1
|
Calcineurin inhibitors' impact on cardiovascular and renal function, a descriptive study in lung transplant recipients from the North of Spain. Sci Rep 2022; 12:21207. [PMID: 36481797 PMCID: PMC9732215 DOI: 10.1038/s41598-022-25445-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Patients undergoing lung transplantation (LTx) need administration of immunosuppressive therapy following the procedure to prevent graft rejection. However, these drugs are not exempt from potential risks. The development of cardiovascular risk factors and impaired renal function in the post-transplantation period are conditions that may be favoured by the use of calcineurin inhibitor (CNI) drugs which could have repercussions on the quality of life and the post-transplantation evolution. To evaluate the cardiovascular and renal toxicity following the administration of CNI as maintenance immunosuppression in lung transplant recipients (LTRs) we reviewed a total number of 165 patients undergoing LTx between 01/01/2015 and 08/12/2018. They were divided into two groups according to the CNI drug administrated: cyclosporine (CsA-group) with 11 patients or tacrolimus (Tac-group), with 154 patients. We evaluated the de novo occurrence of arterial hypertension (HTN), diabetes mellitus (DM), hyperlipidemia and impaired renal function after initiation of CNI administration. In addition to that, the time until each of these events was assessed. A higher rate for developing HTN (p < 0.001) and impaired renal function (p = 0.047) was observed within the CsA-group. The new onset of hyperlipidemia was similar between both CNI groups and de novo appearance of DM was only documented in those LTRs receiving tacrolimus. In this LTRs retrospective study, it was observed that having ≥ 4 tacrolimus trough levels above the upper limit of the proposed interval for each specific post-LTx period was associated with an increased risk for developing renal impairment. No other statistically significant association was found between supratherapeutic CNIs blood levels and the evaluated toxicities.
Collapse
|
2
|
Brunet M, Millán O. Getting immunosuppression just right: the role of clinical biomarkers in predicting patient response post solid organ transplantation. Expert Rev Clin Pharmacol 2021; 14:1467-1479. [PMID: 34607521 DOI: 10.1080/17512433.2021.1987882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Actually, immunosuppression selection isn't based on individual immune alloreactivity, and immunosuppressive drug dosing is mainly based on the development of toxicity and the achievement of specific target concentrations. Since a successful outcome requires optimal patient risk stratification and treatment, several groups have evaluated candidate biomarkers that have shown promise in the assessment of individual immune responses, the prediction of personal pharmacodynamic effects of immunosuppressive drugs and the prognosis and diagnosis of graft outcomes.. AREAS COVERED This review includes biomarkers that the Scientific Community in Solid Organ Transplantation currently considers to have potential as diagnostic and prognostic biomarkers of graft evolution. We have focused on recent scientific advances and expert recommendations regarding the role of specific and non-specific pharmacodynamic biomarkers that are mainly involved in the T-cell-mediated response. EXPERT OPINION Integral pharmacologic monitoring that combines pharmacokinetics, pharmacogenetics and predictive pharmacodynamic biomarkers may provide crucial information and allow personal adjustment of immunosuppressive drugs at an early stage before severe adverse events ensue. Multicentre, randomized, prospective and interventional trials are needed to fine tune the established cut-off values for each biomarker and the optimal monitoring frequency for each biomarker and to accurately evaluate possible clinical confounding factors to enable correct clinical qualification.
