1
|
Mateescu I, Lequime S. Dengue-mediated changes in the vectorial capacity of Aedes aegypti (Diptera: Culicidae): manipulation of transmission or infection by-product? JOURNAL OF MEDICAL ENTOMOLOGY 2025; 62:19-28. [PMID: 39436782 PMCID: PMC11735268 DOI: 10.1093/jme/tjae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
An arthropod's vectorial capacity summarizes its disease transmission potential. Life-history traits, such as fecundity or survival, and behavioral traits, such as locomotor activity, host-seeking and feeding behavior, are important components of vectorial capacity. Studies have shown that mosquito-borne pathogens may alter important vectorial capacity traits of their mosquito vectors, thus directly impacting their transmission and epidemic potential. Here, we compile and discuss the evidence supporting dengue-mediated changes in the yellow fever mosquito Aedes aegypti (L.), its primary vector, and evaluate whether the observed effects represent an evolved trait manipulation with epidemiological implications. Dengue infection appears to manipulate essential traits that facilitate vector-host contact, such as locomotor activity, host-seeking, and feeding behavior, but the underlying mechanisms are still not understood. Conversely, life-history traits relevant to vector population dynamics, such as survival, oviposition, and fecundity, appear to be negatively impacted by dengue virus. Overall, any detrimental effects on life-history traits may be a negligible cost derived from the virulence that dengue has evolved to facilitate its transmission by manipulating Ae. aegypti behavior and feeding performance. However, methodological disparities among studies render comparisons difficult and limit the ability to reach well-supported conclusions. This highlights the need for more standardized methods for the research into changes in virus-mediated traits. Eventually, we argue that the effects on life-history traits and behavior outlined here must be considered when assessing the epidemiological impact of dengue or other arbovirus-vector-host interactions.
Collapse
Affiliation(s)
- Ioana Mateescu
- Virus Ecology and Evolution, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Research School of Behavioral and Cognitive Neuroscience, University of Groningen, Groningen, The Netherlands
| | - Sebastian Lequime
- Virus Ecology and Evolution, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Cecilia H, Althouse BM, Azar SR, Moehn BA, Yun R, Rossi SL, Vasilakis N, Hanley KA. Aedes albopictus is not an arbovirus aficionado when feeding on cynomolgus macaques or squirrel monkeys. iScience 2024; 27:111198. [PMID: 39555418 PMCID: PMC11563999 DOI: 10.1016/j.isci.2024.111198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/27/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024] Open
Abstract
Viruses transmitted by Aedes mosquitoes (e.g., dengue [DENV], Zika [ZIKV]) have demonstrated high potential to spill over from their ancestral, sylvatic cycles in non-human primates to establish transmission in humans. Epidemiological models require accurate knowledge of the contact structure between hosts and vectors, which is highly sensitive to any impacts of virus infection in mosquitoes or hosts on mosquito feeding behavior. Current evidence for whether these viruses affect vector behavior is mixed. Here we leveraged a study on sylvatic DENV-2 and ZIKV transmission between two species of monkey and Aedes albopictus to determine whether virus infection of either host or vector alters vector feeding behavior. Engorgement rates varied from 0% to 100%, but this was not driven by vector nor host infection, but rather by the individual host, host species, and host body temperature. This study highlights the importance of incorporating individual-level heterogeneity of vector biting in arbovirus transmission models.
Collapse
Affiliation(s)
- Hélène Cecilia
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Benjamin M. Althouse
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
- Information School, University of Washington, Seattle, WA 98105, USA
| | - Sasha R. Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Tissue Engineering, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Brett A. Moehn
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Ruimei Yun
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shannan L. Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, Unviersity of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kathryn A. Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
3
|
Keirsebelik MSG, David MR, Pavan MG, Couto-Lima D, Palomino M, Rahman RU, Hoffmann AA, Bahia AC, Caljon G, Maciel-de-Freitas R. Dengue Virus Serotype 1 Effects on Mosquito Survival Differ among Geographically Distinct Aedes aegypti Populations. INSECTS 2024; 15:393. [PMID: 38921108 PMCID: PMC11203567 DOI: 10.3390/insects15060393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
The mosquito Aedes aegypti is distributed worldwide and is recognized as the primary vector for dengue in numerous countries. To investigate whether the fitness cost of a single DENV-1 isolate varies among populations, we selected four Ae. aegypti populations from distinct localities: Australia (AUS), Brazil (BRA), Pakistan (PAK), and Peru (PER). Utilizing simple methodologies, we concurrently assessed survival rates and fecundity. Overall, DENV-1 infection led to a significant decrease in mosquito survival rates, with the exception of the PER population. Furthermore, infected Ae. aegypti from PAK, the population with the lowest infection rate among those tested, exhibited a noteworthy reduction in egg laying. These findings collectively suggest that local mosquito-virus adaptations may influence dengue transmission in endemic settings.
Collapse
Affiliation(s)
- Milan S. G. Keirsebelik
- Laboratório de Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; (M.S.G.K.); (M.R.D.); (M.G.P.); (D.C.-L.)
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, 1, 2610 Wilrijk-Antwerp, Belgium;
| | - Mariana R. David
- Laboratório de Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; (M.S.G.K.); (M.R.D.); (M.G.P.); (D.C.-L.)
| | - Márcio Galvão Pavan
- Laboratório de Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; (M.S.G.K.); (M.R.D.); (M.G.P.); (D.C.-L.)
| | - Dinair Couto-Lima
- Laboratório de Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; (M.S.G.K.); (M.R.D.); (M.G.P.); (D.C.-L.)
| | - Miriam Palomino
- Laboratorio de Referência Nacional de Entomologia, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima 15072, Peru;
| | - Rafi Ur Rahman
- Department of Biosciences, COMSATS University, Islamabad 45550, Pakistan;
| | - Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, 3052 Melbourne, Australia;
| | - Ana C. Bahia
- Laboratório de Bioquímica de Insetos e Parasitos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21040-900, Brazil;
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, 1, 2610 Wilrijk-Antwerp, Belgium;
| | - Rafael Maciel-de-Freitas
- Laboratório de Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; (M.S.G.K.); (M.R.D.); (M.G.P.); (D.C.-L.)
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| |
Collapse
|
4
|
Crespo M, Guedes D, Paiva M, Sobral M, Helvecio E, Alves R, Tadeu G, Oliveira C, Melo-Santos MAV, Barbosa R, Ayres C. Exposure to Zika and chikungunya viruses impacts aspects of the vectorial capacity of Aedes aegypti and Culex quinquefasciatus. PLoS One 2024; 19:e0281851. [PMID: 38748732 PMCID: PMC11095752 DOI: 10.1371/journal.pone.0281851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/12/2024] [Indexed: 05/19/2024] Open
Abstract
Zika (ZIKV) and chikungunya (CHIKV) are arboviruses that cause infections in humans and can cause clinical complications, representing a worldwide public health problem. Aedes aegypti is the primary vector of these pathogens and Culex quinquefasciatus may be a potential ZIKV vector. This study aimed to evaluate fecundity, fertility, survival, longevity, and blood feeding activity in Ae. aegypti after exposure to ZIKV and CHIKV and, in Cx. quinquefasciatus exposed to ZIKV. Three colonies were evaluated: AeCamp (Ae. aegypti-field), RecL (Ae. aegypti-laboratory) and CqSLab (Cx. quinquefasciatus-laboratory). Seven to 10 days-old females from these colonies were exposed to artificial blood feeding with CHIKV or ZIKV. CHIKV caused reduction in fecundity and fertility in AeCamp and reduction in survival and fertility in RecL. ZIKV impacted survival in RecL, fertility in AeCamp and, fecundity and fertility in CqSLab. Both viruses had no effect on blood feeding activity. These results show that CHIKV produces a higher biological cost in Ae. aegypti, compared to ZIKV, and ZIKV differently alters the biological performance in colonies of Ae. aegypti and Cx. quinquefasciatus. These results provide a better understanding over the processes of virus-vector interaction and can shed light on the complexity of arbovirus transmission.
Collapse
Affiliation(s)
- Mônica Crespo
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (FIOCRUZ-PE), Recife, Pernambuco, Brasil
| | - Duschinka Guedes
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (FIOCRUZ-PE), Recife, Pernambuco, Brasil
| | - Marcelo Paiva
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (FIOCRUZ-PE), Recife, Pernambuco, Brasil
- Núcleo de Ciências da Vida, Centro Acadêmico do Agreste, Universidade Federal de (UFPE), Caruaru, Pernambuco, Brasil
| | - Mariana Sobral
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (FIOCRUZ-PE), Recife, Pernambuco, Brasil
| | - Elisama Helvecio
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (FIOCRUZ-PE), Recife, Pernambuco, Brasil
| | - Rafael Alves
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (FIOCRUZ-PE), Recife, Pernambuco, Brasil
| | - George Tadeu
- Núcleo de Estatística e Geoprocessamento, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz Pernambuco (FIOCRUZ-PE), Recife, Pernambuco, Brasil
| | - Claudia Oliveira
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (FIOCRUZ-PE), Recife, Pernambuco, Brasil
| | | | - Rosângela Barbosa
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (FIOCRUZ-PE), Recife, Pernambuco, Brasil
| | - Constância Ayres
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (FIOCRUZ-PE), Recife, Pernambuco, Brasil
| |
Collapse
|
5
|
Maire T, Lambrechts L, Hol FJH. Arbovirus impact on mosquito behavior: the jury is still out. Trends Parasitol 2024; 40:292-301. [PMID: 38423938 DOI: 10.1016/j.pt.2024.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Parasites can manipulate host behavior to enhance transmission, but our understanding of arbovirus-induced changes in mosquito behavior is limited. Here, we explore current knowledge on such behavioral alterations in mosquito vectors, focusing on host-seeking and blood-feeding behaviors. Reviewing studies on dengue, Zika, La Crosse, Sindbis, and West Nile viruses in Aedes or Culex mosquitoes reveals subtle yet potentially significant effects. However, assay heterogeneity and limited sample sizes challenge definitive conclusions. To enhance robustness, we propose using deep-learning tools for automated behavior quantification and stress the need for standardized assays. Additionally, conducting longitudinal studies across the extrinsic incubation period and integrating diverse traits into modeling frameworks are crucial for understanding the nuanced implications of arbovirus-induced behavioral changes for virus transmission dynamics.
Collapse
Affiliation(s)
- Théo Maire
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Louis Lambrechts
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Felix J H Hol
- Radboud University Medical Center, Department of Medical Microbiology, Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Cecilia H, Althouse BM, Azar SR, Moehn BA, Yun R, Rossi SL, Vasilakis N, Hanley KA. Aedes albopictus is not an arbovirus aficionado - Impacts of sylvatic flavivirus infection in vectors and hosts on mosquito engorgement on non-human primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.19.580944. [PMID: 38559148 PMCID: PMC10979881 DOI: 10.1101/2024.02.19.580944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The contact structure between vertebrate hosts and arthropod vectors plays a key role in the spread of arthropod-borne viruses (arboviruses); thus, it is important to determine whether arbovirus infection of either host or vector alters vector feeding behavior. Here we leveraged a study of the replication dynamics of two arboviruses isolated from their ancestral cycles in paleotropical forests, sylvatic dengue-2 (DENV-2) and Zika (ZIKV), in one non-human primate (NHP) species from the paleotropics (cynomolgus macaques, Macaca fascicularis) and one from the neotropics (squirrel monkeys, Saimiri boliviensis) to test the effect of both vector and host infection with each virus on completion of blood feeding (engorgement) of the mosquito Aedes albopictus. Although mosquitoes were starved and given no choice of hosts, engorgement rates varied dramatically, from 0% to 100%. While neither vector nor host infection systematically affected engorgement, NHP species and body temperature at the time of feeding did. We also interrogated the effect of repeated mosquito bites on cytokine expression and found that epidermal growth factor (EGF) and macrophage migration inhibitory factor (MIF) concentrations were dynamically associated with exposure to mosquito bites. This study highlights the importance of incorporating individual-level heterogeneity of vector biting in arbovirus transmission models.
Collapse
Affiliation(s)
- Hélène Cecilia
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| | - Benjamin M. Althouse
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
- Information School, University of Washington, Seattle, WA, 98105
| | - Sasha R. Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Tissue Engineering, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030 USA
| | - Brett A. Moehn
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| | - Ruimei Yun
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
| | - Shannan L. Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Department of Microbiology and Immunology, Unviersity of Texas Medical Branch, Galveston, TX 77555 USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555 USA
| | - Kathryn A. Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| |
Collapse
|
7
|
Javed N, López-Denman AJ, Paradkar PN, Bhatti A. Flight traits of dengue-infected Aedes aegypti mosquitoes. Comput Biol Med 2024; 171:108178. [PMID: 38394802 DOI: 10.1016/j.compbiomed.2024.108178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/28/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Understanding the flight behaviour of dengue-infected mosquitoes can play a vital role in various contexts, including modelling disease risks and developing effective interventions against dengue. Studies on the locomotor activity of dengue-infected mosquitoes have often faced challenges in terms of methodology. Some studies used small tubes, which impacted the natural movement of the mosquitoes, while others that used cages did not capture the three-dimensional flights, despite mosquitoes naturally flying in three dimensions. In this study, we utilised Mask RCNN (Region-based Convolutional Neural Network) along with cubic spline interpolation to comprehensively track the three-dimensional flight behaviour of dengue-infected Aedes aegypti mosquitoes. This analysis considered a number of parameters as characteristics of mosquito flight, including flight duration, number of flights, Euclidean distance, flight speed, and the volume (space) covered during flights. The accuracy achieved for mosquito detection and tracking was 98.34% for flying mosquitoes and 100% for resting mosquitoes. Notably, the interpolated data accounted for only 0.31%, underscoring the reliability of the results. Flight traits results revealed that exposure to the dengue virus significantly increases the flight duration (p-value 0.0135 × 10-3) and volume (space) covered during flights (p-value 0.029) whilst decreasing the total number of flights compared to uninfected mosquitoes. The study did not observe any evident impact on the Euclidean distance (p-value 0.064) and speed (p-value 0.064) of Aedes aegypti. These results highlight the intricate relationship between dengue infection and the flight behaviour of Aedes aegypti, providing valuable insights into the virus transmission dynamics. This study focused on dengue-infected Aedes aegypti mosquitoes; future research can explore the impact of other arboviruses on mosquito flight behaviour.
