1
|
Griffiths JI, Cosgrove PA, Medina EF, Nath A, Chen J, Adler FR, Chang JT, Khan QJ, Bild AH. Cellular interactions within the immune microenvironment underpins resistance to cell cycle inhibition in breast cancers. Nat Commun 2025; 16:2132. [PMID: 40032842 PMCID: PMC11876604 DOI: 10.1038/s41467-025-56279-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 01/13/2025] [Indexed: 03/05/2025] Open
Abstract
Immune evasion by cancer cells involves reshaping the tumor microenvironment (TME) via communication with non-malignant cells. However, resistance-promoting interactions during treatment remain lesser known. Here we examine the composition, communication, and phenotypes of tumor-associated cells in serial biopsies from stage II and III high-risk estrogen receptor positive (ER+ ) breast cancers of patients receiving endocrine therapy (letrozole) as single agent or in combination with ribociclib, a CDK4/6-targeting cell cycle inhibitor. Single-cell RNA sequencing analyses on longitudinally collected samples show that in tumors overcoming the growth suppressive effects of ribociclib, first cancer cells upregulate cytokines and growth factors that stimulate immune-suppressive myeloid differentiation, resulting in reduced myeloid cell- CD8 + T-cell crosstalk via IL-15/18 signaling. Subsequently, tumors growing during treatment show diminished T-cell activation and recruitment. In vitro, ribociclib does not only inhibit cancer cell growth but also T cell proliferation and activation upon co-culturing. Exogenous IL-15 improves CDK4/6 inhibitor efficacy by augmenting T-cell proliferation and cancer cell killing by T cells. In summary, response to ribociclib in stage II and III high-risk ER + breast cancer depends on the composition, activation phenotypes and communication network of immune cells.
Collapse
Affiliation(s)
- Jason I Griffiths
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, USA.
- Department of Mathematics, University of Utah 155 South 1400 East, Salt Lake City, UT, USA.
| | - Patrick A Cosgrove
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, USA
| | - Eric F Medina
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, USA
| | - Aritro Nath
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, USA
| | - Jinfeng Chen
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, USA
| | - Frederick R Adler
- Department of Mathematics, University of Utah 155 South 1400 East, Salt Lake City, UT, USA
- School of Biological Sciences, University of Utah 257 South 1400 East, Salt Lake City, UT, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, School of Medicine, School of Biomedical Informatics, UT Health Sciences Center at Houston, Houston, TX, USA
| | - Qamar J Khan
- Division of Medical Oncology, Department of Internal Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Andrea H Bild
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, USA.
| |
Collapse
|
2
|
Rehill AM, Leon G, McCluskey S, Schoen I, Hernandez-Santana Y, Annett S, Klavina P, Robson T, Curtis AM, Renné T, Hussey S, O'Donnell JS, Walsh PT, Preston RJS. Glycolytic reprogramming fuels myeloid cell-driven hypercoagulability. J Thromb Haemost 2024; 22:394-409. [PMID: 37865288 DOI: 10.1016/j.jtha.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Myeloid cell metabolic reprogramming is a hallmark of inflammatory disease; however, its role in inflammation-induced hypercoagulability is poorly understood. OBJECTIVES We aimed to evaluate the role of inflammation-associated metabolic reprogramming in regulating blood coagulation. METHODS We used novel myeloid cell-based global hemostasis assays and murine models of immunometabolic disease. RESULTS Glycolysis was essential for enhanced activated myeloid cell tissue factor expression and decryption, driving increased cell-dependent thrombin generation in response to inflammatory challenge. Similarly, inhibition of glycolysis enhanced activated macrophage fibrinolytic activity through reduced plasminogen activator inhibitor 1 activity. Macrophage polarization or activation markedly increased endothelial protein C receptor (EPCR) expression on monocytes and macrophages, leading to increased myeloid cell-dependent protein C activation. Importantly, inflammation-dependent EPCR expression on tissue-resident macrophages was also observed in vivo. Adipose tissue macrophages from obese mice fed a high-fat diet exhibited significantly enhanced EPCR expression and activated protein C generation compared with macrophages isolated from the adipose tissue of healthy mice. Similarly, the induction of colitis in mice prompted infiltration of EPCR+ innate myeloid cells within inflamed colonic tissue that were absent from the intestinal tissue of healthy mice. CONCLUSION Collectively, this study identifies immunometabolic regulation of myeloid cell hypercoagulability, opening new therapeutic possibilities for targeted mitigation of thromboinflammatory disease.
Collapse
Affiliation(s)
- Aisling M Rehill
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland; National Children's Research Centre, Children's Health Ireland Crumlin, Dublin, Ireland. https://twitter.com/aislingrehill
| | - Gemma Leon
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland; National Children's Research Centre, Children's Health Ireland Crumlin, Dublin, Ireland
| | - Sean McCluskey
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland; National Children's Research Centre, Children's Health Ireland Crumlin, Dublin, Ireland
| | - Ingmar Schoen
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Yasmina Hernandez-Santana
- National Children's Research Centre, Children's Health Ireland Crumlin, Dublin, Ireland; Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Stephanie Annett
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Paula Klavina
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Tracy Robson
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Annie M Curtis
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Thomas Renné
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland; Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Seamus Hussey
- National Children's Research Centre, Children's Health Ireland Crumlin, Dublin, Ireland; Department of Paediatrics, University College Dublin and Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - James S O'Donnell
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Patrick T Walsh
- National Children's Research Centre, Children's Health Ireland Crumlin, Dublin, Ireland; Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Roger J S Preston
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland; National Children's Research Centre, Children's Health Ireland Crumlin, Dublin, Ireland.
| |
Collapse
|
3
|
Sansonetti M, Al Soodi B, Thum T, Jung M. Macrophage-based therapeutic approaches for cardiovascular diseases. Basic Res Cardiol 2024; 119:1-33. [PMID: 38170281 PMCID: PMC10837257 DOI: 10.1007/s00395-023-01027-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Despite the advances in treatment options, cardiovascular disease (CVDs) remains the leading cause of death over the world. Chronic inflammatory response and irreversible fibrosis are the main underlying pathophysiological causes of progression of CVDs. In recent decades, cardiac macrophages have been recognized as main regulatory players in the development of these complex pathophysiological conditions. Numerous approaches aimed at macrophages have been devised, leading to novel prospects for therapeutic interventions. Our review covers the advancements in macrophage-centric treatment plans for various pathologic conditions and examines the potential consequences and obstacles of employing macrophage-targeted techniques in cardiac diseases.
Collapse
Affiliation(s)
- Marida Sansonetti
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany
| | - Bashar Al Soodi
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany.
- REBIRTH-Center for Translational Regenerative Medicine, Hannover Medical School, 30625, Hannover, Germany.
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), 30625, Hannover, Germany.
| | - Mira Jung
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
4
|
Henke PK, Nicklas JM, Obi A. Immune cell-mediated venous thrombus resolution. Res Pract Thromb Haemost 2023; 7:102268. [PMID: 38193054 PMCID: PMC10772895 DOI: 10.1016/j.rpth.2023.102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 01/10/2024] Open
Abstract
Herein, we review the current processes that govern experimental deep vein thrombus (DVT) resolution. How the human DVT resolves at the molecular and cellular level is not well known due to limited specimen availability. Experimentally, the thrombus resolution resembles wound healing, with early neutrophil-mediated actions followed by monocyte/macrophage-mediated events, including neovascularization, fibrinolysis, and eventually collagen replacement. Potential therapeutic targets are described, and coupling with site-directed approaches to mitigate off-target effects is the long-term goal. Similarly, timing of adjunctive agents to accelerate DVT resolution is an area that is only starting to be considered. There is much critical research that is needed in this area.