Collapse
Affiliation(s)
- Mercè Brunet
- Pharmacology and Toxicology Section, CDB, IDIBAPS, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.,Biomedical Research Center in Hepatic and Digestive Diseases (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Olga Millán
- Pharmacology and Toxicology Section, CDB, IDIBAPS, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.,Biomedical Research Center in Hepatic and Digestive Diseases (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Fontova P, Colom H, Rigo-Bonnin R, Bestard O, Vidal-Alabró A, van Merendonk LN, Cerezo G, Polo C, Montero N, Melilli E, Manonelles A, Meneghini M, Coloma A, Cruzado JM, Torras J, Grinyó JM, Lloberas N. Sustained Inhibition of Calcineurin Activity With a Melt-Dose Once-daily Tacrolimus Formulation in Renal Transplant Recipients. Clin Pharmacol Ther 2021; 110:238-247. [PMID: 33626199 DOI: 10.1002/cpt.2220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/25/2021] [Indexed: 12/22/2022]
Abstract
Tacrolimus (Tac) is the cornerstone calcineurin inhibitor in transplantation. Extended-release Meltdose formulation (Tac-LCP) offers better bioavailability compared with immediate-release formulation (Tac-IR). We postulated that the less fluctuating pharmacokinetic (PK) profile of Tac-LCP might maintain a sustained inhibition of calcineurin activity (CNA) between dose intervals. Higher concentrations (peak plasma concentration (Cmax )) after Tac-IR may not result in a more potent CNA inhibition due to a capacity-limited effect. This study was aimed at evaluating the pharmacodynamic (PD)/PK profiles of Tac-IR compared with Tac-LCP. An open-label, prospective, nonrandomized, investigator-driven study was conducted. Twenty-five kidney transplant recipients receiving Tac-IR were switched to Tac-LCP. Before and 28 days after conversion, intensive CNA-PD and PK sampling were conducted using ultra-high-performance liquid chromatography-tandem accurate mass spectrometry. PD nonlinear mixed effects model was performed in Phoenix-WinNonlin. Statistically significant higher Cmax (P < 0.001) after Tac-IR did not result in lower CNA as compared with after Tac-LCP (P = 0.860). Tac-LCP showed a statistically more maintained CNA inhibition between dose intervals (area under the effect-time curve from 0 to 24 hours (AUE0-24h )) compared with Tac-IR, in which CNA returned to predose levels after 4 hours of drug intake (373.8 vs. 290.5 pmol RII·h/min·mg prot, Tac-LCP vs. Tac-IR; P = 0.039). No correlation was achieved between any PD and PK parameters in any formulations. Moreover, Tac concentration to elicit a 50% of the maximum response (half-maximal inhibitory concentration) was 9.24 ng/mL. The higher Cmax after Tac-IR does not result in an additional CNA inhibition compared with Tac-LCP attributable to a capacity-limited effect. Tac-LCP may represent an improvement of the PD of Tac due to the more sustained CNA inhibition during dose intervals.
Collapse
Affiliation(s)
- Pere Fontova
- Nephrology Department, Bellvitge University Hospital, IDIBELL, Barcelona, Spain.,Nephrology Laboratory, Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Helena Colom
- Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Raül Rigo-Bonnin
- Biochemistry Department, Bellvitge University Hospital, IDIBELL, Barcelona, Spain
| | - Oriol Bestard
- Nephrology Department, Bellvitge University Hospital, IDIBELL, Barcelona, Spain.,Nephrology Laboratory, Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Anna Vidal-Alabró
- Nephrology Department, Bellvitge University Hospital, IDIBELL, Barcelona, Spain.,Nephrology Laboratory, Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Lisanne N van Merendonk
- Nephrology Department, Bellvitge University Hospital, IDIBELL, Barcelona, Spain.,Nephrology Laboratory, Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Gema Cerezo
- Nephrology Department, Bellvitge University Hospital, IDIBELL, Barcelona, Spain.,Nephrology Laboratory, Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Carolina Polo
- Nephrology Department, Bellvitge University Hospital, IDIBELL, Barcelona, Spain
| | - Nuria Montero
- Nephrology Department, Bellvitge University Hospital, IDIBELL, Barcelona, Spain
| | - Edoardo Melilli
- Nephrology Department, Bellvitge University Hospital, IDIBELL, Barcelona, Spain
| | - Anna Manonelles
- Nephrology Department, Bellvitge University Hospital, IDIBELL, Barcelona, Spain
| | - Maria Meneghini
- Nephrology Department, Bellvitge University Hospital, IDIBELL, Barcelona, Spain
| | - Ana Coloma
- Nephrology Department, Bellvitge University Hospital, IDIBELL, Barcelona, Spain
| | - Josep M Cruzado
- Nephrology Department, Bellvitge University Hospital, IDIBELL, Barcelona, Spain.,Nephrology Laboratory, Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Joan Torras
- Nephrology Department, Bellvitge University Hospital, IDIBELL, Barcelona, Spain.,Nephrology Laboratory, Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Josep M Grinyó
- Nephrology Department, Bellvitge University Hospital, IDIBELL, Barcelona, Spain.,Nephrology Laboratory, Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Nuria Lloberas
- Nephrology Department, Bellvitge University Hospital, IDIBELL, Barcelona, Spain.,Nephrology Laboratory, Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Leino AD, Pai MP. Maintenance Immunosuppression in Solid Organ Transplantation: Integrating Novel Pharmacodynamic Biomarkers to Inform Calcineurin Inhibitor Dose Selection. Clin Pharmacokinet 2020; 59:1317-1334. [PMID: 32720300 DOI: 10.1007/s40262-020-00923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Calcineurin inhibitors, the primary immunosuppressive therapy used to prevent alloreactivity of transplanted organs, have a narrow therapeutic index. Currently, treatment is individualized based on clinical assessment of the risk of rejection or toxicity guided by trough concentration monitoring. Advances in immune monitoring have identified potential markers that may have value in understanding calcineurin inhibitor pharmacodynamics. Integration of these markers has the potential to complement therapeutic drug monitoring. Existing pharmacokinetic-pharmacodynamic (PK-PD) data is largely limited to correlation between the biomarker and trough concentrations at single time points. Immune related gene expression currently has the most evidence supporting PK-PD integration. Novel biomarker-based approaches to pharmacodynamic monitoring including development of enhanced PK-PD models are proposed to realize the full clinical benefit.
