1
|
Kalafatis A, Theofylaktos L, Stergiopoulos T. Spin coating on a budget: A 3D-Printed all-mechanical alternative for cost-effective thin-film deposition. HARDWAREX 2024; 19:e00547. [PMID: 39669797 PMCID: PMC11637174 DOI: 10.1016/j.ohx.2024.e00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 12/14/2024]
Abstract
Spin coating stands out as the most employed thin-film deposition technique across a variety of scientific fields. Particularly in the past two decades, spin coaters have become increasingly popular due to the emergence of solution-processed semiconductors such as quantum dots and perovskites. However, acquiring commercial spin coaters from reputable suppliers remains a significant financial burden for many laboratories, particularly for smaller research or educational facilities. Prompted by the simple mechanical principles of the device, in this work, we present a 3D-printed analogue that can be printed and assembled in under 10 h and costs less than 5 euros per device. The operating principle is fully mechanical since the rotating motion is induced by gas flow. It does not require any additional components such as DC motors, motor drivers, circuitry or software and thus it can be fully operational off the grid. Additionally, the gas flow generates a purging effect that was found to be rather advantageous for film formation. To prove the effectiveness of this device, we have employed it to fabricate planar thin-film antimony sulfide (Sb2 S3 ) solar cells. The optoelectronic characteristics of solar cells revealed noteworthy improvements, particularly in terms of repeatability, when compared to those fabricated with a commercial spin coater.
Collapse
Affiliation(s)
- Apostolos Kalafatis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, Aghia Paraskevi, Athens 15341, Greece
| | - Lazaros Theofylaktos
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, Aghia Paraskevi, Athens 15341, Greece
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Thomas Stergiopoulos
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, Aghia Paraskevi, Athens 15341, Greece
| |
Collapse
|
2
|
Brydegaard M, Pedales RD, Feng V, Yamoa ASD, Kouakou B, Månefjord H, Wührl L, Pylatiuk C, Amorim DDS, Meier R. Towards global insect biomonitoring with frugal methods. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230103. [PMID: 38705174 PMCID: PMC11070255 DOI: 10.1098/rstb.2023.0103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/24/2024] [Indexed: 05/07/2024] Open
Abstract
None of the global targets for protecting nature are currently met, although humanity is critically dependent on biodiversity. A significant issue is the lack of data for most biodiverse regions of the planet where the use of frugal methods for biomonitoring would be particularly important because the available funding for monitoring is insufficient, especially in low-income countries. We here discuss how three approaches to insect biomonitoring (computer vision, lidar, DNA sequences) could be made more frugal and urge that all biomonitoring techniques should be evaluated for global suitability before becoming the default in high-income countries. This requires that techniques popular in high-income countries should undergo a phase of 'innovation through simplification' before they are implemented more broadly. We predict that techniques that acquire raw data at low cost and are suitable for analysis with AI (e.g. images, lidar-signals) will be particularly suitable for global biomonitoring, while techniques that rely heavily on patented technologies may be less promising (e.g. DNA sequences). We conclude the opinion piece by pointing out that the widespread use of AI for data analysis will require a global strategy for providing the necessary computational resources and training. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Collapse
Affiliation(s)
- Mikkel Brydegaard
- Dept. Physics, Lund University, Sölvegatan 14c, 22362 Lund, Sweden
- Dept. Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
- Norsk Elektro Optikk, Østensjøveien 34, 0667 Oslo, Norge
- FaunaPhotonics, Støberi Støberigade 14, 2450 København, Denmark
| | - Ronniel D. Pedales
- Institute of Biology, University of the Philippines Diliman, Quezon City, Philippines 1101
- Center for Integrative Biodiversity Discovery, Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115, Berlin, Germany
- Institute of Biology, Humboldt University, 10115 Berlin, Germany
| | - Vivian Feng
- Center for Integrative Biodiversity Discovery, Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115, Berlin, Germany
- Institute of Biology, Humboldt University, 10115 Berlin, Germany
| | - Assoumou saint-doria Yamoa
- Instrumentation, Imaging and Spectroscopy Laboratory, Felix Houphouet-Boigny Institute, BP1093 Yamoussoukro, Ivory Coast
| | - Benoit Kouakou
- Instrumentation, Imaging and Spectroscopy Laboratory, Felix Houphouet-Boigny Institute, BP1093 Yamoussoukro, Ivory Coast
| | - Hampus Månefjord
- Dept. Physics, Lund University, Sölvegatan 14c, 22362 Lund, Sweden
| | - Lorenz Wührl
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christian Pylatiuk
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Dalton de Souza Amorim
- Departamento de Biologia, FFCLRP, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
| | - Rudolf Meier
- Center for Integrative Biodiversity Discovery, Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115, Berlin, Germany
- Institute of Biology, Humboldt University, 10115 Berlin, Germany
| |
Collapse
|
3
|
Sheffield JL, Parkinson B, Bascom A, Bateman T, Magleby S, Howell LL. Expanding research impact through engaging the maker community and collaborating with digital content creators. PLoS One 2024; 19:e0302449. [PMID: 38718013 PMCID: PMC11078436 DOI: 10.1371/journal.pone.0302449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/29/2024] [Indexed: 05/12/2024] Open
Abstract
This paper proposes a method for increasing the impact of academic research by providing materials for public use, thus engaging the maker community, and by collaborating with internet content creators to extend the reach. We propose a framework for engagement and report a multi-year study that evaluates short, intermediate, and long-term outcomes, with a second effort to demonstrate repeatability of the short-term outcomes. In the first study, we posted forty-one 3D printable compliant mechanisms on public repositories and collaborated with physicist and content creator Derek Muller (Veritasium YouTube channel). Outputs and outcomes from this interaction were measured over 3 years. The framework was exercised again with four new 3D printable mechanisms in collaboration with engineer and STEM influencer Mark Rober. The proposed methods aim to help researchers extend the reach of their work to broader audiences, including professional engineers, hardware designers, educators, students, researchers, and hobbyists. This work demonstrates promising impacts of the framework, including (1) extending public awareness of research findings to broader audiences by engaging the maker community and collaborating with content creators, (2) accelerating the pace of innovation and further hardware-based research through public application of research findings, (3) fostering a culture of open-source design and collaboration among other researchers, engineers, educators, and makers, and (4) increasing utilization of peer-reviewed published content. These outreach practices can be valuable tools for researchers to increase impact of and excitement for their research.
Collapse
Affiliation(s)
- Jacob L. Sheffield
- Compliant Mechanisms Research Group, Department of Mechanical Engineering, Brigham Young University, Provo, UT, United States of America
| | - Bethany Parkinson
- Compliant Mechanisms Research Group, Department of Mechanical Engineering, Brigham Young University, Provo, UT, United States of America
| | - Aliya Bascom
- Compliant Mechanisms Research Group, Department of Mechanical Engineering, Brigham Young University, Provo, UT, United States of America
| | - Terri Bateman
- Compliant Mechanisms Research Group, Department of Mechanical Engineering, Brigham Young University, Provo, UT, United States of America
| | - Spencer Magleby
- Compliant Mechanisms Research Group, Department of Mechanical Engineering, Brigham Young University, Provo, UT, United States of America
| | - Larry L. Howell
- Compliant Mechanisms Research Group, Department of Mechanical Engineering, Brigham Young University, Provo, UT, United States of America
| |
Collapse
|
4
|
Tran MH, Fei B. Compact and ultracompact spectral imagers: technology and applications in biomedical imaging. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:040901. [PMID: 37035031 PMCID: PMC10075274 DOI: 10.1117/1.jbo.28.4.040901] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/27/2023] [Indexed: 05/18/2023]
Abstract
Significance Spectral imaging, which includes hyperspectral and multispectral imaging, can provide images in numerous wavelength bands within and beyond the visible light spectrum. Emerging technologies that enable compact, portable spectral imaging cameras can facilitate new applications in biomedical imaging. Aim With this review paper, researchers will (1) understand the technological trends of upcoming spectral cameras, (2) understand new specific applications that portable spectral imaging unlocked, and (3) evaluate proper spectral imaging systems for their specific applications. Approach We performed a comprehensive literature review in three databases (Scopus, PubMed, and Web of Science). We included only fully realized systems with definable dimensions. To best accommodate many different definitions of "compact," we included a table of dimensions and weights for systems that met our definition. Results There is a wide variety of contributions from industry, academic, and hobbyist spaces. A variety of new engineering approaches, such as Fabry-Perot interferometers, spectrally resolved detector array (mosaic array), microelectro-mechanical systems, 3D printing, light-emitting diodes, and smartphones, were used in the construction of compact spectral imaging cameras. In bioimaging applications, these compact devices were used for in vivo and ex vivo diagnosis and surgical settings. Conclusions Compact and ultracompact spectral imagers are the future of spectral imaging systems. Researchers in the bioimaging fields are building systems that are low-cost, fast in acquisition time, and mobile enough to be handheld.
