomanic episodes (exp β=0.039, P<.001), 97.4% fewer total mood episodes (exp β=0.026, P=.008), and 98.9% shorter mood episodes (total; exp β=0.011, P<.001) than the non-CRM group. Positive changes in health behaviors due to the alerts and in wearable device adherence rates were observed in the CRM group. CONCLUSIONS The CRM app with a wearable activity tracker was found to be effective in preventing and reducing the recurrence of mood disorders, improving prognosis, and promoting better health behaviors. Patients appeared to develop a regular habit of using the CRM app. TRIAL REGISTRATION ClinicalTrials.gov NCT03088657; https://clinicaltrials.gov/ct2/show/NCT03088657.
Collapse
Affiliation(s)
- Chul-Hyun Cho
- Department of Psychiatry, College of Medicine, Chungnam National University, Daejeon, Republic of Korea.,Department of Psychiatry, Chungnam National University Sejong Hospital, Sejong, Republic of Korea.,Korea University Chronobiology Institute, Seoul, Republic of Korea
| | - Taek Lee
- Department of Convergence Security Engineering, College of Knowledge-based Services Engineering, Sungshin Women's University, Seoul, Republic of Korea
| | - Jung-Been Lee
- Department of Computer Science, Korea University College of Information, Seoul, Republic of Korea
| | - Ju Yeon Seo
- Korea University Chronobiology Institute, Seoul, Republic of Korea.,Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hee-Jung Jee
- Department of Biostatistics, Korea University College of Medicine, Seoul, Republic of Korea
| | - Serhim Son
- Department of Biostatistics, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyonggin An
- Department of Biostatistics, Korea University College of Medicine, Seoul, Republic of Korea
| | - Leen Kim
- Korea University Chronobiology Institute, Seoul, Republic of Korea
| | - Heon-Jeong Lee
- Korea University Chronobiology Institute, Seoul, Republic of Korea.,Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Barbu MC, Spiliopoulou A, Colombo M, McKeigue P, Clarke TK, Howard DM, Adams MJ, Shen X, Lawrie SM, McIntosh AM, Whalley HC. Expression quantitative trait loci-derived scores and white matter microstructure in UK Biobank: a novel approach to integrating genetics and neuroimaging. Transl Psychiatry 2020; 10:55. [PMID: 32066731 PMCID: PMC7026054 DOI: 10.1038/s41398-020-0724-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 01/01/2023] Open
Abstract
Expression quantitative trait loci (eQTL) are genetic variants associated with gene expression. Using genome-wide genotype data, it is now possible to impute gene expression using eQTL mapping efforts. This approach can be used to analyse previously unexplored relationships between gene expression and heritable in vivo measures of human brain structural connectivity. Using large-scale eQTL mapping studies, we computed 6457 gene expression scores (eQTL scores) using genome-wide genotype data in UK Biobank, where each score represents a genetic proxy measure of gene expression. These scores were then tested for associations with two diffusion tensor imaging measures, fractional anisotropy (NFA = 14,518) and mean diffusivity (NMD = 14,485), representing white matter structural integrity. We found FDR-corrected significant associations between 8 eQTL scores and structural connectivity phenotypes, including global and regional measures (βabsolute FA = 0.0339-0.0453; MD = 0.0308-0.0381) and individual tracts (βabsolute FA = 0.0320-0.0561; MD = 0.0295-0.0480). The loci within these eQTL scores have been reported to regulate expression of genes involved in various brain-related processes and disorders, such as neurite outgrowth and Parkinson's disease (DCAKD, SLC35A4, SEC14L4, SRA1, NMT1, CPNE1, PLEKHM1, UBE3C). Our findings indicate that eQTL scores are associated with measures of in vivo brain connectivity and provide novel information not previously found by conventional genome-wide association studies. Although the role of expression of these genes regarding white matter microstructural integrity is not yet clear, these results suggest it may be possible, in future, to map potential trait- and disease-associated eQTL to in vivo brain connectivity and better understand the mechanisms of psychiatric disorders and brain traits, and their associated imaging findings.
Collapse
Affiliation(s)
- Miruna C. Barbu
- grid.4305.20000 0004 1936 7988Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Athina Spiliopoulou
- grid.4305.20000 0004 1936 7988Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK ,grid.4305.20000 0004 1936 7988Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Marco Colombo
- grid.4305.20000 0004 1936 7988Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Paul McKeigue
- grid.4305.20000 0004 1936 7988Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Toni-Kim Clarke
- grid.4305.20000 0004 1936 7988Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - David M. Howard
- grid.4305.20000 0004 1936 7988Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK ,grid.13097.3c0000 0001 2322 6764Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Mark J. Adams
- grid.4305.20000 0004 1936 7988Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Xueyi Shen
- grid.4305.20000 0004 1936 7988Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Stephen M. Lawrie
- grid.4305.20000 0004 1936 7988Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Andrew M. McIntosh
- grid.4305.20000 0004 1936 7988Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK ,grid.4305.20000 0004 1936 7988Centre for Cognitive Ageing and Cognitive Epidemiology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK
| | - Heather C. Whalley
- grid.4305.20000 0004 1936 7988Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
9
|
Kennis M, Gerritsen L, van Dalen M, Williams A, Cuijpers P, Bockting C. Prospective biomarkers of major depressive disorder: a systematic review and meta-analysis. Mol Psychiatry 2020; 25:321-338. [PMID: 31745238 PMCID: PMC6974432 DOI: 10.1038/s41380-019-0585-z] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/09/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022]
Abstract
Leading biological hypotheses propose that biological changes may underlie major depressive disorder onset and relapse/recurrence. Here, we investigate if there is prospective evidence for biomarkers derived from leading theories. We focus on neuroimaging, gastrointestinal factors, immunology, neurotrophic factors, neurotransmitters, hormones, and oxidative stress. Searches were performed in Pubmed, Embase and PsychInfo for articles published up to 06/2019. References and citations of included articles were screened to identify additional articles. Inclusion criteria were having an MDD diagnosis as outcome, a biomarker as predictor, and prospective design search terms were formulated accordingly. PRISMA guidelines were applied. Meta-analyses were performed using a random effect model when three or more comparable studies were identified, using a random effect model. Our search resulted in 67,464 articles, of which 75 prospective articles were identified on: Neuroimaging (N = 24), Gastrointestinal factors (N = 1), Immunology (N = 8), Neurotrophic (N = 2), Neurotransmitters (N = 1), Hormones (N = 39), Oxidative stress (N = 1). Meta-analyses on brain volumes and immunology markers were not significant. Only cortisol (N = 19, OR = 1.294, p = 0.024) showed a predictive effect on onset/relapse/recurrence of MDD, but not on time until MDD onset/relapse/recurrence. However, this effect disappeared when studies including participants with a baseline clinical diagnosis were removed from the analyses. Other studies were too heterogeneous to compare. Thus, there is a lack of evidence for leading biological theories for onset and maintenance of depression. Only cortisol was identified as potential predictor for MDD, but results are influenced by the disease state. High-quality (prospective) studies on MDD are needed to disentangle the etiology and maintenance of MDD.