Collapse
Affiliation(s)
- Abbie D Leino
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, 428 Church Street, Rm 3569, Ann Arbor, MI, 48109, USA
| | - Manjunath P Pai
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, 428 Church Street, Rm 3569, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
5
|
Tron C, Woillard JB, Houssel-Debry P, David V, Jezequel C, Rayar M, Balakirouchenane D, Blanchet B, Debord J, Petitcollin A, Roussel M, Verdier MC, Bellissant E, Lemaitre F. Pharmacogenetic-Whole blood and intracellular pharmacokinetic-Pharmacodynamic (PG-PK2-PD) relationship of tacrolimus in liver transplant recipients. PLoS One 2020; 15:e0230195. [PMID: 32163483 PMCID: PMC7067455 DOI: 10.1371/journal.pone.0230195] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 02/24/2020] [Indexed: 12/21/2022] Open
Abstract
Tacrolimus (TAC) is the cornerstone of immunosuppressive therapy in liver transplantation. This study aimed at elucidating the interplay between pharmacogenetic determinants of TAC whole blood and intracellular exposures as well as the pharmacokinetic-pharmacodynamic relationship of TAC in both compartments. Complete pharmacokinetic profiles (Predose, and 20 min, 40 min, 1h, 2h, 3h, 4h, 6h, 8h, 12h post drug intake) of twice daily TAC in whole blood and peripheral blood mononuclear cells (PBMC) were collected in 32 liver transplanted patients in the first ten days post transplantation. A non-parametric population pharmacokinetic model was applied to explore TAC pharmacokinetics in blood and PBMC. Concurrently, calcineurin activity was measured in PBMC. Influence of donor and recipient genetic polymorphisms of ABCB1, CYP3A4 and CYP3A5 on TAC exposure was assessed. Recipient ABCB1 polymorphisms 1199G>A could influence TAC whole blood and intracellular exposure (p<0.05). No association was found between CYP3A4 or CYP3A5 genotypes and TAC whole blood or intracellular concentrations. Finally, intra-PBMC calcineurin activity appeared incompletely inhibited by TAC and less than 50% of patients were expected to achieve intracellular IC50 concentration (100 pg/millions of cells) at therapeutic whole blood concentration (i.e.: 4–10 ng/mL). Together, these data suggest that personalized medicine regarding TAC therapy might be optimized by ABCB1 pharmacogenetic biomarkers and by monitoring intracellular concentration whereas the relationship between intracellular TAC exposure and pharmacodynamics biomarkers more specific than calcineurin activity should be further investigated.
Collapse
Affiliation(s)
- Camille Tron
- Rennes 1 University, Rennes University Hospital, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, Rennes, France
- INSERM, CIC 1414 Clinical Investigation Center, Rennes, France
- * E-mail:
| | - Jean-Baptiste Woillard
- Department of Pharmacology and Toxicology, Limoges University Hospital, Limoges, France
- INSERM, UMR 1248, Limoges, France
- Limoges University, Limoges, France
| | - Pauline Houssel-Debry
- INSERM, CIC 1414 Clinical Investigation Center, Rennes, France
- Hepato-Biliary and Digestive Surgery Unit, Rennes University Hospital, Rennes, France
| | - Véronique David
- Department of Molecular Genetics and Genomics, Rennes University Hospital, Rennes, France
- CNRS, UMR6290, IGDR, Rennes, France
| | - Caroline Jezequel
- Hepato-Biliary and Digestive Surgery Unit, Rennes University Hospital, Rennes, France
| | - Michel Rayar
- INSERM, CIC 1414 Clinical Investigation Center, Rennes, France
- Hepato-Biliary and Digestive Surgery Unit, Rennes University Hospital, Rennes, France
| | - David Balakirouchenane
- Assistance Publique-Hôpitaux de Paris (AP-HP), Pharmacokinetics and Pharmacochemistry Department, Cochin Hospital, Paris, France
| | - Benoit Blanchet
- Assistance Publique-Hôpitaux de Paris (AP-HP), Pharmacokinetics and Pharmacochemistry Department, Cochin Hospital, Paris, France
- CNRS, UMR8638, Faculty of Pharmacy, Paris Descartes University, PRES Sorbonne Paris Cité, Paris, France
| | - Jean Debord
- Department of Pharmacology and Toxicology, Limoges University Hospital, Limoges, France
- INSERM, UMR 1248, Limoges, France
| | | | - Mickaël Roussel
- Haematology Laboratory, Rennes University Hospital, Rennes, France
| | - Marie-Clémence Verdier
- Rennes 1 University, Rennes University Hospital, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, Rennes, France
- INSERM, CIC 1414 Clinical Investigation Center, Rennes, France
| | - Eric Bellissant
- Rennes 1 University, Rennes University Hospital, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, Rennes, France
- INSERM, CIC 1414 Clinical Investigation Center, Rennes, France
| | - Florian Lemaitre
- Rennes 1 University, Rennes University Hospital, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, Rennes, France
- INSERM, CIC 1414 Clinical Investigation Center, Rennes, France