Collapse
Affiliation(s)
- Nouman Javed
- Institute for Intelligent Systems Research and Innovation, Deakin University, Geelong, Victoria, 3216, Australia; CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria, 3220, Australia
| | - Adam J López-Denman
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria, 3220, Australia
| | - Prasad N Paradkar
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria, 3220, Australia
| | - Asim Bhatti
- Institute for Intelligent Systems Research and Innovation, Deakin University, Geelong, Victoria, 3216, Australia.
| |
Collapse
|
8
|
Suzuki Y, Suzuki T, Miura F, Reyes JIL, Asin ICA, Mitsunari W, Uddin MM, Sekii Y, Watanabe K. No detectable fitness cost of infection by cell-fusing agent virus in Aedes aegypti mosquitoes. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231373. [PMID: 38204783 PMCID: PMC10776230 DOI: 10.1098/rsos.231373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024]
Abstract
Aedes mosquitoes are well-known vectors of arthropod-borne viruses (arboviruses). Mosquitoes are more frequently infected with insect-specific viruses (ISVs) that cannot infect vertebrates. Some ISVs interfere with arbovirus replication in mosquito vectors, which has gained attention for potential use against arbovirus transmission. Cell-fusing agent virus (CFAV), a widespread ISV, can reduce arbovirus dissemination in Ae. aegypti. However, vectorial capacity is largely governed by other parameters than pathogen load, including mosquito survival and biting behaviour. Understanding how ISVs impact these mosquito fitness-related traits is critical to assess the potential risk of using ISVs as biological agents. Here, we examined the effects of CFAV infection on Ae. aegypti mosquito fitness. We found no significant reduction in mosquito survival, blood-feeding behaviour and reproduction, suggesting that Ae. aegypti is tolerant to CFAV. The only detectable effect was a slight increase in human attraction of CFAV-infected females in one out of eight trials. Viral tolerance is beneficial for introducing CFAV into natural mosquito populations, whereas the potential increase in biting activity must be further investigated. Our results provide the first insight into the link between ISVs and Aedes mosquito fitness and highlight the importance of considering all aspects of vectorial capacity for arbovirus control using ISVs.
Collapse
Affiliation(s)
- Yasutsugu Suzuki
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
| | - Takahiro Suzuki
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
- Graduate School of Science and Engineering, Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
| | - Fuminari Miura
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Jerica Isabel L. Reyes
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
- Graduate School of Science and Engineering, Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
| | - Irish Coleen A. Asin
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
- Graduate School of Science and Engineering, Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
| | - Wataru Mitsunari
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
- Faculty of Engineering, Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
| | - Mohammad Mosleh Uddin
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
- Graduate School of Science and Engineering, Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
- Department of Biochemistry and Molecular Biology (BMB), Faculty of Life Science, Mawlana Bhashani Science and Technology University (MBSTU), Santosh, Tangail, Bangladesh
| | - Yu Sekii
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
| | - Kozo Watanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
| |
Collapse
|
9
|
Cime-Castillo J, Vargas V, Hernández-Tablas JM, Quezada-Ruiz E, Díaz G, Lanz-Mendoza H. The costs of transgenerational immune priming for homologous and heterologous infections with different serotypes of dengue virus in Aedes aegypti mosquitoes. Front Immunol 2023; 14:1286831. [PMID: 38170025 PMCID: PMC10760805 DOI: 10.3389/fimmu.2023.1286831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
The immune system is a network of molecules, signaling pathways, transcription, and effector modulation that controls, mitigates, or eradicates agents that may affect the integrity of the host. In mosquitoes, the innate immune system is highly efficient at combating foreign organisms but has the capacity to tolerate vector-borne diseases. These implications lead to replication, dissemination, and ultimately the transmission of pathogenic organisms when feeding on a host. In recent years, it has been discovered that the innate immune response of mosquitoes can trigger an enhanced immunity response to the stimulus of a previously encountered pathogen. This phenomenon, called immune priming, is characterized by a molecular response that prevents the replication of viruses, parasites, or bacteria in the body. It has been documented that immune priming can be stimulated through homologous organisms or molecules, although it has also been documented that closely related pathogens can generate an enhanced immune response to a second stimulus with a related organism. However, the cost involved in this immune response has not been characterized through the transmission of the immunological experience from parents to offspring by transgenerational immune priming (TGIP) in mosquitoes. Here, we address the impact on the rates of oviposition, hatching, development, and immune response in Aedes aegypti mosquitoes, the mothers of which were stimulated with dengue virus serotypes 2 and/or 4, having found a cost of TGIP on the development time of the progeny of mothers with heterologous infections, with respect to mothers with homologous infections. Our results showed a significant effect on the sex ratio, with females being more abundant than males. We found a decrease in transcripts of the siRNA pathway in daughters of mothers who had been exposed to an immune challenge with DV. Our research demonstrates that there are costs and benefits associated with TGIP in Aedes aegypti mosquitoes exposed to DV. Specifically, priming results in a lower viral load in the offspring of mothers who have previously been infected with the virus. Although some results from tests of two dengue virus serotypes show similarities, such as the percentage of pupae emergence, there are differences in the percentage of adult emergence, indicating differences in TGIP costs even within the same virus with different serotypes. This finding has crucial implications in the context of dengue virus transmission in endemic areas where multiple serotypes circulate simultaneously.
Collapse
Affiliation(s)
- Jorge Cime-Castillo
- Infection and Immunity Direction/Vector Borne Disease Department, Centro de Investigaciones Sobre Enfermedades Infecciosas-Instituto Nacional de Salud Pública (INSP), Cuernavaca, Mexico
| | - Valeria Vargas
- Infection and Immunity Direction/Vector Borne Disease Department, Centro de Investigaciones Sobre Enfermedades Infecciosas-Instituto Nacional de Salud Pública (INSP), Cuernavaca, Mexico
- Biomedical Research Institute, Universidad Nacional Autonoma de México, Ciudad de México, Mexico
| | - Juan Manuel Hernández-Tablas
- Infection and Immunity Direction/Vector Borne Disease Department, Centro de Investigaciones Sobre Enfermedades Infecciosas-Instituto Nacional de Salud Pública (INSP), Cuernavaca, Mexico
| | - Edgar Quezada-Ruiz
- Infection and Immunity Direction/Vector Borne Disease Department, Centro de Investigaciones Sobre Enfermedades Infecciosas-Instituto Nacional de Salud Pública (INSP), Cuernavaca, Mexico
| | - Grecia Díaz
- Infection and Immunity Direction/Vector Borne Disease Department, Centro de Investigaciones Sobre Enfermedades Infecciosas-Instituto Nacional de Salud Pública (INSP), Cuernavaca, Mexico
| | - Humberto Lanz-Mendoza
- Infection and Immunity Direction/Vector Borne Disease Department, Centro de Investigaciones Sobre Enfermedades Infecciosas-Instituto Nacional de Salud Pública (INSP), Cuernavaca, Mexico
| |
Collapse
|
10
|
da Silva Bastos A, Dos Santos NAC, Andrade AO, Pontual JDC, Araújo JE, Medeiros JF, da Silva Araújo M. Evaluation of insemination, blood feeding, and Plasmodium vivax infection effects on locomotor activity patterns of the malaria vector Anopheles darlingi (Diptera: Culicidae). Parasitol Res 2023; 123:15. [PMID: 38060049 PMCID: PMC10703739 DOI: 10.1007/s00436-023-08053-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023]
Abstract
Circadian behavioral patterns in mosquitoes can be observed through their locomotor activity, which includes fundamental behaviors such as foraging, mating, and oviposition. These habits, which are fundamental to the life cycle of Anopheles mosquitoes, are closely related to pathogen transmission to humans. While rhythmic cycles of locomotor activity have been described in Anopheles species, no studies have been conducted on Anopheles darlingi species, the main malaria vector in the Amazon region. The aim of this study was to investigate how insemination status, blood meal, and Plasmodium vivax infection affect the locomotor activity of An. darlingi. The experiments were performed with 3- to 10-day-old An. darlingi females, which had been fed with 15% honey solution. These mosquitoes were obtained from the Malaria Vector Production and Infection Platform (PIVEM)/FIOCRUZ-RO. The experimental groups were divided into four categories: virgin vs. inseminated, unfed virgin vs. blood-fed virgin, unfed inseminated vs. blood-fed inseminated, and infected blood vs. uninfected blood. Locomotor activity was monitored using the Flybox equipment, capturing images that were subsequently converted into video to measure the insect activity, using PySoLo software. The periodicity and rhythmicity of mosquito locomotor activity were analyzed using MatLab® software. The locomotor activity of An. darlingi females showed a nocturnal and bimodal pattern under LD conditions. When comparing the insemination states and blood meal, there was a reduction in the locomotor activity in inseminated and blood-fed females. However, the P. vivax+ infection did not increase locomotor activity of An. darlingi species.
Collapse
Affiliation(s)
- Alessandra da Silva Bastos
- Plataforma de Produção E Infecção de Vetores da Malária (PIVEM), Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Programa de Pós-Graduação Em Biologia Experimental, Fundação Universidade Federal de Rondônia, FIOCRUZ Rondônia, Porto Velho, Rondônia, Brazil
| | - Najara Akira Costa Dos Santos
- Plataforma de Produção E Infecção de Vetores da Malária (PIVEM), Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Programa de Pós-Graduação Em Biologia Experimental, Fundação Universidade Federal de Rondônia, FIOCRUZ Rondônia, Porto Velho, Rondônia, Brazil
| | - Alice Oliveira Andrade
- Plataforma de Produção E Infecção de Vetores da Malária (PIVEM), Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Programa de Pós-Graduação Em Saúde Pública, Faculdade de Saúde Pública, Universidade Federal de São Paulo, São Paulo, SP, 01246-904, Brazil
| | - José Daniel Costa Pontual
- Plataforma de Produção E Infecção de Vetores da Malária (PIVEM), Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
| | - Jéssica Evangelista Araújo
- Plataforma de Produção E Infecção de Vetores da Malária (PIVEM), Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Programa de Pós-Graduação Em Biologia Experimental, Fundação Universidade Federal de Rondônia, FIOCRUZ Rondônia, Porto Velho, Rondônia, Brazil
| | - Jansen Fernandes Medeiros
- Plataforma de Produção E Infecção de Vetores da Malária (PIVEM), Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Programa de Pós-Graduação Em Biologia Experimental, Fundação Universidade Federal de Rondônia, FIOCRUZ Rondônia, Porto Velho, Rondônia, Brazil
| | - Maisa da Silva Araújo
- Plataforma de Produção E Infecção de Vetores da Malária (PIVEM), Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil.
- Programa de Pós-Graduação em Conservação e uso de Recursos Naturais-PPGReN, Fundação Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil.
- Laboratório de Pesquisa Translacional E Clínica, Centro de Pesquisa Em Medicina Tropical, Porto Velho, Rondônia, Brazil.
| |
Collapse
|
11
|
Yan J, Kim CH, Chesser L, Ramirez JL, Stone CM. Nutritional stress compromises mosquito fitness and antiviral immunity, while enhancing dengue virus infection susceptibility. Commun Biol 2023; 6:1123. [PMID: 37932414 PMCID: PMC10628303 DOI: 10.1038/s42003-023-05516-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/27/2023] [Indexed: 11/08/2023] Open
Abstract
Diet-induced nutritional stress can influence pathogen transmission potential in mosquitoes by impacting life history traits, infection susceptibility, and immunity. To investigate these effects, we manipulate mosquito diets at larval and adult stages, creating two nutritional levels (low and normal), and expose adults to dengue virus (DENV). We observe that egg number is reduced by nutritional stress at both stages and viral exposure separately and jointly, while the likelihood of laying eggs is exclusively influenced by adult nutritional stress. Adult nutritional stress alone shortens survival, while any pairwise combination between both-stage stress and viral exposure have a synergistic effect. Additionally, adult nutritional stress increases susceptibility to DENV infection, while larval nutritional stress likely has a similar effect operating via smaller body size. Furthermore, adult nutritional stress negatively impacts viral titers in infected mosquitoes; however, some survive and show increased titers over time. The immune response to DENV infection is overall suppressed by larval and adult nutritional stress, with specific genes related to Toll, JAK-STAT, and Imd immune signaling pathways, and antimicrobial peptides being downregulated. Our findings underscore the importance of nutritional stress in shaping mosquito traits, infection outcomes, and immune responses, all of which impact the vectorial capacity for DENV transmission.
