1
|
Abd El-Hack ME, Kamal M, Alazragi RS, Alreemi RM, Qadhi A, Ghafouri K, Azhar W, Shakoori AM, Alsaffar N, Naffadi HM, Taha AE, Abdelnour SA. Impacts of chitosan and its nanoformulations on the metabolic syndromes: a review. BRAZ J BIOL 2024; 83:e276530. [PMID: 38422267 DOI: 10.1590/1519-6984.276530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/15/2023] [Indexed: 03/02/2024] Open
Abstract
A significant public health issue worldwide is metabolic syndrome, a cluster of metabolic illnesses that comprises insulin resistance, obesity, dyslipidemia, hyperglycemia, and hypertension. The creation of natural treatments and preventions for metabolic syndrome is crucial. Chitosan, along with its nanoformulations, is an oligomer of chitin, the second-most prevalent polymer in nature, which is created via deacetylation. Due to its plentiful biological actions in recent years, chitosan and its nanoformulations have drawn much interest. Recently, the chitosan nanoparticle-based delivery of CRISPR-Cas9 has been applied in treating metabolic syndromes. The benefits of chitosan and its nanoformulations on insulin resistance, obesity, diabetes mellitus, dyslipidemia, hyperglycemia, and hypertension will be outlined in the present review, highlighting potential mechanisms for the avoidance and medication of the metabolic syndromes by chitosan and its nanoformulations.
Collapse
Affiliation(s)
- M E Abd El-Hack
- Zagazig University, Faculty of Agriculture, Department of Poultry, Zagazig, Egypt
| | - M Kamal
- Agricultural Research Center, Animal Production Research Institute, Dokki, Giza, Egypt
| | - R S Alazragi
- University of Jeddah, College of Science, Department of Biochemistry, Jeddah, Saudi Arabia
| | - R M Alreemi
- University of Jeddah, College of Science, Department of Biochemistry, Jeddah, Saudi Arabia
| | - A Qadhi
- Umm Al-Qura University, Faculty of Applied Medical Sciences, Clinical Nutrition Department, Makkah, Saudi Arabia
| | - K Ghafouri
- Umm Al-Qura University, Faculty of Applied Medical Sciences, Clinical Nutrition Department, Makkah, Saudi Arabia
| | - W Azhar
- Umm Al-Qura University, Faculty of Applied Medical Sciences, Clinical Nutrition Department, Makkah, Saudi Arabia
| | - A M Shakoori
- Umm Al-Qura University, Faculty of Applied Medical Sciences, Laboratory Medicine Department, Makkah, Kingdom of Saudi Arabia
| | - N Alsaffar
- Mohammed Al-Mana College for Medical Sciences, Biochemistry and Molecular Biology Department, Dammam, Saudi Arabia
| | - H M Naffadi
- Umm Al-Qura University, College of Medicine, Department of Medical Genetics, Makkah, Kingdom of Saudi Arabia
| | - A E Taha
- Alexandria University, Faculty of Veterinary Medicine, Department of Animal Husbandry and Animal Wealth Development, Edfina, Egypt
| | - S A Abdelnour
- Zagazig University, Faculty of Agriculture, Department of Animal Production, Zagazig, Egypt
| |
Collapse
|
2
|
Shagdarova B, Konovalova M, Varlamov V, Svirshchevskaya E. Anti-Obesity Effects of Chitosan and Its Derivatives. Polymers (Basel) 2023; 15:3967. [PMID: 37836016 PMCID: PMC10575173 DOI: 10.3390/polym15193967] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The number of obese people in the world is rising, leading to an increase in the prevalence of type 2 diabetes and other metabolic disorders. The search for medications including natural compounds for the prevention of obesity is an urgent task. Chitosan polysaccharide obtained through the deacetylation of chitin, and its derivatives, including short-chain oligosaccharides (COS), have hypolipidemic, anti-inflammatory, anti-diabetic, and antioxidant properties. Chemical modifications of chitosan can produce derivatives with increased solubility under neutral conditions, making them potential therapeutic substances for use in the treatment of metabolic disorders. Multiple studies both in animals and clinical trials have demonstrated that chitosan improves the gut microbiota, restores intestinal barrier dysfunction, and regulates thermogenesis and lipid metabolism. However, the effect of chitosan is rather mild, especially if used for a short periods, and is mostly independent of chitosan's physical characteristics. We hypothesized that the major mechanism of chitosan's anti-obesity effect is its flocculant properties, enabling it to collect the chyme in the gastrointestinal tract and facilitating the removal of extra food. This review summarizes the results of the use of COS, chitosan, and its derivatives in obesity control in terms of pathways of action and structural activity.