| |
Collapse
|
6
|
Tague LK, Byers DE, Hachem R, Kreisel D, Krupnick AS, Kulkarni HS, Chen C, Huang HJ, Gelman A. Impact of SLCO1B3 polymorphisms on clinical outcomes in lung allograft recipients receiving mycophenolic acid. THE PHARMACOGENOMICS JOURNAL 2020; 20:69-79. [PMID: 30992538 PMCID: PMC6800829 DOI: 10.1038/s41397-019-0086-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 01/20/2019] [Accepted: 03/27/2019] [Indexed: 12/18/2022]
Abstract
Single-nucleotide polymorphisms (SNPs) in genes involved in mycophenolic acid (MPA) metabolism have been shown to contribute to variable MPA exposure, but their clinical effects are unclear. We aimed to determine if SNPs in key genes in MPA metabolism affect outcomes after lung transplantation. We performed a retrospective cohort study of 275 lung transplant recipients, 228 receiving mycophenolic acid and a control group of 47 receiving azathioprine. Six SNPs known to regulate MPA exposure from the SLCO, UGT and MRP2 families were genotyped. Primary outcome was 1-year survival. Secondary outcomes were 3-year survival, nonminimal (≥A2 or B2) acute rejection, and chronic lung allograft dysfunction (CLAD). Statistical analyses included time-to-event Kaplan-Meier with log-rank test and Cox regression modeling. We found that SLCO1B3 SNPs rs4149117 and rs7311358 were associated with decreased 1-year survival [rs7311358 HR 7.76 (1.37-44.04), p = 0.021; rs4149117 HR 7.28 (1.27-41.78), p = 0.026], increased risk for nonminimal acute rejection [rs4149117 TT334/T334G: OR 2.01 (1.06-3.81), p = 0.031; rs7311358 GG699/G699A: OR 2.18 (1.13-4.21) p = 0.019] and lower survival through 3 years for MPA patients but not for azathioprine patients. MPA carriers of either SLCO1B3 SNP had shorter survival after CLAD diagnosis (rs4149117 p = 0.048, rs7311358 p = 0.023). For the MPA patients, Cox regression modeling demonstrated that both SNPs remained independent risk factors for death. We conclude that hypofunctional SNPs in the SLCO1B3 gene are associated with an increased risk for acute rejection and allograft failure in lung transplant recipients treated with MPA.
Collapse
Affiliation(s)
- Laneshia K Tague
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Derek E Byers
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Ramsey Hachem
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Daniel Kreisel
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Alexander S Krupnick
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Hrishikesh S Kulkarni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Catherine Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Howard J Huang
- Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, TX, USA
| | - Andrew Gelman
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University in Saint Louis, Saint Louis, MO, USA.
| |
Collapse
|
7
|
Boschat AC, Minet N, Martin E, Barouki R, Latour S, Sanquer S. CTP synthetase activity assay by liquid chromatography tandem mass spectrometry in the multiple reaction monitoring mode. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:885-893. [PMID: 31524312 DOI: 10.1002/jms.4442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Cytidine 5'-triphosphate synthetase (CTPS) is known to be a central enzyme in the de novo synthesis of CTP. We have recently demonstrated that a deficiency in CTPS1 is associated with an impaired capacity of activated lymphocytes to proliferate leading to a combined immunodeficiency disease. In order to better document its role in immunomodulation, we developed a method for measuring CTPS activity in human lymphocytes. Using liquid chromatography-mass spectrometry, we quantified CTPS activity by measuring CTP in cell lysates. A stable isotope analog of CTP served as internal standard. We characterized the kinetic parameters Vmax and Km of CTPS and verified that an inhibition of the enzyme activity was induced after 3-deazauridine (3DAU) treatment, a known inhibitor of CTPS. We then determined CTPS activity in healthy volunteers, in a family whose child displayed a homozygous mutation in CTPS1 gene and in patients who had developed or not a chronic lung allograft dysfunction (CLAD) after lung transplantation. Linearity of the CTP determination was observed up to 451 μmol/L, with accuracy in the 15% tolerance range. Michaelis-Menten kinetics for lysates of resting cells were Km =280±310 μmol/L for UTP, Vmax =83±20 pmol/min and, for lysates of activated PBMCs, Km =230±280 μmol/L for UTP, Vmax =379±90 pmol/min. Treatment by 3DAU and homozygous mutation in CTPS1 gene abolished the induction of CTPS activity associated with cell stimulation, and CTPS activity was significantly reduced in the patients who developed CLAD. We conclude that this test is suitable to reveal the involvement of CTPS alteration in immunodeficiency.