Collapse
Affiliation(s)
- Mitzy Kennis
- Department of Clinical Psychology, Utrecht University, Utrecht, The Netherlands
| | - Lotte Gerritsen
- Department of Clinical Psychology, Utrecht University, Utrecht, The Netherlands
| | - Marije van Dalen
- Department of Clinical Psychology, Utrecht University, Utrecht, The Netherlands
| | - Alishia Williams
- Department of Clinical Psychology, Utrecht University, Utrecht, The Netherlands.,School of Psychology, Faculty of Science, the University of New South Wales, Sydney, NSW, Australia
| | - Pim Cuijpers
- Department of Clinical, Neuro and Developmental Psychology, Amsterdam Public Health research institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Claudi Bockting
- Department of Psychiatry, Amsterdam University Medical Centers, location AMC, University of Amsterdam, Amsterdam, The Netherlands. .,Institute for Advanced Study, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Toenders YJ, van Velzen LS, Heideman IZ, Harrison BJ, Davey CG, Schmaal L. Neuroimaging predictors of onset and course of depression in childhood and adolescence: A systematic review of longitudinal studies. Dev Cogn Neurosci 2019; 39:100700. [PMID: 31426010 PMCID: PMC6969367 DOI: 10.1016/j.dcn.2019.100700] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 11/24/2022] Open
Abstract
Major depressive disorder (MDD) often emerges during adolescence with detrimental effects on development as well as lifetime consequences. Identifying neurobiological markers that are associated with the onset or course of this disorder in childhood and adolescence is important for early recognition and intervention and, potentially, for the prevention of illness onset. In this systematic review, 68 longitudinal neuroimaging studies, from 34 unique samples, that examined the association of neuroimaging markers with onset or changes in paediatric depression published up to 1 February 2019 were examined. These studies employed different imaging modalities at baseline; structural magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), functional MRI (fMRI) or electroencephalography (EEG). Most consistent evidence across studies was found for blunted reward-related (striatal) activity (fMRI and EEG) as a potential biological marker for both MDD onset and course. With regard to structural brain measures, the results were highly inconsistent, likely caused by insufficient power to detect complex mediating effects of genetic and environmental factors in small sample sizes. Overall, there were a limited number of samples, and confounding factors such as sex and pubertal development were often not considered, whereas these factors are likely to be relevant especially in this age range.
Collapse
Affiliation(s)
- Yara J Toenders
- Orygen, The National Centre of Excellence in Youth Mental Health, 35 Poplar Road, Parkville, Victoria 3052, Australia; Centre for Youth Mental Health, The University of Melbourne, 35 Poplar Road, Parkville, Victoria 3052, Australia
| | - Laura S van Velzen
- Orygen, The National Centre of Excellence in Youth Mental Health, 35 Poplar Road, Parkville, Victoria 3052, Australia; Centre for Youth Mental Health, The University of Melbourne, 35 Poplar Road, Parkville, Victoria 3052, Australia
| | - Ivonne Z Heideman
- Orygen, The National Centre of Excellence in Youth Mental Health, 35 Poplar Road, Parkville, Victoria 3052, Australia
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Level 3, Alan Gilbert Building, 161 Barry St, Carlton, Victoria 3053, Australia
| | - Christopher G Davey
- Orygen, The National Centre of Excellence in Youth Mental Health, 35 Poplar Road, Parkville, Victoria 3052, Australia; Centre for Youth Mental Health, The University of Melbourne, 35 Poplar Road, Parkville, Victoria 3052, Australia
| | - Lianne Schmaal
- Orygen, The National Centre of Excellence in Youth Mental Health, 35 Poplar Road, Parkville, Victoria 3052, Australia; Centre for Youth Mental Health, The University of Melbourne, 35 Poplar Road, Parkville, Victoria 3052, Australia.
| |
Collapse
|
11
|
Lawrie SM, Fletcher-Watson S, Whalley HC, McIntosh AM. Predicting major mental illness: ethical and practical considerations. BJPsych Open 2019; 5:e30. [PMID: 31068241 PMCID: PMC6469234 DOI: 10.1192/bjo.2019.11] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/15/2022] Open
Abstract
SummaryAn increasing body of genetic and imaging research shows that it is becoming possible to forecast the onset of major psychiatric disorders such as depression and schizophrenia before people become ill with ever improving accuracy. Practical issues such as the optimal combination of clinical and biological variables are being addressed, but the application of predictive algorithms to individuals or in routine clinical settings have yet to be tested. The development of predictive methods in mental health comes with substantial ethical questions, including whether people wish to know their level of risk, as well as individual and societal attitudes to the potential adverse effects of data sharing, early diagnosis and treatment, which so far have been largely ignored. Preliminary data suggests that at least some people think predictive research is valuable and would take part in such studies, and some would welcome knowing the results. Future initiatives should systematically assess opinions and attitudes in conjunction with scientific and technical advances.Declaration of interestIn the past 3 years, S.M.L. has received personal fees from Otsuaka, Sunovion and Janssen, and research grant support from Janssen and Lundbeck. A.M.M. has received research support from the Sackler Trust, Eli Lilly and Janssen. S.M.L. is part of the PSYSCAN consortium.
Collapse
Affiliation(s)
- Stephen M. Lawrie
- Head of Psychiatry, Division of Psychiatry and Patrick Wild Centre, University of Edinburgh, Scotland, UK
| | - Sue Fletcher-Watson
- Senior Lecturer, Division of Psychiatry and Patrick Wild Centre, University of Edinburgh, Scotland, UK
| | - Heather C. Whalley
- Senior Research Fellow, Division of Psychiatry, University of Edinburgh, Scotland, UK
| | - Andrew M. McIntosh
- Professor of Biological Psychiatry, Division of Psychiatry and Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Scotland, UK
| |
Collapse
|
12
|
Perry A, Roberts G, Mitchell PB, Breakspear M. Connectomics of bipolar disorder: a critical review, and evidence for dynamic instabilities within interoceptive networks. Mol Psychiatry 2019; 24:1296-1318. [PMID: 30279458 PMCID: PMC6756092 DOI: 10.1038/s41380-018-0267-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/14/2018] [Accepted: 09/07/2018] [Indexed: 12/31/2022]
Abstract
The notion that specific cognitive and emotional processes arise from functionally distinct brain regions has lately shifted toward a connectivity-based approach that emphasizes the role of network-mediated integration across regions. The clinical neurosciences have likewise shifted from a predominantly lesion-based approach to a connectomic paradigm-framing disorders as diverse as stroke, schizophrenia (SCZ), and dementia as "dysconnection syndromes". Here we position bipolar disorder (BD) within this paradigm. We first summarise the disruptions in structural, functional and effective connectivity that have been documented in BD. Not surprisingly, these disturbances show a preferential impact on circuits that support emotional processes, cognitive control and executive functions. Those at high risk (HR) for BD also show patterns of connectivity that differ from both matched control populations and those with BD, and which may thus speak to neurobiological markers of both risk and resilience. We highlight research fields that aim to link brain network disturbances to the phenotype of BD, including the study of large-scale brain dynamics, the principles of network stability and control, and the study of interoception (the perception of physiological states). Together, these findings suggest that the affective dysregulation of BD arises from dynamic instabilities in interoceptive circuits which subsequently impact on fear circuitry and cognitive control systems. We describe the resulting disturbance as a "psychosis of interoception".