Collapse
Affiliation(s)
- Minh H. Tran
- University of Texas at Dallas, Department of Bioengineering, Richardson, Texas, United States
| | - Baowei Fei
- University of Texas at Dallas, Department of Bioengineering, Richardson, Texas, United States
- University of Texas Southwestern Medical Center, Department of Radiology, Dallas, Texas, United States
- University of Texas at Dallas, Center for Imaging and Surgical Innovation, Richardson, Texas, United States
- Address all correspondence to Baowei Fei,
| |
Collapse
|
5
|
Matsui T, Fujiwara D. Optical sectioning robotic microscopy for everyone: the structured illumination microscope with the OpenFlexure stages. OPTICS EXPRESS 2022; 30:23208-23216. [PMID: 36225006 DOI: 10.1364/oe.461910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/30/2022] [Indexed: 06/16/2023]
Abstract
We report on the 3D-printed structured illumination microscope (SIM) with optical sectioning capability. Optically sectioned images are obtained by projecting a single-spatial-frequency grid pattern onto the specimen and recording three images with the grid pattern at different spatial phases, and then post-processing with simple mathematics. For the precise actuation of the grid for the structured illumination and the positioning of the sample, stages of the open-sourced, 3D-printable OpenFlexure families, which are capable of highly precise positioning control of tens of nanometers based on the flexure mechanism of the flexible plastics, are utilized. Our system has optical sectioning strength of a few microns, which is equivalent to that achievable with the confocal microscopes. The operation of our system can be automated with the Raspberry Pi and can be remotely operated from a PC via a wireless local area network.
Collapse
|
6
|
Zhao C, Lv Q, Wu W. Application and Prospects of Hydrogel Additive Manufacturing. Gels 2022; 8:gels8050297. [PMID: 35621595 PMCID: PMC9141908 DOI: 10.3390/gels8050297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 02/07/2023] Open
Abstract
Hydrogel has become a commonly used material for 3D and 4D printing due to its favorable biocompatibility and low cost. Additive manufacturing, also known as 3D printing, was originally referred to as rapid prototyping manufacturing. Variable-feature rapid prototyping technology, also known as 4D printing, is a combination of materials, mathematics, and additives. This study constitutes a literature review to address hydrogel-based additive manufacturing technologies, introducing the characteristics of commonly used 3D printing hydrogel methods, such as direct ink writing, fused deposition modeling, and stereolithography. With this review, we also investigated the stimulus types, as well as the advantages and disadvantages of various stimulus-responsive hydrogels in smart hydrogels; non-responsive hydrogels; and various applications of additive manufacturing hydrogels, such as neural catheter preparation and drug delivery. The opportunities, challenges, and future prospects of hydrogel additive manufacturing technologies are discussed.
Collapse
Affiliation(s)
- Changlong Zhao
- Department of Mechanical and Vehicle Engineering, Changchun University, Changchun 130012, China; (C.Z.); (Q.L.)
| | - Qiyin Lv
- Department of Mechanical and Vehicle Engineering, Changchun University, Changchun 130012, China; (C.Z.); (Q.L.)
| | - Wenzheng Wu
- Department of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China
- Correspondence:
| |
Collapse
|
7
|
Ly VT, Baudin PV, Pansodtee P, Jung EA, Voitiuk K, Rosen YM, Willsey HR, Mantalas GL, Seiler ST, Selberg JA, Cordero SA, Ross JM, Rolandi M, Pollen AA, Nowakowski TJ, Haussler D, Mostajo-Radji MA, Salama SR, Teodorescu M. Picroscope: low-cost system for simultaneous longitudinal biological imaging. Commun Biol 2021; 4:1261. [PMID: 34737378 PMCID: PMC8569150 DOI: 10.1038/s42003-021-02779-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/05/2021] [Indexed: 01/02/2023] Open
Abstract
Simultaneous longitudinal imaging across multiple conditions and replicates has been crucial for scientific studies aiming to understand biological processes and disease. Yet, imaging systems capable of accomplishing these tasks are economically unattainable for most academic and teaching laboratories around the world. Here, we propose the Picroscope, which is the first low-cost system for simultaneous longitudinal biological imaging made primarily using off-the-shelf and 3D-printed materials. The Picroscope is compatible with standard 24-well cell culture plates and captures 3D z-stack image data. The Picroscope can be controlled remotely, allowing for automatic imaging with minimal intervention from the investigator. Here, we use this system in a range of applications. We gathered longitudinal whole organism image data for frogs, zebrafish, and planaria worms. We also gathered image data inside an incubator to observe 2D monolayers and 3D mammalian tissue culture models. Using this tool, we can measure the behavior of entire organisms or individual cells over long-time periods.
Collapse
Affiliation(s)
- Victoria T Ly
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA.
| | - Pierre V Baudin
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Pattawong Pansodtee
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Erik A Jung
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Kateryna Voitiuk
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Yohei M Rosen
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Gary L Mantalas
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Spencer T Seiler
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - John A Selberg
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Sergio A Cordero
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Jayden M Ross
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Alex A Pollen
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Tomasz J Nowakowski
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, 94143, USA
| | - David Haussler
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Mohammed A Mostajo-Radji
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, 94143, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Sofie R Salama
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Mircea Teodorescu
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA.
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA.
| |
Collapse
|
8
|
Salido J, Toledano PT, Vallez N, Deniz O, Ruiz-Santaquiteria J, Cristobal G, Bueno G. MicroHikari3D: an automated DIY digital microscopy platform with deep learning capabilities. BIOMEDICAL OPTICS EXPRESS 2021; 12:7223-7243. [PMID: 34858711 PMCID: PMC8606155 DOI: 10.1364/boe.439014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
A microscope is an essential tool in biosciences and production quality laboratories for unveiling the secrets of microworlds. This paper describes the development of MicroHikari3D, an affordable DIY optical microscopy platform with automated sample positioning, autofocus and several illumination modalities to provide a high-quality flexible microscopy tool for labs with a short budget. This proposed optical microscope design aims to achieve high customization capabilities to allow whole 2D slide imaging and observation of 3D live specimens. The MicroHikari3D motion control system is based on the entry level 3D printer kit Tronxy X1 controlled from a server running in a Raspberry Pi 4. The server provides services to a client mobile app for video/image acquisition, processing, and a high level classification task by applying deep learning models.
Collapse
Affiliation(s)
- J. Salido
- VISILAB Group, Universidad de Castilla-La Mancha, 13005 Ciudad Real, Spain
| | - P. T. Toledano
- VISILAB Group, Universidad de Castilla-La Mancha, 13005 Ciudad Real, Spain
| | - N. Vallez
- VISILAB Group, Universidad de Castilla-La Mancha, 13005 Ciudad Real, Spain
| | - O. Deniz
- VISILAB Group, Universidad de Castilla-La Mancha, 13005 Ciudad Real, Spain
| | | | - G. Cristobal
- Instituto de Optica (CSIC), Serrano 121, Madrid, Spain
| | - G. Bueno
- VISILAB Group, Universidad de Castilla-La Mancha, 13005 Ciudad Real, Spain
| |
Collapse
|
9
|
Domínguez JE, Olivos E, Vázquez C, Rivera J, Hernández-Cortes R, González-Benito J. Automated low-cost device to produce sub-micrometric polymer fibers based on blow spun method. HARDWAREX 2021; 10:e00218. [PMID: 35607673 PMCID: PMC9123463 DOI: 10.1016/j.ohx.2021.e00218] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/11/2021] [Accepted: 07/28/2021] [Indexed: 05/04/2023]
Abstract
Attending the latest advances in polymeric fibers, the design of low-cost, and high-quality scientific equipment for obtaining fibers seemed essential. To overcome this challenge, a 3D printable prototype was designed, assembled, and validated to obtain fibers using the SBS method. The particular configuration of the prototype consisted of controlling the process conditions such as working distance and injection flow, as well as other parameters such as RPM and the axial movement of the cylindrical collector. Thus, these parameters were automated using a microcontroller (Arduino) that receives information from an Android device with bluetooth connectivity to control each of the elements of the equipment. Subsequently, the repeatability and reproducibility of the fibers was verified using polymers such as polystyrene (PS), polysulfone (PSF) and polyethylene oxide (PEO); furthermore, PSF fibers were manufactured to analyze the influence of working distance and the axial movement of the collector on their production.
Collapse
Affiliation(s)
- José E. Domínguez
- Department of Materials Science and Engineering and Chemical Engineering, IQMAAB, Universidad Carlos III de Madrid, Madrid, Spain
- Department of Nanotechnology, INTESU, Universidad Tecnológica del Centro de Veracruz, Mexico
| | - E Olivos
- Department of Nanotechnology, INTESU, Universidad Tecnológica del Centro de Veracruz, Mexico
| | - Carlos Vázquez
- Institute of Industrial Engineering and Automotive Mechanics, Universidad Tecnológica de la Mixteca, Mexico
| | - J.M. Rivera
- LADISER Organic Chemistry, Faculty of Chemical Sciences, Universidad Veracruzana, Orizaba, Mexico
| | | | - Javier González-Benito
- Department of Materials Science and Engineering and Chemical Engineering, IQMAAB, Universidad Carlos III de Madrid, Madrid, Spain
| |
Collapse
|
10
|
Abstract
Abstract
3D printing belongs to the emerging technologies of our time. Describing diverse specific techniques, 3D printing enables rapid production of individual objects and creating shapes that would not be produced with other techniques. One of the drawbacks of typical 3D printing processes, however, is the layered structure of the created parts. This is especially problematic in the production of optical elements, which in most cases necessitate highly even surfaces. To meet this challenge, advanced 3D printing techniques as well as other sophisticated solutions can be applied. Here, we give an overview of 3D printed optical elements, such as lenses, mirrors, and waveguides, with a focus on freeform optics and other elements for which 3D printing is especially well suited.