Collapse
Affiliation(s)
- Peter K. Henke
- Department of Surgery, University of Michigan Health System, Frankel Cardiovascular Center, Ann Arbor, Michigan, USA
| | - John M. Nicklas
- Department of Medicine, Brown University Medical School, Providence, Rhode Island, USA
| | - Andrea Obi
- Department of Surgery, University of Michigan Health System, Frankel Cardiovascular Center, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Seliverstov E, Lobastov K, Ilyukhin E, Apkhanova T, Akhmetzyanov R, Akhtyamov I, Barinov V, Bakhmetiev A, Belov M, Bobrov S, Bozhkova S, Bredikhin R, Bulatov V, Vavilova T, Vardanyan A, Vorobiev N, Gavrilov E, Gavrilov S, Golovina V, Gorin A, Dzhenina O, Dianov S, Efremova O, Zhukovets V, Zamyatin M, Ignatiev I, Kalinin R, Kamaev A, Kaplunov O, Karimova G, Karpenko A, Kasimova A, Katelnitskaya O, Katelnitsky I, Katorkin S, Knyazev R, Konchugova T, Kopenkin S, Koshevoy A, Kravtsov P, Krylov A, Kulchitskaya D, Laberko L, Lebedev I, Malanin D, Matyushkin A, Mzhavanadze N, Moiseev S, Mushtin N, Nikolaeva M, Pelevin A, Petrikov A, Piradov M, Pikhanova Z, Poddubnaya I, Porembskaya O, Potapov M, Pyregov A, Rachin A, Rogachevsky O, Ryabinkina Y, Sapelkin S, Sonkin I, Soroka V, Sushkov S, Schastlivtsev I, Tikhilov R, Tryakin A, Fokin A, Khoronenko V, Khruslov M, Tsaturyan A, Tsed A, Cherkashin M, Chechulova A, Chuiko S, Shimanko A, Shmakov R, Yavelov I, Yashkin M, Kirienko A, Zolotukhin I, Stoyko Y, Suchkov I. Prevention, Diagnostics and Treatment of Deep Vein Thrombosis. Russian Experts Consensus. JOURNAL OF VENOUS DISORDERS 2023; 17:152. [DOI: 10.17116/flebo202317031152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The guidelines are developed in accordance with the requirements of the Ministry of Health of the Russian Federation by the all-Russian public organization «Association of Phlebologists of Russia» with participation of the Association of Cardiovascular Surgeons of Russia, the Russian Society of Surgeons, the Russian Society of Angiologists and Vascular Surgeons, the Association of Traumatologists and Orthopedists of Russia, the Association of Oncologists of Russia, the Russian Society of Clinical Oncology, Russian Society of Oncohematologists, Russian Society of Cardiology, Russian Society of Obstetricians and Gynecologists.
Collapse
|
6
|
Bhandari R, Yang H, Kosarek NN, Smith AE, Garlick JA, Hinchcliff M, Whitfield ML, Pioli PA. Human dermal fibroblast-derived exosomes induce macrophage activation in systemic sclerosis. Rheumatology (Oxford) 2023; 62:SI114-SI124. [PMID: 35946522 PMCID: PMC9910573 DOI: 10.1093/rheumatology/keac453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Prior work demonstrates that co-cultured macrophages and fibroblasts from patients with SSc engage in reciprocal activation. However, the mechanism by which these cell types communicate and contribute to fibrosis and inflammation in SSc is unknown. METHODS Fibroblasts were isolated from skin biopsies obtained from 7 SSc patients or 6 healthy age and gender-matched control subjects following written informed consent. Human donor-derived macrophages were cultured with exosomes isolated from control or SSc fibroblasts for an additional 48 h. Macrophages were immunophenotyped using flow cytometry, qRT-PCR and multiplex. For mutual activation studies, exosome-activated macrophages were co-cultured with SSc or healthy fibroblasts using Transwells. RESULTS Macrophages activated with dermal fibroblast-derived exosomes from SSc patients upregulated surface expression of CD163, CD206, MHC Class II and CD16 and secreted increased levels of IL-6, IL-10, IL-12p40 and TNF compared with macrophages incubated with healthy control fibroblasts (n = 7, P < 0.05). Exosome-stimulated macrophages and SSc fibroblasts engaged in reciprocal activation, as production of collagen and fibronectin was significantly increased in SSc fibroblasts receiving signals from SSc exosome-stimulated macrophages (n = 7, P < 0.05). CONCLUSION In this work, we demonstrate for the first time that human SSc dermal fibroblasts mediate macrophage activation through exosomes. Our findings suggest that macrophages and fibroblasts engage in cross-talk in SSc skin, resulting in mutual activation, inflammation, and extracellular matrix (ECM) deposition. Collectively, these studies implicate macrophages and fibroblasts as cooperative mediators of fibrosis in SSc and suggest therapeutic targeting of both cell types may provide maximal benefit in ameliorating disease in SSc patients.
Collapse
Affiliation(s)
| | - Heetaek Yang
- Department of Microbiology and Immunology
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Noelle N Kosarek
- Department of Microbiology and Immunology
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Avi E Smith
- Department of Diagnostic Science, Tufts University School of Dental Medicine, Boston, MA
| | - Jonathan A Garlick
- Department of Diagnostic Science, Tufts University School of Dental Medicine, Boston, MA
| | - Monique Hinchcliff
- Division of Rheumatology, Allergy, and Immunology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Michael L Whitfield
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | | |
Collapse
|
7
|
The uPA/uPAR System Orchestrates the Inflammatory Response, Vascular Homeostasis, and Immune System in Fibrosis Progression. Int J Mol Sci 2023; 24:ijms24021796. [PMID: 36675310 PMCID: PMC9866279 DOI: 10.3390/ijms24021796] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Fibrotic diseases, such as systemic sclerosis (SSc), idiopathic pulmonary fibrosis, renal fibrosis and liver cirrhosis are characterized by tissue overgrowth due to excessive extracellular matrix (ECM) deposition. Fibrosis progression is caused by ECM overproduction and the inhibition of ECM degradation due to several events, including inflammation, vascular endothelial dysfunction, and immune abnormalities. Recently, it has been reported that urokinase plasminogen activator (uPA) and its receptor (uPAR), known to be fibrinolytic factors, orchestrate the inflammatory response, vascular homeostasis, and immune homeostasis system. The uPA/uPAR system may show promise as a potential therapeutic target for fibrotic diseases. This review considers the role of the uPA/uPAR system in the progression of fibrotic diseases.
Collapse
|
8
|
Sugimoto MA, Perucci LO, Tavares LP, Teixeira MM, Sousa LP. Fibrinolysis in COVID-19: Impact on Clot Lysis and Modulation of Inflammation. Curr Drug Targets 2022; 23:1578-1592. [PMID: 36221881 DOI: 10.2174/1389450123666221011102250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 01/25/2023]
Abstract
COVID-19 is a multisystem disease caused by SARS-CoV-2 and is associated with an imbalance between the coagulation and fibrinolytic systems. Overall, hypercoagulation, hypofibrinolysis and fibrin-clot resistance to fibrinolysis predispose patients to thrombotic and thromboembolic events. In the lungs, the virus triggers alveolar and interstitial fibrin deposition, endothelial dysfunction, and pulmonary intravascular coagulation, all events intrinsically associated with the activation of inflammation and organ injury. Adding to the pathogenesis of COVID-19, there is a positive feedback loop by which local fibrin deposition in the lungs can fuel inflammation and consequently dysregulates coagulation, a process known as immunothrombosis. Therefore, fibrinolysis plays a central role in maintaining hemostasis and tissue homeostasis during COVID-19 by cleaning fibrin clots and controlling feed-forward products of coagulation. In addition, components of the fibrinolytic system have important immunomodulatory roles, as evidenced by studies showing the contribution of Plasminogen/Plasmin (Plg/Pla) to the resolution of inflammation. Herein, we review clinical evidence for the dysregulation of the fibrinolytic system and discuss its contribution to thrombosis risk and exacerbated inflammation in severe COVID-19. We also discuss the current concept of an interplay between fibrinolysis and inflammation resolution, mirroring the well-known crosstalk between inflammation and coagulation. Finally, we consider the central role of the Plg/Pla system in resolving thromboinflammation, drawing attention to the overlooked consequences of COVID-19-associated fibrinolytic abnormalities to local and systemic inflammation.
Collapse
Affiliation(s)
- Michelle A Sugimoto
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Division of Medicine, University College London, London, UK.,Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luiza O Perucci
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Nucleus of Research on Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Luciana P Tavares
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Lirlândia P Sousa
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
9
|
Chen B, Li R, Hernandez SC, Hanna A, Su K, Shinde AV, Frangogiannis NG. Differential effects of Smad2 and Smad3 in regulation of macrophage phenotype and function in the infarcted myocardium. J Mol Cell Cardiol 2022; 171:1-15. [PMID: 35780861 DOI: 10.1016/j.yjmcc.2022.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 02/08/2023]
Abstract
TGF-βs regulate macrophage responses, by activating Smad2/3. We have previously demonstrated that macrophage-specific Smad3 stimulates phagocytosis and mediates anti-inflammatory macrophage transition in the infarcted heart. However, the role of macrophage Smad2 signaling in myocardial infarction remains unknown. We studied the role of macrophage-specific Smad2 signaling in healing mouse infarcts, and we explored the basis for the distinct effects of Smad2 and Smad3. In infarct macrophages, Smad3 activation preceded Smad2 activation. In contrast to the effects of Smad3 loss, myeloid cell-specific Smad2 disruption had no effects on mortality, ventricular dysfunction and adverse remodeling, after myocardial infarction. Macrophage Smad2 loss modestly, but transiently increased myofibroblast density in the infarct, but did not affect phagocytic removal of dead cells, macrophage infiltration, collagen deposition, and scar remodeling. In isolated macrophages, TGF-β1, -β2 and -β3, activated both Smad2 and Smad3, whereas BMP6 triggered only Smad3 activation. Smad2 and Smad3 had similar patterns of nuclear translocation in response to TGF-β1. RNA-sequencing showed that Smad3, and not Smad2, was the main mediator of transcriptional effects of TGF-β on macrophages. Smad3 loss resulted in differential expression of genes associated with RAR/RXR signaling, cholesterol biosynthesis and lipid metabolism. In both isolated bone marrow-derived macrophages and in infarct macrophages, Smad3 mediated synthesis of Nr1d2 and Rara, two genes encoding nuclear receptors, that may be involved in regulation of their phagocytic and anti-inflammatory properties. In conclusion, the in vivo and in vitro effects of TGF-β on macrophage function involve Smad3, and not Smad2.