Collapse
Affiliation(s)
- Jiayue Yan
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
| | - Chang-Hyun Kim
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Leta Chesser
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Jose L Ramirez
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Crop Bioprotection Research Unit, Peoria, IL, USA
| | - Chris M Stone
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
12
|
Salim M, Kamran M, Khan I, Saljoqi AUR, Ahmad S, Almutairi MH, Sayed AA, Aleya L, Abdel-Daim MM, Shah M. Effect of larval diets on the life table parameters of dengue mosquito, Aedes aegypti (L.) (Diptera: Culicidae) using age-stage two sex life table theory. Sci Rep 2023; 13:11969. [PMID: 37488190 PMCID: PMC10366198 DOI: 10.1038/s41598-023-39270-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/22/2023] [Indexed: 07/26/2023] Open
Abstract
The current study regarding the effects of larval diets on the life table parameters of dengue mosquitoes, Aedes aegypti was conducted under laboratory conditions at 27 ± 2 °C and 60 ± 5% relative humidity at NIFA (Nuclear Institute for Food and Agriculture) Peshawar, Pakistan. The data on life table parameters of Ae. aegypti reared on Diet 1 (replacement diet), Diet 2 (Khan's diet for Anopheles), Diet 3 (Khan's modified diet) and Diet 4 (IAEA diet) were analyzed using the age-stage, two-sex life table software. Diet 4 (IAEA) was used as a control for comparison. The results indicated that significantly maximum percentage of egg hatching of Ae. aegypti was observed when reared on Diet 4 (73.86%) and Diet 3 (72.90%), while less % of egg hatching was recorded in Diet 1 (40.67%) and Diet 2 (55.53%). The data further showed that the Diet 3 had a highest intrinsic rate of increase (r) (0.097 ± 5.68 day-1), finite rate of increase (λ) (1.10 ± 6.26 day-1) and net reproductive rate (R0) (11.99 ± 1.52 eggs/female) followed by Diet 2 and Diet 4. The mean generation time (T) of Ae. aegypti reared on Diet 3 (23.67 ± 0.86 days) and Diet 1 (24.05 ± 0.61 days) was significantly shorter than Diet 2 (26.15 ± 0.71 days) and Diet 4 (26.41 ± 0.38 days). The overall results revealed that Diet 3 showed good results at different life table parameters of Ae. aegypti and can be used as the preferred diet in the Sterile Insect Technique (SIT) where the mass culture of mosquitoes is required.
Collapse
Affiliation(s)
- Muhammad Salim
- Department of Plant Protection, Faculty of Crop Protection Sciences, The University of Agriculture, Peshawar, Pakistan.
| | - Muhammad Kamran
- Department of Plant Protection, Faculty of Crop Protection Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Inamullah Khan
- Pakistan Atomic Energy Commission, Nuclear Institute for Food and Agriculture (NIFA), P. O. Box 446, Peshawar, Pakistan
| | - Ahmad Ur Rahman Saljoqi
- Department of Plant Protection, Faculty of Crop Protection Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Sarir Ahmad
- Department of Plant Protection, Faculty of Crop Protection Sciences, The University of Agriculture, Peshawar, Pakistan
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, CEDEX, Bourgogne, Franche-Comté University, 25030, Besançon, France
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Muddaser Shah
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa, 616, Oman
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| |
Collapse
|
13
|
Mulatier M, Boullis A, Dollin C, Cebrián-Torrejón G, Vega-Rúa A. Chikungunya Virus Infection and Gonotrophic Cycle Shape Aedes aegypti Oviposition Behavior and Preferences. Viruses 2023; 15:v15051043. [PMID: 37243130 DOI: 10.3390/v15051043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Targeting gravid females through chemical lures is a promising strategy in vector control; however, it requires the understanding of the factors susceptible to alter female oviposition behavior. Here, we evaluated the effect of infection with chikungunya virus (CHIKV) and the number of gonotrophic cycles (GCs) on oviposition activity in A. aegypti. Dual choice oviposition assays were performed, where dodecanoic acid, pentadecanoic acid, n-heneicosane and a Sargasssum fluitans (Børgesen) Børgesen extract were tested in uninfected females and females infected with CHIKV, at the 1st and 2nd GC. Infected females displayed a lower percentage of oviposition and a higher number of eggs laid at the 1st GC. Then, the combined effects of GC and CHIKV were observed on oviposition preferences, with a chemical-dependent effect. For instance, the deterrent effect of n-heneicosane and pentadecanoic acid increased at the 2nd GC in infected females. These results allow for a deeper understanding of the mechanisms involved in oviposition site selection and highlight the need for taking into account physiological stage changes to increase the control programs' efficacy.
Collapse
Affiliation(s)
- Margaux Mulatier
- Laboratory of Vector Control Research, Pasteur Institute of Guadeloupe-Lieu-dit Morne Jolivière, 97139 Les Abymes, France
| | - Antoine Boullis
- Laboratory of Vector Control Research, Pasteur Institute of Guadeloupe-Lieu-dit Morne Jolivière, 97139 Les Abymes, France
| | - Christelle Dollin
- Laboratory of Vector Control Research, Pasteur Institute of Guadeloupe-Lieu-dit Morne Jolivière, 97139 Les Abymes, France
| | | | - Anubis Vega-Rúa
- Laboratory of Vector Control Research, Pasteur Institute of Guadeloupe-Lieu-dit Morne Jolivière, 97139 Les Abymes, France
| |
Collapse
|
14
|
Petersen MT, Couto-Lima D, Garcia GA, Pavan MG, David MR, Maciel-de-Freitas R. Dengue Exposure and Wolbachia wMel Strain Affects the Fertility of Quiescent Eggs of Aedes aegypti. Viruses 2023; 15:v15040952. [PMID: 37112932 PMCID: PMC10144928 DOI: 10.3390/v15040952] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
(1) Background: The deployment of the bacterium Wolbachia to reduce arbovirus transmission is ongoing in several countries worldwide. When Wolbachia-carrying Aedes aegypti are released and established in the field, females may feed on dengue-infected hosts. The effects of simultaneous exposure on life-history traits of Ae. aegypti to Wolbachia wMel strain and dengue-1 virus DENV-1 remain unclear. (2) Methods: We monitored 4 groups (mosquitoes with either DENV-1 or Wolbachia, coinfected with DENV-1 and Wolbachia, as well as negative controls) to estimate Ae. aegypti survival, oviposition success, fecundity, collapsing and fertility of quiescent eggs for 12 weeks. (3) Results: Neither DENV-1 nor Wolbachia had a significant impact on mosquito survival nor on mosquito fecundity, although the last parameter showed a tendency to decrease with ageing. There was a significant decrease in oviposition success in individuals carrying Wolbachia. Wolbachia infection and storage time significantly increased egg collapse parameter on the egg viability assay, while DENV-1 had a slight protective effect on the first four weeks of storage. (4) Conclusions: Despite limitations, our results contribute to better understanding of the tripartite interaction of virus, bacteria and mosquito that may take place in field conditions and aid in guaranteeing the Wolbachia strategy success.
Collapse
Affiliation(s)
- Martha Thieme Petersen
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21041-250, Brazil
| | - Dinair Couto-Lima
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21041-250, Brazil
| | - Gabriela Azambuja Garcia
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21041-250, Brazil
| | - Márcio Galvão Pavan
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21041-250, Brazil
| | - Mariana Rocha David
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21041-250, Brazil
| | - Rafael Maciel-de-Freitas
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21041-250, Brazil
- Department of Arbovirology, Bernhard-Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| |
Collapse
|
15
|
Novelo M, Dutra HLC, Metz HC, Jones MJ, Sigle LT, Frentiu FD, Allen SL, Chenoweth SF, McGraw EA. Dengue and chikungunya virus loads in the mosquito Aedes aegypti are determined by distinct genetic architectures. PLoS Pathog 2023; 19:e1011307. [PMID: 37043515 PMCID: PMC10124881 DOI: 10.1371/journal.ppat.1011307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/24/2023] [Accepted: 03/19/2023] [Indexed: 04/13/2023] Open
Abstract
Aedes aegypti is the primary vector of the arboviruses dengue (DENV) and chikungunya (CHIKV). These viruses exhibit key differences in their vector interactions, the latter moving more quicky through the mosquito and triggering fewer standard antiviral pathways. As the global footprint of CHIKV continues to expand, we seek to better understand the mosquito's natural response to CHIKV-both to compare it to DENV:vector coevolutionary history and to identify potential targets in the mosquito for genetic modification. We used a modified full-sibling design to estimate the contribution of mosquito genetic variation to viral loads of both DENV and CHIKV. Heritabilities were significant, but higher for DENV (40%) than CHIKV (18%). Interestingly, there was no genetic correlation between DENV and CHIKV loads between siblings. These data suggest Ae. aegypti mosquitoes respond to the two viruses using distinct genetic mechanisms. We also examined genome-wide patterns of gene expression between High and Low CHIKV families representing the phenotypic extremes of viral load. Using RNAseq, we identified only two loci that consistently differentiated High and Low families: a long non-coding RNA that has been identified in mosquito screens post-infection and a distant member of a family of Salivary Gland Specific (SGS) genes. Interestingly, the latter gene is also associated with horizontal gene transfer between mosquitoes and the endosymbiotic bacterium Wolbachia. This work is the first to link the SGS gene to a mosquito phenotype. Understanding the molecular details of how this gene contributes to viral control in mosquitoes may, therefore, also shed light on its role in Wolbachia.
Collapse
Affiliation(s)
- Mario Novelo
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Heverton LC Dutra
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Hillery C. Metz
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Matthew J. Jones
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Leah T. Sigle
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Francesca D. Frentiu
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Herston, Queensland, Australia
| | - Scott L. Allen
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Stephen F. Chenoweth
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Elizabeth A. McGraw
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
16
|
Ghramh HA, Sadiq N, Naqqash MN, Abid AD, Shahzad S, Saeed S, Iqbal N, Khan KA. Transgenerational effects of lambda-cyhalothrin on Musca domestica L. (Diptera: Muscidae). Sci Rep 2022; 12:19228. [PMID: 36357409 PMCID: PMC9649667 DOI: 10.1038/s41598-022-23492-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
The hormetic effect may cause disease control measures to fail due to inadequate treatment of human disease vectors such as houseflies. Age-stage, two-sex life table is used for accurate estimation of the hermetic impacts on insects as it allows to study sub-lethal or transgenerational effects. Pyrethroids insecticides are primarily used for the management of houseflies. This study used lambda-cyhalothrin (a pyrethroid insecticide) to quantify its transgenerational impacts on houseflies. Life table parameters of a progeny of adult houseflies exposed to LC10, LC30, and LC50 of lambda-cyhalothrin were computed. Statistically higher fecundity (71.31 per female) was observed in control treatment, while it was the adults exposed to LC50 recorded the lowest progeny. Significantly higher values for intrinsic rate of growth (r), limiting rate of growth (λ), and net reproductive rate (Ro) (0.16, 1.16, and 31.38 per day, respectively) were recorded for the control treatment of the study. Contrarily, lower values for λ, Ro, and r were (0.10, 1.10, and 9.24 per day, respectively) were noted in the LC50 treatment. Decreased population parameters suggest that lambda-cyhalothrin can be successfully used in indoor environments to control houseflies.
Collapse
Affiliation(s)
- Hamed A. Ghramh
- grid.412144.60000 0004 1790 7100Research Center for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha, 61413 Saudi Arabia ,grid.412144.60000 0004 1790 7100Unit of Bee Research and Honey Production, King Khalid University, P. O. Box 9004, Abha, 61413 Saudi Arabia ,grid.412144.60000 0004 1790 7100Biology Department, Faculty of Science, King Khalid University, P. O. Box 9004, 61413 Abha, Saudi Arabia
| | - Nauman Sadiq
- grid.512629.b0000 0004 5373 1288Institute of Plant Protection, Muhammad Nawaz Shareef University of Agriculture, Multan, 60000 Pakistan
| | - Muhammad Nadir Naqqash
- grid.512629.b0000 0004 5373 1288Institute of Plant Protection, Muhammad Nawaz Shareef University of Agriculture, Multan, 60000 Pakistan
| | - Allah Ditta Abid
- Department of Plant Protection, Ministry of National Food Security and Research, Islamabad, Pakistan
| | - Sohail Shahzad
- Department of Plant Protection, Ministry of National Food Security and Research, Islamabad, Pakistan
| | - Shafqat Saeed
- grid.512629.b0000 0004 5373 1288Institute of Plant Protection, Muhammad Nawaz Shareef University of Agriculture, Multan, 60000 Pakistan
| | - Naeem Iqbal
- grid.512629.b0000 0004 5373 1288Institute of Plant Protection, Muhammad Nawaz Shareef University of Agriculture, Multan, 60000 Pakistan
| | - Khalid Ali Khan
- grid.412144.60000 0004 1790 7100Research Center for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha, 61413 Saudi Arabia ,grid.412144.60000 0004 1790 7100Unit of Bee Research and Honey Production, King Khalid University, P. O. Box 9004, Abha, 61413 Saudi Arabia ,grid.412144.60000 0004 1790 7100Applied College, King Khalid University, P. O. Box 9004, Abha, 61413 Saudi Arabia
| |
Collapse
|
17
|
Differential Hatching, Development, Oviposition, and Longevity Patterns among Colombian Aedes aegypti Populations. INSECTS 2022; 13:insects13060536. [PMID: 35735873 PMCID: PMC9224916 DOI: 10.3390/insects13060536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary Aedes aegypti is a mosquito that transmits viruses responsible for several diseases in humans, such as dengue, Zika, and chikungunya. It is crucial to study mosquito populations from different countries and regions because control of disease transmission with insecticides can be more effective if adjusted to each population’s characteristics. For this reason, we determined several features of mosquitoes captured in different cities of Colombia: Neiva, Bello, Itagüí, and Riohacha. These included the length of their lifespan, the number of eggs they lay, and the stages in which they die. We found specific patterns for each population. This knowledge will help control programs determine the optimal times to apply insecticides and make surveillance, as well as the type of insecticide used. Abstract Dengue, Zika, and chikungunya are arboviral diseases for which there are no effective therapies or vaccines. The only way to avoid their transmission is by controlling the vector Aedes aegypti, but insecticide resistance limits this strategy. To generate relevant information for surveillance and control mechanisms, we determined life cycle parameters, including longevity, fecundity, and mortality, of Colombian Ae. aegypti populations from four different geographical regions: Neiva, Bello, Itagüí, and Riohacha. When reared at 28 °C, Bello had the shortest development time, and Riohacha had the longest. Each mosquito population had its own characteristic fecundity pattern during four gonotrophic cycles. The survival curves of each population were significantly different, with Riohacha having the longest survival in both males and females and Bello the shortest. High mortality was observed in mosquitoes from Neiva in the egg stage and for Bello in the pupae stage. Finally, when mosquitoes from Neiva and Bello were reared at 35 °C, development times and mortality were severely affected. In conclusion, each population has a unique development pattern with an innate trace in their biological characteristics that confers vulnerability in specific stages of development.