Collapse
Affiliation(s)
- Anne-Claire Boschat
- Plateforme de métabolomique, Institut Imagine, Université Paris Descartes, Paris, France
- INSERM UMR-S 1124, Centre Universitaire des Saints-Pères Université Paris Descartes, Paris, France
| | - Norbert Minet
- Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris, France
- INSERM UMR 1163, Université Paris Descartes, Institut Imagine, Paris, France
| | - Emmanuel Martin
- Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris, France
- INSERM UMR 1163, Université Paris Descartes, Institut Imagine, Paris, France
| | - Robert Barouki
- INSERM UMR-S 1124, Centre Universitaire des Saints-Pères Université Paris Descartes, Paris, France
- Plateforme de spectrométrie de masse, AP-HP.Centre, Hôpital Universitaire Necker-enfants malades, Paris, France
- Service de Biochimie Métabolomique et Protéomique, AP-HP.Centre, Hôpital Universitaire Necker-Enfants malades, Paris, France
| | - Sylvain Latour
- Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris, France
- INSERM UMR 1163, Université Paris Descartes, Institut Imagine, Paris, France
| | - Sylvia Sanquer
- INSERM UMR-S 1124, Centre Universitaire des Saints-Pères Université Paris Descartes, Paris, France
- Service de Biochimie Métabolomique et Protéomique, AP-HP.Centre, Hôpital Universitaire Necker-Enfants malades, Paris, France
| |
Collapse
|
8
|
Measurement of calcineurin activity in peripheral blood mononuclear cells by ultra-high performance liquid chromatography-tandem mass spectrometry. Renal transplant recipients application (pharmacodynamic monitoring). Clin Chim Acta 2019; 495:287-293. [DOI: 10.1016/j.cca.2019.04.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/26/2019] [Indexed: 11/24/2022]
|
9
|
Tron C, Allard M, Petitcollin A, Ferrand-Sorre MJ, Verdier MC, Querzerho-Raguideau J, Blanchet B, Le Priol J, Roussel M, Deugnier Y, Bellissant E, Lemaitre F. Tacrolimus diffusion across the peripheral mononuclear blood cell membrane: impact of drug transporters. Fundam Clin Pharmacol 2018; 33:113-121. [PMID: 30203853 DOI: 10.1111/fcp.12412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/05/2018] [Accepted: 09/06/2018] [Indexed: 01/17/2023]
Abstract
Measuring tacrolimus (TAC) concentration in peripheral blood mononuclear cells (PBMCs) could better reflect the drug effect on its target (calcineurin (CaN) in lymphocytes) than whole blood concentrations. Mechanisms influencing TAC diffusion into PBMC are not well characterized. This work aimed at describing, ex vivo, TAC diffusion kinetics into PBMC and investigating the contribution of membrane transporters to regulate TAC intracellular concentration as well as the impact on CaN activity. PBMCs were incubated with TAC for 5 min to 4 h and under several experimental conditions: 37 °C (physiological conditions), 4 °C (inhibition of influx and efflux active transport), 37 °C + transporter inhibitors (verapamil, carvedilol, and probenecid and bromosulfophthalein, respectively, inhibitors of P-gp, OAT, and OATP). TAC concentration and CaN activity were measured in PBMC using liquid chromatography coupled with mass spectrometry. TAC intra-PBMC concentration was maximal after 1 h of incubation. Mean TAC PMBC concentrations were significantly lower in samples incubated at 4 °C compared to the 37 °C groups. Addition of verapamil slightly increased TAC accumulation in PBMC while other inhibitors had no effect. A significant correlation was found between TAC intra-PBMC concentration and the level of inhibition of CaN. Using an ex vivo cellular model, these results suggest that P-gp is involved in the drug efflux from PBMC while influx active transporters likely to regulate TAC intra-PBMC disposition remain to be identified. TAC concentration in PBMC is correlated with its pharmacodynamic effect. Then, TAC intra-PBMC concentration appears to be a promising biomarker to refine TAC therapeutic drug monitoring.