Collapse
Affiliation(s)
- Bijun Chen
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Ruoshui Li
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Silvia C Hernandez
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Anis Hanna
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Kai Su
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Arti V Shinde
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America.
| |
Collapse
|
10
|
Barcena ML, Jeuthe S, Niehues MH, Pozdniakova S, Haritonow N, Kühl AA, Messroghli DR, Regitz-Zagrosek V. Sex-Specific Differences of the Inflammatory State in Experimental Autoimmune Myocarditis. Front Immunol 2021; 12:686384. [PMID: 34122450 PMCID: PMC8195335 DOI: 10.3389/fimmu.2021.686384] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
Increasing evidence suggests male sex as a potential risk factor for a higher incidence of cardiac fibrosis, stronger cardiac inflammation, and dilated cardiomyopathy (DCM) in human myocarditis. Chronic activation of the immune response in myocarditis may trigger autoimmunity. The experimental autoimmune myocarditis (EAM) model has been well established for the study of autoimmune myocarditis, however the role of sex in this pathology has not been fully explored. In this study, we investigated sex differences in the inflammatory response in the EAM model. We analyzed the cardiac function, as well as the inflammatory stage and fibrosis formation in the heart of EAM male and female rats. 21 days after induction of EAM, male EAM rats showed a decreased ejection fraction, stroke volume and cardiac output, while females did not. A significantly elevated number of infiltrates was detected in myocardium in both sexes, indicating the activation of macrophages following EAM induction. The level of anti-inflammatory macrophages (CD68+ ArgI+) was only significantly increased in female hearts. The expression of Col3A1 and fibrosis formation were more prominent in males. Furthermore, prominent pro-inflammatory factors were increased only in male rats. These findings indicate sex-specific alterations in the inflammatory stage of EAM, with a pro-inflammatory phenotype appearing in males and an anti-inflammatory phenotype in females, which both significantly affect cardiac function in autoimmune myocarditis.
Collapse
Affiliation(s)
- Maria Luisa Barcena
- Department of Geriatrics and Medical Gerontology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin Partner Site, Berlin, Germany
| | - Sarah Jeuthe
- DZHK (German Centre for Cardiovascular Research), Berlin Partner Site, Berlin, Germany.,Department of Internal Medicine - Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Maximilian H Niehues
- Department of Geriatrics and Medical Gerontology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Sofya Pozdniakova
- Department of Geriatrics and Medical Gerontology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Climate and Health Program (CLIMA), Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Natalie Haritonow
- Department of Geriatrics and Medical Gerontology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Anja A Kühl
- iPATH Berlin-Immunopathology for Experimental Models, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Daniel R Messroghli
- DZHK (German Centre for Cardiovascular Research), Berlin Partner Site, Berlin, Germany.,Department of Internal Medicine - Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany.,Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Vera Regitz-Zagrosek
- Institute for Gender in Medicine, Center for Cardiovascular Research, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Cardiology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| |
Collapse
|
11
|
Riley LA, Merryman WD. Cadherin-11 and cardiac fibrosis: A common target for a common pathology. Cell Signal 2020; 78:109876. [PMID: 33285242 DOI: 10.1016/j.cellsig.2020.109876] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
Cardiac fibrosis represents an enormous health concern as it is prevalent in nearly every form of cardiovascular disease, the leading cause of death worldwide. Fibrosis is characterized by the activation of fibroblasts into myofibroblasts, a contractile cell type that secretes significant amounts of extracellular matrix components; however, the onset of this condition is also due to persistent inflammation and the cellular responses to a changing mechanical environment. In this review, we provide an overview of the pro-fibrotic, pro-inflammatory, and biomechanical mechanisms that lead to cardiac fibrosis in cardiovascular diseases. We then discuss cadherin-11, an intercellular adhesion protein present on both myofibroblasts and inflammatory cells, as a potential link for all three of the fibrotic mechanisms. Since experimentally blocking cadherin-11 dimerization prevents fibrotic diseases including cardiac fibrosis, understanding how this protein can be targeted for therapeutic use could lead to better treatments for patients with heart disease.
Collapse
Affiliation(s)
- Lance A Riley
- Department of Biomedical Engineering, Vanderbilt University, USA
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, USA.
| |
Collapse
|
12
|
Wang M, Lessard SG, Singh P, Pannellini T, Chen T, Rourke BJ, Chowdhury L, Craveiro V, Sculco PK, Meulen MCH, Otero M. Knee fibrosis is associated with the development of osteoarthritis in a murine model of tibial compression. J Orthop Res 2020. [DOI: 10.1002/jor.24815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Mengying Wang
- HSS Research Institute Hospital for Special Surgery New York New York
- School of Public Health, Xi'an Jiaotong University Health Science Center Xi'an China
| | | | - Purva Singh
- HSS Research Institute Hospital for Special Surgery New York New York
| | - Tania Pannellini
- HSS Research Institute Hospital for Special Surgery New York New York
| | - Tony Chen
- HSS Research Institute Hospital for Special Surgery New York New York
| | - Brennan J. Rourke
- HSS Research Institute Hospital for Special Surgery New York New York
| | - Luvana Chowdhury
- HSS Research Institute Hospital for Special Surgery New York New York
| | - Vinicius Craveiro
- HSS Research Institute Hospital for Special Surgery New York New York
| | - Peter K. Sculco
- The Stavros Niarchos Foundation Complex Joint Reconstruction Center Hospital for Special Surgery New York New York
| | - Marjolein C. H. Meulen
- HSS Research Institute Hospital for Special Surgery New York New York
- Sibley School of Mechanical and Aerospace Engineering Cornell University Ithaca New York
- Meinig School of Biomedical Engineering Cornell University Ithaca New York
| | - Miguel Otero
- HSS Research Institute Hospital for Special Surgery New York New York
| |
Collapse
|
13
|
Nicklas JM, Gordon AE, Henke PK. Resolution of Deep Venous Thrombosis: Proposed Immune Paradigms. Int J Mol Sci 2020; 21:E2080. [PMID: 32197363 PMCID: PMC7139924 DOI: 10.3390/ijms21062080] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 12/12/2022] Open
Abstract
Venous thromboembolism (VTE) is a pathology encompassing deep vein thrombosis (DVT) and pulmonary embolism (PE) associated with high morbidity and mortality. Because patients often present after a thrombus has already formed, the mechanisms that drive DVT resolution are being investigated in search of treatment. Herein, we review the current literature, including the molecular mechanisms of fibrinolysis and collagenolysis, as well as the critical cellular roles of macrophages, neutrophils, and endothelial cells. We propose two general models for the operation of the immune system in the context of venous thrombosis. In early thrombus resolution, neutrophil influx stabilizes the tissue through NETosis. Meanwhile, macrophages and intact neutrophils recognize the extracellular DNA by the TLR9 receptor and induce fibrosis, a complimentary stabilization method. At later stages of resolution, pro-inflammatory macrophages police the thrombus for pathogens, a role supported by both T-cells and mast cells. Once they verify sterility, these macrophages transform into their pro-resolving phenotype. Endothelial cells both coat the stabilized thrombus, a necessary early step, and can undergo an endothelial-mesenchymal transition, which impedes DVT resolution. Several of these interactions hold promise for future therapy.
