1
|
Randrianarivo M, Botosoamananto RL, Guilhaumon F, Penin L, Todinanahary G, Adjeroud M. Effects of Madagascar marine reserves on juvenile and adult coral abundance, and the implication for population regulation. MARINE ENVIRONMENTAL RESEARCH 2023; 190:106080. [PMID: 37422994 DOI: 10.1016/j.marenvres.2023.106080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
Recruitment is a critical component in the dynamics of coral assemblages, and a key question is to determine the degree to which spatial heterogeneity of adults is influenced by pre-vs. post-settlement processes. We analyzed the density of juvenile and adult corals among 18 stations located at three regions around Madagascar, and examined the effects of Marine Protected Areas (MPAs). Our survey did not detect a positive effect of MPAs on juveniles, except for Porites at the study scale. The MPA effect was more pronounced for adults, notably for Acropora, Montipora, Seriatopora, and Porites at the regional scale. For most dominant genera, densities of juveniles and adults were positively correlated at the study scale, and at least at one of the three regions. These outcomes suggest recruitment-limitation relationships for several coral taxa, although differences in post-settlement events may be sufficiently strong to distort the pattern established at settlement for other populations. The modest benefits of MPAs on the density of juvenile corals demonstrated here argue in favor of strengthening conservation measures more specifically focused to protect recruitment processes.
Collapse
Affiliation(s)
- Mahery Randrianarivo
- Institut Halieutique et des Sciences Marines, Université de Toliara, Toliara, Madagascar; ENTROPIE, Université de La Réunion, IRD, CNRS, IFREMER, Université de la Nouvelle-Calédonie, La Réunion, France
| | - Radonirina Lebely Botosoamananto
- Institut Halieutique et des Sciences Marines, Université de Toliara, Toliara, Madagascar; ENTROPIE, Université de La Réunion, IRD, CNRS, IFREMER, Université de la Nouvelle-Calédonie, La Réunion, France
| | - François Guilhaumon
- ENTROPIE, Université de La Réunion, IRD, CNRS, IFREMER, Université de la Nouvelle-Calédonie, La Réunion, France
| | - Lucie Penin
- ENTROPIE, Université de La Réunion, IRD, CNRS, IFREMER, Université de la Nouvelle-Calédonie, La Réunion, France; Laboratoire d'Excellence "CORAIL", Paris, France
| | - Gildas Todinanahary
- Institut Halieutique et des Sciences Marines, Université de Toliara, Toliara, Madagascar
| | - Mehdi Adjeroud
- ENTROPIE, IRD, Université de la Réunion, CNRS, IFREMER, Université de la Nouvelle-Calédonie, Perpignan, France; Laboratoire d'Excellence "CORAIL", Paris, France; PSL Université Paris, UAR 3278, CRIOBE EPHE-UPVD-CNRS, Perpignan, France.
| |
Collapse
|
2
|
Martínez-Quintana Á, Lasker HR, Wilson AM. Three-dimensional species distribution modelling reveals the realized spatial niche for coral recruitment on contemporary Caribbean reefs. Ecol Lett 2023; 26:1497-1509. [PMID: 37380335 DOI: 10.1111/ele.14281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/06/2023] [Accepted: 05/05/2023] [Indexed: 06/30/2023]
Abstract
The three-dimensional structure of habitats is a critical component of species' niches driving coexistence in species-rich ecosystems. However, its influence on structuring and partitioning recruitment niches has not been widely addressed. We developed a new method to combine species distribution modelling and structure from motion, and characterized three-dimensional recruitment niches of two ecosystem engineers on Caribbean coral reefs, scleractinian corals and gorgonians. Fine-scale roughness was the most important predictor of suitable habitat for both taxa, and their niches largely overlapped, primarily due to scleractinians' broader niche breadth. Crevices and holes at mm scales on calcareous rock with low coral cover were more suitable for octocorals than for scleractinian recruits, suggesting that the decline in scleractinian corals is facilitating the recruitment of octocorals on contemporary Caribbean reefs. However, the relative abundances of the taxa were independent of the amount of suitable habitat on the reef, emphasizing that niche processes alone do not predict recruitment rates.