Collapse
|
18
|
Dengue virus infection modifies mosquito blood-feeding behavior to increase transmission to the host. Proc Natl Acad Sci U S A 2022; 119:2117589119. [PMID: 35012987 PMCID: PMC8785958 DOI: 10.1073/pnas.2117589119] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 12/16/2022] Open
Abstract
Because dengue viruses are spread by mosquitoes during biting, transmission capacity depends on mosquito-biting behavior. For this reason, it is critical to understand how infection in mosquitoes influences biting. To answer this question, we deployed a multidisciplinary approach including high-resolution, multivariate biting behavior monitoring on mice, in vivo transmission assay, and mathematical modeling. We demonstrated that infected mosquitoes are more attracted to mice and bite more often to get the same amount of blood as uninfected mosquitoes. While the effect of increased attraction to host on transmission capacity is trivial, we showed that increased number of bites results in successive transmission. Eventually, we calculated that the infection-induced behavior changes tripled transmission capacity of mosquitoes. Mosquito blood-feeding behavior is a key determinant of the epidemiology of dengue viruses (DENV), the most-prevalent mosquito-borne viruses. However, despite its importance, how DENV infection influences mosquito blood-feeding and, consequently, transmission remains unclear. Here, we developed a high-resolution, video-based assay to observe the blood-feeding behavior of Aedes aegypti mosquitoes on mice. We then applied multivariate analysis on the high-throughput, unbiased data generated from the assay to ordinate behavioral parameters into complex behaviors. We showed that DENV infection increases mosquito attraction to the host and hinders its biting efficiency, the latter resulting in the infected mosquitoes biting more to reach similar blood repletion as uninfected mosquitoes. To examine how increased biting influences DENV transmission to the host, we established an in vivo transmission model with immuno-competent mice and demonstrated that successive short probes result in multiple transmissions. Finally, to determine how DENV-induced alterations of host-seeking and biting behaviors influence dengue epidemiology, we integrated the behavioral data within a mathematical model. We calculated that the number of infected hosts per infected mosquito, as determined by the reproduction rate, tripled when mosquito behavior was influenced by DENV infection. Taken together, this multidisciplinary study details how DENV infection modulates mosquito blood-feeding behavior to increase vector capacity, proportionally aggravating DENV epidemiology. By elucidating the contribution of mosquito behavioral alterations on DENV transmission to the host, these results will inform epidemiological modeling to tailor improved interventions against dengue.
Collapse
|
19
|
Feitosa-Suntheimer F, Zhu Z, Mameli E, Dayama G, Gold AS, Broos-Caldwell A, Troupin A, Rippee-Brooks M, Corley RB, Lau NC, Colpitts TM, Londoño-Renteria B. Dengue Virus-2 Infection Affects Fecundity and Elicits Specific Transcriptional Changes in the Ovaries of Aedes aegypti Mosquitoes. Front Microbiol 2022; 13:886787. [PMID: 35814655 PMCID: PMC9260120 DOI: 10.3389/fmicb.2022.886787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Dengue fever (DF), caused by the dengue virus (DENV), is the most burdensome arboviral disease in the world, with an estimated 400 million infections each year. The Aedes aegypti mosquito is the main vector of DENV and transmits several other human pathogens, including Zika, yellow fever, and chikungunya viruses. Previous studies have shown that the pathogen infection of mosquitoes can alter reproductive fitness, revealing specific vector-pathogen interactions that are key determinants of vector competence. However, only a handful of studies have examined the effect of DENV infection in A. aegypti, showing a reduction in lifespan and fecundity over multiple blood meals. To provide a more comprehensive analysis of the impact of DENV infection on egg laying and fecundity, we assessed egg laying timing in DENV-2 blood-fed mosquitoes (infected group) compared to mock blood-fed mosquitoes (control group). We confirmed a significant decrease in fecundity during the first gonadotrophic cycle. To further investigate this phenotype and the underlying DENV-2 infection-dependent changes in gene expression, we conducted a transcriptomic analysis for differentially expressed genes in the ovaries of A. aegypti infected with DENV-2 vs. mock-infected mosquitoes. This analysis reveals several DENV-2-regulated genes; among them, we identified a group of 12 metabolic genes that we validated using reverse transcription-quantitative PCR (RT-qPCR). Interestingly, two genes found to be upregulated in DENV-infected mosquito ovaries exhibited an antiviral role for DENV-2 in an Aedes cell line. Altogether, this study offers useful insights into the virus-vector interface, highlighting the importance of gene expression changes in the mosquito's ovary during DENV-2 infection in the first gonadotrophic cycle, triggering antiviral responses that may possibly interfere with mosquito reproduction. This information is extremely relevant for further investigation of A. aegypti's ability to tolerate viruses since virally infected mosquitoes in nature constitute a powerful source of supporting viruses during intra-epidemic periods, causing a huge burden on the public health system.
Collapse
Affiliation(s)
- Fabiana Feitosa-Suntheimer
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States.,National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, United States
| | - Zheng Zhu
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, United States.,Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Enzo Mameli
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States.,National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Blavatnik Institute, Boston, MA, United States
| | - Gargi Dayama
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Alexander S Gold
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States.,National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, United States
| | - Aditi Broos-Caldwell
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States.,National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, United States
| | - Andrea Troupin
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Meagan Rippee-Brooks
- Department of Biology, Missouri State University, Springfield, MO, United States
| | - Ronald B Corley
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States.,National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, United States
| | - Nelson C Lau
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, United States.,Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States.,Genome Science Institute, Boston University, Boston, MA, United States
| | - Tonya M Colpitts
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States.,National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, United States
| | - Berlin Londoño-Renteria
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States.,Department of Entomology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
20
|
Javed N, Bhatti A, Paradkar PN. Advances in Understanding Vector Behavioural Traits after Infection. Pathogens 2021; 10:pathogens10111376. [PMID: 34832532 PMCID: PMC8621129 DOI: 10.3390/pathogens10111376] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/24/2022] Open
Abstract
Vector behavioural traits, such as fitness, host-seeking, and host-feeding, are key determinants of vectorial capacity, pathogen transmission, and epidemiology of the vector-borne disease. Several studies have shown that infection with pathogens can alter these behavioural traits of the arthropod vector. Here, we review relevant publications to assess how pathogens modulate the behaviour of mosquitoes and ticks, major vectors for human diseases. The research has shown that infection with pathogens alter the mosquito’s flight activity, mating, fecundity, host-seeking, blood-feeding, and adaptations to insecticide bed nets, and similarly modify the tick’s locomotion, questing heights, vertical and horizontal walks, tendency to overcome obstacles, and host-seeking ability. Although some of these behavioural changes may theoretically increase transmission potential of the pathogens, their effect on the disease epidemiology remains to be verified. This study will not only help in understanding virus–vector interactions but will also benefit in establishing role of these behavioural changes in improved epidemiological models and in devising new vector management strategies.
Collapse
Affiliation(s)
- Nouman Javed
- CSIRO Health & Biosecurity, Australian Centre for Diseases Preparedness, Geelong, VIC 3220, Australia;
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, VIC 3220, Australia;
| | - Asim Bhatti
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, VIC 3220, Australia;
| | - Prasad N. Paradkar
- CSIRO Health & Biosecurity, Australian Centre for Diseases Preparedness, Geelong, VIC 3220, Australia;
- Correspondence:
| |
Collapse
|
21
|
Ware-Gilmore F, Sgrò CM, Xi Z, Dutra HLC, Jones MJ, Shea K, Hall MD, Thomas MB, McGraw EA. Microbes increase thermal sensitivity in the mosquito Aedes aegypti, with the potential to change disease distributions. PLoS Negl Trop Dis 2021; 15:e0009548. [PMID: 34292940 PMCID: PMC8297775 DOI: 10.1371/journal.pntd.0009548] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/10/2021] [Indexed: 11/21/2022] Open
Abstract
The mosquito Aedes aegypti is the primary vector of many disease-causing viruses, including dengue (DENV), Zika, chikungunya, and yellow fever. As consequences of climate change, we expect an increase in both global mean temperatures and extreme climatic events. When temperatures fluctuate, mosquito vectors will be increasingly exposed to temperatures beyond their upper thermal limits. Here, we examine how DENV infection alters Ae. aegypti thermotolerance by using a high-throughput physiological 'knockdown' assay modeled on studies in Drosophila. Such laboratory measures of thermal tolerance have previously been shown to accurately predict an insect's distribution in the field. We show that DENV infection increases thermal sensitivity, an effect that may ultimately limit the geographic range of the virus. We also show that the endosymbiotic bacterium Wolbachia pipientis, which is currently being released globally as a biological control agent, has a similar impact on thermal sensitivity in Ae. aegypti. Surprisingly, in the coinfected state, Wolbachia did not provide protection against DENV-associated effects on thermal tolerance, nor were the effects of the two infections additive. The latter suggests that the microbes may act by similar means, potentially through activation of shared immune pathways or energetic tradeoffs. Models predicting future ranges of both virus transmission and Wolbachia's efficacy following field release may wish to consider the effects these microbes have on host survival.
Collapse
Affiliation(s)
- Fhallon Ware-Gilmore
- Department of Entomology & The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Carla M. Sgrò
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Zhiyong Xi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Heverton L. C. Dutra
- Department of Entomology & The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Matthew J. Jones
- Department of Entomology & The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Katriona Shea
- Department of Biology & The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Matthew D. Hall
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Matthew B. Thomas
- Department of Entomology & The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Elizabeth A. McGraw
- Department of Entomology & The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology & The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
22
|
Impact of deltamethrin-resistance in Aedes albopictus on its fitness cost and vector competence. PLoS Negl Trop Dis 2021; 15:e0009391. [PMID: 33905415 PMCID: PMC8104426 DOI: 10.1371/journal.pntd.0009391] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/07/2021] [Accepted: 04/15/2021] [Indexed: 11/19/2022] Open
Abstract
Background Aedes albopictus is one of the most invasive species in the world as well as the important vector for mosquito-borne diseases such as dengue fever, chikungunya fever and zika virus disease. Chemical control of mosquitoes is an effective method to control mosquito-borne diseases, however, the wide and improper application of insecticides for vector control has led to serious resistance problems. At present, there have been many reports on the resistance to pyrethroid insecticides in vector mosquitoes including deltamethrin to Aedes albopictus. However, the fitness cost and vector competence of deltamethrin resistant Aedes albopictus remain unknown. To understand the impact of insecticide resistant mosquito is of great significance for the prevention and control mosquitoes and mosquito-borne diseases. Methodology/Principal findings A laboratory resistant strain (Lab-R) of Aedes albopictus was established by deltamethrin insecticide selecting from the laboratory susceptible strain (Lab-S). The life table between the two strains were comparatively analyzed. The average development time of Lab-R and Lab-S in larvae was 9.7 days and 8.2 days (P < 0.005), and in pupae was 2.0 days and 1.8 days respectively (P > 0.05), indicating that deltamethrin resistance prolongs the larval development time of resistant mosquitoes. The average survival time of resistant adults was significantly shorter than that of susceptible adults, while the body weight of resistant female adults was significantly higher than that of the susceptible females. We also compared the vector competence for dengue virus type-2 (DENV-2) between the two strains via RT-qPCR. Considering the results of infection rate (IR) and virus load, there was no difference between the two strains during the early period of infection (4, 7, 10 day post infection (dpi)). However, in the later period of infection (14 dpi), IR and virus load in heads, salivary glands and ovaries of the resistant mosquitoes were significantly lower than those of the susceptible strain (IR of heads, salivary glands and ovaries: P < 0.05; virus load in heads and salivary glands: P < 0.05; virus load in ovaries: P < 0.001). And then, fourteen days after the DENV-2-infectious blood meal, females of the susceptible and resistant strains were allow to bite 5-day-old suckling mice. Both stains of mosquito can transmit DENV-2 to mice, but the onset of viremia was later in the mice biting by resistant group as well as lower virus copies in serum and brains, suggesting that the horizontal transmission of the resistant strain is lower than the susceptible strain. Meanwhile, we also detected IR of egg pools of the two strains on 14 dpi and found that the resistant strain were less capable of vertical transmission than susceptible mosquitoes. In addition, the average survival time of the resistant females infected with DENV-2 was 16 days, which was the shortest among the four groups of female mosquitoes, suggesting that deltamethrin resistance would shorten the life span of female Aedes albopictus infected with DENV-2. Conclusions/Significance As Aedes albopictus developing high resistance to deltamethrin, the resistance prolonged the growth and development of larvae, shorten the life span of adults, as well as reduced the vector competence of resistant Aedes albopictus for DENV-2. It can be concluded that the resistance to deltamethrin in Aedes albopictus is a double-edged sword, which not only endow the mosquito survive under the pressure of insecticide, but also increase the fitness cost and decrease its vector competence. However, Aedes albopictus resistant to deltamethrin can still complete the external incubation period and transmit dengue virus, which remains a potential vector for dengue virus transmission and becomes a threat to public health. Therefore, we should pay high attention for the problem of insecticide resistance so that to better prevent and control mosquito-borne diseases. Worldwide invasion and expansion of Aedes albopictus, the main vector of dengue, chikungunya, and Zika viruses, has become a serious concern in global public health. With the large use of insecticides, especially the most commonly used pyrethroid insecticides, the emergence and development of resistance in Aedes albopictus present vector control challenges. However, it is not clear whether the resistance would affect the fitness cost and vector competence of Aedes albopictus. In this study, a laboratory resistant strain of Aedes albopictus was established by selecting the susceptible strain of Aedes albopictus with deltamethrin. Comparing the resistant strain with the susceptible strain, we found that deltamethrin resistance increased the fitness cost and reduced the vector competence of DENV-2 in Aedes albopictus. These latest findings shared the light for dengue disease prevention and vector control strategies.