Collapse
Affiliation(s)
| | | | - Peter K. Henke
- School of Medicine, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA; (J.M.N.); (A.E.G.)
| |
Collapse
|
14
|
Smirlis D, Dingli F, Pescher P, Prina E, Loew D, Rachidi N, Späth GF. SILAC-based quantitative proteomics reveals pleiotropic, phenotypic modulation in primary murine macrophages infected with the protozoan pathogen Leishmania donovani. J Proteomics 2019; 213:103617. [PMID: 31846769 DOI: 10.1016/j.jprot.2019.103617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/04/2019] [Accepted: 12/13/2019] [Indexed: 01/06/2023]
Abstract
Leishmaniases are major vector-borne tropical diseases responsible for great human morbidity and mortality, caused by protozoan, trypanosomatid parasites of the genus Leishmania. In the mammalian host, parasites survive and multiply within mononuclear phagocytes, especially macrophages. However, the underlying mechanisms by which Leishmania spp. affect their host are not fully understood. Herein, proteomic alterations of primary, bone marrow-derived BALB/c macrophages are documented after 72 h of infection with Leishmania donovani insect-stage promastigotes, applying a SILAC-based, quantitative proteomics approach. The protocol was optimised by combining strong anion exchange and gel electrophoresis fractionation that displayed similar depth of analysis (combined total of 6189 mouse proteins). Our analyses revealed 86 differentially modulated proteins (35 showing increased and 51 decreased abundance) in response to Leishmania donovani infection. The proteomics results were validated by analysing the abundance of selected proteins. Intracellular Leishmania donovani infection led to changes in various host cell biological processes, including primary metabolism and catabolic process, with a significant enrichment in lysosomal organisation. Overall, our analysis establishes the first proteome of bona fide primary macrophages infected ex vivo with Leishmania donovani, revealing new mechanisms acting at the host/pathogen interface. SIGNIFICANCE: Little is known on proteome changes that occur in primary macrophages after Leishmania donovani infection. This study describes a SILAC-based quantitative proteomics approach to characterise changes of bone marrow-derived macrophages infected with L. donovani promastigotes for 72 h. With the application of SILAC and the use of SAX and GEL fractionation methods, we have tested new routes for proteome quantification of primary macrophages. The protocols developed here can be applicable to other diseases and pathologies. Moreover, this study sheds important new light on the "proteomic reprogramming" of infected macrophages in response to L. donovani promastigotes that affects primary metabolism, cellular catabolic processes, and lysosomal/vacuole organisation. Thus, our study reveals key molecules and processes that act at the host/pathogen interface that may inform on new immuno- or chemotherapeutic interventions to combat leishmaniasis.
Collapse
Affiliation(s)
- Despina Smirlis
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France; Hellenic Pasteur Institute, Molecular Parasitology Laboratory, Athens, Greece.
| | - Florent Dingli
- Laboratoire de Spectrométrie de Masse Protéomique, Centre de Recherche, Institut Curie, Université de recherche PSL, Paris, France
| | - Pascale Pescher
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Eric Prina
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Damarys Loew
- Laboratoire de Spectrométrie de Masse Protéomique, Centre de Recherche, Institut Curie, Université de recherche PSL, Paris, France
| | - Najma Rachidi
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Gerald F Späth
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France.
| |
Collapse
|
15
|
Singh S, Torzewski M. Fibroblasts and Their Pathological Functions in the Fibrosis of Aortic Valve Sclerosis and Atherosclerosis. Biomolecules 2019; 9:biom9090472. [PMID: 31510085 PMCID: PMC6769553 DOI: 10.3390/biom9090472] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases, such as atherosclerosis and aortic valve sclerosis (AVS) are driven by inflammation induced by a variety of stimuli, including low-density lipoproteins (LDL), reactive oxygen species (ROS), infections, mechanical stress, and chemical insults. Fibrosis is the process of compensating for tissue injury caused by chronic inflammation. Fibrosis is initially beneficial and maintains extracellular homeostasis. However, in the case of AVS and atherosclerosis, persistently active resident fibroblasts, myofibroblasts, and smooth muscle cells (SMCs) perpetually remodel the extracellular matrix under the control of autocrine and paracrine signaling from the immune cells. Myofibroblasts also produce pro-fibrotic factors, such as transforming growth factor-β1 (TGF-β1), angiotensin II (Ang II), and interleukin-1 (IL-1), which allow them to assist in the activation and migration of resident immune cells. Post wound repair, these cells undergo apoptosis or become senescent; however, in the presence of unresolved inflammation and persistence signaling for myofibroblast activation, the tissue homeostasis is disturbed, leading to excessive extracellular matrix (ECM) secretion, disorganized ECM, and thickening of the affected tissue. Accumulating evidence suggests that diverse mechanisms drive fibrosis in cardiovascular pathologies, and it is crucial to understand the impact and contribution of the various mechanisms for the control of fibrosis before the onset of a severe pathological consequence.
Collapse
Affiliation(s)
- Savita Singh
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology and University of Tuebingen, 70376 Stuttgart, Germany.
| | - Michael Torzewski
- Department of Laboratory Medicine and Hospital Hygiene, Robert-Bosch-Hospital, 70376 Stuttgart, Germany.
| |
Collapse
|
16
|
Schroder WA, Hirata TD, Le TT, Gardner J, Boyle GM, Ellis J, Nakayama E, Pathirana D, Nakaya HI, Suhrbier A. SerpinB2 inhibits migration and promotes a resolution phase signature in large peritoneal macrophages. Sci Rep 2019; 9:12421. [PMID: 31455834 PMCID: PMC6712035 DOI: 10.1038/s41598-019-48741-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 08/12/2019] [Indexed: 12/17/2022] Open
Abstract
SerpinB2 (plasminogen activator inhibitor type 2) has been called the "undecided serpin" with no clear consensus on its physiological role, although it is well described as an inhibitor of urokinase plasminogen activator (uPA). In macrophages, pro-inflammatory stimuli usually induce SerpinB2; however, expression is constitutive in Gata6+ large peritoneal macrophages (LPM). Interrogation of expression data from human macrophages treated with a range of stimuli using a new bioinformatics tool, CEMiTool, suggested that SerpinB2 is most tightly co- and counter-regulated with genes associated with cell movement. Using LPM from SerpinB2-/- and SerpinB2R380A (active site mutant) mice, we show that migration on Matrigel was faster than for their wild-type controls. Confocal microscopy illustrated that SerpinB2 and F-actin staining overlapped in focal adhesions and lamellipodia. Genes associated with migration and extracellular matrix interactions were also identified by RNA-Seq analysis of migrating RPM from wild-type and SerpinB2R380A mice. Subsequent gene set enrichment analyses (GSEA) suggested SerpinB2 counter-regulates many Gata6-regulated genes associated with migration. These data argue that the role of SerpinB2 in macrophages is inhibition of uPA-mediated plasmin generation during cell migration. GSEA also suggested that SerpinB2 expression (likely via ensuing modulation of uPA-receptor/integrin signaling) promotes the adoption of a resolution phase signature.
Collapse
Affiliation(s)
- Wayne A Schroder
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Thiago D Hirata
- School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Thuy T Le
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Joy Gardner
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Glen M Boyle
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Jonathan Ellis
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Eri Nakayama
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Dilan Pathirana
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Helder I Nakaya
- School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia.
| |
Collapse
|
17
|
Vago JP, Sugimoto MA, Lima KM, Negreiros-Lima GL, Baik N, Teixeira MM, Perretti M, Parmer RJ, Miles LA, Sousa LP. Plasminogen and the Plasminogen Receptor, Plg-R KT, Regulate Macrophage Phenotypic, and Functional Changes. Front Immunol 2019; 10:1458. [PMID: 31316511 PMCID: PMC6611080 DOI: 10.3389/fimmu.2019.01458] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/10/2019] [Indexed: 01/31/2023] Open
Abstract
Inflammation resolution is an active process that functions to restore tissue homeostasis. Clearance of apoptotic leukocytes by efferocytosis at inflammatory sites plays an important role in inflammation resolution and induces remarkable macrophage phenotypic and functional changes. Here, we investigated the effects of deletion of either plasminogen (Plg) or the Plg receptor, Plg-RKT, on the resolution of inflammation. In a murine model of pleurisy, the numbers of total mononuclear cells recruited to the pleural cavity were significantly decreased in both Plg−/− and Plg-RKT−/− mice, a response associated with decreased levels of the chemokine CCL2 in pleural exudates. Increased percentages of M1-like macrophages were determined in pleural lavages of Plg−/− and Plg-RKT−/− mice without significant changes in M2-like macrophage percentages. In vitro, Plg and plasmin (Pla) increased CD206/Arginase-1 expression and the levels of IL-10/TGF-β (M2 markers) while decreasing IFN/LPS-induced M1 markers in murine bone-marrow-derived macrophages (BMDMs) and human macrophages. Furthermore, IL4-induced M2-like polarization was defective in BMDMs from both Plg−/− and Plg-RKT−/− mice. Mechanistically, Plg and Pla induced transient STAT3 phosphorylation, which was decreased in Plg−/− and Plg-RKT−/− BMDMs after IL-4 or IL-10 stimulation. The extents of expression of CD206 and Annexin A1 (important for clearance of apoptotic cells) were reduced in Plg−/− and Plg-RKT−/− macrophage populations, which exhibited decreased phagocytosis of apoptotic neutrophils (efferocytosis) in vivo and in vitro. Taken together, these results suggest that Plg and its receptor, Plg-RKT, regulate macrophage polarization and efferocytosis, as key contributors to the resolution of inflammation.