Collapse
Affiliation(s)
| | - Howard R Lasker
- Department of Environment and Sustainability, University at Buffalo, Buffalo, New York, USA
- Department of Geology, University at Buffalo, Buffalo, New York, USA
| | - Adam M Wilson
- Department of Geography, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
3
|
Bozec Y, Hock K, Mason RAB, Baird ME, Castro‐Sanguino C, Condie SA, Puotinen M, Thompson A, Mumby PJ. Cumulative impacts across Australia’s Great Barrier Reef: a mechanistic evaluation. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yves‐Marie Bozec
- Marine Spatial Ecology Lab School of Biological Sciences & ARC Centre of Excellence for Coral Reef Studies University of Queensland St Lucia Queensland 4072 Australia
| | - Karlo Hock
- Marine Spatial Ecology Lab School of Biological Sciences & ARC Centre of Excellence for Coral Reef Studies University of Queensland St Lucia Queensland 4072 Australia
| | - Robert A. B. Mason
- Marine Spatial Ecology Lab School of Biological Sciences & ARC Centre of Excellence for Coral Reef Studies University of Queensland St Lucia Queensland 4072 Australia
| | - Mark E. Baird
- CSIRO Oceans and Atmosphere Hobart Tasmania 7001 Australia
| | - Carolina Castro‐Sanguino
- Marine Spatial Ecology Lab School of Biological Sciences & ARC Centre of Excellence for Coral Reef Studies University of Queensland St Lucia Queensland 4072 Australia
| | | | - Marji Puotinen
- Australian Institute of Marine Science & Indian Ocean Marine Research Centre Crawley Western Australia 6009 Australia
| | - Angus Thompson
- Australian Institute of Marine Science Townsville Queensland 4810 Australia
| | - Peter J. Mumby
- Marine Spatial Ecology Lab School of Biological Sciences & ARC Centre of Excellence for Coral Reef Studies University of Queensland St Lucia Queensland 4072 Australia
| |
Collapse
|
4
|
Quimpo TJR, Cabaitan PC, Hoey AS. Detachment of
Porites cylindrica
nubbins by herbivorous fishes. Restor Ecol 2020. [DOI: 10.1111/rec.13091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Timothy J. R. Quimpo
- The Marine Science Institute, College of ScienceUniversity of the Philippines, Diliman Quezon City 1101 Philippines
| | - Patrick C. Cabaitan
- The Marine Science Institute, College of ScienceUniversity of the Philippines, Diliman Quezon City 1101 Philippines
| | - Andrew S. Hoey
- ARC Centre of Excellence for Coral Reef StudiesJames Cook University Townsville QLD 4811 Australia
| |
Collapse
|
5
|
Taylor BM, Benkwitt CE, Choat H, Clements KD, Graham NAJ, Meekan MG. Synchronous biological feedbacks in parrotfishes associated with pantropical coral bleaching. GLOBAL CHANGE BIOLOGY 2020; 26:1285-1294. [PMID: 31789454 DOI: 10.1111/gcb.14909] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Biological feedbacks generated through patterns of disturbance are vital for sustaining ecosystem states. Recent ocean warming and thermal anomalies have caused pantropical episodes of coral bleaching, which has led to widespread coral mortality and a range of subsequent effects on coral reef communities. Although the response of many reef-associated fishes to major disturbance events on coral reefs is negative (e.g., reduced abundance and condition), parrotfishes show strong feedbacks after disturbance to living reef structure manifesting as increases in abundance. However, the mechanisms underlying this response are poorly understood. Using biochronological reconstructions of annual otolith (ear stone) growth from two ocean basins, we tested whether parrotfish growth was enhanced following bleaching-related coral mortality, thus providing an organismal mechanism for demographic changes in populations. Both major feeding guilds of parrotfishes (scrapers and excavators) exhibited enhanced growth of individuals after bleaching that was decoupled from expected thermal performance, a pattern that was not evident in other reef fish taxa from the same environment. These results provide evidence for a more nuanced ecological feedback system-one where disturbance plays a key role in mediating parrotfish-benthos interactions. By influencing the biology of assemblages, disturbance can thereby stimulate change in parrotfish grazing intensity and ultimately reef geomorphology over time. This feedback cycle operated historically at within-reef scales; however, our results demonstrate that the scale, magnitude, and severity of recent thermal events are entraining the biological responses of disparate communities to respond in synchrony. This may fundamentally alter feedbacks in the relationships between parrotfishes and reef systems.
