1
|
Collinson R, Tanos B. Primary cilia and cancer: a tale of many faces. Oncogene 2025; 44:1551-1566. [PMID: 40301543 PMCID: PMC12095056 DOI: 10.1038/s41388-025-03416-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/04/2025] [Accepted: 04/10/2025] [Indexed: 05/01/2025]
Abstract
Cilia are microtubule-based sensory organelles which project from the cell surface, enabling detection of mechanical and chemical stimuli from the extracellular environment. It has been shown that cilia are lost in some cancers, while others depend on cilia or ciliary signaling. Several oncogenic molecules, including tyrosine kinases, G-protein coupled receptors, cytosolic kinases, and their downstream effectors localize to cilia. The Hedgehog pathway, one of the most studied ciliary-signaling pathways, is regulated at the cilium via an interplay between Smoothened (an oncogene) and Patched (a tumor suppressor), resulting in the activation of pro-survival programs. Interestingly, cilia loss can result in resistance to Smoothened-targeting drugs and increased cancer cell survival. On the other hand, kinase inhibitor-resistant and chemoresistant cancers have increased cilia and increased Hedgehog pathway activation, and suppressing cilia can overcome this resistance. How cilia regulate cancer is therefore context dependent. Defining the signaling output of cilia-localized oncogenic pathways could identify specific targets for cancer therapy, including the cilium itself. Increasing evidence implicates cilia in supporting several hallmarks of cancer, including migration, invasion, and metabolic rewiring. While cell cycle cues regulate the biogenesis of cilia, the absence of cilia has not been conclusively shown to affect the cell cycle. Thus, a complex interplay between molecular signals, phosphorylation events and spatial regulation renders this fascinating organelle an important new player in cancer through roles that we are only starting to uncover. In this review, we discuss recent advances in our understanding of cilia as signaling platforms in cancer and the influence this plays in tumor development.
Collapse
Affiliation(s)
- Rebecca Collinson
- Centre for Genome Engineering and Maintenance, Department of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, London, UK
| | - Barbara Tanos
- Centre for Genome Engineering and Maintenance, Department of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, London, UK.
| |
Collapse
|
2
|
Shaikh Qureshi WM, Hentges KE. Functions of cilia in cardiac development and disease. Ann Hum Genet 2024; 88:4-26. [PMID: 37872827 PMCID: PMC10952336 DOI: 10.1111/ahg.12534] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023]
Abstract
Errors in embryonic cardiac development are a leading cause of congenital heart defects (CHDs), including morphological abnormalities of the heart that are often detected after birth. In the past few decades, an emerging role for cilia in the pathogenesis of CHD has been identified, but this topic still largely remains an unexplored area. Mouse forward genetic screens and whole exome sequencing analysis of CHD patients have identified enrichment for de novo mutations in ciliary genes or non-ciliary genes, which regulate cilia-related pathways, linking cilia function to aberrant cardiac development. Key events in cardiac morphogenesis, including left-right asymmetric development of the heart, are dependent upon cilia function. Cilia dysfunction during left-right axis formation contributes to CHD as evidenced by the substantial proportion of heterotaxy patients displaying complex CHD. Cilia-transduced signaling also regulates later events during heart development such as cardiac valve formation, outflow tract septation, ventricle development, and atrioventricular septa formation. In this review, we summarize the role of motile and non-motile (primary cilia) in cardiac asymmetry establishment and later events during heart development.
Collapse
Affiliation(s)
- Wasay Mohiuddin Shaikh Qureshi
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| | - Kathryn E. Hentges
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| |
Collapse
|
3
|
Gopalakrishnan J, Feistel K, Friedrich BM, Grapin‐Botton A, Jurisch‐Yaksi N, Mass E, Mick DU, Müller R, May‐Simera H, Schermer B, Schmidts M, Walentek P, Wachten D. Emerging principles of primary cilia dynamics in controlling tissue organization and function. EMBO J 2023; 42:e113891. [PMID: 37743763 PMCID: PMC10620770 DOI: 10.15252/embj.2023113891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/07/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Primary cilia project from the surface of most vertebrate cells and are key in sensing extracellular signals and locally transducing this information into a cellular response. Recent findings show that primary cilia are not merely static organelles with a distinct lipid and protein composition. Instead, the function of primary cilia relies on the dynamic composition of molecules within the cilium, the context-dependent sensing and processing of extracellular stimuli, and cycles of assembly and disassembly in a cell- and tissue-specific manner. Thereby, primary cilia dynamically integrate different cellular inputs and control cell fate and function during tissue development. Here, we review the recently emerging concept of primary cilia dynamics in tissue development, organization, remodeling, and function.
Collapse
Affiliation(s)
- Jay Gopalakrishnan
- Institute for Human Genetics, Heinrich‐Heine‐UniversitätUniversitätsklinikum DüsseldorfDüsseldorfGermany
| | - Kerstin Feistel
- Department of Zoology, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | | | - Anne Grapin‐Botton
- Cluster of Excellence Physics of Life, TU DresdenDresdenGermany
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at The University Hospital Carl Gustav Carus and Faculty of Medicine of the TU DresdenDresdenGermany
| | - Nathalie Jurisch‐Yaksi
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Elvira Mass
- Life and Medical Sciences Institute, Developmental Biology of the Immune SystemUniversity of BonnBonnGermany
| | - David U Mick
- Center for Molecular Signaling (PZMS), Center of Human and Molecular Biology (ZHMB)Saarland School of MedicineHomburgGermany
| | - Roman‐Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Helen May‐Simera
- Institute of Molecular PhysiologyJohannes Gutenberg‐UniversityMainzGermany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Miriam Schmidts
- Pediatric Genetics Division, Center for Pediatrics and Adolescent MedicineUniversity Hospital FreiburgFreiburgGermany
- CIBSS‐Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| | - Peter Walentek
- CIBSS‐Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
- Renal Division, Internal Medicine IV, Medical CenterUniversity of FreiburgFreiburgGermany
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical FacultyUniversity of BonnBonnGermany
| |
Collapse
|
4
|
Chen C, Wang J, Liu C, Hu J, Liu L. Pioneering therapies for post-infarction angiogenesis: Insight into molecular mechanisms and preclinical studies. Biomed Pharmacother 2023; 166:115306. [PMID: 37572633 DOI: 10.1016/j.biopha.2023.115306] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023] Open
Abstract
Acute myocardial infarction (MI), despite significant progress in its treatment, remains a leading cause of chronic heart failure and cardiovascular events such as cardiac arrest. Promoting angiogenesis in the myocardial tissue after MI to restore blood flow in the ischemic and hypoxic tissue is considered an effective treatment strategy. The repair of the myocardial tissue post-MI involves a robust angiogenic response, with mechanisms involved including endothelial cell proliferation and migration, capillary growth, changes in the extracellular matrix, and stabilization of pericytes for neovascularization. In this review, we provide a detailed overview of six key pathways in angiogenesis post-MI: the PI3K/Akt/mTOR signaling pathway, the Notch signaling pathway, the Wnt/β-catenin signaling pathway, the Hippo signaling pathway, the Sonic Hedgehog signaling pathway, and the JAK/STAT signaling pathway. We also discuss novel therapeutic approaches targeting these pathways, including drug therapy, gene therapy, protein therapy, cell therapy, and extracellular vesicle therapy. A comprehensive understanding of these key pathways and their targeted therapies will aid in our understanding of the pathological and physiological mechanisms of angiogenesis after MI and the development and application of new treatment strategies.
Collapse
Affiliation(s)
- Cong Chen
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China.
| | - Chao Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jun Hu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Lanchun Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| |
Collapse
|
5
|
Life-Saver or Undertaker: The Relationship between Primary Cilia and Cell Death in Vertebrate Embryonic Development. J Dev Biol 2022; 10:jdb10040052. [PMID: 36547474 PMCID: PMC9783631 DOI: 10.3390/jdb10040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The development of multicellular organisms requires a tightly coordinated network of cellular processes and intercellular signalling. For more than 20 years, it has been known that primary cilia are deeply involved in the mediation of intercellular signalling and that ciliary dysfunction results in severe developmental defects. Cilia-mediated signalling regulates cellular processes such as proliferation, differentiation, migration, etc. Another cellular process ensuring proper embryonic development is cell death. While the effect of cilia-mediated signalling on many cellular processes has been extensively studied, the relationship between primary cilia and cell death remains largely unknown. This article provides a short review on the current knowledge about this relationship.