Collapse
Affiliation(s)
- Tomasz Blachowicz
- Silesian University of Technology, Institute of Physics – Center for Science and Education , 44-100 Gliwice , Poland
| | - Guido Ehrmann
- Virtual Institute of Applied Research on Advanced Materials (VIARAM) , 33619 Bielefeld , Germany
| | - Andrea Ehrmann
- Bielefeld University of Applied Sciences, Faculty of Engineering and Mathematics , 33619 Bielefeld , Germany
| |
Collapse
|
11
|
Efromson JP, Li S, Lynch MD. BioSamplr: An open source, low cost automated sampling system for bioreactors. HARDWAREX 2021; 9:e00177. [PMID: 35492036 PMCID: PMC9041172 DOI: 10.1016/j.ohx.2021.e00177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/31/2021] [Accepted: 01/31/2021] [Indexed: 05/30/2023]
Abstract
Autosampling from bioreactors reduces error, increases reproducibility and offers improved aseptic handling when compared to manual sampling. Additionally, autosampling greatly decreases the hands-on time required for a bioreactor experiment and enables sampling 24 h a day. We have designed, built and tested a low cost, open source, automated bioreactor sampling system, the BioSamplr. The BioSamplr can take up to ten samples from a bioreactor at a desired sample interval and cools them to a desired temperature. The device, assembled from low cost and 3D printed components, is controlled wirelessly by a Raspberry Pi, and records all sampling data to a log file. The cost and accessibility of the BioSamplr make it useful for laboratories without access to more expensive and complex autosampling systems.
Collapse
Affiliation(s)
- John P. Efromson
- Department of Biomedical Engineering, Duke University, United States
| | - Shuai Li
- Department of Chemistry, Duke University, United States
| | - Michael D. Lynch
- Department of Biomedical Engineering, Duke University, United States
| |
Collapse
|
12
|
Gervasi A, Cardol P, Meyer PE. Open-hardware wireless controller and 3D-printed pumps for efficient liquid manipulation. HARDWAREX 2021; 9:e00199. [PMID: 35601242 PMCID: PMC9121357 DOI: 10.1016/j.ohx.2021.e00199] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/12/2021] [Accepted: 05/03/2021] [Indexed: 05/09/2023]
Abstract
Many routines in biological experiments require the precise handling of liquid volumes in the range of microliters up to liters. In this paper, we describe a new wireless controller that is adapted to liquid manipulation tasks, in particular when combined with the proposed 3D-printed pumps. It can be built from widely available electronic components and managed with open-source software. The use of peristaltic pumps enables to move volumes from milliliters to liters with a relative error below 1% or a syringe pump capable of injecting volumes in the range of milliliters with microliter accuracy. The system is remotely controllable over WiFi and easily automated using the MQTT communication protocol. The programming of the microcontroller is performed on the Arduino IDE. The WiFi settings and the calibration value can be easily modified, stored and exported in the form of a JSON file to create a user friendly, plug and play and easily scalable device. Additional sensors or actuators can be added, allowing the system to adapt to various usages. Finally, in addition to its low manufacturing cost and its capability to fit a large variety of tasks involving liquid handling, our system has been specifically designed for research environments where adaptability and repeatability of experiments is essential.
Collapse
Affiliation(s)
- Alain Gervasi
- Genetics and Physiology of Microalgae, InBios/Phytosystems, BotaBotLab, Institut de Botanique, University of Liège, Belgium
| | - Pierre Cardol
- Genetics and Physiology of Microalgae, InBios/Phytosystems, Institut de botanique, University of Liège, Belgium
- Corresponding authors.
| | - Patrick E. Meyer
- Bioinformatics and Systems Biology Lab, InBios/Phytosystems, Institut de botanique, University of Liège, Belgium
- Corresponding authors.
| |
Collapse
|
13
|
Toschke Y, Bourdon B, Berben D, Imlau M. A modular optical honeycomb breadboard realized with 3D-printable building bricks and industrial aluminum extrusions. HARDWAREX 2021; 9:e00182. [PMID: 35492058 PMCID: PMC9041187 DOI: 10.1016/j.ohx.2021.e00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Optical breadboards with honeycomb structure provide a solid surface with mounting hole grids for building optical assemblies, sub-systems and experiments in the fields of quantum-optics and photonics. Performance criteria are the ability to resist bending under load (stiffness) and the ability to dissipate induced vibrations to the board (damping). The hardware presented in this paper deals with the possibility of assembling optical breadboards using 3D-printed building bricks with honeycomb structure, so-called 'breadboard bricks', and industrial aluminum extrusions, so-called 'breadboard profiles'. With this do-it-yourself approach, it is possible to make changes to the breadboard, such as making an opening, changing its shape or increasing the mounting surface whenever needed. Furthermore, the breadboard is automatically compatible with industrially relevant mechanical design platforms. Aluminum extrusions and the PLA thermoplastic filament provide mechanical stiffness and damping, respectively. Further characteristics are low costs and a modular design. All this makes it especially suited for agile prototyping of (laser) optical assemblies in many engineering processes.
Collapse
Affiliation(s)
- Yannic Toschke
- Department of Physics, Osnabrueck University, Barbarastrasse 7, Osnabrueck D-49076, Germany
| | - Bjoern Bourdon
- Department of Physics, Osnabrueck University, Barbarastrasse 7, Osnabrueck D-49076, Germany
| | - Dirk Berben
- Fachhochschule Suedwestfalen, Haldener Strasse 182, D-58636 Iserlohn, Germany
| | - Mirco Imlau
- Department of Physics, Osnabrueck University, Barbarastrasse 7, Osnabrueck D-49076, Germany
| |
Collapse
|
14
|
Rivas Arzaluz C, Ayala ME, Aragón Martínez A. A new open-source hardware device to measure vertical sperm motility and concentration. Cytometry A 2021; 99:999-1006. [PMID: 33786998 DOI: 10.1002/cyto.a.24343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/19/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2022]
Abstract
Sperm motility and concentration are commonly evaluated parameters in semen analysis. Those parameters are assessed objectively with commercial instrumentation such as computer-assisted sperm analysis systems (CASA) and hemocytometer. In CASA systems, sperm motility is assessed in the horizontal plane imposed by the stage of the microscope. Thus, there is lack of measurement of the vertical velocity of sperm. The female reproductive tract is a tridimensional space which the sperm traverse to reach the ovum, and there is a need for instruments measuring parameters more relevant to this real-world situation. In this report we describe the design, construction and use of an open-source hardware (OSH) device for evaluation of the vertical velocity of sperm, called UPSPERM. This device was also used to measure sperm concentration, and agreement with hemocytometer was evaluated. Bland-Altman analysis shows good agreement between these two methods of sperm counting. As a first application of UPSPERM, we evaluated the changes in boar sperm motility at distinct pH values between 7.0 and 8.0. The UPSPERM results showed that the vertical velocity of sperm was highest at pH 7.6 and 7.8. We propose that our UPSPERM offers a reliable and affordable option for obtaining measurements of vertical velocity and sperm concentration.
Collapse
Affiliation(s)
- Cindy Rivas Arzaluz
- Laboratorio de Gametos y Desarrollo Tecnológico, Facultad de Estudios Superiores Iztacala, UNAM. Paseo de los Barrios Número 1, Tlalnepantla, Estado de México, Mexico.,Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio A, Circuito de posgrados, 1er piso, Ciudad Universitaria, Ciudad de México, Mexico
| | - María E Ayala
- Unidad de Investigación en Biología de la Reproducción, Laboratorio de Pubertad, Facultad de Estudios Superiores Zaragoza, UNAM, Ciudad de México, Mexico
| | - Andrés Aragón Martínez
- Laboratorio de Gametos y Desarrollo Tecnológico, Facultad de Estudios Superiores Iztacala, UNAM. Paseo de los Barrios Número 1, Tlalnepantla, Estado de México, Mexico
| |
Collapse
|
15
|
Huang W, Luo S, Yang D, Zhang S. Applications of smartphone-based near-infrared (NIR) imaging, measurement, and spectroscopy technologies to point-of-care (POC) diagnostics. J Zhejiang Univ Sci B 2021; 22:171-189. [PMID: 33719223 DOI: 10.1631/jzus.b2000388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The role of point-of-care (POC) diagnostics is important in public health. With the support of smartphones, POC diagnostic technologies can be greatly improved. This opportunity has arisen from not only the large number and fast spread of cell-phones across the world but also their improved imaging/diagnostic functions. As a tool, the smartphone is regarded as part of a compact, portable, and low-cost system for real-time POC, even in areas with few resources. By combining near-infrared (NIR) imaging, measurement, and spectroscopy techniques, pathogens can be detected with high sensitivity. The whole process is rapid, accurate, and low-cost, and will set the future trend for POC diagnostics. In this review, the development of smartphone-based NIR fluorescent imaging technology was described, and the quality and potential of POC applications were discussed.