Collapse
Affiliation(s)
- Brett M Taylor
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, WA, Australia
| | | | - Howard Choat
- College of Science and Engineering, James Cook University, Townsville, Qld, Australia
| | - Kendall D Clements
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Mark G Meekan
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, WA, Australia
| |
Collapse
|
6
|
Jouval F, Latreille AC, Bureau S, Adjeroud M, Penin L. Multiscale variability in coral recruitment in the Mascarene Islands: From centimetric to geographical scale. PLoS One 2019; 14:e0214163. [PMID: 30901355 PMCID: PMC6430376 DOI: 10.1371/journal.pone.0214163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/07/2019] [Indexed: 11/26/2022] Open
Abstract
Coral recruitment refers to the processes allowing maintenance and renewal of coral communities. Recruitment success is therefore indispensable for coral reef recovery after disturbances. Recruitment processes are governed by a variety of factors occurring at all spatial and temporal scales, from centimetres to hundreds of kilometres. In the present context of rising disturbances, it is thus of major importance to better understand the relative importance of different scales in this variation, and when possible, the factors associated with these scales. Multiscale spatio-temporal variability of scleractinian coral recruitment was investigated at two of the Mascarene Islands: Reunion and Rodrigues. Recruitment rates and taxonomic composition were examined during three consecutive six-month periods from regional to micro-local scales (i.e. from hundreds of kilometres to few centimetres) and between two protection levels (no-take zones and general protection zones). Very low recruitment rates were observed. Rodrigues displayed lower recruitment rates than Reunion. Recruit assemblage was dominated by Pocilloporidae (77.9%), followed by Acroporidae (9.9%) and Poritidae (5.2%). No protection effect was identified on coral recruitment, despite differences in recruitment rates among sites within islands. Recruits were patchily distributed within sites but no aggregative effect was detected, i.e. the preferentially colonised tiles were not spatially grouped. Recruits settled mainly on the sides of the tiles, especially at Rodrigues, which could be attributed to the high concentration of suspended matter. The variability of recruitment patterns at various spatial scales emphasises the importance of micro- to macro-local variations of the environment in the dynamics and maintenance of coral populations. High temporal variability was also detected, between seasons and years, which may be related to the early 2016 bleaching event at Rodrigues. The low recruitment rates and the absence of protection effect raise questions about the potential for recovery from disturbances of coral reefs in the Mascarene Islands.
Collapse
Affiliation(s)
- Florian Jouval
- UMR 9220 ENTROPIE, Université de La Réunion, Faculté des Sciences et Technologies & Laboratoire d’Excellence CORAIL, La Réunion, France
- * E-mail:
| | - Anne Catherine Latreille
- UMR 249 PIMIT, Université de La Réunion, INSERM, CNRS, IRD, Plateforme Technologique CYROI, La Réunion, France
| | - Sophie Bureau
- UMR 9220 ENTROPIE, Université de La Réunion, Faculté des Sciences et Technologies & Laboratoire d’Excellence CORAIL, La Réunion, France
| | - Mehdi Adjeroud
- UMR 9220 ENTROPIE, Institut de Recherche pour le Développement (IRD) & Laboratoire d’Excellence CORAIL, Université de Perpignan Via Domitia, Perpignan, France
| | - Lucie Penin
- UMR 9220 ENTROPIE, Université de La Réunion, Faculté des Sciences et Technologies & Laboratoire d’Excellence CORAIL, La Réunion, France
| |
Collapse
|
7
|
Wilmes JC, Caballes CF, Cowan ZL, Hoey AS, Lang BJ, Messmer V, Pratchett MS. Contributions of pre- versus post-settlement processes to fluctuating abundance of crown-of-thorns starfishes (Acanthaster spp.). MARINE POLLUTION BULLETIN 2018; 135:332-345. [PMID: 30301045 DOI: 10.1016/j.marpolbul.2018.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/27/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
Numerous hypotheses have been put forward to account for population outbreaks of crown-of-thorns starfishes (CoTS, Acanthaster spp.), which place specific importance on either pre- or post-settlement mechanisms. The purpose of this review is to specifically assess the contributions of pre- versus post-settlement processes in the population dynamics of CoTS. Given the immense reproductive potential of CoTS (>100 million eggs per female), persistent high densities would appear inevitable unless there were significant constraints on larval development, settlement success, and/or early post-settlement growth and survival. In terms of population constraints, pre- and post-settlement processes are both important and have additive effects to suppress densities of juvenile and adult CoTS within reef ecosystems. It is difficult, however, to assess the relative contributions of pre- versus post-settlement processes to population outbreaks, especially given limited data on settlement rates, as well as early post-settlement growth and mortality. Prioritising this research is important to resolve potential effects of anthropogenic activities (e.g., fishing) and habitat degradation on changing population dynamics of CoTS, and will also improve management effectiveness.