Collapse
|
6
|
De Ita M, Gaytán-Cervantes J, Cisneros B, Araujo MA, Huicochea-Montiel JC, Cárdenas-Conejo A, Lazo-Cárdenas CC, Ramírez-Portillo CI, Feria-Kaiser C, Peregrino-Bejarano L, Yáñez-Gutiérrez L, González-Torres C, Rosas-Vargas H. Clustering of Genetic Anomalies of Cilia Outer Dynein Arm and Central Apparatus in Patients with Transposition of the Great Arteries. Genes (Basel) 2022; 13:genes13091662. [PMID: 36140829 PMCID: PMC9498580 DOI: 10.3390/genes13091662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Transposition of the great arteries (TGA) is a congenital heart defect with a complex pathogenesis that has not been fully elucidated. In this study, we performed whole-exome sequencing (WES) in isolated TGA-diagnosed patients and analyzed genes of motile and non-motile cilia ciliogenesis and ciliary trafficking, as well as genes previously associated with this heart malformation. Deleterious missense and splicing variants of genes DNAH9, DNAH11, and ODAD4 of cilia outer dynein arm and central apparatus, HYDIN, were found in our TGA patients. Remarkable, there is a clustering of deleterious genetic variants in cilia genes, suggesting it could be an oligogenic disease. Our data evidence the genetic diversity and etiological complexity of TGA and point out that population allele determination and genetic aggregation studies are required to improve genetic counseling.
Collapse
Affiliation(s)
- Marlon De Ita
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
- Dpto de Genética y Biología Molecular, CINVESTAV Zacatenco IPN, Ciudad de México 07360, Mexico
| | - Javier Gaytán-Cervantes
- Laboratorio de Secuenciación, División de Desarrollo de la Investigación, IMSS, Ciudad de México 06720, Mexico
| | - Bulmaro Cisneros
- Dpto de Genética y Biología Molecular, CINVESTAV Zacatenco IPN, Ciudad de México 07360, Mexico
| | - María Antonieta Araujo
- Departamento clínico de Genética Médica, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
| | - Juan Carlos Huicochea-Montiel
- Departamento clínico de Genética Médica, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
| | - Alan Cárdenas-Conejo
- Departamento clínico de Genética Médica, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
| | - Charles César Lazo-Cárdenas
- Departamento clínico de Cardiología, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
| | - César Iván Ramírez-Portillo
- Departamento clínico de Cardiología, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
| | - Carina Feria-Kaiser
- Unidad de Cuidados Intensivos Neonatales, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
| | | | - Lucelli Yáñez-Gutiérrez
- Clínica de Cardiopatías Congénitas, UMAE Hospital de Cardiología, CMN Siglo XXI, Ciudad de México 06720, Mexico
| | - Carolina González-Torres
- Laboratorio de Secuenciación, División de Desarrollo de la Investigación, IMSS, Ciudad de México 06720, Mexico
- Correspondence: (C.G.-T.); (H.R.-V.)
| | - Haydeé Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
- Correspondence: (C.G.-T.); (H.R.-V.)
| |
Collapse
|
7
|
Hedgehog Morphogens Act as Growth Factors Critical to Pre- and Postnatal Cardiac Development and Maturation: How Primary Cilia Mediate Their Signal Transduction. Cells 2022; 11:cells11121879. [PMID: 35741008 PMCID: PMC9221318 DOI: 10.3390/cells11121879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
Primary cilia are crucial for normal cardiac organogenesis via the formation of cyto-architectural, anatomical, and physiological boundaries in the developing heart and outflow tract. These tiny, plasma membrane-bound organelles function in a sensory-integrative capacity, interpreting both the intra- and extra-cellular environments and directing changes in gene expression responses to promote, prevent, and modify cellular proliferation and differentiation. One distinct feature of this organelle is its involvement in the propagation of a variety of signaling cascades, most notably, the Hedgehog cascade. Three ligands, Sonic, Indian, and Desert hedgehog, function as growth factors that are most commonly dependent on the presence of intact primary cilia, where the Hedgehog receptors Patched-1 and Smoothened localize directly within or at the base of the ciliary axoneme. Hedgehog signaling functions to mediate many cell behaviors that are critical for normal embryonic tissue/organ development. However, inappropriate activation and/or upregulation of Hedgehog signaling in postnatal and adult tissue is known to initiate oncogenesis, as well as the pathogenesis of other diseases. The focus of this review is to provide an overview describing the role of Hedgehog signaling and its dependence upon the primary cilium in the cell types that are most essential for mammalian heart development. We outline the breadth of developmental defects and the consequential pathologies resulting from inappropriate changes to Hedgehog signaling, as it pertains to congenital heart disease and general cardiac pathophysiology.
Collapse
|
8
|
Wee WB, Kaspy KR, Sawras MG, Knowles MR, Zariwala MA, Leigh MW, Dell SD, Shapiro AJ. Going beyond the chest X-ray: Investigating laterality defects in primary ciliary dyskinesia. Pediatr Pulmonol 2022; 57:1318-1324. [PMID: 35122416 PMCID: PMC9186022 DOI: 10.1002/ppul.25853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/12/2022] [Accepted: 01/29/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Organ laterality defects in primary ciliary dyskinesia (PCD) are common, ranging from complete mirror image organ arrangement, situs inversus totalis (SIT), to situs ambiguus (SA), which falls along the spectrum of situs solitus (SS) and SIT. Targeted investigations for organ laterality defects are not universally recommended in PCD consensus statements. Without investigations beyond chest radiography (CXR), clinically significant defects may go undetected leading to increased morbidity. We hypothesize that clinically significant SA defects remain undetected on CXR and targeted investigations are needed to detect various laterality defects associated with morbidity. METHODS This retrospective study collected data from PCD clinics at two Canadian children's hospitals from 2012 to 2020. Participants <30 years old with a confirmed or clinical diagnosis of PCD were enrolled. CXR images were reviewed, and reports of other targeted investigations, including chest computed tomography, abdominal ultrasound, echocardiogram, upper gastrointestinal series, and splenic function studies, were extracted from medical records. Situs classifications from CXR alone versus CXR with add-on targeted investigations were compared using Cochran's q and McNemar tests. RESULTS One hundred and fifty-nine PCD patients were included, median age at PCD diagnosis of 6.1 years (range: 0-28). The situs classification differed significantly from CXR images alone versus CXR with add-on targeted investigations (p < 0.001); SS 88 (55%) versus 75 (47%), SIT 59 (37%) versus 46 (29%), and SA 12 (8%) versus 38 (24%). Identified SA defects were cardiovascular (21, 13%), intestinal (9, 6%), and/or splenic (16,10%). CONCLUSIONS In PCD patients, clinically significant SA defects may not be detected by CXR alone. Our results suggest that the routine use of CXR with add-on targeted investigations may be justified.