Collapse
|
23
|
Genetic Variation in the Domain II, 3' Untranslated Region of Human and Mosquito Derived Dengue Virus Strains in Sri Lanka. Viruses 2021; 13:v13030421. [PMID: 33807922 PMCID: PMC8001906 DOI: 10.3390/v13030421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Genetic variations in dengue virus (DENV) play a distinct role in epidemic emergence. The DENV 3′ UTR has become a recent interest in research. The objective of the study was to examine the genetic variation in the domain II, 3′ UTR region of human and mosquito-derived DENV. DENV-infected human sera were orally infected to laboratory reared Aedes aegypti mosquitoes. The domain II, 3′ UTR of each human- and mosquito-derived sample was amplified. The nucleotide sequence variation, phylogenetic and secondary structure analysis was carried out incorporating respective regions of so far recorded Sri Lankan and the reference genotype strains of the DENV3 and DENV1 serotypes. The human- and mosquito-derived domain II, 3′ UTR were identical in nucleotide sequences within the serotypes isolated, indicating the conserved nature of the region during host switch. The sequence analysis revealed distinct variations in study isolates compared to so far recorded Sri Lankan isolates. However, despite single nucleotide variations, the maintenance of structural integrity was evident in related strains within the serotypes in the secondary structure analysis. The phylogenetic analysis revealed distinct clade segregation of the study sequences from so far reported Sri Lankan isolates and illustrated the phylogenetic relations of the study sequences to the available global isolates of respective serotypes.
Collapse
|
24
|
Dengue infection modulates locomotion and host seeking in Aedes aegypti. PLoS Negl Trop Dis 2020; 14:e0008531. [PMID: 32911504 PMCID: PMC7482838 DOI: 10.1371/journal.pntd.0008531] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/27/2020] [Indexed: 12/31/2022] Open
Abstract
Pathogens may manipulate their human and mosquito hosts to enhance disease transmission. Dengue, caused by four viral serotypes, is the fastest-growing transmissible disease globally resulting in 50-100 million infections annually. Transmission of the disease relies on the interaction between humans and the vector Aedes aegypti and is largely dependent on the odor-mediated host seeking of female mosquitoes. In this study, we use activity monitors to demonstrate that dengue virus-1 affects the locomotion and odor-mediated behavior of Ae. aegypti, reflecting the progression of infection within the mosquito. Mosquitoes 4-6 days post-infection increase locomotion, but do not alter their odor-driven host-seeking response. In contrast, females 14-16 days post-infection are less active, yet more sensitive to human odors as assessed by behavioral and electrophysiological assays. Such an increase in physiological and behavioral sensitivity is reflected by the antennal-specific increase in abundance of neural signaling transcripts in 14 days post-infection females, as determined by transcriptome analysis. This suggests that the sensitivity of the mosquito peripheral olfactory system is altered by the dengue virus by enhancing the overall neural responsiveness of the antenna, rather than the selective regulation of chemosensory-related genes. Our study reveals that dengue virus-1 enhances vector-related behaviors in the early stages post-infection that aid in avoiding predation and increasing spatial exploration. On the other hand, at the later stages of infection, the virus enhances the host-seeking capacity of the vector, thereby increasing the risk of virus transmission. A potential mechanism is discussed.
Collapse
|
25
|
Peirce MJ, Mitchell SN, Kakani EG, Scarpelli P, South A, Shaw WR, Werling KL, Gabrieli P, Marcenac P, Bordoni M, Talesa V, Catteruccia F. JNK signaling regulates oviposition in the malaria vector Anopheles gambiae. Sci Rep 2020; 10:14344. [PMID: 32873857 PMCID: PMC7462981 DOI: 10.1038/s41598-020-71291-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/30/2020] [Indexed: 02/05/2023] Open
Abstract
The reproductive fitness of the Anopheles gambiae mosquito represents a promising target to prevent malaria transmission. The ecdysteroid hormone 20-hydroxyecdysone (20E), transferred from male to female during copulation, is key to An. gambiae reproductive success as it licenses females to oviposit eggs developed after blood feeding. Here we show that 20E-triggered oviposition in these mosquitoes is regulated by the stress- and immune-responsive c-Jun N-terminal kinase (JNK). The heads of mated females exhibit a transcriptional signature reminiscent of a JNK-dependent wounding response, while mating—or injection of virgins with exogenous 20E—selectively activates JNK in the same tissue. RNAi-mediated depletion of JNK pathway components inhibits oviposition in mated females, whereas JNK activation by silencing the JNK phosphatase puckered induces egg laying in virgins. Together, these data identify JNK as a potential conduit linking stress responses and reproductive success in the most important vector of malaria.
Collapse
Affiliation(s)
- Matthew J Peirce
- Dipartimento di Medicina Sperimentale, Università Degli Studi di Perugia, Sant' Andrea Delle Fratte, Piano 4, Edificio D, Piazzale Gambuli 1, 06132, Perugia, Italy.
| | - Sara N Mitchell
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 103, Boston, MA, 02115, USA.,Verily Life Sciences, South San Francisco, CA, 94080, USA
| | - Evdoxia G Kakani
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 103, Boston, MA, 02115, USA.,Verily Life Sciences, South San Francisco, CA, 94080, USA
| | - Paolo Scarpelli
- Dipartimento di Medicina Sperimentale, Università Degli Studi di Perugia, Sant' Andrea Delle Fratte, Piano 4, Edificio D, Piazzale Gambuli 1, 06132, Perugia, Italy
| | - Adam South
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 103, Boston, MA, 02115, USA
| | - W Robert Shaw
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 103, Boston, MA, 02115, USA
| | - Kristine L Werling
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 103, Boston, MA, 02115, USA
| | - Paolo Gabrieli
- Dipartimento di Medicina Sperimentale, Università Degli Studi di Perugia, Sant' Andrea Delle Fratte, Piano 4, Edificio D, Piazzale Gambuli 1, 06132, Perugia, Italy.,Dipartimento Bioscienze, University of Milan, 20133, Milan, Italy
| | - Perrine Marcenac
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 103, Boston, MA, 02115, USA
| | - Martina Bordoni
- Dipartimento di Medicina Sperimentale, Università Degli Studi di Perugia, Sant' Andrea Delle Fratte, Piano 4, Edificio D, Piazzale Gambuli 1, 06132, Perugia, Italy
| | - Vincenzo Talesa
- Dipartimento di Medicina Sperimentale, Università Degli Studi di Perugia, Sant' Andrea Delle Fratte, Piano 4, Edificio D, Piazzale Gambuli 1, 06132, Perugia, Italy
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 103, Boston, MA, 02115, USA.
| |
Collapse
|
26
|
Soni M, Khan SA, Bhattacharjee CK, Dutta P. Experimental study of dengue virus infection in Aedes aegypti and Aedes albopictus: A comparative analysis on susceptibility, virus transmission and reproductive success. J Invertebr Pathol 2020; 175:107445. [PMID: 32712268 DOI: 10.1016/j.jip.2020.107445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023]
Abstract
Epidemiology of dengue fever has substantially changed over the years with respect to prevalent strains, affected geographical locations and severity of disease. Mosquito vectors show variable response in terms of susceptibility to four different serotypes of dengue virus. Although studies have postulated that, the vectors Ae. aegypti and Ae. albopictus are crucial for transmission of dengue virus, comparative efficacy of these species for viral transmission and tolerance is still enigmatic. In this study, these two vectors were infected orally with four serotypes of the dengue virus viz. DENV-1 to DENV-4 and their co-infection. It was observed that Ae. aegypti harbors multiple serotype infections more efficiently than Ae. albopictus. We suggest that transovarial transmission is of low importance in the epidemiology of the virus due to low infection rates in the filial generation, and also that reduced fecundity and fertility in both vectors after dengue virus infection affect the ecology of the pathogen.
Collapse
Affiliation(s)
- Monika Soni
- Assam Don Bosco University, Kamrup, Assam 782 402, India.
| | - Siraj A Khan
- ICMR-Regional Medical Research Centre, NE Region, Dibrugarh, Assam 786001, India.
| | | | - Prafulla Dutta
- ICMR-Regional Medical Research Centre, NE Region, Dibrugarh, Assam 786001, India
| |
Collapse
|
27
|
Jones R, Kulkarni MA, Davidson TMV, Talbot B. Arbovirus vectors of epidemiological concern in the Americas: A scoping review of entomological studies on Zika, dengue and chikungunya virus vectors. PLoS One 2020; 15:e0220753. [PMID: 32027652 PMCID: PMC7004335 DOI: 10.1371/journal.pone.0220753] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/02/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Three arthropod-borne viruses (arboviruses) causing human disease have been the focus of a large number of studies in the Americas since 2013 due to their global spread and epidemiological impacts: Zika, dengue, and chikungunya viruses. A large proportion of infections by these viruses are asymptomatic. However, all three viruses are associated with moderate to severe health consequences in a small proportion of cases. Two mosquito species, Aedes aegypti and Aedes albopictus, are among the world's most prominent arboviral vectors, and are known vectors for all three viruses in the Americas. OBJECTIVES This review summarizes the state of the entomological literature surrounding the mosquito vectors of Zika, dengue and chikungunya viruses and factors affecting virus transmission. The rationale of the review was to identify and characterize entomological studies that have been conducted in the Americas since the introduction of chikungunya virus in 2013, encompassing a period of arbovirus co-circulation, and guide future research based on identified knowledge gaps. METHODS The preliminary search for this review was conducted on PubMed (National Library of Health, Bethesda, MD, United States). The search included the terms 'zika' OR 'dengue' OR 'chikungunya' AND 'vector' OR 'Aedes aegypti' OR 'Aedes albopictus'. The search was conducted on March 1st of 2018, and included all studies since January 1st of 2013. RESULTS A total of 96 studies were included in the scoping review after initial screening and subsequent exclusion of out-of-scope studies, secondary data publications, and studies unavailable in English language. KEY FINDINGS We observed a steady increase in number of publications, from 2013 to 2018, with half of all studies published from January 2017 to March 2018. Interestingly, information on Zika virus vector species composition was abundant, but sparse on Zika virus transmission dynamics. Few studies examined natural infection rates of Zika virus, vertical transmission, or co-infection with other viruses. This is in contrast to the wealth of research available on natural infection and co-infection for dengue and chikungunya viruses, although vertical transmission research was sparse for all three viruses.