Collapse
Affiliation(s)
- Camille Tron
- Department of Clinical and Biological Pharmacology and Pharmacovigilance, Pharmacoepidemiology, Drug Information Centre, Rennes University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France.,Faculty of Medicine, Laboratory of Experimental and Clinical Pharmacology, Rennes 1 University, 2 avenue du professeur Léon Bernard - CS 34317, 35043, Rennes, France.,Inserm, CIC-P 1414, Clinical Investigation Centre, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Marie Allard
- Pharmacokinetics and pharmacochemistry Department, Assistance Publique des Hôpitaux de Paris (AP-HP), Cochin Hospital, 27 rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Antoine Petitcollin
- Department of Clinical and Biological Pharmacology and Pharmacovigilance, Pharmacoepidemiology, Drug Information Centre, Rennes University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France.,Faculty of Medicine, Laboratory of Experimental and Clinical Pharmacology, Rennes 1 University, 2 avenue du professeur Léon Bernard - CS 34317, 35043, Rennes, France.,Inserm, CIC-P 1414, Clinical Investigation Centre, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Marie-José Ferrand-Sorre
- Faculty of Medicine, Laboratory of Experimental and Clinical Pharmacology, Rennes 1 University, 2 avenue du professeur Léon Bernard - CS 34317, 35043, Rennes, France.,Inserm, CIC-P 1414, Clinical Investigation Centre, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Marie-Clémence Verdier
- Department of Clinical and Biological Pharmacology and Pharmacovigilance, Pharmacoepidemiology, Drug Information Centre, Rennes University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France.,Faculty of Medicine, Laboratory of Experimental and Clinical Pharmacology, Rennes 1 University, 2 avenue du professeur Léon Bernard - CS 34317, 35043, Rennes, France.,Inserm, CIC-P 1414, Clinical Investigation Centre, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Julie Querzerho-Raguideau
- Faculty of Medicine, Laboratory of Experimental and Clinical Pharmacology, Rennes 1 University, 2 avenue du professeur Léon Bernard - CS 34317, 35043, Rennes, France.,Inserm, CIC-P 1414, Clinical Investigation Centre, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Benoit Blanchet
- Pharmacokinetics and pharmacochemistry Department, Assistance Publique des Hôpitaux de Paris (AP-HP), Cochin Hospital, 27 rue du Faubourg Saint Jacques, 75014, Paris, France.,Faculty of Pharmacy, UMR8638 CNRS, University Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
| | - Jérôme Le Priol
- Haematology Laboratory, Rennes University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Mickael Roussel
- Haematology Laboratory, Rennes University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Yves Deugnier
- Inserm, CIC-P 1414, Clinical Investigation Centre, 2 rue Henri Le Guilloux, 35033, Rennes, France.,Liver diseases department, Rennes University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Eric Bellissant
- Department of Clinical and Biological Pharmacology and Pharmacovigilance, Pharmacoepidemiology, Drug Information Centre, Rennes University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France.,Faculty of Medicine, Laboratory of Experimental and Clinical Pharmacology, Rennes 1 University, 2 avenue du professeur Léon Bernard - CS 34317, 35043, Rennes, France.,Inserm, CIC-P 1414, Clinical Investigation Centre, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Florian Lemaitre
- Department of Clinical and Biological Pharmacology and Pharmacovigilance, Pharmacoepidemiology, Drug Information Centre, Rennes University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France.,Faculty of Medicine, Laboratory of Experimental and Clinical Pharmacology, Rennes 1 University, 2 avenue du professeur Léon Bernard - CS 34317, 35043, Rennes, France.,Inserm, CIC-P 1414, Clinical Investigation Centre, 2 rue Henri Le Guilloux, 35033, Rennes, France
| |
Collapse
|
10
|
Zhu A, Leto A, Shaked A, Keating B. Immunologic Monitoring to Personalize Immunosuppression After Liver Transplant. Gastroenterol Clin North Am 2018; 47:281-296. [PMID: 29735024 DOI: 10.1016/j.gtc.2018.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Although immunosuppressive drugs have enhanced patient outcomes in transplantation, the liver transplant community has made significant research efforts into the discovery of more accurate and precise methods of posttransplant monitoring and diagnosing. Current research in biomarkers reveals many promising approaches.