Collapse
Affiliation(s)
- Wallace B Wee
- Respiratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kimberley R Kaspy
- Respiratory Medicine, McGill University Health Centre Research Institute, Quebec, Montreal, Canada
| | - Michael G Sawras
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael R Knowles
- Department of Medicine, Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Maimoona A Zariwala
- Department of Pathology and Laboratory Medicine, Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Margaret W Leigh
- Department of Pediatrics, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sharon D Dell
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada.,Respiratory Medicine, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adam J Shapiro
- Respiratory Medicine, McGill University Health Centre Research Institute, Quebec, Montreal, Canada
| |
Collapse
|
9
|
Signaling pathways and targeted therapy for myocardial infarction. Signal Transduct Target Ther 2022; 7:78. [PMID: 35273164 PMCID: PMC8913803 DOI: 10.1038/s41392-022-00925-z] [Citation(s) in RCA: 394] [Impact Index Per Article: 131.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
Although the treatment of myocardial infarction (MI) has improved considerably, it is still a worldwide disease with high morbidity and high mortality. Whilst there is still a long way to go for discovering ideal treatments, therapeutic strategies committed to cardioprotection and cardiac repair following cardiac ischemia are emerging. Evidence of pathological characteristics in MI illustrates cell signaling pathways that participate in the survival, proliferation, apoptosis, autophagy of cardiomyocytes, endothelial cells, fibroblasts, monocytes, and stem cells. These signaling pathways include the key players in inflammation response, e.g., NLRP3/caspase-1 and TLR4/MyD88/NF-κB; the crucial mediators in oxidative stress and apoptosis, for instance, Notch, Hippo/YAP, RhoA/ROCK, Nrf2/HO-1, and Sonic hedgehog; the controller of myocardial fibrosis such as TGF-β/SMADs and Wnt/β-catenin; and the main regulator of angiogenesis, PI3K/Akt, MAPK, JAK/STAT, Sonic hedgehog, etc. Since signaling pathways play an important role in administering the process of MI, aiming at targeting these aberrant signaling pathways and improving the pathological manifestations in MI is indispensable and promising. Hence, drug therapy, gene therapy, protein therapy, cell therapy, and exosome therapy have been emerging and are known as novel therapies. In this review, we summarize the therapeutic strategies for MI by regulating these associated pathways, which contribute to inhibiting cardiomyocytes death, attenuating inflammation, enhancing angiogenesis, etc. so as to repair and re-functionalize damaged hearts.
Collapse
|
10
|
Moore K, Fulmer D, Guo L, Koren N, Glover J, Moore R, Gensemer C, Beck T, Morningstar J, Stairley R, Norris RA. PDGFRα: Expression and Function during Mitral Valve Morphogenesis. J Cardiovasc Dev Dis 2021; 8:28. [PMID: 33805717 PMCID: PMC7999759 DOI: 10.3390/jcdd8030028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/24/2022] Open
Abstract
Mitral valve prolapse (MVP) is a common form of valve disease and can lead to serious secondary complications. The recent identification of MVP causal mutations in primary cilia-related genes has prompted the investigation of cilia-mediated mechanisms of disease inception. Here, we investigate the role of platelet-derived growth factor receptor-alpha (PDGFRα), a receptor known to be present on the primary cilium, during valve development using genetically modified mice, biochemical assays, and high-resolution microscopy. While PDGFRα is expressed throughout the ciliated valve interstitium early in development, its expression becomes restricted on the valve endocardium by birth and through adulthood. Conditional ablation of Pdgfra with Nfatc1-enhancer Cre led to significantly enlarged and hypercellular anterior leaflets with disrupted endothelial adhesions, activated ERK1/2, and a dysregulated extracellular matrix. In vitro culture experiments confirmed a role in suppressing ERK1/2 activation while promoting AKT phosphorylation. These data suggest that PDGFRα functions to suppress mesenchymal transformation and disease phenotypes by stabilizing the valve endocardium through an AKT/ERK pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Russell A. Norris
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Suite 601 Basic Science Building, 173 Ashley Avenue, Charleston, SC 29425, USA; (K.M.); (D.F.); (L.G.); (N.K.); (J.G.); (R.M.); (C.G.); (T.B.); (J.M.); (R.S.)
| |
Collapse
|
11
|
Wiegering A, Dildrop R, Vesque C, Khanna H, Schneider-Maunoury S, Gerhardt C. Rpgrip1l controls ciliary gating by ensuring the proper amount of Cep290 at the vertebrate transition zone. Mol Biol Cell 2021; 32:675-689. [PMID: 33625872 PMCID: PMC8108517 DOI: 10.1091/mbc.e20-03-0190] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A range of severe human diseases called ciliopathies is caused by the dysfunction of primary cilia. Primary cilia are cytoplasmic protrusions consisting of the basal body (BB), the axoneme, and the transition zone (TZ). The BB is a modified mother centriole from which the axoneme, the microtubule-based ciliary scaffold, is formed. At the proximal end of the axoneme, the TZ functions as the ciliary gate governing ciliary protein entry and exit. Since ciliopathies often develop due to mutations in genes encoding proteins that localize to the TZ, the understanding of the mechanisms underlying TZ function is of eminent importance. Here, we show that the ciliopathy protein Rpgrip1l governs ciliary gating by ensuring the proper amount of Cep290 at the vertebrate TZ. Further, we identified the flavonoid eupatilin as a potential agent to tackle ciliopathies caused by mutations in RPGRIP1L as it rescues ciliary gating in the absence of Rpgrip1l.
Collapse
Affiliation(s)
- Antonia Wiegering
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany.,Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology Unit, 75005 Paris, France
| | - Renate Dildrop
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Christine Vesque
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology Unit, 75005 Paris, France
| | - Hemant Khanna
- Department of Ophthalmology and Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Sylvie Schneider-Maunoury
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology Unit, 75005 Paris, France
| | - Christoph Gerhardt
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
12
|
Abstract
Primary cilia project in a single copy from the surface of most vertebrate cell types; they detect and transmit extracellular cues to regulate diverse cellular processes during development and to maintain tissue homeostasis. The sensory capacity of primary cilia relies on the coordinated trafficking and temporal localization of specific receptors and associated signal transduction modules in the cilium. The canonical Hedgehog (HH) pathway, for example, is a bona fide ciliary signalling system that regulates cell fate and self-renewal in development and tissue homeostasis. Specific receptors and associated signal transduction proteins can also localize to primary cilia in a cell type-dependent manner; available evidence suggests that the ciliary constellation of these proteins can temporally change to allow the cell to adapt to specific developmental and homeostatic cues. Consistent with important roles for primary cilia in signalling, mutations that lead to their dysfunction underlie a pleiotropic group of diseases and syndromic disorders termed ciliopathies, which affect many different tissues and organs of the body. In this Review, we highlight central mechanisms by which primary cilia coordinate HH, G protein-coupled receptor, WNT, receptor tyrosine kinase and transforming growth factor-β (TGFβ)/bone morphogenetic protein (BMP) signalling and illustrate how defects in the balanced output of ciliary signalling events are coupled to developmental disorders and disease progression.
Collapse
|
13
|
Wiegering A, Petzsch P, Köhrer K, Rüther U, Gerhardt C. GLI3 repressor but not GLI3 activator is essential for mouse eye patterning and morphogenesis. Dev Biol 2019; 450:141-154. [PMID: 30953627 DOI: 10.1016/j.ydbio.2019.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 12/11/2022]
Abstract
Since 1967, it is known that the loss of GLI3 causes very severe defects in murine eye development. GLI3 is able to act as a transcriptional activator (GLI3-A) or as a transcriptional repressor (GLI3-R). Soon after the discovery of these GLI3 isoforms, the question arose which of the different isoforms is involved in eye formation - GLI3-A, GLI3-R or even both. For several years, this question remained elusive. By analysing the eye morphogenesis of Gli3XtJ/XtJ mouse embryos that lack GLI3-A and GLI3-R and of Gli3Δ699/Δ699 mouse embryos in which only GLI3-A is missing, we revealed that GLI3-A is dispensable in vertebrate eye formation. Remarkably, our study shows that GLI3-R is sufficient for the creation of morphologically normal eyes although the molecular setup deviates substantially from normality. In depth-investigations elucidated that GLI3-R controls numerous key players in eye development and governs lens and retina development at least partially via regulating WNT/β-CATENIN signalling.
Collapse
Affiliation(s)
- Antonia Wiegering
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany.
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Genomics and Transcriptomics Laboratory (GTL), Heinrich Heine University, 40225 Düsseldorf, Germany.