Collapse
Affiliation(s)
- Reilly Jones
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Manisha A. Kulkarni
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | | | - RADAM-LAC Research Team
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Center for Investigation in Tropical Microbiology and Parasitology, Universidad de los Andes, Bogota, Colombia
- Department of Mathematics and Statistics, York University, Toronto, ON, Canada
- Group for Investigation in Applied Genetics (GIGA), IBS, UNaM-CONICET, Posadas, Argentina
- School of Medicine, Universidad Laica Elroy Alfaro de Manabí, Manta, Ecuador
- Center for Investigation of Arthropod Vectors, Instituto Nacional de Investigación en Salud Pública, Quito, Ecuador
| | - Benoit Talbot
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
28
|
Woestmann L, Stucki D, Saastamoinen M. Life history alterations upon oral and hemocoelic bacterial exposure in the butterfly Melitaea cinxia. Ecol Evol 2019; 9:10665-10680. [PMID: 31624574 PMCID: PMC6787844 DOI: 10.1002/ece3.5586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 11/11/2022] Open
Abstract
Life history strategies often shape biological interactions by specifying the parameters for possible encounters, such as the timing, frequency, or way of exposure to parasites. Consequentially, alterations in life-history strategies are closely intertwined with such interaction processes. Understanding the connection between life-history alterations and host-parasite interactions can therefore be important to unveil potential links between adaptation to environmental change and changes in interaction processes. Here, we studied how two different host-parasite interaction processes, oral and hemocoelic exposure to bacteria, affect various life histories of the Glanville fritillary butterfly Melitaea cinxia. We either fed or injected adult butterflies with the bacterium Micrococcus luteus and observed for differences in immune defenses, reproductive life histories, and longevity, compared to control exposures. Our results indicate differences in how female butterflies adapt to the two exposure types. Orally infected females showed a reduction in clutch size and an earlier onset of reproduction, whereas a reduction in egg weight was observed for hemocoelically exposed females. Both exposure types also led to shorter intervals between clutches and a reduced life span. These results indicate a relationship between host-parasite interactions and changes in life-history strategies. This relationship could cast restrictions on the ability to adapt to new environments and consequentially influence the population dynamics of a species in changing environmental conditions.
Collapse
Affiliation(s)
- Luisa Woestmann
- Organismal and Evolutionary Biology Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Dimitri Stucki
- Organismal and Evolutionary Biology Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Marjo Saastamoinen
- Organismal and Evolutionary Biology Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
29
|
Males can evolve lower resistance to sexually transmitted infections to infect their mates and thereby increase their own fitness. Evol Ecol 2019. [DOI: 10.1007/s10682-019-09976-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
da Silveira ID, Petersen MT, Sylvestre G, Garcia GA, David MR, Pavan MG, Maciel-de-Freitas R. Zika Virus Infection Produces a Reduction on Aedes aegypti Lifespan but No Effects on Mosquito Fecundity and Oviposition Success. Front Microbiol 2018; 9:3011. [PMID: 30619118 PMCID: PMC6305470 DOI: 10.3389/fmicb.2018.03011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/21/2018] [Indexed: 11/13/2022] Open
Abstract
A Zika virus (ZIKV) pandemic started soon after the first autochthonous cases in Latin America. Although Aedes aegypti is pointed as the primary vector in Latin America, little is known about the fitness cost due to ZIKV infection. We investigated the effects of ZIKV infection on the life-history traits of Ae. aegypti females collected in three districts of Rio de Janeiro, Brazil (Barra, Deodoro, and Porto), equidistant ~25 km each other. Aedes aegypti mosquitoes were classified into infected (a single oral challenge with ZIKV) and superinfected (two ZIKV-infected blood meals spaced by 7 days each other). ZIKV infection reduced Ae. aegypti survival in two of the three populations tested, and superinfection produced a sharper increase in mortality in one of those populations. We hypothesized higher mortality with the presence of more ZIKV copies in Ae. aegypti females from Porto. The number of eggs laid per clutch was statistically similar between vector populations and infected and uninfected mosquitoes. Infection by ZIKV not affected female oviposition success. ZIKV infection impacted Ae. aegypti vectorial capacity by reducing its lifespan, although female fecundity remained unaltered. The outcome of these findings to disease transmission intensity still needs further evaluation.
Collapse
Affiliation(s)
- Isabella Dias da Silveira
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Martha Thieme Petersen
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Gabriel Sylvestre
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Gabriela Azambuja Garcia
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Mariana Rocha David
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Márcio Galvão Pavan
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Maciel-de-Freitas
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
31
|
Koh C, Allen SL, Herbert RI, McGraw EA, Chenoweth SF. The Transcriptional Response of Aedes aegypti with Variable Extrinsic Incubation Periods for Dengue Virus. Genome Biol Evol 2018; 10:3141-3151. [PMID: 30335126 PMCID: PMC6278894 DOI: 10.1093/gbe/evy230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2018] [Indexed: 12/22/2022] Open
Abstract
Dengue fever is the most prevalent arboviral disease globally. Dengue virus is transmitted primarily by the Aedes aegypti mosquito. One measure of the mosquito’s efficiency as a vector is the extrinsic incubation period (EIP), which is the time between the ingestion of viremic blood and the emergence of virions in the saliva. The longer it takes virus to infect the midgut and traverse to the saliva, the fewer opportunities the mosquito will have to transmit the pathogen over its lifetime. We have shown previously that EIP for dengue virus is highly heritable and that it is negatively correlated with vector lifespan. Here, we examined the transcriptional profiles for mosquitoes that varied in their EIP phenotype and identified pathways associated with either short or long EIP. We found that mosquitoes with short EIP have less active immune responses but higher levels of protein translation and calcium ion homeostasis and that mosquitoes with longer EIP may have slower metabolism. These findings indicate a complex interplay between calcium ion distribution, ribosome biogenesis, and metabolism and reveal potential pathways that could be modified to slow the rate of viral progression and hence limit lifetime transmission capability.
Collapse
Affiliation(s)
- Cassandra Koh
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Scott L Allen
- Department of Entomology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, United States
| | - Rosemarie I Herbert
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Elizabeth A McGraw
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia.,Department of Entomology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, United States
| | - Stephen F Chenoweth
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
32
|
Pérez-Restrepo LS, Triana-Chávez O, Mejía-Jaramillo AM, Arboleda-Sánchez SO. Vector competence analysis of two Aedes aegypti lineages from Bello, Colombia, reveals that they are affected similarly by dengue-2 virus infection. Arch Virol 2018; 164:149-158. [PMID: 30298277 DOI: 10.1007/s00705-018-4049-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 09/20/2018] [Indexed: 11/27/2022]
Abstract
Dengue is the second most prevalent vector-borne disease after malaria in Colombia. It is caused by dengue virus, an arbovirus that exhibits high epidemic power, which is evidenced by its occurrence in more than 80% of the country, largely because of the extensive dispersion of the mosquito vector Aedes aegypti. The existence of two lineages of Ae. aegypti has been proposed based on genetic differences at the mitochondrial level, and they have been reported to circulate in similar proportions in the municipality of Bello (Colombia). It has been suggested that the differentiation of these lineages could influence features such as vector competence (VC) and life table. With the aim of testing this hypothesis, female mosquitoes from both lineages collected from Bello were orally challenged with dengue virus serotype 2 (strain D2-HAN) to measure infection, dissemination, survival and fecundity. Analysis of VC showed an increase in viral titer over time; however, no significant differences were observed between the lineages. The survival rate was not different between the infected lineages, but comparing lineages, it was lower in infected mosquitoes, which may affect the intensity of transmission. Finally, we conclude that the genetic differentiation of Ae. aegypti into lineages did not confer differences in epidemiological status when the mosquitoes were infected with this D2 serotype strain.
Collapse
Affiliation(s)
| | - Omar Triana-Chávez
- Grupo Biología y Control de Enfermedades Infecciosas-BCEI, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Ana María Mejía-Jaramillo
- Grupo Biología y Control de Enfermedades Infecciosas-BCEI, Universidad de Antioquia UdeA, Medellín, Colombia
| | | |
Collapse
|
33
|
Gaburro J, Paradkar PN, Klein M, Bhatti A, Nahavandi S, Duchemin JB. Dengue virus infection changes Aedes aegypti oviposition olfactory preferences. Sci Rep 2018; 8:13179. [PMID: 30181545 PMCID: PMC6123472 DOI: 10.1038/s41598-018-31608-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 08/08/2018] [Indexed: 12/27/2022] Open
Abstract
Aedes aegypti mosquitoes, main vectors for numerous flaviviruses, have olfactory preferences and are capable of olfactory learning especially when seeking their required environmental conditions to lay their eggs. In this study, we showed that semiochemical conditions during Aedes aegypti larval rearing affected future female choice for oviposition: water-reared mosquitoes preferred to lay eggs in water or p-cresol containers, while skatole reared mosquitoes preferred skatole sites. Using two independent behavioural assays, we showed that this skatole preference was lost in mosquitoes infected with dengue virus. Viral RNA was extracted from infected female mosquito heads, and an increase of virus load was detected from 3 to 10 days post infection, indicating replication in the insect head and possibly in the central nervous system. Expression of selected genes, potentially implied in olfactory learning processes, were also altered during dengue infection. Based on these results, we hypothesise that dengue virus infection alters gene expression in the mosquito’s head and is associated with a loss of olfactory preferences, possibly modifying oviposition site choice of female mosquitoes.
Collapse
Affiliation(s)
- Julie Gaburro
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia.,Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, Australia
| | - Prasad N Paradkar
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia
| | - Melissa Klein
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia
| | - Asim Bhatti
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, Australia
| | - Saeid Nahavandi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, Australia
| | - Jean-Bernard Duchemin
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia.
| |
Collapse
|
34
|
Ioshino RS, Carvalho DO, Marques ICS, Fernandes ES, Capurro ML, Costa-da-Silva AL. Oviplate: A Convenient and Space-Saving Method to Perform Individual Oviposition Assays in Aedes aegypti. INSECTS 2018; 9:insects9030103. [PMID: 30111702 PMCID: PMC6164622 DOI: 10.3390/insects9030103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/31/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022]
Abstract
Aedes aegypti is the principal vector of the urban arboviruses and the blood ingestion is important to produce the eggs in this species. To analyze the egg production in Ae. aegypti, researchers frequently use small cages or Drosophila vials to collect eggs from gravid females. Although it is affordable, the setup is time- and space-consuming, mainly when many mosquitoes need to be individually analyzed. This study presents an easy, cheap, and space-saving method to perform individual oviposition assays in Ae. aegypti using cell culture plates. This new method to access fecundity rate was named “oviplate”. The oviplates are setup with 12- or 24-well plates, distilled water and filter paper and they are 78 to 88% cheaper than the traditional Drosophila vial assay, respectively. Furthermore, to allocate 72 vitellogenic females in an insectary using Drosophila vial is necessary 4100 cm3 against 1400 cm3 and 700 cm3 when using 12- and 24-well plates, respectively. No statistical differences were found between the number of eggs laid in Drosophila vials and the oviplates, validating the method. The oviplate method is an affordable, and time- and space-efficient device, and it is simpler to perform individual fecundity analyses in Ae. aegypti.
Collapse
Affiliation(s)
- Rafaella Sayuri Ioshino
- Laboratório de Mosquitos Geneticamente Modificados, Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil.
| | - Danilo Oliveira Carvalho
- Laboratório de Mosquitos Geneticamente Modificados, Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil.
| | - Isabel Cristina Santos Marques
- Laboratório de Mosquitos Geneticamente Modificados, Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil.
| | - Ediane Saraiva Fernandes
- Laboratório de Mosquitos Geneticamente Modificados, Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil.
| | - Margareth Lara Capurro
- Laboratório de Mosquitos Geneticamente Modificados, Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil.
| | - André Luis Costa-da-Silva
- Laboratório de Mosquitos Geneticamente Modificados, Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil.
| |
Collapse
|
35
|
Petersen MT, da Silveira ID, Tátila-Ferreira A, David MR, Chouin-Carneiro T, Van den Wouwer L, Maes L, Maciel-de-Freitas R. The impact of the age of first blood meal and Zika virus infection on Aedes aegypti egg production and longevity. PLoS One 2018; 13:e0200766. [PMID: 30048481 PMCID: PMC6062029 DOI: 10.1371/journal.pone.0200766] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/02/2018] [Indexed: 11/19/2022] Open
Abstract
The impact of senescence and pathogen infection on Aedes aegypti life-history traits remains poorly understood. This laboratory study focused on the impact of Zika virus (ZIKV) infection and the age of first blood intake on blood meal and clutch sizes, and more importantly on the egg production ratio per μL of blood. Three groups of ZIKV-infected and uninfected Ae. aegypti females that received their first blood meal at 7 (young feeders), 14 (mature feeders) and 21 days old (old feeders) were monitored daily for survival and received a blood meal free of ZIKV once a week. The number of eggs laid per female were registered 3-4 days after blood feeding. Infection by ZIKV and age of feeding produced a strong negative impact on survival and oviposition success (e.g. likelihood of laying at least one egg per gonotrophic cycle). Interestingly, clutch size presented a dramatic reduction on uninfected mosquitoes, but raised from 36.5 in clutch1 to 55.1 eggs in clutch 3. Blood meal size remained stable in uninfected females, while a slight increase was observed for the infected counterparts. In uninfected Ae. aegypti, egg production was strongly affected by the age of feeding with younger females laying three times more eggs than when older. On the other hand, ZIKV-infected mosquitoes had a constant but low egg production. Overall, mosquito senescence and ZIKV infection had an impact on mosquito egg production by causing a sharp decrease in the number of eggs along the clutches for uninfected mosquitoes and a slight increase for infected mosquitoes. Despite some study limitations, our results contribute to a better understanding of the effects of mosquito aging and pathogen infection on the vectorial capacity of Ae. aegypti.