Collapse
Affiliation(s)
- Alistair Perry
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia. .,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin/London, Germany. .,Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany.
| | - Gloria Roberts
- 0000 0004 4902 0432grid.1005.4School of Psychiatry, University of New South Wales, Randwick, NSW Australia ,grid.415193.bBlack Dog Institute, Prince of Wales Hospital, Randwick, NSW Australia
| | - Philip B. Mitchell
- 0000 0004 4902 0432grid.1005.4School of Psychiatry, University of New South Wales, Randwick, NSW Australia ,grid.415193.bBlack Dog Institute, Prince of Wales Hospital, Randwick, NSW Australia
| | - Michael Breakspear
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia. .,Metro North Mental Health Service, Brisbane, QLD, Australia.
| |
Collapse
|
13
|
Berg AT, Altalib HH, Devinsky O. Psychiatric and behavioral comorbidities in epilepsy: A critical reappraisal. Epilepsia 2017; 58:1123-1130. [PMID: 28464309 PMCID: PMC5498258 DOI: 10.1111/epi.13766] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2017] [Indexed: 01/26/2023]
Abstract
Psychiatric and behavioral disorders are important aspects of epilepsy and have received increasing attention in the last several years. The literature upon which most of the field relies contains some biases that must be carefully examined and resolved in future studies. First, in the pediatric epilepsy literature, many reports find that children with epilepsy have high levels of behavioral and psychiatric disorders when compared to appropriate controls. Most of these studies rely on parent-proxy completed instruments to assess these behavioral endpoints. Parents' reports are not objective but reflect parents' reactions and emotions. Increasing evidence suggests inherent biases in proxy reports and highlights the need to assess children directly. Second, periictal phenomena may be mischaracterized as underlying mood disorders. Third, many studies report elevated levels of psychiatric morbidity before and after the diagnosis of epilepsy, suggesting an inherent relation between the two types of disorders. Psychogenic nonepileptic seizures, while widely recognized as posing a diagnostic dilemma in the clinic, may account for some of these research findings. Diagnostic errors between epilepsy and psychogenic nonepileptic seizures need careful consideration when evaluating studies demonstrating associations between psychiatric disorders and epilepsy or poorer seizure control in association with psychiatric disorders in people who have epilepsy. Mental health concerns are important for everyone. An accurate, undistorted understanding of the relation between mental health disorders and epilepsy is essential to ensure appropriate therapy and to avoid unnecessary and potentially harmful treatments and common misconceptions.
Collapse
Affiliation(s)
- Anne T. Berg
- Ann & Robert H Lurie Children’s Hospital of Chicago, Northwestern-Feinberg School of Medicine, Chicago, IL
| | - Hamada H. Altalib
- Hamada H. Altalib, DO, MPH, Yale University School of Medicine, New Haven, CT
| | - Orrin Devinsky
- Orrin Devinsky, MD, New York University School of Medicine, New York, NY
| |
Collapse
|
14
|
Kim E, Garrett A, Boucher S, Park MH, Howe M, Sanders E, Kelley RG, Reiss AL, Chang KD, Singh MK. Inhibited Temperament and Hippocampal Volume in Offspring of Parents with Bipolar Disorder. J Child Adolesc Psychopharmacol 2017; 27:258-265. [PMID: 27768380 DOI: 10.1089/cap.2016.0086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Prior studies have suggested that inhibited temperament may be associated with an increased risk for developing anxiety or mood disorder, including bipolar disorder. However, the neurobiological basis for this increased risk is unknown. The aim of this study was to examine temperament in symptomatic and asymptomatic child offspring of parents with bipolar disorder (OBD) and to investigate whether inhibited temperament is associated with aberrant hippocampal volumes compared with healthy control (HC) youth. METHODS The OBD group consisted of 45 youth, 24 of whom had current psychiatric symptoms (OBD+s) and 21 without any psychiatric symptoms (OBD-s), and were compared with 24 HC youth. Temperament characteristics were measured by using the Revised Dimensions of Temperament Survey. Magnetic resonance imaging was used to measure hippocampal volumes. The association between temperament and hippocampal volumes was tested by using multiple regression analysis. RESULTS Compared with the OBD-s group, the OBD+s group had significantly more inhibited temperament traits, less flexibility, more negative mood, and less regular rhythm in their daily routines. In contrast, the OBD-s group was more likely to approach novel situations compared with OBD+s or HC groups. Within the OBD+s group, a more inhibited temperament was associated with smaller right hippocampal volumes. CONCLUSIONS In this study, symptomatic OBD were characterized by an inhibited temperament that was inversely correlated with hippocampal volume. Additional longitudinal studies are needed to determine whether inverse correlations between hippocampal volume and inhibited temperament represent early markers of risk for later developing bipolar disorder.