Collapse
Affiliation(s)
- Wenjing Huang
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.,Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Shenglin Luo
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown 02129, USA
| | - Dong Yang
- Division of Biomedical Engineering, Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, USA
| | - Sheng Zhang
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China. .,State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
16
|
Lastovickova DN, Toulan FR, Mitchell JR, VanOosten D, Clay AM, Stanzione JF, Palmese GR, La Scala JJ. Resin, cure, and polymer properties of photopolymerizable resins containing
bio‐derived
isosorbide. J Appl Polym Sci 2021. [DOI: 10.1002/app.50574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | - Faye R. Toulan
- CCDC‐Army Research Laboratory FCDD‐RLW‐M Aberdeen Maryland USA
| | | | - David VanOosten
- CCDC‐Army Research Laboratory FCDD‐RLW‐M Aberdeen Maryland USA
| | - Anthony M. Clay
- CCDC‐Army Research Laboratory FCDD‐RLW‐M Aberdeen Maryland USA
| | - Joseph F. Stanzione
- Department of Chemical Engineering Rowan University Glassboro New Jersey USA
| | - Giuseppe R. Palmese
- Department of Chemical and Biological Engineering Drexel University Philadelphia Pennsylvania USA
| | | |
Collapse
|
17
|
Nguyen T, Chidambara VA, Andreasen SZ, Golabi M, Huynh VN, Linh QT, Bang DD, Wolff A. Point-of-care devices for pathogen detections: The three most important factors to realise towards commercialization. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
18
|
Pearce JM. Economic savings for scientific free and open source technology: A review. HARDWAREX 2020; 8:e00139. [PMID: 32923748 PMCID: PMC7480774 DOI: 10.1016/j.ohx.2020.e00139] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 08/25/2020] [Accepted: 09/02/2020] [Indexed: 05/23/2023]
Abstract
Both the free and open source software (FOSS) as well as the distributed digital manufacturing of free and open source hardware (FOSH) has shown particular promise among scientists for developing custom scientific tools. Early research found substantial economic savings for these technologies, but as the open source design paradigm has grown by orders of magnitude it is possible that the savings observed in the early work was isolated to special cases. Today there are examples of open source technology for science in the vast majority of disciplines and several resources dedicated specifically to publishing them. Do the tremendous economic savings observed earlier hold today? To answer that question, this study evaluates free and open source technologies in the two repositories compared to proprietary functionally-equivalent tools as a function of their use of Arduino-based electronics, RepRap-class 3-D printing, as well as the combination of the two. The results of the review find overwhelming evidence for a wide range of scientific tools, that open source technologies provide economic savings of 87% compared to equivalent or lesser proprietary tools. These economic savings increased slightly to 89% for those that used Arduino technology and even more to 92% for those that used RepRap-class 3-D printing. Combining both Arduino and 3-D printing the savings averaged 94% for free and open source tools over commercial equivalents. The results provide strong evidence for financial support of open source hardware and software development for the sciences. Given the overwhelming economic advantages of free and open source technologies, it appears financially responsible to divert funding of proprietary scientific tools and their development in favor of FOSH. Policies were outlined that provide nations with a template for strategically harvesting the opportunities provided by the free and open source paradigm.
Collapse
Affiliation(s)
- Joshua M. Pearce
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, MI 49931, USA
- Department of Electrical and Computer Engineering, Michigan Technological University, Houghton, MI 49931, USA
- Department of Electronics and Nanoengineering, School of Electrical Engineering, Aalto University, Espoo, Finland
| |
Collapse
|
19
|
Jönsson A, Toppi A, Dufva M. The FAST Pump, a low-cost, easy to fabricate, SLA-3D-printed peristaltic pump for multi-channel systems in any lab. HARDWAREX 2020; 8:e00115. [PMID: 35498250 PMCID: PMC9041223 DOI: 10.1016/j.ohx.2020.e00115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/15/2020] [Accepted: 06/04/2020] [Indexed: 05/09/2023]
Abstract
With the increasing interest in high throughput screening and parallel assays, laboratories around the world inevitably find themselves in need of driving a multitude of fluid lines to facilitate their large scale studies. The comparatively low cost and no-fluid-contact design of peristaltic pumps make them the go-to systems for such ventures, but using commercially available pumping systems this still becomes a costly endeavor at typically $250-$1000 per pump line. Here we have developed an alternative, a peristaltic pump that can be fabricated in most research laboratories using 3D-printing and readily available off-the-shelf parts. The pump features 8 parallel channels with linear ranges spanning from 0.7 µL/min to 6 mL/min. The pump can be fabricated and assembled by anyone with access to a 3D-printer at a cost of less than $45 per channel and is driven by a stepper motor that connects directly to any computer. This device has the potential to be disruptive in areas such as drug screening and assay development, as well as lab-on-a-chip applications and cell cultivation, where it significantly reduces hardware expenses and allows for construction of more comprehensive fluidic systems at a fraction of current costs.
Collapse
|
20
|
Collins JT, Knapper J, Stirling J, Mduda J, Mkindi C, Mayagaya V, Mwakajinga GA, Nyakyi PT, Sanga VL, Carbery D, White L, Dale S, Jieh Lim Z, Baumberg JJ, Cicuta P, McDermott S, Vodenicharski B, Bowman R. Robotic microscopy for everyone: the OpenFlexure microscope. BIOMEDICAL OPTICS EXPRESS 2020; 11:2447-2460. [PMID: 32499936 PMCID: PMC7249832 DOI: 10.1364/boe.385729] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 05/11/2023]
Abstract
Optical microscopes are an essential tool for both the detection of disease in clinics, and for scientific analysis. However, in much of the world access to high-performance microscopy is limited by both the upfront cost and maintenance cost of the equipment. Here we present an open-source, 3D-printed, and fully-automated laboratory microscope, with motorised sample positioning and focus control. The microscope is highly customisable, with a number of options readily available including trans- and epi- illumination, polarisation contrast imaging, and epi-florescence imaging. The OpenFlexure microscope has been designed to enable low-volume manufacturing and maintenance by local personnel, vastly increasing accessibility. We have produced over 100 microscopes in Tanzania and Kenya for educational, scientific, and clinical applications, demonstrating that local manufacturing can be a viable alternative to international supply chains that can often be costly, slow, and unreliable.
Collapse
Affiliation(s)
- Joel T. Collins
- Centre for Photonics and Photonic Materials, Department of Physics, University of Bath, UK
| | - Joe Knapper
- Centre for Photonics and Photonic Materials, Department of Physics, University of Bath, UK
| | - Julian Stirling
- Centre for Photonics and Photonic Materials, Department of Physics, University of Bath, UK
| | | | | | | | | | | | | | | | - Leah White
- Department of Chemistry, University of Bath, UK
| | - Sara Dale
- Centre for Nanoscience and Nanotechnology, Department of Physics, University of Bath, UK
| | - Zhen Jieh Lim
- Centre for Nanoscience and Nanotechnology, Department of Physics, University of Bath, UK
| | | | | | | | | | - Richard Bowman
- Centre for Photonics and Photonic Materials, Department of Physics, University of Bath, UK
| |
Collapse
|
21
|
Baumgartner B, Freitag S, Lendl B. 3D Printing for Low-Cost and Versatile Attenuated Total Reflection Infrared Spectroscopy. Anal Chem 2020; 92:4736-4741. [DOI: 10.1021/acs.analchem.9b04043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bettina Baumgartner
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9/E164, 1060 Wien, Austria
| | - Stephan Freitag
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9/E164, 1060 Wien, Austria
| | - Bernhard Lendl
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9/E164, 1060 Wien, Austria
| |
Collapse
|
22
|
Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts. PLoS One 2019; 14:e0225795. [PMID: 31805116 PMCID: PMC6894851 DOI: 10.1371/journal.pone.0225795] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/12/2019] [Indexed: 11/19/2022] Open
Abstract
Open source hardware for scientific equipment needs to provide source files and enough documentation to allow the study, replication and modification of the design. In addition, parametric modeling is encouraged in order to facilitate customization for other experiments. Parametric design using a solid modeling programming language allows customization and provides a source file for the design. OpenSCAD is the most widely used scripting tool for parametric modeling of open source labware. However, OpenSCAD lacks the ability to export to standard parametric formats; thus, the parametric dimensional information of the model is lost. This is an important deficiency because it is key to share the design in the most accessible formats with no information loss. In this work we analyze OpenSCAD and compare it with FreeCAD Python scripts. We have created a parametric open source hardware design to compare these tools. Our findings show that although Python for FreeCAD is more arduous to learn, its advantages counterbalance the initial difficulties. The main benefits are being able to export to standard parametric models; using Python language with its libraries; and the ability to use and integrate the models in its graphical interface. Thus, making it more appropriate to design open source hardware for scientific equipment.
Collapse
|
23
|
Barthels F, Barthels U, Schwickert M, Schirmeister T. FINDUS: An Open-Source 3D Printable Liquid-Handling Workstation for Laboratory Automation in Life Sciences. SLAS Technol 2019; 25:190-199. [PMID: 31540570 DOI: 10.1177/2472630319877374] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
3D-printed laboratory devices can enable ambitious research purposes even at a low-budget level. To follow this trend, here we describe the construction, calibration, and usage of the FINDUS (Fully Integrable Noncommercial Dispensing Utility System). We report the successful 3D printing and assembly of a liquid-handling workstation for less than $400. Using this setup, we achieve reliable and flexible liquid-dispensing automation with relative pipetting errors of less than 0.3%. We show our system is well suited for several showcase applications from both the biology and chemistry fields. In support of the open-source spirit, we make all 3D models, assembly instructions, and source code available for free download, rebuild, and modification.