Collapse
Affiliation(s)
- Jennifer C Wilmes
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Red Fish Blue Fish Marine, Cairns, QLD 4870, Australia
| | - Ciemon F Caballes
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Ultra Coral Australia, Paget, QLD 4740, Australia
| | - Zara-Louise Cowan
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; School of Marine Science and Policy, University of Delaware, Lewes, DE 19958, USA
| | - Andrew S Hoey
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Bethan J Lang
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Vanessa Messmer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Morgan S Pratchett
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|
8
|
Duran A, Collado-Vides L, Palma L, Burkepile DE. Interactive effects of herbivory and substrate orientation on algal community dynamics on a coral reef. MARINE BIOLOGY 2018; 165:156. [PMID: 30294007 PMCID: PMC6153878 DOI: 10.1007/s00227-018-3411-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/01/2018] [Indexed: 05/17/2023]
Abstract
Herbivory is a significant driver of algal community dynamics on coral reefs. However, abiotic factors such as the complexity and orientation of the benthos often mediate the impact of herbivores on benthic communities. We experimentally evaluated the independent and interactive effects of substrate orientation and herbivorous fishes on algal community dynamics on a coral reef in the Florida Keys, USA. We created horizontal and vertical substrates, mimicking the trend in the reduction of vertical surfaces of coral reefs, to assess how algal communities developed either with herbivory (open areas) or without herbivory (herbivore exclosures). We found that substrate orientation was the dominant influence on macroalgal community composition. Herbivores had little impact on community development of vertical substrates as crustose algae dominated these substrates regardless of being in exclosures or open areas. In contrast, herbivores strongly impacted communities on horizontal substrates, with upright macroalgae (e.g., Dictyota spp., articulated coralline algae) dominating herbivore exclosures, while filamentous turf algae and sediment dominated open areas. Outside of exclosures, differences between vertical and horizontal substrates exposed to herbivores persisted despite similar intensity of herbivory. Our results suggest that the orientation of the reef benthos has an important impact on benthic communities. On vertical surfaces, abiotic factors may be more important for structuring algal communities while herbivory may be more important for controlling algal dynamics in flatter areas. Thus, the decline in structural complexity of Caribbean coral reefs and the flattening of reef substrates may fundamentally alter the impact that herbivores have on benthic community dynamics.
Collapse
Affiliation(s)
- Alain Duran
- Department of Biological Sciences, Florida International University, 11200 S.W. 8th St., Miami, FL 33199 USA
| | - L. Collado-Vides
- Department of Biological Sciences, Florida International University, 11200 S.W. 8th St., Miami, FL 33199 USA
- Center for Coastal Oceans Research in the Institute for Water and Environment, 11200 S. W. 8th St., Miami, FL 33199 USA
| | - L. Palma
- Department of Biological Sciences, Florida International University, 11200 S.W. 8th St., Miami, FL 33199 USA
| | - D. E. Burkepile
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106 USA
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA 93106 USA
| |
Collapse
|
9
|
Pratchett MS, Baird AH, Bauman AG, Burt JA. Abundance and composition of juvenile corals reveals divergent trajectories for coral assemblages across the United Arab Emirates. MARINE POLLUTION BULLETIN 2017; 114:1031-1035. [PMID: 27889075 DOI: 10.1016/j.marpolbul.2016.11.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
Marked shifts in the composition of coral assemblages are occurring at many locations, but it is unknown whether these are permanent shifts reinforced by patterns of population replenishment. This study examined the composition of juvenile coral assemblages across the United Arab Emirates (UAE). Densities of juvenile corals varied significantly among locations, but were highest where coral cover was highest. Juvenile coral assemblages within the Persian Gulf were dominated by Porites, while no Acropora were recorded. We expect therefore, continued declines in Acropora abundance, while observed dominance of Porites is likely to persist. In the Oman Sea, Pocillopora was the dominant juvenile coral, with Acropora and Stylophora also recorded. This study shows that taxonomic differences in replenishment are reinforcing temporal shifts in coral composition within the southern Persian Gulf, but not in the Oman Sea. Differences in environmental conditions and disturbance regimes likely explain the divergent responses between regions.