Collapse
Affiliation(s)
- Eunjoo Kim
- 1 Department of Psychiatry and Institute of Behavioral Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Amy Garrett
- 2 Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine , Stanford, California
| | - Spencer Boucher
- 2 Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine , Stanford, California
| | - Min-Hyeon Park
- 3 Department of Psychiatry, The Catholic University of Korea , Seoul St. Mary's Hospital, Seoul, Korea
| | - Meghan Howe
- 2 Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine , Stanford, California
| | - Erica Sanders
- 2 Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine , Stanford, California
| | - Ryan G Kelley
- 2 Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine , Stanford, California
| | - Allan L Reiss
- 2 Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine , Stanford, California
| | - Kiki D Chang
- 2 Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine , Stanford, California
| | - Manpreet K Singh
- 2 Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine , Stanford, California
| |
Collapse
|
15
|
Zorlu N, Cropley VL, Zorlu PK, Delibas DH, Adibelli ZH, Baskin EP, Esen ÖS, Bora E, Pantelis C. Effects of cigarette smoking on cortical thickness in major depressive disorder. J Psychiatr Res 2017; 84:1-8. [PMID: 27669406 DOI: 10.1016/j.jpsychires.2016.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 09/03/2016] [Accepted: 09/08/2016] [Indexed: 01/04/2023]
Abstract
Findings of surface-based morphometry studies in major depressive disorder (MDD) are still inconsistent. Given that cigarette smoking is highly prevalent in MDD and has documented negative effects on the brain, it is possible that some of the inconsistencies may be partly explained by cigarette use. The aim of the current study was to examine the influence of cigarette smoking on brain structure in MDD. 50 MDD patients (25 smokers and 25 non-smokers) and 22 age, education, gender and BMI matched non-smoker healthy controls underwent structural magnetic resonance imaging. Thickness and area of the cortex were measured using surface-based morphometry implemented with Freesurfer (v5.3.0). The non-smoker MDD patients had significantly increased cortical thickness, including in the left temporal cortex (p < 0.001), right insular cortex (p = 0.033) and left pre- and postcentral gyrus (p = 0.045), compared to healthy controls. We also found decreased cortical thickness in MDD patients who smoked compared to non-smoking patients in regions that overlapped with the regions found to be increased in non-smoking patients in comparison to controls. Non-smoker MDD patients had increased surface area in the right lateral occipital cortex (p = 0.009). We did not find any region where cortical thickness or surface area significantly differed between controls and either smoker MDD patients or all MDD patients. The findings of the current study suggest that cigarette smoking is associated with cortical thinning in regions found to be increased in patients with MDD. However, these results should be considered preliminary due to methodological limitations.
Collapse
Affiliation(s)
- Nabi Zorlu
- Department of Psychiatry, Katip Celebi University, Ataturk Training and Research Hospital, Izmir, Turkey.
| | - Vanessa Louise Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia; Faculty of Health, Arts and Design, Swinburne University of Technology, Hawthorn, Australia
| | - Pelin Kurtgoz Zorlu
- Department of Psychiatry, Izmir Bozyaka Training and Research Hospital, Izmir, Turkey
| | - Dursun Hakan Delibas
- Department of Psychiatry, Izmir Bozyaka Training and Research Hospital, Izmir, Turkey
| | - Zehra Hilal Adibelli
- Department of Radiology, Izmir Bozyaka Training and Research Hospital, Izmir, Turkey
| | - Emel Pasa Baskin
- Department of Psychiatry, Izmir Bozyaka Training and Research Hospital, Izmir, Turkey
| | - Özgür Sipahi Esen
- Department of Radiology, Izmir Bozyaka Training and Research Hospital, Izmir, Turkey
| | - Emre Bora
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia; Centre for Neural Engineering (CfNE), Department of Electrical and Electronic Engineering, University of Melbourne, Carlton South, VIC, Australia; Florey Institute for Neuroscience & Mental Health, Parkville, VIC, Australia
| |
Collapse
|
16
|
Nouchi R, Saito T, Nouchi H, Kawashima R. Small Acute Benefits of 4 Weeks Processing Speed Training Games on Processing Speed and Inhibition Performance and Depressive Mood in the Healthy Elderly People: Evidence from a Randomized Control Trial. Front Aging Neurosci 2016; 8:302. [PMID: 28066229 PMCID: PMC5179514 DOI: 10.3389/fnagi.2016.00302] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 11/29/2016] [Indexed: 01/10/2023] Open
Abstract
Background: Processing speed training using a 1-year intervention period improves cognitive functions and emotional states of elderly people. Nevertheless, it remains unclear whether short-term processing speed training such as 4 weeks can benefit elderly people. This study was designed to investigate effects of 4 weeks of processing speed training on cognitive functions and emotional states of elderly people. Methods: We used a single-blinded randomized control trial (RCT). Seventy-two older adults were assigned randomly to two groups: a processing speed training game (PSTG) group and knowledge quiz training game (KQTG) group, an active control group. In PSTG, participants were asked to play PSTG (12 processing speed games) for 15 min, during five sessions per week, for 4 weeks. In the KQTG group, participants were asked to play KQTG (four knowledge quizzes) for 15 min, during five sessions per week, for 4 weeks. We measured several cognitive functions and emotional states before and after the 4 week intervention period. Results: Our results revealed that PSTG improved performances in processing speed and inhibition compared to KQTG, but did not improve performance in reasoning, shifting, short term/working memory, and episodic memory. Moreover, PSTG reduced the depressive mood score as measured by the Profile of Mood State compared to KQTG during the 4 week intervention period, but did not change other emotional measures. Discussion: This RCT first provided scientific evidence related to small acute benefits of 4 week PSTG on processing speed, inhibition, and depressive mood in healthy elderly people. We discuss possible mechanisms for improvements in processing speed and inhibition and reduction of the depressive mood. Trial registration: This trial was registered in The University Hospital Medical Information Network Clinical Trials Registry (UMIN000022250).
Collapse
Affiliation(s)
- Rui Nouchi
- Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Science, Tohoku UniversitySendai, Japan; Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku UniversitySendai, Japan; Human and Social Response Research Division, International Research Institute of Disaster Science, Tohoku UniversitySendai, Japan
| | - Toshiki Saito
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University Sendai, Japan
| | - Haruka Nouchi
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University Sendai, Japan
| | - Ryuta Kawashima
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University Sendai, Japan
| |
Collapse
|
17
|
Hanford LC, Hall GB, Minuzzi L, Sassi RB. Gray matter volumes in symptomatic and asymptomatic offspring of parents diagnosed with bipolar disorder. Eur Child Adolesc Psychiatry 2016; 25:959-67. [PMID: 26767977 DOI: 10.1007/s00787-015-0809-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/07/2015] [Indexed: 12/12/2022]
Abstract
Children of parents diagnosed with bipolar disorder (BD), termed high-risk offspring (HRO), are at greater risk of developing psychiatric disorders compared to healthy children of healthy parents (HCO). Gray matter volume (GMV) abnormalities have been observed in HRO, however, these reports are inconsistent. We posit that this variability may be attributed to differences in methodology among offspring studies; in particular, the presence of psychiatric symptoms in HRO. Here, we directly compared GMVs between symptomatic and asymptomatic HRO, and HCO. High-resolution T1-weighted MR images were collected from 31 HRO (18 symptomatic and 13 asymptomatic) and 20 age- and sex-matched HCO. HRO had at least one parent diagnosed with BD. Symptomatic HRO were defined as having a psychiatric diagnosis other than BD, while asymptomatic HRO were required to be free of any psychiatric diagnosis. Scans were processed using voxel-based morphometry methods and between group analyses were performed in SPM. Compared to HCO, the HRO group showed decreased GMV in the right inferior orbitofrontal, right middle frontal, and bilateral superior and middle temporal regions. Both symptomatic and asymptomatic HRO groups showed decreased GMV in these regions separately when compared to HCO. When comparing symptomatic and asymptomatic HRO, GMVs were comparable in all regions except the lateral occipital cortex. Our study compared symptomatic and asymptomatic HRO directly. In doing so, we provided further support for the presence of discrete GMV deficits in HRO, and confirmed that these deficits are present irrespective of the presence of symptoms in HRO.