Collapse
Affiliation(s)
- Fabian Barthels
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ulrich Barthels
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Marvin Schwickert
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
24
|
Distler T, Ruther F, Boccaccini AR, Detsch R. Development of 3D Biofabricated Cell Laden Hydrogel Vessels and a Low-Cost Desktop Printed Perfusion Chamber for In Vitro Vessel Maturation. Macromol Biosci 2019; 19:e1900245. [PMID: 31386277 DOI: 10.1002/mabi.201900245] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Indexed: 12/20/2022]
Abstract
The vascular system represents the key supply chain for nutrients and oxygen inside the human body. Engineered solutions to produce sophisticated alternatives for autologous or artificial vascular implants to sustainably replace diseased vascular tissue still remain a key challenge in tissue engineering. In this paper, cell-laden 3D bioplotted hydrogel vessel-like constructs made from alginate di-aldehyde (ADA) and gelatin (GEL) are presented. The aim is to increase the mechanical stability of fibroblast-laden ADA-GEL vessels, tailoring them for maturation under dynamic cell culture conditions. BaCl2 is investigated as a crosslinker for the oxidized alginate-gelatin system. Normal human dermal fibroblast (NHDF)-laden vessel constructs are optimized successfully in terms of higher stiffness by increasing ADA concentration and using BaCl2 , with no toxic effects observed on NHDF. Contrarily, BaCl2 crosslinking of ADA-GEL accelerates cell attachment, viability, and growth from 7d to 24h compared to CaCl2 . Moreover, alignment of cells in the longitudinal direction of the hydrogel vessels when extruding the cell-laden hydrogel crosslinked with Ba2+ is observed. It is possible to tune the stiffness of ADA-GEL by utilizing Ba2+ as crosslinker. In addition, a customized, low-cost 3D printed polycarbonate (PC) perfusion chamber for perfusion of vessel-like constructs is introduced.
Collapse
Affiliation(s)
- Thomas Distler
- Institute of Biomaterials, Department of Material Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstr. 6, 91058, Erlangen, Germany
| | - Florian Ruther
- Institute of Biomaterials, Department of Material Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstr. 6, 91058, Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Material Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstr. 6, 91058, Erlangen, Germany
| | - Rainer Detsch
- Institute of Biomaterials, Department of Material Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstr. 6, 91058, Erlangen, Germany
| |
Collapse
|
25
|
Stuart MB, McGonigle AJS, Willmott JR. Hyperspectral Imaging in Environmental Monitoring: A Review of Recent Developments and Technological Advances in Compact Field Deployable Systems. SENSORS 2019; 19:s19143071. [PMID: 31336796 PMCID: PMC6678368 DOI: 10.3390/s19143071] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/26/2019] [Accepted: 07/09/2019] [Indexed: 12/21/2022]
Abstract
The development and uptake of field deployable hyperspectral imaging systems within environmental monitoring represents an exciting and innovative development that could revolutionize a number of sensing applications in the coming decades. In this article we focus on the successful miniaturization and improved portability of hyperspectral sensors, covering their application both from aerial and ground-based platforms in a number of environmental application areas, highlighting in particular the recent implementation of low-cost consumer technology in this context. At present, these devices largely complement existing monitoring approaches, however, as technology continues to improve, these units are moving towards reaching a standard suitable for stand-alone monitoring in the not too distant future. As these low-cost and light-weight devices are already producing scientific grade results, they now have the potential to significantly improve accessibility to hyperspectral monitoring technology, as well as vastly proliferating acquisition of such datasets.
Collapse
Affiliation(s)
- Mary B Stuart
- Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S1 4DE, UK
| | - Andrew J S McGonigle
- Department of Geography, University of Sheffield, Sheffield S10 2TN, UK
- School of Geosciences, The University of Sydney, Sydney, NSW 2006, Australia
- Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Jon R Willmott
- Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S1 4DE, UK.
| |
Collapse
|
26
|
To SC, Brautigam CA, Chaturvedi SK, Bollard MT, Krynitsky J, Kakareka JW, Pohida TJ, Zhao H, Schuck P. Enhanced Sample Handling for Analytical Ultracentrifugation with 3D-Printed Centerpieces. Anal Chem 2019; 91:5866-5873. [PMID: 30933465 DOI: 10.1021/acs.analchem.9b00202] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The centerpiece of the sample cell assembly in analytical ultracentrifugation holds the sample solution between windows, sealed against high vacuum, and is shaped such that macromolecular migration in centrifugal fields exceeding 200 000g can proceed undisturbed by walls or convection while concentration profiles are imaged with optical detection systems aligned perpendicular to the plane of rotation. We have recently shown that 3D printing using various materials allows inexpensive and rapid manufacturing of centerpieces. In the present work, we expand this endeavor to examine the accuracy of the measured sedimentation process, as well as short-term durability of the centerpieces. We find that 3D-printed centerpieces can be used many times and can provide data equivalent in quality to commonly used commercial epoxy resin centerpieces. Furthermore, 3D printing enables novel designs adapted to particular experimental objectives because they offer unique opportunities, for example, to create well-defined curved surfaces, narrow channels, and embossed features. We present examples of centerpiece designs exploiting these capabilities for improved AUC experiments. This includes narrow sector centerpieces that substantially reduce the required sample volume while maintaining the standard optical path length; thin centerpieces with integrated window holders to provide very short optical pathlengths that reduce optical aberrations at high macromolecular concentrations; long-column centerpieces that increase the observable distance of macromolecular migration for higher-precision sedimentation coefficients; and three-sector centerpieces that allow doubling the number of samples in a single run while reducing the sample volumes. We find each of these designs allows unimpeded macromolecular sedimentation and can provide high-quality sedimentation data.
Collapse
Affiliation(s)
- Samuel C To
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Chad A Brautigam
- Departments of Biophysics and Microbiology , UT Southwestern Medical Center , Dallas , Texas 75390 , United States
| | - Sumit K Chaturvedi
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Mary T Bollard
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Jonathan Krynitsky
- Office of Intramural Research , Center for Information Technology, National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - John W Kakareka
- Office of Intramural Research , Center for Information Technology, National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Thomas J Pohida
- Office of Intramural Research , Center for Information Technology, National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering , National Institutes of Health , Bethesda , Maryland 20892 , United States
| |
Collapse
|
27
|
Walker M, Humphries S. 3D Printing: Applications in evolution and ecology. Ecol Evol 2019; 9:4289-4301. [PMID: 31016005 PMCID: PMC6468079 DOI: 10.1002/ece3.5050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 01/03/2023] Open
Abstract
In the commercial and medical sectors, 3D printing is delivering on its promise to enable a revolution. However, in the fields of Ecology and Evolution we are only on the brink of embracing the advantages that 3D printing can offer. Here we discuss examples where the process has enabled researchers to develop new techniques, work with novel species, and to enhance the impact of outreach activities. Our aim is to showcase the potential that 3D printing offers in terms of improved experimental techniques, greater flexibility, reduced costs and promoting open science, while also discussing its limitations. By taking a general overview of studies using the technique from fields across the broad range of Ecology and Evolution, we show the flexibility of 3D printing technology and aim to inspire the next generation of discoveries.
Collapse
|
28
|
Sharing my way to success: A case study on developing entrepreneurial ventures using social capital in an OSS community. INFORMATION AND ORGANIZATION 2019. [DOI: 10.1016/j.infoandorg.2018.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Cathey B, Obaid S, Zolotarev AM, Pryamonosov RA, Syunyaev RA, George SA, Efimov IR. Open-Source Multiparametric Optocardiography. Sci Rep 2019; 9:721. [PMID: 30679527 PMCID: PMC6346041 DOI: 10.1038/s41598-018-36809-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/27/2018] [Indexed: 01/17/2023] Open
Abstract
Since the 1970s fluorescence imaging has become a leading tool in the discovery of mechanisms of cardiac function and arrhythmias. Gradual improvements in fluorescent probes and multi-camera technology have increased the power of optical mapping and made a major impact on the field of cardiac electrophysiology. Tandem-lens optical mapping systems facilitated simultaneous recording of multiple parameters characterizing cardiac function. However, high cost and technological complexity restricted its proliferation to the wider biological community. We present here, an open-source solution for multiple-camera tandem-lens optical systems for multiparametric mapping of transmembrane potential, intracellular calcium dynamics and other parameters in intact mouse hearts and in rat heart slices. This 3D-printable hardware and Matlab-based RHYTHM 1.2 analysis software are distributed under an MIT open-source license. Rapid prototyping permits the development of inexpensive, customized systems with broad functionality, allowing wider application of this technology outside biomedical engineering laboratories.
Collapse
Affiliation(s)
- Brianna Cathey
- Department of Biomedical Engineering, George Washington University, Washington, DC, 20052, USA
| | - Sofian Obaid
- Department of Biomedical Engineering, George Washington University, Washington, DC, 20052, USA
| | - Alexander M Zolotarev
- Laboratory of Human Physiology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Roman A Pryamonosov
- Laboratory of Human Physiology, Moscow Institute of Physics and Technology, Moscow, Russia
- Institute of Personalized Medicine, Sechenov University, Moscow, Russia
| | - Roman A Syunyaev
- Laboratory of Human Physiology, Moscow Institute of Physics and Technology, Moscow, Russia
- Institute of Personalized Medicine, Sechenov University, Moscow, Russia
| | - Sharon A George
- Department of Biomedical Engineering, George Washington University, Washington, DC, 20052, USA.
| | - Igor R Efimov
- Department of Biomedical Engineering, George Washington University, Washington, DC, 20052, USA.