Collapse
Affiliation(s)
- Juliana P Vago
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States.,Center for Drug Research and Development, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Michelle A Sugimoto
- Center for Drug Research and Development, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Barts and The London School of Medicine, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Kátia M Lima
- Department of Clinical and Toxicological Analyses, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Graziele L Negreiros-Lima
- Department of Clinical and Toxicological Analyses, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nagyung Baik
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Mauro M Teixeira
- Center for Drug Research and Development, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Perretti
- Barts and The London School of Medicine, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Robert J Parmer
- Department of Medicine, Veterans Administration San Diego Healthcare System, University of California, San Diego, San Diego, CA, United States
| | - Lindsey A Miles
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Lirlândia P Sousa
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States.,Center for Drug Research and Development, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Department of Clinical and Toxicological Analyses, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
18
|
Chew-Harris J, Appleby S, Richards AM, Troughton RW, Pemberton CJ. Analytical, biochemical and clearance considerations of soluble urokinase plasminogen activator receptor (suPAR) in healthy individuals. Clin Biochem 2019; 69:36-44. [PMID: 31129182 DOI: 10.1016/j.clinbiochem.2019.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND Soluble urokinase plasminogen activator receptor (suPAR) is an emerging marker of cardiovascular disease burden. Appropriate assessment of assay performance and reference interval are required to enable interpretation of results to facilitate its clinical application. METHODS suPAR was measured using the suPARnostic® ELISA in 155 healthy volunteers. Assay performance was assessed for anticoagulant effect, recovery, interference, linearity and cross-reactivity. The identity of immunoreactive suPAR was confirmed by size-exclusion HPLC. To establish anatomical sites of release and uptake, we measured suPAR in regional samples from subjects undergoing cardiac catheterization. RESULTS The median concentration of suPAR was 2.1 ng/mL (IQR:1.7-2.3) in health. In comparison with EDTA, suPAR measurements were affected by lithium heparin (>10% change) and increased with serum usage. suPAR reactivity also increased in the presence of haemolysis (10 g/L), but was suppressed with urokinase and lipids (4 g/L). In multiple regression analyses, suPAR associated independently with body weight, NT-proBNP and MR-proADM (P = .03) for healthy individuals. Regional plasma sampling showed lower suPAR concentrations in the coronary sinus and renal vein compared with concentrations in femoral arterial samples. Immunoreactive circulating suPAR species had Mr of 10-39 kDa. CONCLUSION The suPARnostic® assay performs acceptably for a clinical assay but is limited in the presence of high levels of hemolysis, lipids and urokinase. We provide the first evidence for the heart and kidneys as organs of suPAR clearance in humans. Additional investigations are warranted to determine whether there is a need to compare the marker performance of differing circulating forms of suPAR.
Collapse
Affiliation(s)
- Janice Chew-Harris
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand.
| | - Sarah Appleby
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | - A Mark Richards
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand; Cardiovascular Research Institute, National University of Singapore, Singapore; Department of Cardiology, Canterbury District Health Board, Christchurch, New Zealand
| | - Richard W Troughton
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand; Department of Cardiology, Canterbury District Health Board, Christchurch, New Zealand
| | | |
Collapse
|
19
|
Estramustine Phosphate Inhibits TGF- β-Induced Mouse Macrophage Migration and Urokinase-Type Plasminogen Activator Production. Anal Cell Pathol (Amst) 2018; 2018:3134102. [PMID: 30245956 PMCID: PMC6139214 DOI: 10.1155/2018/3134102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/29/2018] [Indexed: 11/17/2022] Open
Abstract
Transforming growth factor-beta (TGF-β) has been demonstrated as a key regulator of immune responses including monocyte/macrophage functions. TGF-β regulates macrophage cell migration and polarization, as well as it is shown to modulate macrophage urokinase-type plasminogen activator (uPA) production, which also contributes to macrophage chemotaxis and migration toward damaged or inflamed tissues. Microtubule (MT) cytoskeleton dynamic plays a key role during the cell motility, and any interference on the MT network profoundly affects cell migration. In this study, by using estramustine phosphate (EP), which modifies MT stability, we analysed whether tubulin cytoskeleton contributes to TGF-β-induced macrophage cell migration and uPA expression. We found out that, in the murine macrophage cell line RAW 264.7, EP at noncytotoxic concentrations inhibited cell migration and uPA expression induced by TGF-β. Moreover, EP greatly reduced the capacity of TGF-β to trigger the phosphorylation and activation of its downstream Smad3 effector. Furthermore, Smad3 activation seems to be critical for the increased cell motility. Thus, our data suggest that EP, by interfering with MT dynamics, inhibits TGF-β-induced RAW 264.7 cell migration paralleled with reduction of uPA induction, in part by disabling Smad3 activation by TGF-β.
Collapse
|
20
|
Plasmin and plasminogen induce macrophage reprogramming and regulate key steps of inflammation resolution via annexin A1. Blood 2017; 129:2896-2907. [PMID: 28320709 DOI: 10.1182/blood-2016-09-742825] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/14/2017] [Indexed: 12/15/2022] Open
Abstract
Inflammation resolution is an active process that functions to restore tissue homeostasis. The participation of the plasminogen (Plg)/plasmin (Pla) system in the productive phase of inflammation is well known, but its involvement in the resolution phase remains unclear. Therefore, we aimed to investigate the potential role of Plg/Pla in key events during the resolution of acute inflammation and its underlying mechanisms. Plg/Pla injection into the pleural cavity of BALB/c mice induced a time-dependent influx of mononuclear cells that were primarily macrophages of anti-inflammatory (M2 [F4/80high Gr1- CD11bhigh]) and proresolving (Mres [F4/80med CD11blow]) phenotypes, without changing the number of macrophages with a proinflammatory profile (M1 [F4/80low Gr1+ CD11bmed]). Pleural injection of Plg/Pla also increased M2 markers (CD206 and arginase-1) and secretory products (transforming growth factor β and interleukin-6) and decreased the expression of inducible nitric oxide synthase (M1 marker). During the resolving phase of lipopolysaccharide (LPS)-induced inflammation when resolving macrophages predominate, we found increased Plg expression and Pla activity, further supporting a link between the Plg/Pla system and key cellular events in resolution. Indeed, Plg or Pla given at the peak of inflammation promoted resolution by decreasing neutrophil numbers and increasing neutrophil apoptosis and efferocytosis in a serine-protease inhibitor-sensitive manner. Next, we confirmed the ability of Plg/Pla to both promote efferocytosis and override the prosurvival effect of LPS via annexin A1. These findings suggest that Plg and Pla regulate several key steps in inflammation resolution, namely, neutrophil apoptosis, macrophage reprogramming, and efferocytosis, which have a major impact on the establishment of an efficient resolution process.
Collapse
|
21
|
The role of PTEN in regulation of hepatic macrophages activation and function in progression and reversal of liver fibrosis. Toxicol Appl Pharmacol 2017; 317:51-62. [PMID: 28095306 DOI: 10.1016/j.taap.2017.01.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/02/2016] [Accepted: 01/12/2017] [Indexed: 12/25/2022]
Abstract
Activation of Kupffer cells (KCs) plays a pivotal role in the pathogenesis of liver fibrosis. The progression and reversal of CCl4-induced mouse liver fibrosis showed a mixed induction of hepatic classical (M1) and alternative (M2) macrophage markers. Although the role of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in modulating myeloid cell activation has recently been identified, its function in macrophage activation during hepatic fibrosis remains to be fully appreciated. In our study, PTEN expression of KCs was remarkably decreased in CCl4-induced mice but increased to a near-normal level in reversed mice. Moreover, PTEN was significantly decreased in IL4-induced RAW 264.7 cells in vitro and lower expression of PTEN was observed in M2 macrophages in vivo. In addition, loss- and gain-of-function studies suggested that PTEN regulates M2 macrophages polarization via activation of PI3K/Akt/STAT6 signaling, but had a limited effect on M1 macrophages polarization in vitro. Additionally, Ly294002, a chemical inhibitor of PI3K/Akt, could dramatically down-regulate the hallmarks of M2 macrophages. In conclusion, PTEN mediates macrophages activation by PI3K/Akt/STAT6 signaling pathway, which provides novel compelling evidences on the potential of PTEN in liver injury and opens new cellular target for the pharmacological therapy of liver fibrosis.