Collapse
Affiliation(s)
- Lindsay C Hanford
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Geoffrey B Hall
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Luciano Minuzzi
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- Mood Disorders Program, St. Joseph's Healthcare Hamilton, 100 West 5th St., Hamilton, ON, L8N3K7, Canada
| | - Roberto B Sassi
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
- Mood Disorders Program, St. Joseph's Healthcare Hamilton, 100 West 5th St., Hamilton, ON, L8N3K7, Canada.
| |
Collapse
|
18
|
Paulus MP, Huys QJM, Maia TV. A Roadmap for the Development of Applied Computational Psychiatry. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2016; 1:386-392. [PMID: 28018986 DOI: 10.1016/j.bpsc.2016.05.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Computational psychiatry is a burgeoning field that utilizes mathematical approaches to investigate psychiatric disorders, derive quantitative predictions, and integrate data across multiple levels of description. Computational psychiatry has already led to many new insights into the neurobehavioral mechanisms that underlie several psychiatric disorders, but its usefulness from a clinical standpoint is only now starting to be considered. METHODS Examples of computational psychiatry are highlighted, and a phase-based pipeline for the development of clinical computational-psychiatry applications is proposed, similar to the phase-based pipeline used in drug development. It is proposed that each phase has unique endpoints and deliverables, which will be important milestones to move tasks, procedures, computational models, and algorithms from the laboratory to clinical practice. RESULTS Application of computational approaches should be tested on healthy volunteers in Phase I, transitioned to target populations in Phase IB and Phase IIA, and thoroughly evaluated using randomized clinical trials in Phase IIB and Phase III. Successful completion of these phases should be the basis of determining whether computational models are useful tools for prognosis, diagnosis, or treatment of psychiatric patients. CONCLUSIONS A new type of infrastructure will be necessary to implement the proposed pipeline. This infrastructure should consist of groups of investigators with diverse backgrounds collaborating to make computational psychiatry relevant for the clinic.
Collapse
Affiliation(s)
- Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, OK; Psychiatry, University of California San Diego, La Jolla, CA
| | - Quentin J M Huys
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and Swiss Federal Institute of Technology (ETH) Zurich, Switzerland; Centre for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Switzerland
| | - Tiago V Maia
- Institute for Molecular Medicine, School of Medicine, University of Lisbon, Portugal
| |
Collapse
|
19
|
Walker RM, Sussmann JE, Whalley HC, Ryan NM, Porteous DJ, McIntosh AM, Evans KL. Preliminary assessment of pre-morbid DNA methylation in individuals at high genetic risk of mood disorders. Bipolar Disord 2016; 18:410-22. [PMID: 27440233 PMCID: PMC5006843 DOI: 10.1111/bdi.12415] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/09/2016] [Accepted: 06/17/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Accumulating evidence implicates altered DNA methylation in psychiatric disorders, including bipolar disorder (BD) and major depressive disorder (MDD). It is not clear, however, whether these changes are causative or result from illness progression or treatment. To disentangle these possibilities we profiled genome-wide DNA methylation in well, unrelated individuals at high familial risk of mood disorder. DNA methylation was compared between individuals who subsequently developed BD or MDD [ill later (IL)] and those who remained well [well later (WL)]. METHODS DNA methylation profiles were obtained from whole-blood samples from 22 IL and 23 WL individuals using the Infinium HumanMethylation450 BeadChip. Differential methylation was assessed on a single-locus and regional basis. Pathway analysis was performed to assess enrichment for particular biological processes amongst nominally significantly differentially methylated loci. RESULTS Although no locus withstood correction for multiple testing, uncorrected P-values provided suggestive evidence for altered methylation at sites within genes previously implicated in neuropsychiatric conditions, such as Transcription Factor 4 (TCF4) and Interleukin 1 Receptor Accessory Protein-Like 1 ([IL1RAPL1]; P≤3.11×10(-5) ). Pathway analysis revealed significant enrichment for several neurologically relevant pathways and functions, including Nervous System Development and Function and Behavior; these findings withstood multiple testing correction (q≤0.05). Analysis of differentially methylated regions identified several within the major histocompatibility complex (P≤.000 479), a region previously implicated in schizophrenia and BD. CONCLUSIONS Our data provide provisional evidence for the involvement of altered whole-blood DNA methylation in neurologically relevant genes in the aetiology of mood disorders. These findings are convergent with the findings of genome-wide association studies.
Collapse
Affiliation(s)
- Rosie May Walker
- Medical Genetics SectionCentre for Genomic and Experimental MedicineInstitute of Genetics and Molecular MedicineThe University of EdinburghWestern General HospitalEdinburghUK
| | - Jessika Elizabeth Sussmann
- Division of PsychiatryThe University of EdinburghRoyal Edinburgh HospitalUniversity of EdinburghEdinburghUK
| | - Heather Clare Whalley
- Division of PsychiatryThe University of EdinburghRoyal Edinburgh HospitalUniversity of EdinburghEdinburghUK
| | - Niamh Margaret Ryan
- Medical Genetics SectionCentre for Genomic and Experimental MedicineInstitute of Genetics and Molecular MedicineThe University of EdinburghWestern General HospitalEdinburghUK
| | - David John Porteous
- Medical Genetics SectionCentre for Genomic and Experimental MedicineInstitute of Genetics and Molecular MedicineThe University of EdinburghWestern General HospitalEdinburghUK,Centre for Cognitive Ageing and Cognitive EpidemiologyThe University of EdinburghEdinburghUK
| | - Andrew Mark McIntosh
- Division of PsychiatryThe University of EdinburghRoyal Edinburgh HospitalUniversity of EdinburghEdinburghUK,Centre for Cognitive Ageing and Cognitive EpidemiologyThe University of EdinburghEdinburghUK
| | - Kathryn Louise Evans
- Medical Genetics SectionCentre for Genomic and Experimental MedicineInstitute of Genetics and Molecular MedicineThe University of EdinburghWestern General HospitalEdinburghUK,Centre for Cognitive Ageing and Cognitive EpidemiologyThe University of EdinburghEdinburghUK
| |
Collapse
|
20
|
Nickson T, Chan SWY, Papmeyer M, Romaniuk L, Macdonald A, Stewart T, Kielty S, Lawrie SM, Hall J, Sussmann JE, McIntosh AM, Whalley HC. Prospective longitudinal voxel-based morphometry study of major depressive disorder in young individuals at high familial risk. Psychol Med 2016; 46:2351-2361. [PMID: 27282778 DOI: 10.1017/s0033291716000519] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Previous neuroimaging studies indicate abnormalities in cortico-limbic circuitry in mood disorder. Here we employ prospective longitudinal voxel-based morphometry to examine the trajectory of these abnormalities during early stages of illness development. METHOD Unaffected individuals (16-25 years) at high and low familial risk of mood disorder underwent structural brain imaging on two occasions 2 years apart. Further clinical assessment was conducted 2 years after the second scan (time 3). Clinical outcome data at time 3 was used to categorize individuals: (i) healthy controls ('low risk', n = 48); (ii) high-risk individuals who remained well (HR well, n = 53); and (iii) high-risk individuals who developed a major depressive disorder (HR MDD, n = 30). Groups were compared using longitudinal voxel-based morphometry. We also examined whether progress to illness was associated with changes in other potential risk markers (personality traits, symptoms scores and baseline measures of childhood trauma), and whether any changes in brain structure could be indexed using these measures. RESULTS Significant decreases in right amygdala grey matter were found in HR MDD v. controls (p = 0.001) and v. HR well (p = 0.005). This structural change was not related to measures of childhood trauma, symptom severity or measures of sub-diagnostic anxiety, neuroticism or extraversion, although cross-sectionally these measures significantly differentiated the groups at baseline. CONCLUSIONS These longitudinal findings implicate structural amygdala changes in the neurobiology of mood disorder. They also provide a potential biomarker for risk stratification capturing additional information beyond clinically ascertained measures.