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Genomics and Transcriptomics Laboratory (GTL), Heinrich Heine University, 40225 Düsseldorf, Germany.
| | - Ulrich Rüther
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany.
| | - Christoph Gerhardt
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|
14
|
Grubb S, Vestergaard ML, Andersen AS, Rasmussen KK, Mamsen LS, Tuckute G, Grunnet-Lauridsen K, Møllgård K, Ernst E, Christensen ST, Calloe K, Andersen CY. Comparison of Cultured Human Cardiomyocyte Clusters Obtained from Embryos/Fetuses or Derived from Human Embryonic Stem Cells. Stem Cells Dev 2019; 28:608-619. [PMID: 30755084 DOI: 10.1089/scd.2018.0231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cardiomyocytes (CMs) derived from human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs) are used to study cardiogenesis and mechanisms of heart disease, and are being used in methods for toxiological screening of drugs. The phenotype of stem-cell-derived CMs should ideally resemble native CMs. Here, we compare embryonic/fetal CMs with hESC-derived CMs according to function and morphology. CM clusters were obtained from human embryonic/fetal hearts from elective terminated pregnancies before gestational week 12, and separated into atrial and ventricular tissues. Specific markers for embryonic CMs and primary cilia were visualized using immunofluorescence microscopy analysis. Contracting human embryonic cardiomyocyte (hECM) clusters morphologically and phenotypically resemble CMs in the embryonic/fetal heart. In addition, the contracting hECM clusters expressed primary cilia similar to that of cells in the embryonic/fetal heart. The electrophysiological characteristics of atrial and ventricular CMs were established by recording action potentials (APs) using sharp electrodes. In contrast to ventricular APs, atrial APs displayed a marked early repolarization followed by a plateau phase. hESC-CMs displayed a continuum of AP shapes. In all embryonic/fetal clusters, both atrial and ventricular, AP duration was prolonged by exposure to the KV11.1 channel inhibitor dofetilide (50 nM); however, the prolongation was not significant, possibly due to the relatively small number of experiments. This study provides novel information on APs and functional characteristics of atrial and ventricular CMs in first trimester hearts, and demonstrates that Kv11.1 channels play a functional role already at these early stages. These results provide information needed to validate methods being developed on the basis of in vitro-derived CMs from either hESC or iPSC, and although there was a good correlation between the morphology of the two types of CMs, differences in electrophysiological characteristics exist.
Collapse
Affiliation(s)
- Søren Grubb
- 1 Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maj Linea Vestergaard
- 2 Laboratory of Reproductive Biology, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Astrid Sten Andersen
- 2 Laboratory of Reproductive Biology, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Karen Koefoed Rasmussen
- 3 Section of Cell and Developmental Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Linn Salto Mamsen
- 2 Laboratory of Reproductive Biology, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Greta Tuckute
- 2 Laboratory of Reproductive Biology, University Hospital of Copenhagen, Copenhagen, Denmark
| | | | - Kjeld Møllgård
- 4 Institute for Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Erik Ernst
- 5 The Department of Gynecology and Obstetrics, University Hospital of Aarhus, Aarhus, Denmark
| | - Søren Tvorup Christensen
- 3 Section of Cell and Developmental Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kirstine Calloe
- 1 Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Yding Andersen
- 2 Laboratory of Reproductive Biology, University Hospital of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Choi YJ, Laclef C, Yang N, Andreu-Cervera A, Lewis J, Mao X, Li L, Snedecor ER, Takemaru KI, Qin C, Schneider-Maunoury S, Shroyer KR, Hannun YA, Koch PJ, Clark RA, Payne AS, Kowalczyk AP, Chen J. RPGRIP1L is required for stabilizing epidermal keratinocyte adhesion through regulating desmoglein endocytosis. PLoS Genet 2019; 15:e1007914. [PMID: 30689641 PMCID: PMC6366717 DOI: 10.1371/journal.pgen.1007914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/07/2019] [Accepted: 12/24/2018] [Indexed: 02/01/2023] Open
Abstract
Cilia-related proteins are believed to be involved in a broad range of cellular processes. Retinitis pigmentosa GTPase regulator interacting protein 1-like (RPGRIP1L) is a ciliary protein required for ciliogenesis in many cell types, including epidermal keratinocytes. Here we report that RPGRIP1L is also involved in the maintenance of desmosomal junctions between keratinocytes. Genetically disrupting the Rpgrip1l gene in mice caused intraepidermal blistering, primarily between basal and suprabasal keratinocytes. This blistering phenotype was associated with aberrant expression patterns of desmosomal proteins, impaired desmosome ultrastructure, and compromised cell-cell adhesion in vivo and in vitro. We found that disrupting the RPGRIP1L gene in HaCaT cells, which do not form primary cilia, resulted in mislocalization of desmosomal proteins to the cytoplasm, suggesting a cilia-independent function of RPGRIP1L. Mechanistically, we found that RPGRIP1L regulates the endocytosis of desmogleins such that RPGRIP1L-knockdown not only induced spontaneous desmoglein endocytosis, as determined by AK23 labeling and biotinylation assays, but also exacerbated EGTA- or pemphigus vulgaris IgG-induced desmoglein endocytosis. Accordingly, inhibiting endocytosis with dynasore or sucrose rescued these desmosomal phenotypes. Biotinylation assays on cell surface proteins not only reinforced the role of RPGRIP1L in desmoglein endocytosis, but also suggested that RPGRIP1L may be more broadly involved in endocytosis. Thus, data obtained from this study advanced our understanding of the biological functions of RPGRIP1L by identifying its role in the cellular endocytic pathway.
Collapse
Affiliation(s)
- Yeon Ja Choi
- Department of Pathology, Stony Brook University, Stony Brook, NY, United States of America
| | - Christine Laclef
- Sorbonne Université, CNRS UMR7622, Inserm U1156, IBPS-Laboratoire de Biologie du Développement, Paris, France
| | - Ning Yang
- Department of Pathology, Stony Brook University, Stony Brook, NY, United States of America
| | - Abraham Andreu-Cervera
- Sorbonne Université, CNRS UMR7622, Inserm U1156, IBPS-Laboratoire de Biologie du Développement, Paris, France
| | - Joshua Lewis
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Xuming Mao
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Li Li
- Department of Dermatology, Peking Union Medical College Hospital, Beijing, China
| | - Elizabeth R Snedecor
- Department of Pathology, Stony Brook University, Stony Brook, NY, United States of America
| | - Ken-Ichi Takemaru
- Department of Pharmacology, Stony Brook University, Stony Brook, NY, United States of America
| | - Chuan Qin
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science; and Comparative Medical Center, Peking Union Medical College, Beijing, China
| | - Sylvie Schneider-Maunoury
- Sorbonne Université, CNRS UMR7622, Inserm U1156, IBPS-Laboratoire de Biologie du Développement, Paris, France
| | - Kenneth R Shroyer
- Department of Pathology, Stony Brook University, Stony Brook, NY, United States of America
| | - Yusuf A Hannun
- Department of Medicine and Cancer Center, Stony Brook University, Stony Brook, NY, United States of America
| | - Peter J Koch
- Department of Dermatology and Center for Regenerative Medicine, University of Colorado Denver, Aurora, CO, United States of America
| | - Richard A Clark
- Department of Dermatology, Stony Brook University, Stony Brook, NY, United States of America
| | - Aimee S Payne
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Andrew P Kowalczyk
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Jiang Chen
- Department of Pathology, Stony Brook University, Stony Brook, NY, United States of America
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science; and Comparative Medical Center, Peking Union Medical College, Beijing, China
- Department of Dermatology, Stony Brook University, Stony Brook, NY, United States of America
| |
Collapse
|
16
|
The Roles of Primary Cilia in Cardiovascular Diseases. Cells 2018; 7:cells7120233. [PMID: 30486394 PMCID: PMC6315816 DOI: 10.3390/cells7120233] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 02/07/2023] Open
Abstract
Primary cilia are microtubule-based organelles found in most mammalian cell types. Cilia act as sensory organelles that transmit extracellular clues into intracellular signals for molecular and cellular responses. Biochemical and molecular defects in primary cilia are associated with a wide range of diseases, termed ciliopathies, with phenotypes ranging from polycystic kidney disease, liver disorders, mental retardation, and obesity to cardiovascular diseases. Primary cilia in vascular endothelia protrude into the lumen of blood vessels and function as molecular switches for calcium (Ca2+) and nitric oxide (NO) signaling. As mechanosensory organelles, endothelial cilia are involved in blood flow sensing. Dysfunction in endothelial cilia contributes to aberrant fluid-sensing and thus results in vascular disorders, including hypertension, aneurysm, and atherosclerosis. This review focuses on the most recent findings on the roles of endothelial primary cilia within vascular biology and alludes to the possibility of primary cilium as a therapeutic target for cardiovascular disorders.