- Laboratory of Human Physiology, Moscow Institute of Physics and Technology, Moscow, Russia.
| |
Collapse
|
30
|
Williams- Godwin L, Brown D, Livingston R, Webb T, Karriem L, Graugnard E, Estrada D. Open-source automated chemical vapor deposition system for the production of two- dimensional nanomaterials. PLoS One 2019; 14:e0210817. [PMID: 30650151 PMCID: PMC6334948 DOI: 10.1371/journal.pone.0210817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 01/02/2019] [Indexed: 11/20/2022] Open
Abstract
The study of two- dimensional (2D) materials is a rapidly growing area within nanomaterials research. However, the high equipment costs, which include the processing systems necessary for creating these materials, can be a barrier to entry for some researchers interested in studying these novel materials. Such process systems include those used for chemical vapor deposition, a preferred method for making these materials. To address this challenge, this article presents the first open-source design for an automated chemical vapor deposition system that can be built for less than a third of the cost for a comparable commercial system. The materials and directions for the system are divided by subsystems, which allows the system to be easily built, customized and upgraded, depending upon the needs of the user. We include the details for the specific hardware that will be needed, instructions for completing the build, and the software needed to automate the system. With a chemical vapor deposition system built as described, a variety of 2D nanomaterials and their heterostructures can be grown. Specifically, the experimental results clearly demonstrate the capability of this open-source design in producing high quality, 2D nanomaterials such as graphene and tungsten disulfide, which are at the forefront of research in emerging semiconductor devices, sensors, and energy storage applications.
Collapse
Affiliation(s)
- Lizandra Williams- Godwin
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho, United States of America
| | - Dale Brown
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho, United States of America
| | - Richard Livingston
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, Idaho, United States of America
| | - Tyler Webb
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho, United States of America
| | - Lynn Karriem
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho, United States of America
| | - Elton Graugnard
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho, United States of America
| | - David Estrada
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho, United States of America
- Center for Advanced Energy Studies, Boise State University, Boise, Idaho, United States of America
- * E-mail:
| |
Collapse
|
31
|
Gallup N, Bow JK, Pearce JM. Economic Potential for Distributed Manufacturing of Adaptive Aids for Arthritis Patients in the U.S. Geriatrics (Basel) 2018; 3:E89. [PMID: 31011124 PMCID: PMC6371113 DOI: 10.3390/geriatrics3040089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 11/21/2022] Open
Abstract
By 2040, more than a quarter of the U.S. population will have diagnosed arthritic conditions. Adults with arthritis and other rheumatic conditions earn less than average yet have medical care expenditures that are over 12% of average household income. Adaptive aids can help arthritis patients continue to maintain independence and quality of life; however, their high costs limit accessibility for older people and the poor. One method used for consumer price reduction is distributed manufacturing with 3-D printers. In order to assess if such a method would be financially beneficial, this study evaluates the techno-economic viability of distributed manufacturing of adaptive aids for arthritis patients. Twenty freely accessible designs for 3-D printable adaptive aids were successfully fabricated on low-cost desktop 3-D printers and performed their functions adequately. The financial savings averaged >94% compared to commercially-available products. Overall, twenty adaptive aids were printed for US$20 of plastic; while on average, each adaptive aid would save over US$20. As printing a tiny subset of the adaptive aids needed by a single patient would recover the full capital and operational costs of a low-cost 3-D printer, it can be concluded that there is considerable potential for distributed manufacturing to assist arthritis patients.
Collapse
Affiliation(s)
- Nicole Gallup
- Department of Biomedical Engineering and Mechanical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| | - Jennifer K Bow
- Department of Materials Science & Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| | - Joshua M Pearce
- Department of Materials Science & Engineering, Michigan Technological University, Houghton, MI 49931, USA.
- Department of Electrical & Computer Engineering, Michigan Technological University, Houghton, MI 49931, USA.
- Department of Electronics and Nanoengineering, School of Electrical Engineering, Aalto University, Espoo FI-00076, Finland.
| |
Collapse
|
32
|
|
33
|
Abstract
Barriers to inventing electronic devices involve challenges of iterating electronic designs due to long lead times for professional circuit board milling or high costs of commercial milling machines. To overcome these barriers, this study provides open source (OS) designs for a low-cost circuit milling machine. First, design modifications for mechanical and electrical subsystems of the OS Distributed 3-D (D3D) Robotics prototyping system are provided. Next, Copper Carve, an OS custom graphical user interface, is developed to enable circuit board milling by implementing backlash and substrate distortion compensation. The performance of the OS D3D circuit mill is then quantified and validated for: positional accuracy, cut quality, feature accuracy, and distortion compensation. Finally, the return on investment is calculated for inventors using it. The results show by properly compensating for motion inaccuracies with Copper Carve, the machine achieves a motion resolution of 10 microns, which is more than adequate for most circuit designs. The mill is at least five times less expensive than all commercial alternatives and the material costs of the D3D mill are repaid from fabricating 20–43 boards. The results show that the OS circuit mill is of high-enough quality to enable rapid invention and distributed manufacturing of complex products containing custom electronics.
Collapse
|
34
|
|
35
|
Nandy K, Collinson DW, Scheftic CM, Brinson LC. Open-source micro-tensile testers via additive manufacturing for the mechanical characterization of thin films and papers. PLoS One 2018; 13:e0197999. [PMID: 29813103 PMCID: PMC5973562 DOI: 10.1371/journal.pone.0197999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 05/11/2018] [Indexed: 11/20/2022] Open
Abstract
The cost of specialized scientific equipment can be high and with limited funding resources, researchers and students are often unable to access or purchase the ideal equipment for their projects. In the fields of materials science and mechanical engineering, fundamental equipment such as tensile testing devices can cost tens to hundreds of thousands of dollars. While a research lab often has access to a large-scale testing machine suitable for conventional samples, loading devices for meso- and micro-scale samples for in-situ testing with the myriad of microscopy tools are often hard to source and cost prohibitive. Open-source software has allowed for great strides in the reduction of costs associated with software development and open-source hardware and additive manufacturing have the potential to similarly reduce the costs of scientific equipment and increase the accessibility of scientific research. To investigate the feasibility of open-source hardware, a micro-tensile tester was designed with a freely accessible computer-aided design package and manufactured with a desktop 3D-printer and off-the-shelf components. To our knowledge this is one of the first demonstrations of a tensile tester with additively manufactured components for scientific research. The capabilities of the tensile tester were demonstrated by investigating the mechanical properties of Graphene Oxide (GO) paper and thin films. A 3D printed tensile tester was successfully used in conjunction with an atomic force microscope to provide one of the first quantitative measurements of GO thin film buckling under compression. The tensile tester was also used in conjunction with an atomic force microscope to observe the change in surface topology of a GO paper in response to increasing tensile strain. No significant change in surface topology was observed in contrast to prior hypotheses from the literature. Based on this result obtained with the new open source tensile stage we propose an alternative hypothesis we term ‘superlamellae consolidation’ to explain the initial deformation of GO paper. The additively manufactured tensile tester tested represents cost savings of >99% compared to commercial solutions in its class and offers simple customization. However, continued development is needed for the tensile tester presented here to approach the technical specifications achievable with commercial solutions.
Collapse
Affiliation(s)
- Krishanu Nandy
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - David W. Collinson
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Charlie M. Scheftic
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - L. Catherine Brinson
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Department of Material Science and Engineering, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
36
|
Brennan MD, Bokhari FF, Eddington DT. Open Design 3D-Printable Adjustable Micropipette that Meets the ISO Standard for Accuracy. MICROMACHINES 2018; 9:mi9040191. [PMID: 30424124 PMCID: PMC6187506 DOI: 10.3390/mi9040191] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 02/07/2023]
Abstract
Scientific communities are drawn to the open source model as an increasingly utilitarian method to produce and share work. Initially used as a means to develop freely-available software, open source projects have been applied to hardware including scientific tools. Increasing convenience of 3D printing has fueled the proliferation of open labware projects aiming to develop and share designs for scientific tools that can be produced in-house as inexpensive alternatives to commercial products. We present our design of a micropipette that is assembled from 3D-printable parts and some hardware that works by actuating a disposable syringe to a user-adjustable limit. Graduations on the syringe are used to accurately adjust the set point to the desired volume. Our open design printed micropipette is assessed in comparison with a commercial pipette and meets the ISO 8655 standards.
Collapse
Affiliation(s)
- Martin D Brennan
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Fahad F Bokhari
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - David T Eddington
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
37
|
Hoang T, Moskwa N, Halvorsen K. A 'smart' tube holder enables real-time sample monitoring in a standard lab centrifuge. PLoS One 2018; 13:e0195907. [PMID: 29659624 PMCID: PMC5901991 DOI: 10.1371/journal.pone.0195907] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/02/2018] [Indexed: 11/19/2022] Open
Abstract
The centrifuge is among the oldest and most widely used pieces of laboratory equipment, with significant applications that include clinical diagnostics and biomedical research. A major limitation of laboratory centrifuges is their "black box" nature, limiting sample observation to before and after centrifugation. Thus, optimized protocols require significant trial and error, while unoptimized protocols waste time by centrifuging longer than necessary or material due to incomplete sedimentation. Here, we developed an instrumented centrifuge tube receptacle compatible with several commercial benchtop centrifuges that can provide real-time sample analysis during centrifugation. We demonstrated the system by monitoring cell separations during centrifugation for different spin speeds, concentrations, buffers, cell types, and temperatures. We show that the collected data are valuable for analytical purposes (e.g. quality control), or as feedback to the user or the instrument. For the latter, we verified an adaptation where complete sedimentation turned off the centrifuge and notified the user by a text message. Our system adds new functionality to existing laboratory centrifuges, saving users time and providing useful feedback. This add-on potentially enables new analytical applications for an instrument that has remained largely unchanged for decades.