Collapse
Affiliation(s)
- T Nickson
- Division of Psychiatry,University of Edinburgh,Edinburgh,UK
| | - S W Y Chan
- Clinical Psychology,University of Edinburgh,Edinburgh,UK
| | - M Papmeyer
- Division of Psychiatry,University of Edinburgh,Edinburgh,UK
| | - L Romaniuk
- Division of Psychiatry,University of Edinburgh,Edinburgh,UK
| | - A Macdonald
- Division of Psychiatry,University of Edinburgh,Edinburgh,UK
| | - T Stewart
- Division of Psychiatry,University of Edinburgh,Edinburgh,UK
| | - S Kielty
- Division of Psychiatry,University of Edinburgh,Edinburgh,UK
| | - S M Lawrie
- Division of Psychiatry,University of Edinburgh,Edinburgh,UK
| | - J Hall
- Division of Psychiatry,University of Edinburgh,Edinburgh,UK
| | - J E Sussmann
- Division of Psychiatry,University of Edinburgh,Edinburgh,UK
| | - A M McIntosh
- Division of Psychiatry,University of Edinburgh,Edinburgh,UK
| | - H C Whalley
- Division of Psychiatry,University of Edinburgh,Edinburgh,UK
| |
Collapse
|
21
|
Postan E. Defining Ourselves: Personal Bioinformation as a Tool of Narrative Self-Conception. JOURNAL OF BIOETHICAL INQUIRY 2016; 13:133-151. [PMID: 26797683 PMCID: PMC4823336 DOI: 10.1007/s11673-015-9690-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 06/02/2015] [Indexed: 06/05/2023]
Abstract
Where ethical or regulatory questions arise about an individual's interests in accessing bioinformation about herself (such as findings from screening or health research), the value of this information has traditionally been construed in terms of its clinical utility. It is increasingly argued, however, that the "personal utility" of findings should also be taken into account. This article characterizes one particular aspect of personal utility: that derived from the role of personal bioinformation in identity construction. The suggestion that some kinds of information are relevant to identity is not in itself new. However, the account outlined here seeks to advance the debate by proposing a conception of the relationship between bioinformation and identity that does not depend on essentialist assumptions and applies beyond the narrow genetic contexts in which identity is customarily invoked. The proposal is that the identity-value of personal bioinformation may be understood in terms of its instrumental role in the construction of our narrative identities, specifically that its value lies in helping us to develop self-narratives that support us in navigating our embodied existences. I argue that this narrative conception provides useful insights that are pertinent to the ethical governance of personal bioinformation. It illuminates a wider range of ethical considerations in relation to information access; it accounts for variations in the utility of different kinds of information; and it highlights that the context in which information is conveyed can be as important as whether it is disclosed at all. These arguments are illustrated using an example drawn from psychiatric neuroimaging research.
Collapse
Affiliation(s)
- Emily Postan
- Edinburgh Law School, The University of Edinburgh, Old College, South Bridge, Edinburgh, EH8 9YL, UK.
| |
Collapse
|
22
|
Papmeyer M, Sussmann JE, Stewart T, Giles S, Centola JG, Zannias V, Lawrie SM, Whalley HC, McIntosh AM. Prospective longitudinal study of subcortical brain volumes in individuals at high familial risk of mood disorders with or without subsequent onset of depression. Psychiatry Res 2016; 248:119-25. [PMID: 26778365 PMCID: PMC4834463 DOI: 10.1016/j.pscychresns.2015.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/08/2015] [Accepted: 12/28/2015] [Indexed: 12/19/2022]
Abstract
Subcortical volumetric brain abnormalities have been observed in mood disorders. However, it is unknown whether these reflect adverse effects predisposing to mood disorders or emerge at illness onset. Magnetic resonance imaging was conducted at baseline and after two years in 111 initially unaffected young adults at increased risk of mood disorders because of a close family history of bipolar disorder and 93 healthy controls (HC). During the follow-up, 20 high-risk subjects developed major depressive disorder (HR-MDD), with the others remaining well (HR-well). Volumes of the lateral ventricles, caudate, putamen, pallidum, thalamus, hippocampus and amygdala were extracted for each hemisphere. Using linear mixed-effects models, differences and longitudinal changes in subcortical volumes were investigated between groups (HC, HR-MDD, HR-well). There were no significant differences for any subcortical volume between groups controlling for multiple testing. Additionally, no significant differences emerged between groups over time. Our results indicate that volumetric subcortical brain abnormalities of these regions using the current method appear not to form familial trait markers for vulnerability to mood disorders in close relatives of bipolar disorder patients over the two-year time period studied. Moreover, they do not appear to reduce in response to illness onset at least for the time period studied.