Collapse
Affiliation(s)
- Morgan S Pratchett
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville Q4811, Australia
| | - Andrew H Baird
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville Q4811, Australia
| | - Andrew G Bauman
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - John A Burt
- Center for Genomics and Systems Biology, New York University, Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
10
|
Lozano-Cortés DF, Berumen ML. Colony size-frequency distribution of pocilloporid juvenile corals along a natural environmental gradient in the Red Sea. MARINE POLLUTION BULLETIN 2016; 105:546-552. [PMID: 26520210 DOI: 10.1016/j.marpolbul.2015.10.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 10/16/2015] [Accepted: 10/22/2015] [Indexed: 06/05/2023]
Abstract
Coral colony size-frequency distributions can be used to assess population responses to local environmental conditions and disturbances. In this study, we surveyed juvenile pocilloporids, herbivorous fish densities, and algal cover in the central and southern Saudi Arabian Red Sea. We sampled nine reefs with different disturbance histories along a north-south natural gradient of physicochemical conditions (higher salinity and wider temperature fluctuations in the north, and higher turbidity and productivity in the south). Since coral populations with negatively skewed size-frequency distributions have been associated with unfavorable environmental conditions, we expected to find more negative distributions in the southern Red Sea, where corals are potentially experiencing suboptimal conditions. Although juvenile coral and parrotfish densities differed significantly between the two regions, mean colony size and size-frequency distributions did not. Results suggest that pocilloporid colony size-frequency distribution may not be an accurate indicator of differences in biological or oceanographic conditions in the Red Sea.
Collapse
Affiliation(s)
- Diego F Lozano-Cortés
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia; Coral Reef Ecology Research Group, Department of Biology, Universidad del Valle, A.A. 25360, Cali, Colombia.
| | - Michael L Berumen
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| |
Collapse
|
11
|
Buglass S, Donner SD, Alemu I JB. A study on the recovery of Tobago's coral reefs following the 2010 mass bleaching event. MARINE POLLUTION BULLETIN 2016; 104:198-206. [PMID: 26856646 DOI: 10.1016/j.marpolbul.2016.01.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/19/2016] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
In 2010, severe coral bleaching was observed across the southeastern Caribbean, including the island of Tobago, where coral reefs are subject to sedimentation and high nutrient levels from terrestrial runoff. Here we examine changes in corals' colony size distributions over time (2010-2013), juvenile abundances and sedimentation rates for sites across Tobago following the 2010 bleaching event. The results indicated that since pre-bleaching coral cover was already low due to local factors and past disturbance, the 2010 event affected only particular susceptible species' population size structure and increased the proportion of small sized colonies. The low density of juveniles (mean of 5.4±6.3 juveniles/m(-2)) suggests that Tobago's reefs already experienced limited recruitment, especially of large broadcasting species. The juvenile distribution and the response of individual species to the bleaching event support the notion that Caribbean reefs are becoming dominated by weedy non-framework building taxa which are more resilient to disturbances.
Collapse
Affiliation(s)
- Salome Buglass
- Department of Geography, University of British Columbia, 1984 West Mall, Vancouver, BC, Canada.
| | - Simon D Donner
- Department of Geography, University of British Columbia, 1984 West Mall, Vancouver, BC, Canada
| | - Jahson B Alemu I
- Biodiversity and Ecology Research Programme, Institute of Marine Affairs, Hilltop Lane, Chaguaramas, Trinidad and Tobago
| |
Collapse
|
12
|
Doropoulos C, Roff G, Bozec Y, Zupan M, Werminghausen J, Mumby PJ. Characterizing the ecological trade‐offs throughout the early ontogeny of coral recruitment. ECOL MONOGR 2016. [DOI: 10.1890/15-0668.1] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Christopher Doropoulos
- Marine Spatial Ecology Lab Australian Research Council Centre of Excellence for Coral Reef Studies and School of Biological Sciences The University of Queensland Saint Lucia Queensland 4072 Australia
- Palau International Coral Reef Center Koror 96940 Palau
| | - George Roff
- Marine Spatial Ecology Lab Australian Research Council Centre of Excellence for Coral Reef Studies and School of Biological Sciences The University of Queensland Saint Lucia Queensland 4072 Australia
| | - Yves‐Marie Bozec
- Marine Spatial Ecology Lab Australian Research Council Centre of Excellence for Coral Reef Studies and School of Biological Sciences The University of Queensland Saint Lucia Queensland 4072 Australia
| | - Mirta Zupan
- Marine Spatial Ecology Lab Australian Research Council Centre of Excellence for Coral Reef Studies and School of Biological Sciences The University of Queensland Saint Lucia Queensland 4072 Australia
- Palau International Coral Reef Center Koror 96940 Palau
| | - Johanna Werminghausen
- Marine Spatial Ecology Lab Australian Research Council Centre of Excellence for Coral Reef Studies and School of Biological Sciences The University of Queensland Saint Lucia Queensland 4072 Australia