Collapse
Affiliation(s)
- Andrew Zhu
- Division of Transplantation, Department of Surgery, Penn Transplant Institute, The University of Pennsylvania, 3400 Spruce Street, Two Dulles Pavilion, Philadelphia, PA 19104, USA
| | - Alexandra Leto
- Division of Transplantation, Department of Surgery, Penn Transplant Institute, The University of Pennsylvania, 3400 Spruce Street, Two Dulles Pavilion, Philadelphia, PA 19104, USA
| | - Abraham Shaked
- Division of Transplantation, Department of Surgery, Penn Transplant Institute, The University of Pennsylvania, 3400 Spruce Street, Two Dulles Pavilion, Philadelphia, PA 19104, USA.
| | - Brendan Keating
- Division of Transplantation, Department of Surgery, Penn Transplant Institute, The University of Pennsylvania, 3400 Spruce Street, Two Dulles Pavilion, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Barcelona Consensus on Biomarker-Based Immunosuppressive Drugs Management in Solid Organ Transplantation. Ther Drug Monit 2016; 38 Suppl 1:S1-20. [PMID: 26977997 DOI: 10.1097/ftd.0000000000000287] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
With current treatment regimens, a relatively high proportion of transplant recipients experience underimmunosuppression or overimmunosuppression. Recently, several promising biomarkers have been identified for determining patient alloreactivity, which help in assessing the risk of rejection and personal response to the drug; others correlate with graft dysfunction and clinical outcome, offering a realistic opportunity for personalized immunosuppression. This consensus document aims to help tailor immunosuppression to the needs of the individual patient. It examines current knowledge on biomarkers associated with patient risk stratification and immunosuppression requirements that have been generally accepted as promising. It is based on a comprehensive review of the literature and the expert opinion of the Biomarker Working Group of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. The quality of evidence was systematically weighted, and the strength of recommendations was rated according to the GRADE system. Three types of biomarkers are discussed: (1) those associated with the risk of rejection (alloreactivity/tolerance), (2) those reflecting individual response to immunosuppressants, and (3) those associated with graft dysfunction. Analytical aspects of biomarker measurement and novel pharmacokinetic-pharmacodynamic models accessible to the transplant community are also addressed. Conventional pharmacokinetic biomarkers may be used in combination with those discussed in this article to achieve better outcomes and improve long-term graft survival. Our group of experts has made recommendations for the most appropriate analysis of a proposed panel of preliminary biomarkers, most of which are currently under clinical evaluation in ongoing multicentre clinical trials. A section of Next Steps was also included, in which the Expert Committee is committed to sharing this knowledge with the Transplant Community in the form of triennial updates.
Collapse
|
12
|
Bergan S, Bremer S, Vethe NT. Drug target molecules to guide immunosuppression. Clin Biochem 2015; 49:411-8. [PMID: 26453533 DOI: 10.1016/j.clinbiochem.2015.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/25/2015] [Accepted: 10/03/2015] [Indexed: 10/22/2022]
Abstract
The individual and interindividual variability of response to immunosuppressants combined with the prevailing concept of lifelong immunosuppression following any organ transplantation motivates the search for methods to further individualize such therapy. Traditional therapeutic drug monitoring, adapting dose according to concentrations in blood, targets the pharmacokinetic variability. It has been increasingly recognized, however, that there is also a considerable variability in the response to a given concentration. Attempts to overcome this variability in response include the efforts to identify relevant targets and methods for pharmacodynamic monitoring. For several of the currently used immunosuppressants there is experimental data suggesting markers that are relevant as indicators for individual monitoring of the effects of these drugs. There are also some clinical data to support these approaches; however what is generally missing, are studies that in a prospective manner demonstrates the benefits and effects on outcome. The monitoring of antithymocyte globulin by lymphocyte subset counts is actually the only well established example of pharmacodynamic monitoring. For drugs such as MPA and mTOR inhibitors, there are candidates such as IMPDH activity expression and p70SK6 phosphorylation status, respectively. The monitoring of CNIs using assays for NFAT RGE, either alone or combined with concentration measurements, is already well documented. Even here, some further investigations relating to the categories of organ transplant, combination of immunosuppressants etc. will be requested. Although some further standardization of the assay is warranted and there is a need for specific recommendations of target levels and how to adjust dose, the NFAT RGE approach to pharmacodynamic monitoring of CNIs may be close to implementation in clinical routine.