Collapse
Affiliation(s)
- Martina Papmeyer
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom; Division of Systems Neuroscience of Psychopathology, Translational Research Center, University Hospital of Psychiatry, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland.
| | - Jessika E Sussmann
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom
| | - Tiffany Stewart
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom
| | - Stephen Giles
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom
| | - John G Centola
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom
| | - Vasileios Zannias
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom
| | - Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom
| | - Heather C Whalley
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom
| |
Collapse
|
23
|
Piguet C, Fodoulian L, Aubry JM, Vuilleumier P, Houenou J. Bipolar disorder: Functional neuroimaging markers in relatives. Neurosci Biobehav Rev 2015; 57:284-96. [PMID: 26321590 DOI: 10.1016/j.neubiorev.2015.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/31/2015] [Accepted: 08/25/2015] [Indexed: 12/30/2022]
Abstract
Neural models of anatomical and functional alterations have been proposed for bipolar disorders (BD). However, studies in affected patients do not allow disentangling alterations linked to the liability to BD from those associated with the evolution, medication and comorbidities of BD. Explorations in high risk subjects allow the study of these risk markers. We reported and summarized all functional magnetic resonance imaging (fMRI) studies focusing on first-degree relatives of BD patients. We found 29 studies reporting neural correlates of working memory (WM), emotional processing, executive functions and resting state in relatives of BD patients, compared to healthy subjects. Overall, the same regions that have been involved in patients, such as the inferior frontal gyrus and limbic areas, seem to be functionally altered in high-risk subjects. We conclude that the same brain regions already implicated in the pathophysiology of the disease such as the amygdala are also associated with the risk of BD. However longitudinal studies are required to understand their implication in the transition to BD.
Collapse
Affiliation(s)
- Camille Piguet
- Department of Neuroscience, Faculty of Medicine, University of Geneva, Switzerland; Department of Mental Health and Psychiatry, Geneva University Hospital, Switzerland.
| | - Leon Fodoulian
- Department of Neuroscience, Faculty of Medicine, University of Geneva, Switzerland
| | - Jean-Michel Aubry
- Department of Mental Health and Psychiatry, Geneva University Hospital, Switzerland
| | - Patrik Vuilleumier
- Department of Neuroscience, Faculty of Medicine, University of Geneva, Switzerland; Department of Clinical Neuroscience, Geneva University Hospital, Switzerland
| | - Josselin Houenou
- NeuroSpin Neuroimaging Center, UNIACT Lab, Psychiatry Team, CEA Saclay, France; INSERM U955 Team 15 "Translational Psychiatry", Université Paris Est, APHP, CHU Mondor, DHU PePsy, Pôle de Psychiatrie, Créteil, France; FondaMental Foundation, Créteil, France
| |
Collapse
|
24
|
Nucifora PGP. Overdiagnosis in the era of neuropsychiatric imaging. Acad Radiol 2015; 22:995-9. [PMID: 25784322 DOI: 10.1016/j.acra.2015.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/28/2015] [Accepted: 02/05/2015] [Indexed: 12/17/2022]
Abstract
New guidelines proposed by the National Institute of Mental Health are intended to transform the management of patients with psychiatric disorders. It is anticipated that neuroimaging and other biomarkers will play a more prominent role in diagnosis and prognosis, especially in the prodromal phase of illness. Earlier treatment of psychiatric disorders has the potential to improve outcomes significantly. However, diagnosis in the absence of symptoms can lead to overdiagnosis. Overdiagnosis is a problem in many fields of medicine but could pose additional problems in psychiatry because of the stigmatization that often accompanies a diagnosis of mental illness. This review discusses the magnetic resonance imaging methods that hold the most promise for evaluating neuropsychiatric disorders, the likelihood that they could lead to overdiagnosis, and opportunities to minimize the impact of overdiagnosis in psychiatric disorders.
Collapse
Affiliation(s)
- Paolo G P Nucifora
- Department of Radiology, Philadelphia VA Medical Center, 3900 Woodland Ave, Philadelphia, PA 19104; Department of Radiology, University of Pennsylvania, 3400 Spruce St, Philadelphia, Pennsylvania.
| |
Collapse
|
25
|
Whalley HC, Sussmann JE, Romaniuk L, Stewart T, Kielty S, Lawrie SM, Hall J, McIntosh AM. Dysfunction of emotional brain systems in individuals at high risk of mood disorder with depression and predictive features prior to illness. Psychol Med 2015; 45:1207-1218. [PMID: 25229638 DOI: 10.1017/s0033291714002256] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Abnormalities of emotion-related brain circuitry, including cortico-thalamic-limbic regions underpin core symptoms of bipolar disorder (BD) and major depressive disorder (MDD). It is unclear whether these abnormalities relate to symptoms of the disorder, are present in unaffected relatives, or whether they can predict future illness. METHOD The Bipolar Family Study (BFS) is a prospective longitudinal study that has examined individuals at familial risk of mood disorder and healthy controls on three occasions, 2 years apart. The current study concerns imaging data from the second assessment; 51 controls and 81 high-risk (HR) individuals performing an emotional memory task. The latter group was divided into 61 HR individuals who were well, and 20 who met diagnostic criteria for MDD. At the time of the third assessment a further 11 HR individuals (from the Well group) had developed MDD. The current analyses focused on (i) differences between groups based on diagnostic status at the time of the scan, and (ii) predictors of future illness, comparing the 11 HR individuals who became unwell after the second scanning assessment to those who remained well. RESULTS All groups demonstrated typical emotional modulation of memory and associated brain activations. For analysis (i) the HR MDD group demonstrated increased thalamic activation v. HR Well. (ii) HR Well individuals who subsequently became ill showed increased activation of thalamus, insula and anterior cingulate compared to those who remained well. CONCLUSIONS These findings suggest evidence for specific changes related to the presence of illness and evidence that changes in brain function in cortico-thalamic-limbic regions precede clinical illness.
Collapse
Affiliation(s)
- H C Whalley
- Division of Psychiatry,University of Edinburgh,Edinburgh,UK
| | - J E Sussmann
- Division of Psychiatry,University of Edinburgh,Edinburgh,UK
| | - L Romaniuk
- Division of Psychiatry,University of Edinburgh,Edinburgh,UK
| | - T Stewart
- Division of Psychiatry,University of Edinburgh,Edinburgh,UK
| | - S Kielty
- Division of Psychiatry,University of Edinburgh,Edinburgh,UK
| | - S M Lawrie
- Division of Psychiatry,University of Edinburgh,Edinburgh,UK
| | - J Hall
- Division of Psychiatry,University of Edinburgh,Edinburgh,UK
| | - A M McIntosh
- Division of Psychiatry,University of Edinburgh,Edinburgh,UK
| |
Collapse
|
26
|
Walker RM, Rybka J, Anderson SM, Torrance HS, Boxall R, Sussmann JE, Porteous DJ, McIntosh AM, Evans KL. Preliminary investigation of miRNA expression in individuals at high familial risk of bipolar disorder. J Psychiatr Res 2015; 62:48-55. [PMID: 25708817 PMCID: PMC4379383 DOI: 10.1016/j.jpsychires.2015.01.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 01/05/2023]
Abstract
Bipolar disorder (BD) is a highly heritable psychiatric disorder characterised by recurrent episodes of mania and depression. Many studies have reported altered gene expression in BD, some of which may be attributable to the dysregulated expression of miRNAs. Studies carried out to date have largely studied medicated patients, so it is possible that observed changes in miRNA expression might be a consequence of clinical illness or of its treatment. We sought to establish whether altered miRNA expression might play a causative role in the development of BD by studying young, unmedicated relatives of individuals with BD, who are at a higher genetic risk of developing BD themselves (high-risk individuals). The expression of 20 miRNAs previously implicated in either BD or schizophrenia was measured by qRT-PCR in whole-blood samples from 34 high-risk and 46 control individuals. Three miRNAs, miR-15b, miR-132 and miR-652 were up-regulated in the high-risk individuals, consistent with previous reports of increased expression of these miRNAs in patients with schizophrenia. Our findings suggest that the altered expression of these miRNAs might represent a mechanism of genetic susceptibility for BD. Moreover, our observation of altered miRNA expression in the blood prior to the onset of illness provides hope that one day blood-based tests may aid in the risk-stratification and treatment of BD.