Collapse
|
22
|
Carlson S, Helterline D, Asbe L, Dupras S, Minami E, Farris S, Stempien-Otero A. Cardiac macrophages adopt profibrotic/M2 phenotype in infarcted hearts: Role of urokinase plasminogen activator. J Mol Cell Cardiol 2016; 108:42-49. [PMID: 27262672 DOI: 10.1016/j.yjmcc.2016.05.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 05/26/2016] [Accepted: 05/31/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Macrophages (mac) that over-express urokinase plasminogen activator (uPA) adopt a profibrotic M2 phenotype in the heart in association with cardiac fibrosis. We tested the hypothesis that cardiac macs are M2 polarized in infarcted mouse and human hearts and that polarization is dependent on mac-derived uPA. METHODS Studies were performed using uninjured (UI) or infarcted (MI) hearts of uPA overexpressing (SR-uPA), uPA null, or nontransgenic littermate (Ntg) mice. At 7days post-infarction, cardiac mac were isolated, RNA extracted and M2 markers Arg1, YM1, and Fizz1 measured with qrtPCR. Histologic analysis for cardiac fibrosis, mac and myofibroblasts was performed at the same time-point. Cardiac macs were also isolated from Ntg hearts and RNA collected after primary isolation or culture with vehicle, IL-4 or plasmin and M2 marker expression measured. Cardiac tissue and blood was collected from humans with ischemic heart disease. Expression of M2 marker CD206 and M1 marker TNFalpha was measured. RESULTS Macs from WT mice had increased expression of Arg1 and Ym1 following MI (41.3±6.5 and 70.3±36, fold change vs UI, n=8, P<0.007). There was significant up-regulation of cardiac mac Arg1 and YM1 with MI in both WT and uPA null mice (n=4-9 per genotype and condition). Treatment with plasmin increased expression of Arg1 and YM1 in cultured cardiac macs. Histologic analysis revealed increased density of activated fibroblasts and M2 macs in SR-uPA hearts post-infarction with associated increases in fibrosis. Cardiac macs isolated from human hearts with ischemic heart disease expressed increased levels of the M2 marker CD206 in comparison to blood-derived macs (4.9±1.3). CONCLUSIONS Cardiac macs in mouse and human hearts adopt a M2 phenotype in association with fibrosis. Plasmin can induce an M2 phenotype in cardiac macs. However, M2 activation can occur in the heart in vivo in the absence of uPA indicating that alternative pathways to activate plasmin are present in the heart. Excess uPA promotes increased fibroblast density potentially via potentiating fibroblast migration or proliferation. Altering macrophage phenotype in the heart is a potential target to modify cardiac fibrosis.
Collapse
Affiliation(s)
- Signe Carlson
- Departments of Medicine, University of Washington School of Medicine, United States
| | - Deri Helterline
- Departments of Medicine, University of Washington School of Medicine, United States
| | - Laura Asbe
- Departments of Medicine, University of Washington School of Medicine, United States
| | - Sarah Dupras
- Departments of Pathology, University of Washington School of Medicine, United States
| | - Elina Minami
- Departments of Medicine, University of Washington School of Medicine, United States
| | - Stephen Farris
- Departments of Medicine, University of Washington School of Medicine, United States
| | - April Stempien-Otero
- Departments of Medicine, University of Washington School of Medicine, United States; Departments of Pathology, University of Washington School of Medicine, United States
| |
Collapse
|
23
|
Castiglione F, Dewulf K, Hakim L, Weyne E, Montorsi F, Russo A, Boeri L, Bivalacqua TJ, De Ridder D, Joniau S, Albersen M, Hedlund P. Adipose-derived Stem Cells Counteract Urethral Stricture Formation in Rats. Eur Urol 2016; 70:1032-1041. [PMID: 27156445 DOI: 10.1016/j.eururo.2016.04.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/20/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND A medical treatment for urethral stricture (US) is not yet available. OBJECTIVE To evaluate if local injection of human adipose tissue-derived stem cells (hADSC) prevents urethral fibrosis in a rat model of US. DESIGN, SETTING, AND PARTICIPANTS Male rats were divided into three groups: sham, US, and hADSC (n=12 each). Sham rats received a vehicle injection in the urethral wall. US and hADSCs were incised and injected with the fibrosis-inducer transforming growth factor-β1 in the urethral wall. INTERVENTION One day later, hADSCs were injected in the urethral wall of hADSC rats whereas sham and US rats were injected with the vehicle. After 4 wk, the rats underwent cystometries and tissues were then harvested for functional and molecular analyses. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Cystometry, microultrasound, histochemistry, organ bath studies, reverse transcription polymerase chain reaction, and western blot. RESULTS AND LIMITATIONS US rats exhibited 49-51% shorter micturition intervals, 35-51% smaller micturition volumes and bladder capacity, 33-62% higher threshold pressures and flow pressures, and 35-37% lower bladder filling compliance compared with hADSC-treated rats and sham rats (p<0.05). By ultrasound, US rats had hyperechogenic and thick urethral walls with narrowed lumen compared with sham rats, whereas hADSC rats displayed less extensive urethral changes. Isolated detrusor from US rats exhibited 34-55% smaller contractions than detrusor from sham rats (p<0.05). Corresponding values were 11-35% for isolated detrusors from hADSC rats. Collagen and elastin protein expression were increased in the penile urethras of US rats compared with sham and hADSC groups (p<0.05). Endothelial and inducible nitric oxide synthase expressions were higher (p<0.05) in the hADSC group. Compared with US rats, hADSC rats demonstrated decreased expression of several fibrosis-related genes. Administration of hADSCs was performed at an early stage of US development, which we consider a limitation of the study. CONCLUSIONS Local injection of hADSCs prevents stricture formation and urodynamic complications in a new rat model for US. PATIENT SUMMARY Stem cell therapy is effective for preventing urethral stricture in an experimental setting.
Collapse
Affiliation(s)
- Fabio Castiglione
- Laboratory for Experimental Urology, Organ Systems, Department of Development and Regeneration, University of Leuven, Leuven, Belgium; Division of Oncology/Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Karel Dewulf
- Laboratory for Experimental Urology, Organ Systems, Department of Development and Regeneration, University of Leuven, Leuven, Belgium
| | - Lukman Hakim
- Laboratory for Experimental Urology, Organ Systems, Department of Development and Regeneration, University of Leuven, Leuven, Belgium; Department of Urology, Airlangga University/Dr. Soetomo General Hospital, Surabaya, Indonesia
| | - Emmanuel Weyne
- Laboratory for Experimental Urology, Organ Systems, Department of Development and Regeneration, University of Leuven, Leuven, Belgium
| | - Francesco Montorsi
- Division of Oncology/Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Andrea Russo
- Division of Oncology/Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Luca Boeri
- Division of Oncology/Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Trinity J Bivalacqua
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Dirk De Ridder
- Laboratory for Experimental Urology, Organ Systems, Department of Development and Regeneration, University of Leuven, Leuven, Belgium
| | - Steven Joniau
- Laboratory for Experimental Urology, Organ Systems, Department of Development and Regeneration, University of Leuven, Leuven, Belgium
| | - Maarten Albersen
- Laboratory for Experimental Urology, Organ Systems, Department of Development and Regeneration, University of Leuven, Leuven, Belgium.
| | - Petter Hedlund
- Department of Clinical and Experimental Pharmacology, Lund University, Sweden; Division of Drug Research, Department of Medical and Health Sciences, Linköping University, Sweden
| |
Collapse
|
24
|
Bartneck M, Fech V, Ehling J, Govaere O, Warzecha KT, Hittatiya K, Vucur M, Gautheron J, Luedde T, Trautwein C, Lammers T, Roskams T, Jahnen-Dechent W, Tacke F. Histidine-rich glycoprotein promotes macrophage activation and inflammation in chronic liver disease. Hepatology 2016; 63:1310-24. [PMID: 26699087 DOI: 10.1002/hep.28418] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 12/20/2015] [Indexed: 01/07/2023]
Abstract
UNLABELLED Pathogen- and injury-related danger signals as well as cytokines released by immune cells influence the functional differentiation of macrophages in chronic inflammation. Recently, the liver-derived plasma protein, histidine-rich glycoprotein (HRG), was demonstrated, in mouse tumor models, to mediate the transition of alternatively activated (M2) to proinflammatory (M1) macrophages, which limit tumor growth and metastasis. We hypothesized that liver-derived HRG is a critical endogenous modulator of hepatic macrophage functionality and investigated its implications for liver inflammation and fibrosis by comparing C57BL/6N wild-type (WT) and Hrg(-/-) mice. In homeostatic conditions, hepatic macrophages were overall reduced and preferentially polarized toward the anti-inflammatory M2 subtype in Hrg(-/-) mice. Upon chronic liver damage induced by CCl4 or methionine-choline-deficient (MCD) diet, liver injury and fibrosis were attenuated in Hrg(-/-) , compared to WT, mice. Macrophage populations were reduced and skewed toward M2 polarization in injured livers of Hrg(-/-) mice. Moreover, HRG-deficient mice showed significantly enhanced hepatic vascularization by micro-computed tomography and histology, corroborating proangiogenic activities of M2-polarized liver macrophages. Purified HRG protein induced, but HRG-deficient serum prevented, M1 macrophage differentiation in vitro. Accordingly, Hrg(-/-) mice transplanted with Hrg(+/+) bone marrow, but not Hrg(-/-) -transplanted Hrg(+/+) mice, remained protected from experimental steatohepatitis. Consistent with these findings, patients with chronic hepatitis C and nonalcoholic steatohepatitis significantly up-regulated hepatocytic HRG expression, which was associated with M1 polarization of adjacent macrophages. CONCLUSIONS Liver-derived HRG, similar to alarmins, appears to be an endogenous molecular factor promoting polarization of hepatic macrophages toward the M1 phenotype, thereby promoting chronic liver injury and fibrosis progression, but limiting angiogenesis. Therefore, controlling tissue levels of HRG or PGF might be a promising strategy in chronic inflammatory liver diseases.