Collapse
|
17
|
Giannakou A, Sicko RJ, Kay DM, Zhang W, Romitti PA, Caggana M, Shaw GM, Jelliffe-Pawlowski LL, Mills JL. Copy number variants in hypoplastic right heart syndrome. Am J Med Genet A 2018; 176:2760-2767. [DOI: 10.1002/ajmg.a.40527] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/23/2018] [Accepted: 08/04/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Andreas Giannakou
- Division of Intramural Population Health Research, Department of Health and Human Services; Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health; Bethesda Maryland
| | - Robert J. Sicko
- Division of Genetics, Wadsworth Center, New York State Department of Health; Albany New York
| | - Denise M. Kay
- Division of Genetics, Wadsworth Center, New York State Department of Health; Albany New York
| | - Wei Zhang
- Division of Intramural Population Health Research, Department of Health and Human Services; Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health; Bethesda Maryland
| | - Paul A. Romitti
- Department of Epidemiology, College of Public Health; The University of Iowa; Iowa City Iowa
| | - Michele Caggana
- Division of Genetics, Wadsworth Center, New York State Department of Health; Albany New York
| | - Gary M. Shaw
- Department of Pediatrics; Stanford University School of Medicine; Stanford California
| | | | - James L. Mills
- Division of Intramural Population Health Research, Department of Health and Human Services; Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health; Bethesda Maryland
| |
Collapse
|
18
|
Wiegering A, Rüther U, Gerhardt C. The ciliary protein Rpgrip1l in development and disease. Dev Biol 2018; 442:60-68. [DOI: 10.1016/j.ydbio.2018.07.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/13/2018] [Accepted: 07/28/2018] [Indexed: 12/28/2022]
|
19
|
Morthorst SK, Christensen ST, Pedersen LB. Regulation of ciliary membrane protein trafficking and signalling by kinesin motor proteins. FEBS J 2018; 285:4535-4564. [PMID: 29894023 DOI: 10.1111/febs.14583] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/09/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022]
Abstract
Primary cilia are antenna-like sensory organelles that regulate a substantial number of cellular signalling pathways in vertebrates, both during embryonic development as well as in adulthood, and mutations in genes coding for ciliary proteins are causative of an expanding group of pleiotropic diseases known as ciliopathies. Cilia consist of a microtubule-based axoneme core, which is subtended by a basal body and covered by a bilayer lipid membrane of unique protein and lipid composition. Cilia are dynamic organelles, and the ability of cells to regulate ciliary protein and lipid content in response to specific cellular and environmental cues is crucial for balancing ciliary signalling output. Here we discuss mechanisms involved in regulation of ciliary membrane protein trafficking and signalling, with main focus on kinesin-2 and kinesin-3 family members.
Collapse
|
20
|
Wiegering A, Dildrop R, Kalfhues L, Spychala A, Kuschel S, Lier JM, Zobel T, Dahmen S, Leu T, Struchtrup A, Legendre F, Vesque C, Schneider-Maunoury S, Saunier S, Rüther U, Gerhardt C. Cell type-specific regulation of ciliary transition zone assembly in vertebrates. EMBO J 2018; 37:embj.201797791. [PMID: 29650680 PMCID: PMC5978567 DOI: 10.15252/embj.201797791] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 01/07/2023] Open
Abstract
Ciliopathies are life-threatening human diseases caused by defective cilia. They can often be traced back to mutations of genes encoding transition zone (TZ) proteins demonstrating that the understanding of TZ organisation is of paramount importance. The TZ consists of multimeric protein modules that are subject to a stringent assembly hierarchy. Previous reports place Rpgrip1l at the top of the TZ assembly hierarchy in Caenorhabditis elegans By performing quantitative immunofluorescence studies in RPGRIP1L-/- mouse embryos and human embryonic cells, we recognise a different situation in vertebrates in which Rpgrip1l deficiency affects TZ assembly in a cell type-specific manner. In cell types in which the loss of Rpgrip1l alone does not affect all modules, additional truncation or removal of vertebrate-specific Rpgrip1 results in an impairment of all modules. Consequently, Rpgrip1l and Rpgrip1 synergistically ensure the TZ composition in several vertebrate cell types, revealing a higher complexity of TZ assembly in vertebrates than in invertebrates.
Collapse
Affiliation(s)
- Antonia Wiegering
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Renate Dildrop
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Lisa Kalfhues
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| | - André Spychala
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Stefanie Kuschel
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Johanna Maria Lier
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Thomas Zobel
- Center for Advanced Imaging (CAi), Heinrich Heine University, Düsseldorf, Germany
| | - Stefanie Dahmen
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Tristan Leu
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Andreas Struchtrup
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Flora Legendre
- INSERM, U983, Hôpital Necker-Enfants Malades, Paris, France.,Sorbonne Paris Cité, Faculté de Médecine, Université Paris-Descartes, Paris, France
| | - Christine Vesque
- Paris-Seine (IBPS) - Developmental Biology Laboratory, Institut de Biologie, CNRS, UMR7622, INSERM U1156, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | - Sylvie Schneider-Maunoury
- Paris-Seine (IBPS) - Developmental Biology Laboratory, Institut de Biologie, CNRS, UMR7622, INSERM U1156, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | - Sophie Saunier
- INSERM, U983, Hôpital Necker-Enfants Malades, Paris, France.,Sorbonne Paris Cité, Faculté de Médecine, Université Paris-Descartes, Paris, France
| | - Ulrich Rüther
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Christoph Gerhardt
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
21
|
Struchtrup A, Wiegering A, Stork B, Rüther U, Gerhardt C. The ciliary protein RPGRIP1L governs autophagy independently of its proteasome-regulating function at the ciliary base in mouse embryonic fibroblasts. Autophagy 2018; 14:567-583. [PMID: 29372668 PMCID: PMC5959336 DOI: 10.1080/15548627.2018.1429874] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Previously, macroautophagy/autophagy was demonstrated to be regulated inter alia by the primary cilium. Mutations in RPGRIP1L cause ciliary dysfunctions resulting in severe human diseases summarized as ciliopathies. Recently, we showed that RPGRIP1L deficiency leads to a decreased proteasomal activity at the ciliary base in mice. Importantly, the drug-induced restoration of proteasomal activity does not rescue ciliary length alterations in the absence of RPGRIP1L indicating that RPGRIP1L affects ciliary function also via other mechanisms. Based on this knowledge, we analyzed autophagy in Rpgrip1l-negative mouse embryos. In these embryos, autophagic activity was decreased due to an increased activation of the MTOR complex 1 (MTORC1). Application of the MTORC1 inhibitor rapamycin rescued dysregulated MTORC1, autophagic activity and cilia length but not proteasomal activity in Rpgrip1l-deficient mouse embryonic fibroblasts demonstrating that RPGRIP1L seems to regulate autophagic and proteasomal activity independently from each other.