Collapse
Affiliation(s)
- Rosie May Walker
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.
| | - Joanna Rybka
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.
| | - Susan Maguire Anderson
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.
| | - Helen Scott Torrance
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.
| | - Ruth Boxall
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.
| | - Jessika Elizabeth Sussmann
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK.
| | - David John Porteous
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK.
| | - Andrew Mark McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK.
| | - Kathryn Louise Evans
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK.
| |
Collapse
|
27
|
Sepede G, Gambi F, Di Giannantonio M. Insular Dysfunction in People at Risk for Psychotic Disorders. AIMS Neurosci 2015. [DOI: 10.3934/neuroscience.2015.2.66] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
28
|
Sepede G, Spano MC, Lorusso M, Berardis DD, Salerno RM, Giannantonio MD, Gambi F. Sustained attention in psychosis: Neuroimaging findings. World J Radiol 2014; 6:261-273. [PMID: 24976929 PMCID: PMC4072813 DOI: 10.4329/wjr.v6.i6.261] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/07/2014] [Accepted: 05/16/2014] [Indexed: 02/06/2023] Open
Abstract
To provide a systematic review of scientific literature on functional magnetic resonance imaging (fMRI) studies on sustained attention in psychosis. We searched PubMed to identify fMRI studies pertaining sustained attention in both affective and non-affective psychosis. Only studies conducted on adult patients using a sustained attention task during fMRI scanning were included in the final review. The search was conducted on September 10th, 2013. 15 fMRI studies met our inclusion criteria: 12 studies were focused on Schizophrenia and 3 on Bipolar Disorder Type I (BDI). Only half of the Schizophrenia studies and two of the BDI studies reported behavioral abnormalities, but all of them evidenced significant functional differences in brain regions related to the sustained attention system. Altered functioning of the insula was found in both Schizophrenia and BDI, and therefore proposed as a candidate trait marker for psychosis in general. On the other hand, other brain regions were differently impaired in affective and non-affective psychosis: alterations of cingulate cortex and thalamus seemed to be more common in Schizophrenia and amygdala dysfunctions in BDI. Neural correlates of sustained attention seem to be of great interest in the study of psychosis, highlighting differences and similarities between Schizophrenia and BDI.
Collapse
|
29
|
Cortese S. Here/in this issue and there/abstract thinking: young brains at risk: could neuroimaging predict what the clinician cannot know? J Am Acad Child Adolesc Psychiatry 2014; 53:125-6. [PMID: 24472244 DOI: 10.1016/j.jaac.2013.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 11/18/2013] [Indexed: 10/25/2022]
Affiliation(s)
- Samuele Cortese
- Cambridge University Hospitals, National Health Service Foundation Trust, Cambridge, UK.
| |
Collapse
|
30
|
Higher risk of developing major depression and bipolar disorder in later life among adolescents with asthma: a nationwide prospective study. J Psychiatr Res 2014; 49:25-30. [PMID: 24275549 DOI: 10.1016/j.jpsychires.2013.10.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Previous studies have suggested an immunological dysfunction in mood disorders, but rarely have investigated the temporal association between allergic diseases and mood disorders. Using the Taiwan National Health Insurance Research Database, we attempted to investigate the association between asthma in early adolescence and the risk of unipolar depression and bipolar disorder in later life. METHODS In all, 1453 adolescents with asthma aged between 10 and 15 years and 5812 age-/gender-matched controls were selected in 1998-2000. Subjects with unipolar depression and bipolar disorder that occurred up to the end of follow-up (December 31 2010) were identified. RESULTS Adolescents with asthma had a higher incidence of major depression (2.8% vs. 1.1%, p < 0.001), any depressive disorder (6.1% vs. 2.6%, p < 0.001), and bipolar disorder (1.0% vs. 0.3%, p < 0.001) than the control group. Cox regression analysis showed that asthma in early adolescence was associated with an increased risk of developing major depression (hazard ratio [HR]: 1.81, 95% confidence interval [CI]: 1.14-2.89), any depressive disorder (HR: 1.74, 95% CI: 1.27-2.37), and bipolar disorder (HR: 2.27, 95% CI: 1.01-5.07), after adjusting for demographic data and comorbid allergic diseases. DISCUSSION Adolescents with asthma had an elevated risk of developing mood disorders in later life. Further studies would be required to investigate the underlying mechanisms for this comorbid association and elucidate whether prompt intervention for asthma would decrease the risk of developing mood disorders.
Collapse
|
31
|
Gotlib IH, Joormann J, Foland-Ross LC. Understanding Familial Risk for Depression: A 25-Year Perspective. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2014; 9:94-108. [PMID: 26173248 PMCID: PMC11877285 DOI: 10.1177/1745691613513469] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Major depressive disorder (MDD) is among the most prevalent, debilitating, and costly of all illnesses worldwide. Investigators have made considerable progress in elucidating psychological and biological correlates of MDD; however, far less is known about factors that are implicated in risk for depression. Given the high risk for MDD associated with a family history of depression, investigators have worked to understand both the effects of parental depression on offspring and the mechanisms that might underlie familial risk for MDD. In this article, we describe the evolution of investigators' understanding of the psychobiological functioning of children of depressed parents, and we present recent findings concerning cognitive and neural aspects of risk for MDD using our high-risk sample as a context and foundation for this discussion. We integrate these data in a conceptualization of mechanisms underlying risk for depression, focusing on the constructs of emotion dysregulation and stress reactivity. Recognizing the 25-year anniversary of the Association for Psychological Science, we place this presentation in the context of the past 25 years of research on depression. We conclude by discussing the significance of emotion dysregulation and stress reactivity for studying risk for depression, for developing approaches to prevent MDD, and for moving theory and research in this field forward.
Collapse
|
32
|
Mitchell PB, Roberts G, Green MJ. Studying young people at high genetic risk of bipolar disorder: preparing the ground for future prevention and early intervention. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/npy.13.37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|