Collapse
Affiliation(s)
- Matthias Bartneck
- Department of Medicine III, Helmholtz Institute for Biomedical Engineering, RWTH University-Hospital Aachen, Aachen, Germany
| | - Viktor Fech
- Department of Medicine III, Helmholtz Institute for Biomedical Engineering, RWTH University-Hospital Aachen, Aachen, Germany
| | - Josef Ehling
- Department of Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, RWTH University-Hospital Aachen, Aachen, Germany
| | - Olivier Govaere
- Translational Cell & Tissue Research Unit, Department of Imaging & Pathology, KU Leuven, Belgium
| | - Klaudia Theresa Warzecha
- Department of Medicine III, Helmholtz Institute for Biomedical Engineering, RWTH University-Hospital Aachen, Aachen, Germany
| | | | - Mihael Vucur
- Department of Medicine III, Helmholtz Institute for Biomedical Engineering, RWTH University-Hospital Aachen, Aachen, Germany
| | - Jérémie Gautheron
- Department of Medicine III, Helmholtz Institute for Biomedical Engineering, RWTH University-Hospital Aachen, Aachen, Germany
| | - Tom Luedde
- Department of Medicine III, Helmholtz Institute for Biomedical Engineering, RWTH University-Hospital Aachen, Aachen, Germany
| | - Christian Trautwein
- Department of Medicine III, Helmholtz Institute for Biomedical Engineering, RWTH University-Hospital Aachen, Aachen, Germany
| | - Twan Lammers
- Department of Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, RWTH University-Hospital Aachen, Aachen, Germany.,Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.,Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Tania Roskams
- Translational Cell & Tissue Research Unit, Department of Imaging & Pathology, KU Leuven, Belgium
| | - Willi Jahnen-Dechent
- Helmholtz-Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen, Germany
| | - Frank Tacke
- Department of Medicine III, Helmholtz Institute for Biomedical Engineering, RWTH University-Hospital Aachen, Aachen, Germany
| |
Collapse
|
25
|
Amoah BP, Yang H, Zhang P, Su Z, Xu H. Immunopathogenesis of Myocarditis: The Interplay Between Cardiac Fibroblast Cells, Dendritic Cells, Macrophages and CD4+T Cells. Scand J Immunol 2015; 82:1-9. [DOI: 10.1111/sji.12298] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 02/21/2015] [Accepted: 03/14/2015] [Indexed: 02/06/2023]
Affiliation(s)
- B. Prince Amoah
- Department of Immunology; School of Medical Science and Laboratory Medicine; Jiangsu University; Zhenjiang China
- Department of Biomedical and Forensic Sciences; School of Biological Sciences; University of Cape Coast; Cape Coast Ghana
| | - H. Yang
- Department of Immunology; School of Medical Science and Laboratory Medicine; Jiangsu University; Zhenjiang China
| | - P. Zhang
- Department of Immunology; School of Medical Science and Laboratory Medicine; Jiangsu University; Zhenjiang China
| | - Z. Su
- Department of Immunology; School of Medical Science and Laboratory Medicine; Jiangsu University; Zhenjiang China
- The Central Laboratory; The Fourth Affiliated Hospital of Jiangsu University; Zhenjiang China
| | - H. Xu
- Department of Immunology; School of Medical Science and Laboratory Medicine; Jiangsu University; Zhenjiang China
| |
Collapse
|
26
|
Tizioto PC, Coutinho LL, Decker JE, Schnabel RD, Rosa KO, Oliveira PSN, Souza MM, Mourão GB, Tullio RR, Chaves AS, Lanna DPD, Zerlotini-Neto A, Mudadu MA, Taylor JF, Regitano LCA. Global liver gene expression differences in Nelore steers with divergent residual feed intake phenotypes. BMC Genomics 2015; 16:242. [PMID: 25887532 PMCID: PMC4381482 DOI: 10.1186/s12864-015-1464-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/13/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Efficiency of feed utilization is important for animal production because it can reduce greenhouse gas emissions and improve industry profitability. However, the genetic basis of feed utilization in livestock remains poorly understood. Recent developments in molecular genetics, such as platforms for genome-wide genotyping and sequencing, provide an opportunity to identify genes and pathways that influence production traits. It is known that transcriptional networks influence feed efficiency-related traits such as growth and energy balance. This study sought to identify differentially expressed genes in animals genetically divergent for Residual Feed Intake (RFI), using RNA sequencing methodology (RNA-seq) to obtain information from genome-wide expression profiles in the liver tissues of Nelore cattle. RESULTS Differential gene expression analysis between high Residual Feed Intake (HRFI, inefficient) and low Residual Feed Intake (LRFI, efficient) groups was performed to provide insights into the molecular mechanisms that underlie feed efficiency-related traits in beef cattle. A total of 112 annotated genes were identified as being differentially expressed between animals with divergent RFI phenotypes. These genes are involved in ion transport and metal ion binding; act as membrane or transmembrane proteins; and belong to gene clusters that are likely related to the transport and catalysis of molecules through the cell membrane and essential mechanisms of nutrient absorption. Genes with functions in cellular signaling, growth and proliferation, cell death and survival were also differentially expressed. Among the over-represented pathways were drug or xenobiotic metabolism, complement and coagulation cascades, NRF2-mediated oxidative stress, melatonin degradation and glutathione metabolism. CONCLUSIONS Our data provide new insights and perspectives on the genetic basis of feed efficiency in cattle. Some previously identified mechanisms were supported and new pathways controlling feed efficiency in Nelore cattle were discovered. We potentially identified genes and pathways that play key roles in hepatic metabolic adaptations to oxidative stress such as those involved in antioxidant mechanisms. These results improve our understanding of the metabolic mechanisms underlying feed efficiency in beef cattle and will help develop strategies for selection towards the desired phenotype.
Collapse
Affiliation(s)
- Polyana C Tizioto
- Embrapa Southeast Livestock, São Carlos, SP, Brazil. .,Division of Animal Sciences, University of Missouri Columbia, Columbia, MO, USA.
| | - Luiz L Coutinho
- Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, São Paulo, Brazil.
| | - Jared E Decker
- Division of Animal Sciences, University of Missouri Columbia, Columbia, MO, USA.
| | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri Columbia, Columbia, MO, USA.
| | - Kamila O Rosa
- Department of Animal Science, State University of Sao Paulo, Jaboticabal, SP, Brazil.
| | - Priscila S N Oliveira
- Department of Genetics and Evolution, Federal University of Sao Carlos, São Carlos, SP, Brazil.
| | - Marcela M Souza
- Department of Genetics and Evolution, Federal University of Sao Carlos, São Carlos, SP, Brazil.
| | - Gerson B Mourão
- Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, São Paulo, Brazil.
| | | | - Amália S Chaves
- Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, São Paulo, Brazil.
| | - Dante P D Lanna
- Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, São Paulo, Brazil.
| | | | | | - Jeremy F Taylor
- Division of Animal Sciences, University of Missouri Columbia, Columbia, MO, USA.