Collapse
Affiliation(s)
- Andreas Struchtrup
- a Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf , Düsseldorf , Germany
| | - Antonia Wiegering
- a Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf , Düsseldorf , Germany
| | - Björn Stork
- b Institute of Molecular Medicine I, Medical Faculty, Heinrich-Heine University Düsseldorf , Düsseldorf , Germany
| | - Ulrich Rüther
- a Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf , Düsseldorf , Germany
| | - Christoph Gerhardt
- a Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf , Düsseldorf , Germany
| |
Collapse
|
22
|
Carli JFM, LeDuc CA, Zhang Y, Stratigopoulos G, Leibel RL. The role of Rpgrip1l, a component of the primary cilium, in adipocyte development and function. FASEB J 2018; 32:3946-3956. [PMID: 29466054 DOI: 10.1096/fj.201701216r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genetic variants within the FTO (α-ketoglutarate-dependent dioxygenase) gene have been strongly associated with a modest increase in adiposity as a result of increased food intake. These risk alleles are associated with decreased expression of both FTO and neighboring RPGRIP1L (retinitis pigmentosa GTPase regulator-interacting protein 1 like). RPGRIP1L encodes a protein that is critical to the function of the primary cilium, which conveys extracellular information to the cell. Rpgrip1l+/- mice exhibit increased adiposity, in part, as a result of hyperphagia. Here, we describe the effects of Rpgrip1l in adipocytes that may contribute to the adiposity phenotype observed in these animals and possibly in humans who segregate for FTO risk alleles. Loss of Rpgrip1l in 3T3-L1 preadipocytes increased the number of cells that are capable of differentiating into mature adipocytes. Knockout of Rpgrip1l in mature adipocytes using Adipoq-Cre did not increase adiposity in mice that were fed chow or a high-fat diet. We also did not observe any effects of Rpgrip1l knockdown in mature 3T3-L1 adipocytes. Thus, to the extent that Rpgrip1l affects cell-autonomous adipose tissue function, it may do so as a result of the effects conveyed in preadipocytes in which the primary cilium is functionally important. We propose that decreased RPGRIP1L expression in preadipocytes in humans who segregate for FTO obesity risk alleles may increase the storage capacity of adipose tissue.-Martin Carli, J. F., LeDuc, C. A., Zhang, Y., Stratigopoulos, G., Leibel, R. L. The role of Rpgrip1l, a component of the primary cilium, in adipocyte development and function.
Collapse
Affiliation(s)
- Jayne F Martin Carli
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York, USA.,Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, New York, USA.,Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | - Charles A LeDuc
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, New York, USA.,Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | - Yiying Zhang
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, New York, USA.,Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | - George Stratigopoulos
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, New York, USA.,Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | - Rudolph L Leibel
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, New York, USA.,Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
23
|
Wiegering A, Rüther U, Gerhardt C. The Role of Hedgehog Signalling in the Formation of the Ventricular Septum. J Dev Biol 2017; 5:E17. [PMID: 29615572 PMCID: PMC5831794 DOI: 10.3390/jdb5040017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/08/2017] [Accepted: 12/09/2017] [Indexed: 12/11/2022] Open
Abstract
An incomplete septation of the ventricles in the vertebrate heart that disturbes the strict separation between the contents of the two ventricles is termed a ventricular septal defect (VSD). Together with bicuspid aortic valves, it is the most frequent congenital heart disease in humans. Until now, life-threatening VSDs are usually treated surgically. To avoid surgery and to develop an alternative therapy (e.g., a small molecule therapy), it is necessary to understand the molecular mechanisms underlying ventricular septum (VS) development. Consequently, various studies focus on the investigation of signalling pathways, which play essential roles in the formation of the VS. In the past decade, several reports found evidence for an involvement of Hedgehog (HH) signalling in VS development. In this review article, we will summarise the current knowledge about the association between HH signalling and VS formation and discuss the use of such knowledge to design treatment strategies against the development of VSDs.
Collapse
Affiliation(s)
- Antonia Wiegering
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Ulrich Rüther
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Christoph Gerhardt
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
24
|
Vestergaard ML, Grubb S, Koefoed K, Anderson-Jenkins Z, Grunnet-Lauridsen K, Calloe K, Clausen C, Christensen ST, Møllgård K, Andersen CY. Human Embryonic Stem Cell-Derived Cardiomyocytes Self-Arrange with Areas of Different Subtypes During Differentiation. Stem Cells Dev 2017; 26:1566-1577. [PMID: 28795648 DOI: 10.1089/scd.2017.0054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The derivation of functional cardiomyocytes (CMs) from human embryonic stem cells (hESCs) represents a unique way of studying human cardiogenesis, including the development of CM subtypes. In this study, we investigated the development and organization of hESC-derived cardiomyocytes (hESC-CMs) and examined how the expression levels of CM subtypes correspond to human in vivo cardiogenesis. Beating clusters were used to determine cardiac differentiation, which was evaluated by the expression of cardiac genes GATA4 and TNNT2 and subcellular localization of GATA4 and NKX2.5. Sharp electrode recordings to determine action potentials (APs) further revealed spatial organization of intracluster CM subtypes (ie, complex clusters). Nodal-, atrial-, and ventricular-like AP morphologies were detected within distinct regions of complex clusters. The ability of different CM subtypes to self-organize was documented by immunohistochemical analyses and a differential spatial expression of β-III tubulin, myosin light chain 2v (MLC-2V), and α-smooth muscle actin (α-SMA). Furthermore, all hESC-CM subtypes formed expressed primary cilia, which are known to coordinate cellular signaling pathways during cardiomyogenesis and heart development. This study expands the foundation for studying regulatory pathways for spatial and temporal CM differentiation during human cardiogenesis.
Collapse
Affiliation(s)
- Maj Linea Vestergaard
- 1 Laboratory of Reproductive Biology, Faculty of Health and Medical Sciences, Juliane Marie Centre for Women, Children and Reproduction, University of Copenhagen, Copenhagen, Denmark
| | - Søren Grubb
- 2 Department of Veterinary Clinical and Animal Science, University of Copenhagen , Copenhagen, Denmark
| | - Karen Koefoed
- 3 Institute for Cellular and Molecular Medicine, University of Copenhagen , Copenhagen, Denmark
| | - Zoe Anderson-Jenkins
- 1 Laboratory of Reproductive Biology, Faculty of Health and Medical Sciences, Juliane Marie Centre for Women, Children and Reproduction, University of Copenhagen, Copenhagen, Denmark
| | - Kristina Grunnet-Lauridsen
- 1 Laboratory of Reproductive Biology, Faculty of Health and Medical Sciences, Juliane Marie Centre for Women, Children and Reproduction, University of Copenhagen, Copenhagen, Denmark
| | - Kirstine Calloe
- 2 Department of Veterinary Clinical and Animal Science, University of Copenhagen , Copenhagen, Denmark
| | | | | | - Kjeld Møllgård
- 3 Institute for Cellular and Molecular Medicine, University of Copenhagen , Copenhagen, Denmark
| | - Claus Yding Andersen
- 1 Laboratory of Reproductive Biology, Faculty of Health and Medical Sciences, Juliane Marie Centre for Women, Children and Reproduction, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Christensen ST, Morthorst SK, Mogensen JB, Pedersen LB. Primary Cilia and Coordination of Receptor Tyrosine Kinase (RTK) and Transforming Growth Factor β (TGF-β) Signaling. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028167. [PMID: 27638178 DOI: 10.1101/cshperspect.a028167] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Since the beginning of the millennium, research in primary cilia has revolutionized our way of understanding how cells integrate and organize diverse signaling pathways during vertebrate development and in tissue homeostasis. Primary cilia are unique sensory organelles that detect changes in their extracellular environment and integrate and transmit signaling information to the cell to regulate various cellular, developmental, and physiological processes. Many different signaling pathways have now been shown to rely on primary cilia to function properly, and mutations that lead to ciliary dysfunction are at the root of a pleiotropic group of diseases and syndromic disorders called ciliopathies. In this review, we present an overview of primary cilia-mediated regulation of receptor tyrosine kinase (RTK) and transforming growth factor β (TGF-β) signaling. Further, we discuss how defects in the coordination of these pathways may be linked to ciliopathies.