| | - Peter J. Mumby
- Marine Spatial Ecology Lab Australian Research Council Centre of Excellence for Coral Reef Studies and School of Biological Sciences The University of Queensland Saint Lucia Queensland 4072 Australia
| |
Collapse
|
13
|
Doropoulos C, Ward S, Roff G, González-Rivero M, Mumby PJ. Linking demographic processes of juvenile corals to benthic recovery trajectories in two common reef habitats. PLoS One 2015; 10:e0128535. [PMID: 26009892 PMCID: PMC4444195 DOI: 10.1371/journal.pone.0128535] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/28/2015] [Indexed: 12/04/2022] Open
Abstract
Tropical reefs are dynamic ecosystems that host diverse coral assemblages with different life-history strategies. Here, we quantified how juvenile (<50 mm) coral demographics influenced benthic coral structure in reef flat and reef slope habitats on the southern Great Barrier Reef, Australia. Permanent plots and settlement tiles were monitored every six months for three years in each habitat. These environments exhibited profound differences: the reef slope was characterised by 95% less macroalgal cover, and twice the amount of available settlement substrata and rates of coral settlement than the reef flat. Consequently, post-settlement coral survival in the reef slope was substantially higher than that of the reef flat, and resulted in a rapid increase in coral cover from 7 to 31% in 2.5 years. In contrast, coral cover on the reef flat remained low (~10%), whereas macroalgal cover increased from 23 to 45%. A positive stock-recruitment relationship was found in brooding corals in both habitats; however, brooding corals were not directly responsible for the observed changes in coral cover. Rather, the rapid increase on the reef slope resulted from high abundances of broadcast spawning Acropora recruits. Incorporating our results into transition matrix models demonstrated that most corals escape mortality once they exceed 50 mm, but for smaller corals mortality in brooders was double those of spawners (i.e. acroporids and massive corals). For corals on the reef flat, sensitivity analysis demonstrated that growth and mortality of larger juveniles (21–50 mm) highly influenced population dynamics; whereas the recruitment, growth and mortality of smaller corals (<20 mm) had the highest influence on reef slope population dynamics. Our results provide insight into the population dynamics and recovery trajectories in disparate reef habitats, and highlight the importance of acroporid recruitment in driving rapid increases in coral cover following large-scale perturbation in reef slope environments.
Collapse
Affiliation(s)
- Christopher Doropoulos
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, St Lucia, Queensland, Australia
- * E-mail:
| | - Selina Ward
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - George Roff
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, St Lucia, Queensland, Australia
| | | | - Peter J. Mumby
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, St Lucia, Queensland, Australia
| |
Collapse
|
14
|
Coral reef community composition in the context of disturbance history on the Great Barrier Reef, Australia. PLoS One 2014; 9:e101204. [PMID: 24983747 PMCID: PMC4077760 DOI: 10.1371/journal.pone.0101204] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 06/04/2014] [Indexed: 12/02/2022] Open
Abstract
Much research on coral reefs has documented differential declines in coral and associated organisms. In order to contextualise this general degradation, research on community composition is necessary in the context of varied disturbance histories and the biological processes and physical features thought to retard or promote recovery. We conducted a spatial assessment of coral reef communities across five reefs of the central Great Barrier Reef, Australia, with known disturbance histories, and assessed patterns of coral cover and community composition related to a range of other variables thought to be important for reef dynamics. Two of the reefs had not been extensively disturbed for at least 15 years prior to the surveys. Three of the reefs had been severely impacted by crown-of-thorns starfish outbreaks and coral bleaching approximately a decade before the surveys, from which only one of them was showing signs of recovery based on independent surveys. We incorporated wave exposure (sheltered and exposed) and reef zone (slope, crest and flat) into our design, providing a comprehensive assessment of the spatial patterns in community composition on these reefs. Categorising corals into life history groupings, we document major coral community differences in the unrecovered reefs, compared to the composition and covers found on the undisturbed reefs. The recovered reef, despite having similar coral cover, had a different community composition from the undisturbed reefs, which may indicate slow successional processes, or a different natural community dominance pattern due to hydrology and other oceanographic factors. The variables that best correlated with patterns in the coral community among sites included the density of juvenile corals, herbivore fish biomass, fish species richness and the cover of macroalgae. Given increasing impacts to the Great Barrier Reef, efforts to mitigate local stressors will be imperative to encouraging coral communities to persist into the future.