| | | |
Collapse
|
27
|
Mojsilović SS, Santibanez JF. Transforming growth factor-beta differently regulates urokinase type plasminogen activator and matrix metalloproteinase-9 expression in mouse macrophages; analysis of intracellular signal transduction. Cell Biol Int 2015; 39:619-28. [DOI: 10.1002/cbin.10435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/26/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Sonja S. Mojsilović
- Laboratory for Immunochemistry; Institute for Medical Research; University of Belgrade; Belgrade Serbia
| | - Juan F. Santibanez
- Laboratory for Experimental Hematology and Stem Cells; Institute for Medical Research; University of Belgrade; Belgrade Serbia
| |
Collapse
|
28
|
Stawski L, Haines P, Fine A, Rudnicka L, Trojanowska M. MMP-12 deficiency attenuates angiotensin II-induced vascular injury, M2 macrophage accumulation, and skin and heart fibrosis. PLoS One 2014; 9:e109763. [PMID: 25302498 PMCID: PMC4193823 DOI: 10.1371/journal.pone.0109763] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/09/2014] [Indexed: 12/20/2022] Open
Abstract
MMP-12, a macrophage-secreted elastase, is elevated in fibrotic diseases, including systemic sclerosis (SSc) and correlates with vasculopathy and fibrosis. The goal of this study was to investigate the role of MMP-12 in cardiac and cutaneous fibrosis induced by angiotensin II infusion. Ang II-induced heart and skin fibrosis was accompanied by a marked increase of vascular injury markers, including vWF, Thrombospondin-1 (TSP-1) and MMP-12, as well as increased number of PDGFRβ+ cells. Furthermore Ang II infusion led to an accumulation of macrophages (Mac3+) in the skin and in the perivascular and interstitial fibrotic regions of the heart. However, alternatively activated (Arg 1+) macrophages were mainly present in the Ang II infused mice and were localized to the perivascular heart regions and to the skin, but were not detected in the interstitial heart regions. Elevated expression of MMP-12 was primarily found in macrophages and endothelial cells (CD31+) cells, but MMP-12 was not expressed in the collagen producing cells. MMP-12 deficient mice (MMP12KO) showed markedly reduced expression of vWF, TSP1, and PDGFRβ around vessels and attenuation of dermal fibrosis, as well as the perivascular fibrosis in the heart. However, MMP-12 deficiency did not affect interstitial heart fibrosis, suggesting a heterogeneous nature of the fibrotic response in the heart. Furthermore, MMP-12 deficiency almost completely prevented accumulation of Arg 1+ cells, whereas the number of Mac3+ cells was partially reduced. Moreover production of profibrotic mediators such as PDGFBB, TGFβ1 and pSMAD2 in the skin and perivascular regions of the heart was also inhibited. Together, the results of this study show a close correlation between vascular injury markers, Arg 1+ macrophage accumulation and fibrosis and suggest an important role of MMP-12 in regulating these processes.
Collapse
Affiliation(s)
- Lukasz Stawski
- Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Paul Haines
- Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Alan Fine
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Lidia Rudnicka
- Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
- Department of Neuropeptides, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Maria Trojanowska
- Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
29
|
Van Linthout S, Miteva K, Tschöpe C. Crosstalk between fibroblasts and inflammatory cells. Cardiovasc Res 2014; 102:258-69. [PMID: 24728497 DOI: 10.1093/cvr/cvu062] [Citation(s) in RCA: 420] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fibroblasts, which are traditionally recognized as a quiescent cell responsible for extracellular matrix production, are more and more appreciated as an active key player of the immune system. This review describes how fibroblasts and immune cells reciprocally influence the pathogenesis of fibrosis. An overview is given how fibroblasts are triggered by components of the innate and adaptive immunity on the one hand and how fibroblasts modulate immune cell behaviour via conditioning the cellular and cytokine microenvironment on the other hand. Finally, latest insights into the role of cardiac fibroblasts in the orchestration of inflammatory cell infiltration in the heart, and their impact on heart failure, are outlined.
Collapse
Affiliation(s)
- Sophie Van Linthout
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow Clinic, Berlin, Germany
| | | | | |
Collapse
|
30
|
Jenke A, Holzhauser L, Löbel M, Savvatis K, Wilk S, Weithäuser A, Pinkert S, Tschöpe C, Klingel K, Poller W, Scheibenbogen C, Schultheiss HP, Skurk C. Adiponectin promotes coxsackievirus B3 myocarditis by suppression of acute anti-viral immune responses. Basic Res Cardiol 2014; 109:408. [DOI: 10.1007/s00395-014-0408-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 03/14/2014] [Indexed: 10/25/2022]
|
31
|
Minullina IR, Alexeyeva NP, Anisimov SV, Puzanov MV, Kozlova SN, Sviryaev YV, Zaritskey AY, Shlyakhto EV. Transcriptional changes in bone marrow stromal cells of patients with heart failure. Cell Cycle 2014; 13:1495-500. [PMID: 24626177 DOI: 10.4161/cc.28472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
It is proposed that patients with heart failure may have not only myocardial dysfunction, but also a reduced regenerative capacity of stem cells. However, very little is known about bone marrow stromal cell (BMSC) characteristics in heart failure and its comorbidities (obesity and/or diabetes). We hypothesized that metabolic alterations associated with the latter will be reflected in altered expression of key genes related to angiogenesis, inflammation, and tissue remodeling in patient-derived BMSCs. We found that BMSCs of heart failure patients with lower body mass index have enhanced expression of genes involved in extracellular matrix remodeling. In particular, body mass index<30 was associated with upregulated expression of genes encoding collagen type I, proteases and protease activators (MMP2, MMP14, uPA), and regulatory molecules (CTGF, ITGβ5, SMAD7, SNAIL1). In contrast, these transcript levels did not differ significantly between BMSCs from obese heart failure patients and healthy subjects. Comorbidities (including obesity and diabetes) are known to play role in heart failure progression rate and outcome of the disease. We thus suggest that key molecular targets identified in this study should become the target of the subsequent focused studies. In the future, these targets may find some use in the clinical setting.
Collapse
Affiliation(s)
- Izida R Minullina
- Federal Almazov Medical Research Centre; St. Petersburg, Russian Federation
| | - Nina P Alexeyeva
- Federal Almazov Medical Research Centre; St. Petersburg, Russian Federation; Permanent affiliation: Saint Petersburg State University; St. Petersburg, Russian Federation
| | - Sergey V Anisimov
- Federal Almazov Medical Research Centre; St. Petersburg, Russian Federation
| | - Maxim V Puzanov
- Federal Almazov Medical Research Centre; St. Petersburg, Russian Federation
| | - Svetlana N Kozlova
- Federal Almazov Medical Research Centre; St. Petersburg, Russian Federation
| | - Yurii V Sviryaev
- Federal Almazov Medical Research Centre; St. Petersburg, Russian Federation
| | | | | |
Collapse
|
32
|
Ledford KJ, Zeigler F, Bartel RL. Ixmyelocel-T, an expanded multicellular therapy, contains a unique population of M2-like macrophages. Stem Cell Res Ther 2013; 4:134. [PMID: 24405629 PMCID: PMC4029268 DOI: 10.1186/scrt345] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 10/23/2013] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION M2 macrophages promote tissue repair and regeneration through various mechanisms including immunomodulation and scavenging of tissue debris. Delivering increased numbers of these cells to ischemic tissues may limit tissue injury and promote repair. Ixmyelocel-T is an expanded, autologous multicellular therapy cultured from bone-marrow mononuclear cells (BMMNCs). The purpose of this study was to characterize further a unique expanded population of M2-like macrophages, generated in ixmyelocel-T therapy. METHODS Approximately 50 ml of whole bone marrow was obtained from healthy donors and shipped overnight. BMMNCs were produced by using density-gradient separation and cultured for approximately 12 days to generate ixmyelocel-T. CD14+ cells were isolated from ixmyelocel-T with positive selection for analysis. Cell-surface phenotype was examined with flow cytometry and immunofluorescence, and expression of cytokines and chemokines was analyzed with enzyme-linked immunosorbent assay (ELISA). Quantitative real-time PCR was used to analyze expression of genes in BMMNCs, ixmyelocel-T, the CD14+ population from ixmyelocel-T, and M1 and M2 macrophages. Ixmyelocel-T was cultured with apoptotic BMMNCs, and then visualized under fluorescence microscopy to assess efferocytosis. RESULTS Macrophages in ixmyelocel-T therapy expressed surface markers of M2 macrophages, CD206, and CD163. These cells were also found to express several M2 markers, and few to no M1 markers. After stimulation with lipopolysaccharide (LPS), they showed minimal secretion of the proinflammatory cytokines interleukin-12 (IL-12) and tumor necrosis factor alpha (TNF-α) compared with M1 and M2 macrophages. Ixmyelocel-T macrophages efficiently ingested apoptotic BMMNCs. CONCLUSIONS Ixmyelocel-T therapy contains a unique population of M2-like macrophages that are characterized by expression of M2 markers, decreased secretion of proinflammatory cytokines after inflammatory stimuli, and efficient removal of apoptotic cells. This subpopulation of cells may have a potential role in tissue repair and regeneration.
Collapse
|