Collapse
Affiliation(s)
- Martha Thieme Petersen
- Laboratório de Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Isabella Dias da Silveira
- Laboratório de Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Aline Tátila-Ferreira
- Laboratório de Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Mariana Rocha David
- Laboratório de Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Thais Chouin-Carneiro
- Laboratório de Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Liesbeth Van den Wouwer
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Belgium
| | - Louis Maes
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Belgium
| | - Rafael Maciel-de-Freitas
- Laboratório de Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
36
|
Terradas G, Allen SL, Chenoweth SF, McGraw EA. Family level variation in Wolbachia-mediated dengue virus blocking in Aedes aegypti. Parasit Vectors 2017; 10:622. [PMID: 29282144 PMCID: PMC5746003 DOI: 10.1186/s13071-017-2589-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/12/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The mosquito vector Aedes aegypti is responsible for transmitting a range of arboviruses including dengue (DENV) and Zika (ZIKV). The global reach of these viruses is increasing due to an expansion of the mosquito's geographic range and increasing urbanization and human travel. Vector control remains the primary means for limiting these diseases. Wolbachia pipientis is an endosymbiotic bacterium of insects that has the ability to block the replication of pathogens, including flaviviruses such as DENV or ZIKV, inside the body of the vector. A strain of Wolbachia called wMel is currently being released into wild mosquito populations to test its potential to limit virus transmission to humans. The mechanism that underpins the virus blocking effect, however, remains elusive. METHODS We used a modified full-sib breeding design in conjunction with vector competence assays in wildtype and wMel-infected Aedes aegypti collected from the field. All individuals were injected with DENV-2 intrathoracically at 5-6 days of age. Tissues were dissected 7 days post-infection to allow quantification of DENV and Wolbachia loads. RESULTS We show the first evidence of family level variation in Wolbachia-mediated blocking in mosquitoes. This variation may stem from either genetic contributions from the mosquito and Wolbachia genomes or environmental influences on Wolbachia. In these families, we also tested for correlations between strength of blocking and expression level for several insect immunity genes with possible roles in blocking, identifying two genes of interest (AGO2 and SCP-2). CONCLUSIONS In this study we show variation in Wolbachia-mediated DENV blocking in Aedes aegypti that may arise from genetic contributions and environmental influences on the mosquito-Wolbachia association. This suggests that Wolbachia-mediated blocking may have the ability to evolve through time or be expressed differentially across environments. The long-term efficacy of Wolbachia in the field will be dependent on the stability of blocking. Understanding the mechanism of blocking will be necessary for successful development of strategies that counter the emergence of evolved resistance or variation in its expression under diverse field conditions.
Collapse
Affiliation(s)
- Gerard Terradas
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC, Australia
| | - Scott L Allen
- School of Biological Sciences, The University of Queensland, QLD, St. Lucia, Australia
| | - Stephen F Chenoweth
- School of Biological Sciences, The University of Queensland, QLD, St. Lucia, Australia
| | - Elizabeth A McGraw
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC, Australia.
| |
Collapse
|
37
|
Global Transcriptome Analysis of Aedes aegypti Mosquitoes in Response to Zika Virus Infection. mSphere 2017; 2:mSphere00456-17. [PMID: 29202041 PMCID: PMC5700376 DOI: 10.1128/msphere.00456-17] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/27/2017] [Indexed: 01/28/2023] Open
Abstract
Vector-borne viruses pose great risks to human health. Zika virus has recently emerged as a global threat, rapidly expanding its distribution. Understanding the interactions of the virus with mosquito vectors at the molecular level is vital for devising new approaches in inhibiting virus transmission. In this study, we embarked on analyzing the transcriptional response of Aedes aegypti mosquitoes to Zika virus infection. Results showed large changes in both coding and long noncoding RNAs. Analysis of these genes showed similarities with other flaviviruses, including dengue virus, which is transmitted by the same mosquito vector. The outcomes provide a global picture of changes in the mosquito vector in response to Zika virus infection. Zika virus (ZIKV) of the Flaviviridae family is a recently emerged mosquito-borne virus that has been implicated in the surge of the number of microcephaly instances in South America. The recent rapid spread of the virus led to its declaration as a global health emergency by the World Health Organization. The virus is transmitted mainly by the mosquito Aedes aegypti, which is also the vector of dengue virus; however, little is known about the interactions of the virus with the mosquito vector. In this study, we investigated the transcriptome profiles of whole A. aegypti mosquitoes in response to ZIKV infection at 2, 7, and 14 days postinfection using transcriptome sequencing. Results showed changes in the abundance of a large number of transcripts at each time point following infection, with 18 transcripts commonly changed among the three time points. Gene ontology analysis revealed that most of the altered genes are involved in metabolic processes, cellular processes, and proteolysis. In addition, 486 long intergenic noncoding RNAs that were altered upon ZIKV infection were identified. Further, we found changes of a number of potential mRNA target genes correlating with those of altered host microRNAs. The outcomes provide a basic understanding of A. aegypti responses to ZIKV and help to determine host factors involved in replication or mosquito host antiviral response against the virus. IMPORTANCE Vector-borne viruses pose great risks to human health. Zika virus has recently emerged as a global threat, rapidly expanding its distribution. Understanding the interactions of the virus with mosquito vectors at the molecular level is vital for devising new approaches in inhibiting virus transmission. In this study, we embarked on analyzing the transcriptional response of Aedes aegypti mosquitoes to Zika virus infection. Results showed large changes in both coding and long noncoding RNAs. Analysis of these genes showed similarities with other flaviviruses, including dengue virus, which is transmitted by the same mosquito vector. The outcomes provide a global picture of changes in the mosquito vector in response to Zika virus infection.
Collapse
|
38
|
Soni M, Sharma J. Review on transovarial transmission potentiality of dengue vectors: An international perspective with special reference to North-Eastern region of India. Indian J Med Microbiol 2017; 35:355-360. [PMID: 29063879 DOI: 10.4103/ijmm.ijmm_16_64] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Despite extensive research in vaccine development, there is at present no known method of controlling dengue except by the mosquito vectors. Virologic surveillance which involves the detection of dengue virus (DENV) in human serum and followed by isolation of virus using cell culture or mosquito inoculation is used as an early warning symptom to predict the outbreak. The technique is not much effective as the virus is in the human population. However, if the virus is detected in mosquito before it can infect humans could be more effective approach. One of the great mysteries about the epidemiology of dengue is how the virus persists in the interepidemic period. So far, no such studies on dengue vectors have been conducted in the north-eastern region of India, especially in Assam and the dengue cases are increasing every year. There are no reports on the identification of active and potential role of dengue vector responsible for the transmission of dengue in this state. Such type of study will give an overall picture of potential dengue vector responsible for human DENV infection and the viral load carried by the mosquito species in different generations. Such study will be useful in helping the public health personnel.
Collapse
Affiliation(s)
- Monika Soni
- Centre for Studies in Biotechnology, Dibrugarh University, Dibrugarh, Assam, India
| | - Jitendra Sharma
- District Surveillance Unit, Office of The Joint Director of Health Services, Lakhimpur, Assam, India
| |
Collapse
|
39
|
Kubiak M, Tinsley MC. Sex-Specific Routes To Immune Senescence In Drosophila melanogaster. Sci Rep 2017; 7:10417. [PMID: 28874758 PMCID: PMC5585412 DOI: 10.1038/s41598-017-11021-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/17/2017] [Indexed: 11/09/2022] Open
Abstract
Animal immune systems change dramatically during the ageing process, often accompanied by major increases in pathogen susceptibility. However, the extent to which senescent elevations in infection mortality are causally driven by deteriorations in canonical systemic immune processes is unclear. We studied Drosophila melanogaster and compared the relative contributions of impaired systemic immune defences and deteriorating barrier defences to increased pathogen susceptibility in aged flies. To assess senescent changes in systemic immune response efficacy we injected one and four-week old flies with the entomopathogenic fungus Beauveria bassiana and studied subsequent mortality; whereas to include the role of barrier defences we infected flies by dusting the cuticle with fungal spores. We show that the processes underlying pathogen defence senescence differ between males and females. Both sexes became more susceptible to infection as they aged. However, we conclude that for males, this was principally due to deterioration in barrier defences, whereas for females systemic immune defence senescence was mainly responsible. We discuss the potential roles of sex-specific selection on the immune system and behavioural variation between males and females in driving these different senescent trends.
Collapse
Affiliation(s)
- Marco Kubiak
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom.
| | - Matthew C Tinsley
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| |
Collapse
|
40
|
Optimal control problems of mosquito-borne disease subject to changes in feeding behavior of Aedes mosquitoes. Biosystems 2017; 156-157:23-39. [PMID: 28385591 DOI: 10.1016/j.biosystems.2017.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 03/12/2017] [Accepted: 03/30/2017] [Indexed: 11/23/2022]
Abstract
Dengue viruses (DENV) are transmitted to humans by the bite of Aedes mosquitoes. It is known that dengue virus infection in Aedes aegypti female mosquitoes makes a change in the feeding behavior of the infected mosquitoes. In this study, using the forces of infection, we incorporated the effect of changes in the feeding behavior of mosquitoes into the standard vector-borne SIR-SI model. It has been proved that both a single-strain model and a two-strain model exhibit forward bifurcations. Moreover, optimal implementations of control with specific prevention measures for dengue transmission are analyzed. As a result we found that more implementation of controls on the secondary infection of humans should be considered for the behavioral changes in feeding of the infected mosquitoes.
Collapse
|
41
|
Stanczyk NM, Mescher MC, De Moraes CM. Effects of malaria infection on mosquito olfaction and behavior: extrapolating data to the field. CURRENT OPINION IN INSECT SCIENCE 2017; 20:7-12. [PMID: 28602239 DOI: 10.1016/j.cois.2017.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 06/07/2023]
Abstract
Vector-borne pathogens have been shown to influence behavioral and other traits of their hosts and vectors across multiple systems, frequently in ways that enhance transmission. In malaria pathosystems, Plasmodium parasites have been reported to alter mosquito physiology, fitness and host-seeking behavior. Such effects on vector behavior have obvious medical relevance given their potential to influence disease transmission. However, most studies detailing these effects have faced methodological limitations, including experiments limited to laboratory settings with model vector/pathogen systems. Some recent studies indicate that similar effects may not be observed with natural field populations; furthermore, it has been suggested that previously reported effects on vectors might be explained by immune responses elicited due to the use of pathogen-vector systems that are not co-evolved. In light of these developments, further work is needed to determine the validity of extrapolation from laboratory studies to field conditions and to understand how parasite effects on vectors affect transmission dynamics in real-world settings.
Collapse
Affiliation(s)
- Nina M Stanczyk
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Mark C Mescher
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | | |
Collapse
|
42
|
Murdock CC, Luckhart S, Cator LJ. Immunity, host physiology, and behaviour in infected vectors. CURRENT OPINION IN INSECT SCIENCE 2017; 20:28-33. [PMID: 28602233 PMCID: PMC5584383 DOI: 10.1016/j.cois.2017.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/24/2017] [Accepted: 03/07/2017] [Indexed: 05/24/2023]
Abstract
When infection alters host behaviour such that the pathogen benefits, the behaviour is termed a manipulation. There are several examples of this fascinating phenomenon in many different systems. Vector-borne diseases are no exception. In some instances, as the term implies, pathogens directly interfere with host processes to control behaviour. However, host response to infection and host physiology are likely to play important roles in these phenotypes. We highlight the importance of considering host response and physiology from recent work on altered host-seeking in malaria parasite-infected mosquitoes and argue that this general approach will provide useful insights across vector-borne disease systems.
Collapse
Affiliation(s)
- Courtney C Murdock
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA; Odum School of Ecology, University of Georgia, 140 E. Green Street, Athens GA 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, 500 D.W. Brooks Drive, Athens GA 30602, USA; Center for the Ecology of Infectious Diseases, Odum School of Ecology, University of Georgia, 140 E. Green Street, Athens GA 30602, USA; Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens GA 30602, USA; University of Georgia Riverbasin Center, University of Georgia,203 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Shirley Luckhart
- Department of Medical Microbiology and Immunology, University of California, Davis, USA
| | - Lauren J Cator
- Grand Challenges in Ecosystems and Environment, Department of Life Sciences, Silwood Park, Ascot, SL5 7PY, United Kingdom.
| |
Collapse
|
43
|
Gleave K, Cook D, Taylor MJ, Reimer LJ. Filarial infection influences mosquito behaviour and fecundity. Sci Rep 2016; 6:36319. [PMID: 27796352 PMCID: PMC5087081 DOI: 10.1038/srep36319] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/14/2016] [Indexed: 12/19/2022] Open
Abstract
Understanding vector-parasite interactions is increasingly important as we move towards the endpoint goals set by the Global Programme for the Elimination of Lymphatic Filariasis (GPELF), as interaction dynamics may change with reduced transmission pressure. Elimination models used to predict programmatic endpoints include parameters for vector-specific transmission dynamics, despite the fact that our knowledge of the host-seeking behaviour of filariasis infected mosquitoes is lacking. We observed a dynamic, stage-specific and density dependent change in Aedes aegypti behaviour towards host cues when exposed to Brugia malayi filarial parasites. Infected mosquitoes exhibited reduced activation and flight towards a host during the period of larval development (L1/L2), transitioning to a 5 fold increase in activation and flight towards a host when infective stage larvae (L3) were present (p < 0.001). In uninfected control mosquitoes, we observed a reduction in convergence towards a host during the same period. Furthermore, this behaviour was density dependent with non-activated mosquitoes harbouring a greater burden of L1 and L2 larvae while activated mosquitoes harboured a greater number of L3 (p < 0.001). Reductions in fecundity were also density-dependent, and extended to mosquitoes that were exposed to microfilariae but did not support larval development.