Collapse
Affiliation(s)
- Tony Hoang
- The RNA Institute, University at Albany, State University of New York, Albany, New York, United States of America
- Department of Chemistry, University at Albany, State University of New York, New York, United States of America
| | - Nicholas Moskwa
- Department of Biology, University at Albany, State University of New York, Albany, New York, United States of America
| | - Ken Halvorsen
- The RNA Institute, University at Albany, State University of New York, Albany, New York, United States of America
| |
Collapse
|
38
|
Milanovic JZ, Milanovic P, Kragic R, Kostic M. "Do-It-Yourself" reliable pH-stat device by using open-source software, inexpensive hardware and available laboratory equipment. PLoS One 2018; 13:e0193744. [PMID: 29509793 PMCID: PMC5839570 DOI: 10.1371/journal.pone.0193744] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/18/2018] [Indexed: 11/18/2022] Open
Abstract
In this paper, we present the construction of a reliable and inexpensive pH stat device, by using open-source "OpenPhControl" software, inexpensive hardware (a peristaltic and a syringe pump, Arduino, a step motor…), readily available laboratory devices: a pH meter, a computer, a webcam, and some 3D printed parts. We provide a methodology for the design, development and test results of each part of the device, as well as of the entire system. In addition to dosing reagents by means of a low-cost peristaltic pump, we also present carefully controlled dosing of reagents by an open-source syringe pump. The upgrading of the basic open-source syringe pump is given in terms of pump control and application of a larger syringe. In addition to the basic functions of pH stat, i.e. pH value measurement and maintenance, an improvement allowing the device to be used for potentiometric titration has been made as well. We have demonstrated the device's utility when applied for cellulose fibers oxidation with 2,2,6,6-tetramethylpiperidine-1-oxyl radical, i.e. for TEMPO-mediated oxidation. In support of this, we present the results obtained for the oxidation kinetics, the consumption of added reagent and experimental repeatability. Considering that the open-source scientific tools are available to everyone, and that researchers can construct and adjust the device according to their needs, as well as, that the total cost of the open-source pH stat device, excluding the existing laboratory equipment (pH meter, computer and glossary) was less than 150 EUR, we believe that, at a small fraction of the cost of available commercial offers, our open-source pH stat can significantly improve experimental work where the use of pH stat is necessary.
Collapse
Affiliation(s)
- Jovana Z. Milanovic
- Innovation Centre, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Predrag Milanovic
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | | | - Mirjana Kostic
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
39
|
McGonigle AJS, Wilkes TC, Pering TD, Willmott JR, Cook JM, Mims FM, Parisi AV. Smartphone Spectrometers. SENSORS (BASEL, SWITZERLAND) 2018; 18:E223. [PMID: 29342899 PMCID: PMC5796291 DOI: 10.3390/s18010223] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/05/2018] [Accepted: 01/11/2018] [Indexed: 12/26/2022]
Abstract
Smartphones are playing an increasing role in the sciences, owing to the ubiquitous proliferation of these devices, their relatively low cost, increasing processing power and their suitability for integrated data acquisition and processing in a 'lab in a phone' capacity. There is furthermore the potential to deploy these units as nodes within Internet of Things architectures, enabling massive networked data capture. Hitherto, considerable attention has been focused on imaging applications of these devices. However, within just the last few years, another possibility has emerged: to use smartphones as a means of capturing spectra, mostly by coupling various classes of fore-optics to these units with data capture achieved using the smartphone camera. These highly novel approaches have the potential to become widely adopted across a broad range of scientific e.g., biomedical, chemical and agricultural application areas. In this review, we detail the exciting recent development of smartphone spectrometer hardware, in addition to covering applications to which these units have been deployed, hitherto. The paper also points forward to the potentially highly influential impacts that such units could have on the sciences in the coming decades.
Collapse
Affiliation(s)
- Andrew J S McGonigle
- Department of Geography, University of Sheffield, Sheffield S10 2TN, UK.
- School of Geosciences, The University of Sydney, Sydney 2006, Australia.
| | - Thomas C Wilkes
- Department of Geography, University of Sheffield, Sheffield S10 2TN, UK.
| | - Tom D Pering
- Department of Geography, University of Sheffield, Sheffield S10 2TN, UK.
| | - Jon R Willmott
- Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S1 4DE, UK.
| | - Joseph M Cook
- Department of Geography, University of Sheffield, Sheffield S10 2TN, UK.
| | | | - Alfio V Parisi
- Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, QLD 4350, Australia.
| |
Collapse
|
40
|
Nuñez I, Matute T, Herrera R, Keymer J, Marzullo T, Rudge T, Federici F. Low cost and open source multi-fluorescence imaging system for teaching and research in biology and bioengineering. PLoS One 2017; 12:e0187163. [PMID: 29140977 PMCID: PMC5687719 DOI: 10.1371/journal.pone.0187163] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/14/2017] [Indexed: 01/03/2023] Open
Abstract
The advent of easy-to-use open source microcontrollers, off-the-shelf electronics and customizable manufacturing technologies has facilitated the development of inexpensive scientific devices and laboratory equipment. In this study, we describe an imaging system that integrates low-cost and open-source hardware, software and genetic resources. The multi-fluorescence imaging system consists of readily available 470 nm LEDs, a Raspberry Pi camera and a set of filters made with low cost acrylics. This device allows imaging in scales ranging from single colonies to entire plates. We developed a set of genetic components (e.g. promoters, coding sequences, terminators) and vectors following the standard framework of Golden Gate, which allowed the fabrication of genetic constructs in a combinatorial, low cost and robust manner. In order to provide simultaneous imaging of multiple wavelength signals, we screened a series of long stokes shift fluorescent proteins that could be combined with cyan/green fluorescent proteins. We found CyOFP1, mBeRFP and sfGFP to be the most compatible set for 3-channel fluorescent imaging. We developed open source Python code to operate the hardware to run time-lapse experiments with automated control of illumination and camera and a Python module to analyze data and extract meaningful biological information. To demonstrate the potential application of this integral system, we tested its performance on a diverse range of imaging assays often used in disciplines such as microbial ecology, microbiology and synthetic biology. We also assessed its potential use in a high school environment to teach biology, hardware design, optics, and programming. Together, these results demonstrate the successful integration of open source hardware, software, genetic resources and customizable manufacturing to obtain a powerful, low cost and robust system for education, scientific research and bioengineering. All the resources developed here are available under open source licenses.
Collapse
Affiliation(s)
- Isaac Nuñez
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tamara Matute
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Juan Keymer
- Departamento Ecología, Facultad Ciencias Biológicas; Instituto de Física, Facultad de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Timothy Rudge
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail: (TJR); (FF)
| | - Fernán Federici
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Fondo de Desarrollo de Áreas Prioritarias, Center for Genome Regulation, Millennium Nucleus Center for Plant Systems and Synthetic Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail: (TJR); (FF)
| |
Collapse
|
41
|
Nadal-Serrano JM, Nadal-Serrano A, Lopez-Vallejo M. Democratizing science with the aid of parametric design and additive manufacturing: Design and fabrication of a versatile and low-cost optical instrument for scattering measurement. PLoS One 2017; 12:e0187219. [PMID: 29112987 PMCID: PMC5675403 DOI: 10.1371/journal.pone.0187219] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 10/16/2017] [Indexed: 11/18/2022] Open
Abstract
This paper focuses on the application of rapid prototyping techniques using additive manufacturing in combination with parametric design to create low-cost, yet accurate and reliable instruments. The methodology followed makes it possible to make instruments with a degree of customization until now available only to a narrow audience, helping democratize science. The proposal discusses a holistic design-for-manufacturing approach that comprises advanced modeling techniques, open-source design strategies, and an optimization algorithm using free parametric software for both professional and educational purposes. The design and fabrication of an instrument for scattering measurement is used as a case of study to present the previous concepts.
Collapse
Affiliation(s)
- Jose M. Nadal-Serrano
- Departamento de Ingeniería Electrónica, Universidad Politécnica de Madrid, Madrid, Spain
- * E-mail:
| | - Adolfo Nadal-Serrano
- Department of Software Engineering and Artificial Intelligence, School of Computer Engineering, Univ. Complutense de Madrid, Madrid, Spain
| | - Marisa Lopez-Vallejo
- Departamento de Ingeniería Electrónica, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
42
|
Wilkes TC, McGonigle AJS, Willmott JR, Pering TD, Cook JM. Low-cost 3D printed 1 nm resolution smartphone sensor-based spectrometer: instrument design and application in ultraviolet spectroscopy. OPTICS LETTERS 2017; 42:4323-4326. [PMID: 29088154 DOI: 10.1364/ol.42.004323] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
We report on the development of a low-cost spectrometer, based on off-the-shelf optical components, a 3D printed housing, and a modified Raspberry Pi camera module. With a bandwidth and spectral resolution of ≈60 nm and 1 nm, respectively, this device was designed for ultraviolet (UV) remote sensing of atmospheric sulphur dioxide (SO2), ≈310 nm. To the best of our knowledge, this is the first report of both a UV spectrometer and a nanometer resolution spectrometer based on smartphone sensor technology. The device performance was assessed and validated by measuring column amounts of SO2 within quartz cells with a differential optical absorption spectroscopy processing routine. This system could easily be reconfigured to cover other UV-visible-near-infrared spectral regions, as well as alternate spectral ranges and/or linewidths. Hence, our intention is also to highlight how this framework could be applied to build bespoke, low-cost, spectrometers for a range of scientific applications.