Collapse
|
15
|
Spatial variation in background mortality among dominant coral taxa on Australia's Great Barrier Reef. PLoS One 2014; 9:e100969. [PMID: 24959921 PMCID: PMC4069195 DOI: 10.1371/journal.pone.0100969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/30/2014] [Indexed: 11/19/2022] Open
Abstract
Even in the absence of major disturbances (e.g., cyclones, bleaching), corals are consistently subject to high levels of background mortality, which undermines individual fitness and resilience of coral colonies. Partial mortality may impact coral response to climate change by reducing colony ability to recover between major acute stressors. This study quantified proportion of injured versus uninjured colonies (the prevalence of injuries) and instantaneous measures of areal extent of injuries across individual colonies (the severity of injuries), in four common coral species along the Great Barrier Reef in Australia: massive Porites, encrusting Montipora, Acropora hyacinthus and Pocillopora damicornis. A total of 2,276 adult colonies were surveyed three latitudinal sectors, nine reefs and 27 sites along 1000 km2 on the Great Barrier Reef. The prevalence of injuries was very high, especially for Porites spp (91%) and Montipora encrusting (85%) and varied significantly, but most lay at small spatial scales (e.g., among colonies positioned <10-m apart). Similarly, severity of background partial mortality was surprisingly high (between 5% and 21%) but varied greatly among colonies within the same site and habitat. This study suggests that intraspecific variation in partial mortality between adjacent colonies may be more important than variation between colonies in different latitudinal sectors or reefs. Differences in the prevalence and severity of background partial mortality have significant ramifications for coral capacity to cope with increasing acute disturbances, such as climate-induced coral bleaching. These data are important for understanding coral responses to increasing stressors, and in particular for predicting their capacity to recover between subsequent disturbances.
Collapse
|
16
|
Heenan A, Williams ID. Monitoring herbivorous fishes as indicators of coral reef resilience in American Samoa. PLoS One 2013; 8:e79604. [PMID: 24223183 PMCID: PMC3819275 DOI: 10.1371/journal.pone.0079604] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/24/2013] [Indexed: 11/18/2022] Open
Abstract
Resilience-based management aims to promote or protect processes and species that underpin an ecosystem's capacity to withstand and recover from disturbance. The management of ecological processes is a developing field that requires reliable indicators that can be monitored over time. Herbivory is a key ecological process on coral reefs, and pooling herbivorous fishes into functional groups based on their feeding mode is increasingly used as it may quantify herbivory in ways that indicate resilience. Here we evaluate whether the biomass estimates of these herbivore functional groups are good predictors of reef benthic assemblages, using data from 240 sites from five island groups in American Samoa. Using an information theoretic approach, we assembled a candidate set of linear and nonlinear models to identify the relations between benthic cover and total herbivore and non-herbivore biomass and the biomass of the aforementioned functional groups. For each benthic substrate type considered (encrusting algae, fleshy macroalgae, hard coral and turf algae), the biomass of herbivorous fishes were important explanatory variables in predicting benthic cover, whereas biomass of all fishes combined generally was not. Also, in all four cases, variation in cover was best explained by the biomass of specific functional groups rather than by all herbivores combined. Specifically: 1) macroalgal and turf algal cover decreased with increasing biomass of ‘grazers/detritivores’; and 2) cover of encrusting algae increased with increasing biomass of ‘grazers/detritivores’ and browsers. Furthermore, hard coral cover increased with the biomass of large excavators/bio-eroders (made up of large-bodied parrotfishes). Collectively, these findings emphasize the link between herbivorous fishes and the benthic community and demonstrate support for the use of functional groups of herbivores as indicators for resilience-based monitoring.
Collapse
Affiliation(s)
- Adel Heenan
- Joint Institute of Marine and Atmospheric Research, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- * E-mail:
| | - Ivor D. Williams
- Coral Reef Ecosystem Division, Pacific Islands Fisheries Science Center, Honolulu, Hawaii, United States of America
| |
Collapse
|