Collapse
Affiliation(s)
- Katherine Gleave
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Darren Cook
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Mark J Taylor
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Lisa J Reimer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.,Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| |
Collapse
|
44
|
Ruiz-Guzmán G, Ramos-Castañeda J, Hernández-Quintero A, Contreras-Garduño J. Costs and benefits of vertical and horizontal transmission of dengue virus. ACTA ACUST UNITED AC 2016; 219:3665-3669. [PMID: 27618859 DOI: 10.1242/jeb.145102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/29/2016] [Indexed: 11/20/2022]
Abstract
Parasites can be transmitted vertically and/or horizontally, but the costs or benefits for the host of infection have only been tested after horizontal transmission. Here, we report for the first time, to our knowledge, the survival, reproduction and infection of Aedes aegypti during vertical and horizontal transmission of dengue virus 2 (DENV-2). Females infected horizontally produced more eggs, with a sex ratio skewed towards males, compared with uninfected controls. However, there was no significant difference in the number of emerging adults or in survival of mothers. In contrast, dengue-infected female offspring (vertical transmission) had a shorter lifespan but there were no significant differences in the number of eggs or sex ratio, compared with controls. Finally, the corroboration of infection revealed that virus infected about 11.5% and 8.8% of pools of mothers and of daughters, respectively. These results suggest that the mode of infection and the contact with the virus has no reproductive costs to female mosquitoes, which may explain why both types of transmission are evolutionarily maintained. In addition, we suggest that more attention should be paid to the male contribution to virus dissemination within and among populations and as reservoirs of the infection for human diseases.
Collapse
Affiliation(s)
- Gloria Ruiz-Guzmán
- Departamento de Arbovirus, Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, Cuernavaca, Morelos C. P. 62508, México.,Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda San José de la Huerta, Morelia, Michoacán 58190, México
| | - José Ramos-Castañeda
- Departamento de Arbovirus, Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, Cuernavaca, Morelos C. P. 62508, México
| | - Angélica Hernández-Quintero
- Departamento de Estadística, Universidad Autónoma de Aguascalientes, Av. Universidad No. 940, Ciudad Universitaria, Aguascalientes, Ags 20131, México
| | - Jorge Contreras-Garduño
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda San José de la Huerta, Morelia, Michoacán 58190, México
| |
Collapse
|
45
|
Ye YH, Chenoweth SF, Carrasco AM, Allen SL, Frentiu FD, van den Hurk AF, Beebe NW, McGraw EA. Evolutionary potential of the extrinsic incubation period of dengue virus in Aedes aegypti. Evolution 2016; 70:2459-2469. [PMID: 27530960 DOI: 10.1111/evo.13039] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 07/19/2016] [Accepted: 08/05/2016] [Indexed: 01/17/2023]
Abstract
Dengue fever is the most common arboviral disease worldwide. It is caused by dengue viruses (DENV) and the mosquito Aedes aegypti is its primary vector. One of the most powerful determinants of a mosquito's ability to transmit DENV is the length of the extrinsic incubation period (EIP), the time it takes for a virus to be transmitted by a mosquito after consuming an infected blood meal. Here, we repeatedly measured DENV load in the saliva of individual mosquitoes over their lifetime and used this in combination with a breeding design to determine the extent to which EIP might respond to the evolutionary forces of drift and selection. We demonstrated that genetic variation among mosquitoes contributes significantly to transmission potential and length of EIP. We reveal that shorter EIP is genetically correlated with reduced mosquito lifespan, highlighting negative life-history consequences for virus-infected mosquitoes. This work highlights the capacity for local genetic variation in mosquito populations to evolve and to dramatically affect the nature of human outbreaks. It also provides the impetus for isolating mosquito genes that determine EIP. More broadly, our dual experimental approach offers new opportunities for studying the evolutionary potential of transmission traits in other vector/pathogen systems.
Collapse
Affiliation(s)
- Yixin H Ye
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Stephen F Chenoweth
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Alison M Carrasco
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Scott L Allen
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Francesca D Frentiu
- Institute for Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
| | - Andrew F van den Hurk
- Public Health Virology, Communicable Diseases Unit, Queensland Health and Forensic and Scientific Services, Coopers Plains, QLD, 4108, Australia
| | - Nigel W Beebe
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,CSIRO Biosecurity Flagship, Ecosciences Precinct, Dutton Park, QLD, 4102, Australia
| | - Elizabeth A McGraw
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
46
|
Wikan N, Smith DR. Zika virus: history of a newly emerging arbovirus. THE LANCET. INFECTIOUS DISEASES 2016; 16:e119-e126. [PMID: 27282424 DOI: 10.1016/s1473-3099(16)30010-x] [Citation(s) in RCA: 284] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 11/30/2022]
Abstract
Zika virus was originally identified in a sentinel rhesus monkey in the Zika Forest of Uganda in 1947. The virus is a member of the family Flaviviridae, genus Flavivirus, and is transmitted to humans by Aedes species mosquitoes. The first report of Zika virus outside Africa and Asia was in 2007 when the virus was associated with a small outbreak in Yap State, part of the Federated States of Micronesia. Since then, Zika virus infections have been reported around the world, including in southeast Asia; French Polynesia and other islands in the Pacific Ocean; and parts of South, Central, and North America. Symptomatic infection in human beings normally results in a mild and self-limiting febrile disease, although recent reports have suggested a possible association with more serious sequelae such as Guillain-Barré syndrome, and microcephaly in newborn infants of mothers infected with Zika virus during pregnancy. In this Review, we summarise the history of Zika virus from its first detection to its current worldwide distribution.
Collapse
Affiliation(s)
- Nitwara Wikan
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand; Center for Emerging and Neglected Infectious Diseases, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
47
|
Grunnill M, Boots M. How Important is Vertical Transmission of Dengue Viruses by Mosquitoes (Diptera: Culicidae)? JOURNAL OF MEDICAL ENTOMOLOGY 2016; 53:1-19. [PMID: 26545718 DOI: 10.1093/jme/tjv168] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
Vertical transmission of dengue viruses by mosquitoes was discovered at the end of the late 1970s and has been suggested to be a means by which these viruses persist. However, it is unclear how widespread it is in nature, and its importance in the epidemiology of this disease is still debated. Here, we review the literature on vertical transmission and discuss its role in dengue's epidemiology and control. We conclude that given the number of studies that failed to find evidence of vertical transmission, as well as mathematical models and its mechanistic basis, it is unlikely that vertical transmission is important for the epidemiological persistence of dengue viruses. A combination of asymptomatic infection in humans and movement of people are likely to be more important determinants of dengue's persistence. We argue, however, that there may be some need for further research into the prevalence of dengue viruses in desiccated, as well as diapausing, eggs and the role of horizontal transmission through larval cannibalism.
Collapse
Affiliation(s)
- Martin Grunnill
- Centre for Ecology and Conservation Biosciences, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Treliever Road, Penryn, Cornwall TR10 9FE, United Kingdom ,
| | - Michael Boots
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| |
Collapse
|
48
|
Juliano SA, Ribeiro GS, Maciel-de-Freitas R, Castro MG, Codeço C, Lourenço-de-Oliveira R, Lounibos LP. She's a femme fatale: low-density larval development produces good disease vectors. Mem Inst Oswaldo Cruz 2015; 109:1070-7. [PMID: 25591112 PMCID: PMC4325623 DOI: 10.1590/0074-02760140455] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 12/02/2014] [Indexed: 11/21/2022] Open
Abstract
Two hypotheses for how conditions for larval mosquitoes affect vectorial capacity make opposite predictions about the relationship of adult size and frequency of infection with vector-borne pathogens. Competition among larvae produces small adult females. The competition-susceptibility hypothesis postulates that small females are more susceptible to infection and predicts frequency of infection should decrease with size. The competition-longevity hypothesis postulates that small females have lower longevity and lower probability of becoming competent to transmit the pathogen and thus predicts frequency of infection should increase with size. We tested these hypotheses for Aedes aegypti in Rio de Janeiro, Brazil, during a dengue outbreak. In the laboratory, longevity increases with size, then decreases at the largest sizes. For field-collected females, generalised linear mixed model comparisons showed that a model with a linear increase of frequency of dengue with size produced the best Akaike's information criterion with a correction for small sample sizes (AICc). Consensus prediction of three competing models indicated that frequency of infection increases monotonically with female size, consistent with the competition-longevity hypothesis. Site frequency of infection was not significantly related to site mean size of females. Thus, our data indicate that uncrowded, low competition conditions for larvae produce the females that are most likely to be important vectors of dengue. More generally, ecological conditions, particularly crowding and intraspecific competition among larvae, are likely to affect vector-borne pathogen transmission in nature, in this case via effects on longevity of resulting adults. Heterogeneity among individual vectors in likelihood of infection is a generally important outcome of ecological conditions impacting vectors as larvae.
Collapse
Affiliation(s)
- Steven A Juliano
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | | | - Rafael Maciel-de-Freitas
- Laboratório de Transmissores de Hematozoários, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Márcia G Castro
- Laboratório de Transmissores de Hematozoários, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | | | | | - L Philip Lounibos
- Florida Medical Entomology Laboratory, University of Florida, Gainesville, FL, USA
| |
Collapse
|
49
|
Modelling Anopheles gambiae s.s. Population Dynamics with Temperature- and Age-Dependent Survival. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:5975-6005. [PMID: 26030468 PMCID: PMC4483682 DOI: 10.3390/ijerph120605975] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/21/2015] [Accepted: 05/21/2015] [Indexed: 11/17/2022]
Abstract
Climate change and global warming are emerging as important threats to human health, particularly through the potential increase in vector- and water-borne diseases. Environmental variables are known to affect substantially the population dynamics and abundance of the poikilothermic vectors of disease, but the exact extent of this sensitivity is not well established. Focusing on malaria and its main vector in Africa, Anopheles gambiae sensu stricto, we present a set of novel mathematical models of climate-driven mosquito population dynamics motivated by experimental data suggesting that in An. gambiae, mortality is temperature and age dependent. We compared the performance of these models to that of a "standard" model ignoring age dependence. We used a longitudinal dataset of vector abundance over 36 months in sub-Saharan Africa for comparison between models that incorporate age dependence and one that does not, and observe that age-dependent models consistently fitted the data better than the reference model. This highlights that including age dependence in the vector component of mosquito-borne disease models may be important to predict more reliably disease transmission dynamics. Further data and studies are needed to enable improved fitting, leading to more accurate and informative model predictions for the An. gambiae malaria vector as well as for other disease vectors.
Collapse
|
50
|
Trypanosoma cruzi, etiological agent of Chagas disease, is virulent to its triatomine vector Rhodnius prolixus in a temperature-dependent manner. PLoS Negl Trop Dis 2015; 9:e0003646. [PMID: 25793495 PMCID: PMC4368190 DOI: 10.1371/journal.pntd.0003646] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 02/25/2015] [Indexed: 12/05/2022] Open
Abstract
It is often assumed that parasites are not virulent to their vectors. Nevertheless, parasites commonly exploit their vectors (nutritionally for example) so these can be considered a form of host. Trypanosoma cruzi, a protozoan found in mammals and triatomine bugs in the Americas, is the etiological agent of Chagas disease that affects man and domestic animals. While it has long been considered avirulent to its vectors, a few reports have indicated that it can affect triatomine fecundity. We tested whether infection imposed a temperature-dependent cost on triatomine fitness. We held infected insects at four temperatures between 21 and 30°C and measured T. cruzi growth in vitro at the same temperatures in parallel. Trypanosoma cruzi infection caused a considerable delay in the time the insects took to moult (against a background effect of temperature accelerating moult irrespective of infection status). Trypanosoma cruzi also reduced the insects’ survival, but only at the intermediate temperatures of 24 and 27°C (against a background of increased mortality with increasing temperatures). Meanwhile, in vitro growth of T. cruzi increased with temperature. Our results demonstrate virulence of a protozoan agent of human disease to its insect vector under these conditions. It is of particular note that parasite-induced mortality was greatest over the range of temperatures normally preferred by these insects, probably implying adaptation of the parasite to perform well at these temperatures. Therefore we propose that triggering this delay in moulting is adaptive for the parasites, as it will delay the next bloodmeal taken by the bug, thus allowing the parasites time to develop and reach the insect rectum in order to make transmission to a new vertebrate host possible. Parasites are often assumed to cause little harm to their arthropod vectors, even though they commonly reproduce inside the arthropods and exploit their nutrients, even causing lesions when crossing internal barriers. Thus, the interests of parasite and vector may well not be aligned and we can expect the parasite to exploit its vector just as it does with its main host, with consequent negative effects on the vector’s fitness. Here, we show that this occurs with Trypanosoma cruzi in its bug vector (T. cruzi causes Chagas disease, affecting ca. 8 million people and disease management is principally attained via vector control). Our results indicate that the parasites delay insect moulting, which is likely beneficial to them as they need time to develop in the insect before the next bloodmeal (that only occurs post-moult). We also show parasite-induced mortality over the narrow range of temperatures which the insect prefers and over which it performs best. In vitro growth of the parasite increases with temperature and we discuss how this may help explain the effects in vivo. Overall, these results will be important to understand the epidemiology of Chagas disease and provide an evolutionary context to explain the parasite′s interaction with its vector.
Collapse
|