Collapse
Affiliation(s)
- Søren T Christensen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen OE, Denmark
| | - Stine K Morthorst
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen OE, Denmark
| | - Johanne B Mogensen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen OE, Denmark
| | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen OE, Denmark
| |
Collapse
|
26
|
Control of Hedgehog Signalling by the Cilia-Regulated Proteasome. J Dev Biol 2016; 4:jdb4030027. [PMID: 29615591 PMCID: PMC5831775 DOI: 10.3390/jdb4030027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 12/31/2022] Open
Abstract
The Hedgehog signalling pathway is evolutionarily highly conserved and essential for embryonic development of invertebrates and vertebrates. Consequently, impaired Hedgehog signalling results in very severe human diseases, ranging from holoprosencephaly to Pallister-Hall syndrome. Due to this great importance for human health, the focus of numerous research groups is placed on the investigation of the detailed mechanisms underlying Hedgehog signalling. Today, it is known that tiny cell protrusions, known as primary cilia, are necessary to mediate Hedgehog signalling in vertebrates. Although the Hedgehog pathway is one of the best studied signalling pathways, many questions remain. One of these questions is: How do primary cilia control Hedgehog signalling in vertebrates? Recently, it was shown that primary cilia regulate a special kind of proteasome which is essential for proper Hedgehog signalling. This review article will cover this novel cilia-proteasome association in embryonic Hedgehog signalling and discuss the possibilities provided by future investigations on this topic.
Collapse
|
27
|
Gerhardt C, Leu T, Lier JM, Rüther U. The cilia-regulated proteasome and its role in the development of ciliopathies and cancer. Cilia 2016; 5:14. [PMID: 27293550 PMCID: PMC4901515 DOI: 10.1186/s13630-016-0035-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/29/2016] [Indexed: 12/21/2022] Open
Abstract
The primary cilium is an essential structure for the mediation of numerous signaling pathways involved in the coordination and regulation of cellular processes essential for the development and maintenance of health. Consequently, ciliary dysfunction results in severe human diseases called ciliopathies. Since many of the cilia-mediated signaling pathways are oncogenic pathways, cilia are linked to cancer. Recent studies demonstrate the existence of a cilia-regulated proteasome and that this proteasome is involved in cancer development via the progression of oncogenic, cilia-mediated signaling. This review article investigates the association between primary cilia and cancer with particular emphasis on the role of the cilia-regulated proteasome.
Collapse
Affiliation(s)
- Christoph Gerhardt
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Tristan Leu
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Johanna Maria Lier
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Ulrich Rüther
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
28
|
Gerhardt C, Lier JM, Burmühl S, Struchtrup A, Deutschmann K, Vetter M, Leu T, Reeg S, Grune T, Rüther U. The transition zone protein Rpgrip1l regulates proteasomal activity at the primary cilium. J Cell Biol 2015; 210:115-33. [PMID: 26150391 PMCID: PMC4494006 DOI: 10.1083/jcb.201408060] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Rpgrip1l regulates proteasomal activity at the basal body via Psmd2 and thereby controls ciliary signaling. Mutations in RPGRIP1L result in severe human diseases called ciliopathies. To unravel the molecular function of RPGRIP1L, we analyzed Rpgrip1l−/− mouse embryos, which display a ciliopathy phenotype and die, at the latest, around birth. In these embryos, cilia-mediated signaling was severely disturbed. Defects in Shh signaling suggested that the Rpgrip1l deficiency causes an impairment of protein degradation and protein processing. Indeed, we detected a cilia-dependent decreased proteasomal activity in the absence of Rpgrip1l. We found different proteasomal components localized to cilia and identified Psmd2, a component of the regulatory proteasomal 19S subunit, as an interaction partner for Rpgrip1l. Quantifications of proteasomal substrates demonstrated that Rpgrip1l regulates proteasomal activity specifically at the basal body. Our study suggests that Rpgrip1l controls ciliary signaling by regulating the activity of the ciliary proteasome via Psmd2.
Collapse
Affiliation(s)
- Christoph Gerhardt
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Johanna Maria Lier
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Stephan Burmühl
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Andreas Struchtrup
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Kathleen Deutschmann
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Maik Vetter
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Tristan Leu
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Sandra Reeg
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University Jena, 07743 Jena, Germany
| | - Tilman Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University Jena, 07743 Jena, Germany
| | - Ulrich Rüther
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
29
|
Laclef C, Anselme I, Besse L, Catala M, Palmyre A, Baas D, Paschaki M, Pedraza M, Métin C, Durand B, Schneider-Maunoury S. The role of primary cilia in corpus callosum formation is mediated by production of the Gli3 repressor. Hum Mol Genet 2015; 24:4997-5014. [PMID: 26071364 DOI: 10.1093/hmg/ddv221] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/09/2015] [Indexed: 12/13/2022] Open
Abstract
Agenesis of the corpus callosum (AgCC) is a frequent brain disorder found in over 80 human congenital syndromes including ciliopathies. Here, we report a severe AgCC in Ftm/Rpgrip1l knockout mouse, which provides a valuable model for Meckel-Grüber syndrome. Rpgrip1l encodes a protein of the ciliary transition zone, which is essential for ciliogenesis in several cell types in mouse including neuroepithelial cells in the developing forebrain. We show that AgCC in Rpgrip1l(-/-) mouse is associated with a disturbed location of guidepost cells in the dorsomedial telencephalon. This mislocalization results from early patterning defects and abnormal cortico-septal boundary (CSB) formation in the medial telencephalon. We demonstrate that all these defects primarily result from altered GLI3 processing. Indeed, AgCC, together with patterning defects and mispositioning of guidepost cells, is rescued by overexpressing in Rpgrip1l(-/-) embryos, the short repressor form of the GLI3 transcription factor (GLI3R), provided by the Gli3(Δ699) allele. Furthermore, Gli3(Δ699) also rescues AgCC in Rfx3(-/-) embryos deficient for the ciliogenic RFX3 transcription factor that regulates the expression of several ciliary genes. These data demonstrate that GLI3 processing is a major outcome of primary cilia function in dorsal telencephalon morphogenesis. Rescuing CC formation in two independent ciliary mutants by GLI3(Δ699) highlights the crucial role of primary cilia in maintaining the proper level of GLI3R required for morphogenesis of the CC.
Collapse
Affiliation(s)
- Christine Laclef
- Sorbonne Universités, UPMC Univ Paris 06, UMR7622, CNRS, Institut de Biologie Paris Seine (IBPS)-Developmental Biology Laboratory, UMR7622, INSERM, ERL1156 and
| | - Isabelle Anselme
- Sorbonne Universités, UPMC Univ Paris 06, UMR7622, CNRS, Institut de Biologie Paris Seine (IBPS)-Developmental Biology Laboratory, UMR7622, INSERM, ERL1156 and
| | - Laurianne Besse
- Sorbonne Universités, UPMC Univ Paris 06, UMR7622, CNRS, Institut de Biologie Paris Seine (IBPS)-Developmental Biology Laboratory, UMR7622, INSERM, ERL1156 and
| | - Martin Catala
- Sorbonne Universités, UPMC Univ Paris 06, UMR7622, CNRS, Institut de Biologie Paris Seine (IBPS)-Developmental Biology Laboratory, UMR7622, INSERM, ERL1156 and Fédération de Neurologie, Groupe hospitalier Pitié-Salpêtrière-APHP, F-75013 Paris, France
| | - Aurélien Palmyre
- Sorbonne Universités, UPMC Univ Paris 06, UMR7622, CNRS, Institut de Biologie Paris Seine (IBPS)-Developmental Biology Laboratory, UMR7622, INSERM, ERL1156 and
| | - Dominique Baas
- Université Claude Bernard Lyon 1 and CNRS, CGPhiMC-UMR5534, F-69622 Villeurbanne, France and
| | - Marie Paschaki
- Université Claude Bernard Lyon 1 and CNRS, CGPhiMC-UMR5534, F-69622 Villeurbanne, France and
| | - Maria Pedraza
- Institut du Fer à Moulin, INSERM S839, F-75005 Paris, France, Sorbonne Université, UPMC Univ Paris 06, S839, Paris, France
| | - Christine Métin
- Institut du Fer à Moulin, INSERM S839, F-75005 Paris, France, Sorbonne Université, UPMC Univ Paris 06, S839, Paris, France
| | - Bénédicte Durand
- Université Claude Bernard Lyon 1 and CNRS, CGPhiMC-UMR5534, F-69622 Villeurbanne, France and
| | - Sylvie Schneider-Maunoury
- Sorbonne Universités, UPMC Univ Paris 06, UMR7622, CNRS, Institut de Biologie Paris Seine (IBPS)-Developmental Biology Laboratory, UMR7622, INSERM, ERL1156 and
| |
Collapse
|
30
|
Diguet N, Le Garrec JF, Lucchesi T, Meilhac SM. Imaging and analyzing primary cilia in cardiac cells. Methods Cell Biol 2015; 127:55-73. [PMID: 25837386 DOI: 10.1016/bs.mcb.2015.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The primary cilium is a small sensory organelle that is required for different aspects of embryonic development, including the formation of the heart. The structure and composition of cilia have been extensively studied, so that several markers of primary cilia have now been identified. However, the role of cilia in specific cell types remains poorly understood. We describe here a series of approaches to image primary cilia in the rodent heart or in primary cultures of cells dissociated from the heart. As the cilium is a marker of cell polarity, we also provide, for quantitative image analysis of cilium orientation, tools which are generally applicable to other types of tissues.