Collapse
Affiliation(s)
- Stein Bergan
- Oslo University Hospital, Department of Pharmacology, Oslo, Norway; University of Oslo, School of Pharmacy, Oslo, Norway.
| | - Sara Bremer
- Oslo University Hospital, Department of Medical Biochemistry, Oslo, Norway
| | - Nils Tore Vethe
- Oslo University Hospital, Department of Pharmacology, Oslo, Norway
| |
Collapse
|
13
|
Fadaizadeh L, Najafizadeh K, Shajareh E, Shafaghi S, Hosseini M, Heydari G. Home spirometry: Assessment of patient compliance and satisfaction and its impact on early diagnosis of pulmonary symptoms in post-lung transplantation patients. J Telemed Telecare 2015; 22:127-31. [PMID: 26026187 DOI: 10.1177/1357633x15587435] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 04/21/2015] [Indexed: 11/17/2022]
Abstract
Telemedicine is useful in monitoring patients, and in particular those, such as lung transplant recipients, suffering from chronic illnesses. This prospective cohort study was conducted on 15 lung transplant recipients. The patients provided physicians with data from spirometry as well as their clinical respiratory symptoms via SMS messages. In cases where spirometry results or clinical symptoms required follow-up, the monitoring physician contacted the patient according to guidelines and gave appropriate instructions. Qualitative assessment of satisfaction showed that the sense of increased support from medical staff was rated highest (92.9%). Telespirometry is an efficient method of monitoring lung transplant recipients which leads to patient satisfaction, compliance, adherence to study and sense of security. Nevertheless, for optimal implementation of this method, thorough training of both medical staff and patients is required.
Collapse
Affiliation(s)
- Lida Fadaizadeh
- Telemedicine Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Katayoun Najafizadeh
- Lung Transplantation Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Shajareh
- Telemedicine Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Shadi Shafaghi
- Lung Transplantation Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Hosseini
- Telemedicine Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Gholamreza Heydari
- Tobacco Prevention and Control Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Lemaitre F, Blanchet B, Latournerie M, Antignac M, Houssel-Debry P, Verdier MC, Dermu M, Camus C, Le Priol J, Roussel M, Zheng Y, Fillatre P, Curis E, Bellissant E, Boudjema K, Fernandez C. Pharmacokinetics and pharmacodynamics of tacrolimus in liver transplant recipients: inside the white blood cells. Clin Biochem 2015; 48:406-11. [DOI: 10.1016/j.clinbiochem.2014.12.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/17/2014] [Accepted: 12/20/2014] [Indexed: 10/24/2022]
|
15
|
Carr L, Gagez AL, Essig M, Sauvage FL, Marquet P, Gastinel LN. Calcineurin Activity Assay Measurement by Liquid Chromatography–Tandem Mass Spectrometry in the Multiple Reaction Monitoring Mode. Clin Chem 2014; 60:353-60. [DOI: 10.1373/clinchem.2013.213264] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Abstract
BACKGROUND
Blood concentrations of the calcineurin inhibitors (CNIs) cyclosporine and tacrolimus are currently measured to monitor immunosuppression in transplant patients. The measurement of calcineurin (CN) phosphatase activity has been proposed as a complementary pharmacodynamic approach. However, determining CN activity with current methods is not practical. We developed a new method amenable to routine use.
METHODS
Using liquid chromatography–multiple reaction monitoring mass spectrometry (LC-MRM-MS), we quantified CN activity by measuring the dephosphorylation of a synthetic phosphopeptide substrate. A stable isotope analog of the product peptide served as internal standard, and a novel inhibitor cocktail minimized dephosphorylation by other major serine/threonine phosphatases. The assay was used to determine CN activity in peripheral blood mononuclear cells (PBMCs) isolated from 20 CNI-treated kidney transplant patients and 9 healthy volunteers.
RESULTS
Linearity was observed from 0.16 to 2.5 μmol/L of product peptide, with accuracy in the 15% tolerance range. Intraassay and interassay recoveries were 100.6 (9.6) and 100 (7.5), respectively. Michaelis–Menten kinetics for purified CN were Km = 10.7 (1.6) μmol/L, Vmax = 2.8 (0.3) μmol/min · mg, and for Jurkat lysate, Km = 182.2 (118.0) μmol/L, Vmax = 0.013 (0.006) μmol/min · mg. PBMC CN activity was successfully measured in a single tube with an inhibitor cocktail.
CONCLUSIONS
Because LC-MRM-MS is commonly used in routine clinical dosage of drugs, this CN activity assay could be applied, with parallel blood drug concentration monitoring, to a large panel of patients to reevaluate the validity of PBMC CN activity monitoring.
Collapse
Affiliation(s)
| | | | - Marie Essig
- INSERM U850, Limoges, France
- Department of Nephrology, Dialysis and Transplantation and
| | | | - Pierre Marquet
- INSERM U850, Limoges, France
- Department of Pharmacology-Toxicology, CHU Limoges, Limoges, France
| | | |
Collapse
|