Collapse
|
43
|
Distributed Manufacturing of Flexible Products: Technical Feasibility and Economic Viability. TECHNOLOGIES 2017. [DOI: 10.3390/technologies5040071] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Whitehead H, Waldman JV, Wirth DM, LeBlanc G. 3D Printed UV-Visible Cuvette Adapter for Low-Cost and Versatile Spectroscopic Experiments. ACS OMEGA 2017; 2:6118-6122. [PMID: 31457858 PMCID: PMC6644542 DOI: 10.1021/acsomega.7b01310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/12/2017] [Indexed: 06/01/2023]
Abstract
Ultraviolet-visible (UV-vis) spectroscopy represents one of the most popular analytical techniques in chemical research labs. A variety of vendors provide instruments that are suited for the analysis of liquid samples at moderate concentrations. However, to accommodate more specialized experiments, expensive accessories are required and often do not fit the specific needs of experimental scientists. In this work, we present a generalized adapter that can be 3D printed and used with existing spectrometers to enable a wide array of experiments to be performed. In the case of liquid samples, we provide a method for dramatically reducing the price of a quartz cuvette with minimal impact on performance. Through simple modification of the design, cuvettes with various path lengths can be prepared. Additionally, we illustrate the ability to turn any sample container into a working cuvette to simplify experimental protocols, prevent contamination risks, and further reduce costs. This strategy also enables gaseous and solid samples to be evaluated easily and reproducibly. Furthermore, we demonstrate how this concept can be extended to interface additional instrumentation with a commercial UV-vis spectrometer. All of the digital designs are provided under a creative commons license to enable other researchers to modify and adapt the designs for their unique experimental requirements.
Collapse
|
45
|
Entz M, King DR, Poelzing S. Design and validation of a tissue bath 3-D printed with PLA for optically mapping suspended whole heart preparations. Am J Physiol Heart Circ Physiol 2017; 313:H1190-H1198. [PMID: 28939646 DOI: 10.1152/ajpheart.00150.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 11/22/2022]
Abstract
With the sudden increase in affordable manufacturing technologies, the relationship between experimentalists and the designing process for laboratory equipment is rapidly changing. While experimentalists are still dependent on engineers and manufacturers for precision electrical, mechanical, and optical equipment, it has become a realistic option for in house manufacturing of other laboratory equipment with less precise design requirements. This is possible due to decreasing costs and increasing functionality of desktop three-dimensional (3-D) printers and 3-D design software. With traditional manufacturing methods, iterative design processes are expensive and time consuming, and making more than one copy of a custom piece of equipment is prohibitive. Here, we provide an overview to design a tissue bath and stabilizer for a customizable, suspended, whole heart optical mapping apparatus that can be produced significantly faster and less expensive than conventional manufacturing techniques. This was accomplished through a series of design steps to prevent fluid leakage in the areas where the optical imaging glass was attached to the 3-D printed bath. A combination of an acetone dip along with adhesive was found to create a water tight bath. Optical mapping was used to quantify cardiac conduction velocity and action potential duration to compare 3-D printed baths to a bath that was designed and manufactured in a machine shop. Importantly, the manufacturing method did not significantly affect conduction, action potential duration, or contraction, suggesting that 3-D printed baths are equally effective for optical mapping experiments.NEW & NOTEWORTHY This article details three-dimensional printable equipment for use in suspended whole heart optical mapping experiments. This equipment is less expensive than conventional manufactured equipment as well as easily customizable to the experimentalist. The baths can be waterproofed using only a three-dimensional printer, acetone, a glass microscope slide, c-clamps, and adhesive.
Collapse
Affiliation(s)
- Michael Entz
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.,Virginia Tech Carilion Research Institute and Center for Heart and Regenerative Medicine, Roanoke, Virginia; and
| | - D Ryan King
- Virginia Tech Carilion Research Institute and Center for Heart and Regenerative Medicine, Roanoke, Virginia; and.,Graduate program in Transnational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Steven Poelzing
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; .,Virginia Tech Carilion Research Institute and Center for Heart and Regenerative Medicine, Roanoke, Virginia; and.,Graduate program in Transnational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| |
Collapse
|
46
|
|
47
|
Open-Source Automated Mapping Four-Point Probe. MATERIALS 2017; 10:ma10020110. [PMID: 28772471 PMCID: PMC5459207 DOI: 10.3390/ma10020110] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 12/12/2022]
Abstract
Scientists have begun using self-replicating rapid prototyper (RepRap) 3-D printers to manufacture open source digital designs of scientific equipment. This approach is refined here to develop a novel instrument capable of performing automated large-area four-point probe measurements. The designs for conversion of a RepRap 3-D printer to a 2-D open source four-point probe (OS4PP) measurement device are detailed for the mechanical and electrical systems. Free and open source software and firmware are developed to operate the tool. The OS4PP was validated against a wide range of discrete resistors and indium tin oxide (ITO) samples of different thicknesses both pre- and post-annealing. The OS4PP was then compared to two commercial proprietary systems. Results of resistors from 10 to 1 MΩ show errors of less than 1% for the OS4PP. The 3-D mapping of sheet resistance of ITO samples successfully demonstrated the automated capability to measure non-uniformities in large-area samples. The results indicate that all measured values are within the same order of magnitude when compared to two proprietary measurement systems. In conclusion, the OS4PP system, which costs less than 70% of manual proprietary systems, is comparable electrically while offering automated 100 micron positional accuracy for measuring sheet resistance over larger areas.
Collapse
|
48
|
Salazar-Serrano LJ, P Torres J, Valencia A. A 3D Printed Toolbox for Opto-Mechanical Components. PLoS One 2017; 12:e0169832. [PMID: 28099494 PMCID: PMC5242500 DOI: 10.1371/journal.pone.0169832] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/21/2016] [Indexed: 11/19/2022] Open
Abstract
In this article we present the development of a set of opto-mechanical components (a kinematic mount, a translation stage and an integrating sphere) that can be easily built using a 3D printer based on Fused Filament Fabrication (FFF) and parts that can be found in any hardware store. Here we provide a brief description of the 3D models used and some details on the fabrication process. Moreover, with the help of three simple experimental setups, we evaluate the performance of the opto-mechanical components developed by doing a quantitative comparison with its commercial counterparts. Our results indicate that the components fabricated are highly customizable, low-cost, require a short time to be fabricated and surprisingly, offer a performance that compares favorably with respect to low-end commercial alternatives.
Collapse
Affiliation(s)
- Luis José Salazar-Serrano
- Quantum Optics Laboratory, Universidad de los Andes, Bogotá, Colombia
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Juan P Torres
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- Dep. of Signal Theory and Communications, Universitat Politecnica de Catalunya, Barcelona, Spain
| | | |
Collapse
|
49
|
Habhab MB, Ismail T, Lo JF. A Laminar Flow-Based Microfluidic Tesla Pump via Lithography Enabled 3D Printing. SENSORS 2016; 16:s16111970. [PMID: 27886051 PMCID: PMC5134628 DOI: 10.3390/s16111970] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/12/2016] [Accepted: 11/18/2016] [Indexed: 01/12/2023]
Abstract
Tesla turbine and its applications in power generation and fluid flow were demonstrated by Nicholas Tesla in 1913. However, its real-world implementations were limited by the difficulty to maintain laminar flow between rotor disks, transient efficiencies during rotor acceleration, and the lack of other applications that fully utilize the continuous flow outputs. All of the aforementioned limits of Tesla turbines can be addressed by scaling to the microfluidic flow regime. Demonstrated here is a microscale Tesla pump designed and fabricated using a Digital Light Processing (DLP) based 3D printer with 43 µm lateral and 30 µm thickness resolutions. The miniaturized pump is characterized by low Reynolds number of 1000 and a flow rate of up to 12.6 mL/min at 1200 rpm, unloaded. It is capable of driving a mixer network to generate microfluidic gradient. The continuous, laminar flow from Tesla turbines is well-suited to the needs of flow-sensitive microfluidics, where the integrated pump will enable numerous compact lab-on-a-chip applications.
Collapse
Affiliation(s)
- Mohammed-Baker Habhab
- Department of Mechanical Engineering, Bioengineering Program, University of Michigan at Dearborn, 2088 IAVS Building, 4901 Evergreen Rd., Dearborn, MI 48128, USA.
| | - Tania Ismail
- Department of Mechanical Engineering, Bioengineering Program, University of Michigan at Dearborn, 2088 IAVS Building, 4901 Evergreen Rd., Dearborn, MI 48128, USA.
| | - Joe Fujiou Lo
- Department of Mechanical Engineering, Bioengineering Program, University of Michigan at Dearborn, 2088 IAVS Building, 4901 Evergreen Rd., Dearborn, MI 48128, USA.
| |
Collapse
|
50
|
Nelson CE, Beri NR, Gardner JG. Custom fabrication of biomass containment devices using 3-D printing enables bacterial growth analyses with complex insoluble substrates. J Microbiol Methods 2016; 130:136-143. [DOI: 10.1016/j.mimet.2016.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/19/2016] [Accepted: 09/19/2016] [Indexed: 10/21/2022]
|