Collapse
Affiliation(s)
- Nicolas Diguet
- Institut Pasteur, Department of Developmental and Stem Cell Biology, Paris, France; CNRS URA2578, Paris, France
| | - Jean-François Le Garrec
- Institut Pasteur, Department of Developmental and Stem Cell Biology, Paris, France; CNRS URA2578, Paris, France
| | - Tommaso Lucchesi
- Institut Pasteur, Department of Developmental and Stem Cell Biology, Paris, France; CNRS URA2578, Paris, France; Sorbonne Universités, UPMC Université Paris06, IFD, Paris, France
| | - Sigolène M Meilhac
- Institut Pasteur, Department of Developmental and Stem Cell Biology, Paris, France; CNRS URA2578, Paris, France
| |
Collapse
|
31
|
Shapiro AJ, Davis SD, Ferkol T, Dell SD, Rosenfeld M, Olivier KN, Sagel SD, Milla C, Zariwala MA, Wolf W, Carson JL, Hazucha MJ, Burns K, Robinson B, Knowles MR, Leigh MW. Laterality defects other than situs inversus totalis in primary ciliary dyskinesia: insights into situs ambiguus and heterotaxy. Chest 2015; 146:1176-1186. [PMID: 24577564 DOI: 10.1378/chest.13-1704] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Motile cilia dysfunction causes primary ciliary dyskinesia (PCD), situs inversus totalis (SI), and a spectrum of laterality defects, yet the prevalence of laterality defects other than SI in PCD has not been prospectively studied. METHODS In this prospective study, participants with suspected PCD were referred to our multisite consortium. We measured nasal nitric oxide (nNO) level, examined cilia with electron microscopy, and analyzed PCD-causing gene mutations. Situs was classified as (1) situs solitus (SS), (2) SI, or (3) situs ambiguus (SA), including heterotaxy. Participants with hallmark electron microscopic defects, biallelic gene mutations, or both were considered to have classic PCD. RESULTS Of 767 participants (median age, 8.1 years, range, 0.1-58 years), classic PCD was defined in 305, including 143 (46.9%), 125 (41.0%), and 37 (12.1%) with SS, SI, and SA, respectively. A spectrum of laterality defects was identified with classic PCD, including 2.6% and 2.3% with SA plus complex or simple cardiac defects, respectively; 4.6% with SA but no cardiac defect; and 2.6% with an isolated possible laterality defect. Participants with SA and classic PCD had a higher prevalence of PCD-associated respiratory symptoms vs SA control participants (year-round wet cough, P < .001; year-round nasal congestion, P = .015; neonatal respiratory distress, P = .009; digital clubbing, P = .021) and lower nNO levels (median, 12 nL/min vs 252 nL/min; P < .001). CONCLUSIONS At least 12.1% of patients with classic PCD have SA and laterality defects ranging from classic heterotaxy to subtle laterality defects. Specific clinical features of PCD and low nNO levels help to identify PCD in patients with laterality defects. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT00323167; URL: www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Adam J Shapiro
- From the Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, QC, Canada.
| | - Stephanie D Davis
- Department of Pediatrics, Riley Hospital for Children, Indiana University, Indianapolis, IN
| | - Thomas Ferkol
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Sharon D Dell
- Department of Pediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Margaret Rosenfeld
- Department of Pediatrics, Seattle Children's Hospital and University of Washington, Seattle, WA
| | | | - Scott D Sagel
- Department of Pediatrics, Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, CO
| | - Carlos Milla
- Department of Pediatrics, Stanford University, Palo Alto, CA
| | - Maimoona A Zariwala
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Whitney Wolf
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Johnny L Carson
- Department of Pediatrics, University of North Carolina School of Medicine, on behalf of the Genetic Disorders of Mucociliary Clearance Consortium, Chapel Hill, NC
| | - Milan J Hazucha
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Kimberlie Burns
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Blair Robinson
- Department of Pediatrics, University of North Carolina School of Medicine, on behalf of the Genetic Disorders of Mucociliary Clearance Consortium, Chapel Hill, NC
| | - Michael R Knowles
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Margaret W Leigh
- Department of Pediatrics, University of North Carolina School of Medicine, on behalf of the Genetic Disorders of Mucociliary Clearance Consortium, Chapel Hill, NC
| | | |
Collapse
|
32
|
The ciliopathy gene Rpgrip1l is essential for hair follicle development. J Invest Dermatol 2014; 135:701-709. [PMID: 25398052 PMCID: PMC4340706 DOI: 10.1038/jid.2014.483] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 10/27/2014] [Accepted: 10/27/2014] [Indexed: 01/01/2023]
Abstract
The primary cilium is essential for skin morphogenesis through regulating the Notch, Wnt, and hedgehog signaling pathways. Prior studies on the functions of primary cilia in the skin were based on the investigations of genes that are essential for cilium formation. However, none of these ciliogenic genes has been linked to ciliopathy, a group of disorders caused by abnormal formation or function of cilia. To determine whether there is a genetic and molecular link between ciliopathies and skin morphogenesis, we investigated the role of RPGRIP1L, a gene mutated in Joubert (JBTS) and Meckel (MKS) syndromes, two severe forms of ciliopathy, in the context of skin development. We found that RPGRIP1L is essential for hair follicle morphogenesis. Specifically, disrupting the Rpgril1 gene in mice resulted in reduced proliferation and differentiation of follicular keratinocytes, leading to hair follicle developmental defects. These defects were associated with significantly decreased primary cilium formation and attenuated hedgehog signaling. In contrast, we found that hair follicle induction and polarization and the development of interfollicular epidermis were unaffected. This study indicates that RPGRIP1L, a ciliopathy gene, is essential for hair follicle morphogenesis likely through regulating primary cilia formation and the hedgehog signaling pathway.
Collapse
|
33
|
|
34
|
Koefoed K, Veland IR, Pedersen LB, Larsen LA, Christensen ST. Cilia and coordination of signaling networks during heart development. Organogenesis 2013; 10:108-25. [PMID: 24345806 DOI: 10.4161/org.27483] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Primary cilia are unique sensory organelles that coordinate a wide variety of different signaling pathways to control cellular processes during development and in tissue homeostasis. Defects in function or assembly of these antenna-like structures are therefore associated with a broad range of developmental disorders and diseases called ciliopathies. Recent studies have indicated a major role of different populations of cilia, including nodal and cardiac primary cilia, in coordinating heart development, and defects in these cilia are associated with congenital heart disease. Here, we present an overview of the role of nodal and cardiac primary cilia in heart development.
Collapse
Affiliation(s)
- Karen Koefoed
- Department of Biology; University of Copenhagen; Copenhagen, Denmark; Wilhelm Johannsen Centre for Functional Genome Research; Department of Cellular and Molecular Medicine; University of Copenhagen; Copenhagen, Denmark
| | - Iben Rønn Veland
- Department of Biology; University of Copenhagen; Copenhagen, Denmark
| | | | - Lars Allan Larsen
- Wilhelm Johannsen Centre for Functional Genome Research; Department of Cellular and Molecular Medicine; University of Copenhagen; Copenhagen, Denmark
| | | |
Collapse
|