Collapse
Affiliation(s)
- Balzhima Shagdarova
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia;
| | - Mariya Konovalova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Valery Varlamov
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia;
| | - Elena Svirshchevskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia;
| |
Collapse
|
3
|
Tao W, Wang G, Wei J. The Role of Chitosan Oligosaccharide in Metabolic Syndrome: A Review of Possible Mechanisms. Mar Drugs 2021; 19:md19090501. [PMID: 34564163 PMCID: PMC8465579 DOI: 10.3390/md19090501] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
Metabolic syndrome, a cluster of metabolic disorders including central obesity, insulin resistance, hyperglycemia, dyslipidemia, and hypertension, has become a major public health problem worldwide. It is of great significance to develop natural products to prevent and treat metabolic syndrome. Chitosan oligosaccharide (COS) is an oligomer of chitosan prepared by the deacetylation of chitin, which is the second most abundant polymer in nature. In recent years, COS has received widespread attention due to its various biological activities. The present review will summarize the evidence from both in vitro and in vivo studies of the beneficial effects of COS on obesity, dyslipidemia, diabetes mellitus, hyperglycemia, and hypertension, and focus attention on possible mechanisms of the prevention and treatment of metabolic syndrome by COS.
Collapse
Affiliation(s)
- Wenjing Tao
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
| | - Geng Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou 310058, China;
| | - Jintao Wei
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
- Correspondence:
| |
Collapse
|
4
|
Wang Q, Jiang Y, Luo X, Wang C, Wang N, He H, Zhang T, Chen L. Chitooligosaccharides Modulate Glucose-Lipid Metabolism by Suppressing SMYD3 Pathways and Regulating Gut Microflora. Mar Drugs 2020; 18:md18010069. [PMID: 31968646 PMCID: PMC7024377 DOI: 10.3390/md18010069] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/21/2022] Open
Abstract
Chitooligosaccharides (COS) have a variety of biological activities due to their positively charged amino groups. Studies have shown that COS have antidiabetic effects, but their molecular mechanism has not been fully elucidated. The present study confirmed that COS can reduce hyperglycemia and hyperlipidemia, prevent obesity, and enhance histological changes in the livers of mice with type 2 diabetes mellitus (T2DM). Additionally, treatment with COS can modulate the composition of the gut microbiota in the colon by altering the abundance of Firmicutes, Bacteroidetes, and Proteobacteria. Furthermore, in T2DM mice, treatment with COS can upregulate the cholesterol-degrading enzymes cholesterol 7-alpha-hydroxylase (CYP7A1) and incretin glucagon-like peptide 1 (GLP-1) while specifically inhibiting the transcription and expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), the key enzyme in cholesterol synthesis. Furthermore, using an oleic acid-induced hepatocyte steatosis model, we found that HMGCR can be directly transactivated by SET and MYND domain containing 3 (SMYD3), a transcriptional regulator, via 5'-CCCTCC-3' element in the promoter. Overexpression of SMYD3 can suppress the inhibitory effect of COS on HMGCR, and COS might regulate HMGCR by inhibiting SMYD3, thereby exerting hypolipidemic functions. To the best of our knowledge, this study is the first to illustrate that COS mediate glucose and lipid metabolism disorders by regulating gut microbiota and SMYD3-mediated signaling pathways.
Collapse
Affiliation(s)
- Qiutong Wang
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Q.W.); (Y.J.); (C.W.); (N.W.); (H.H.); (T.Z.)
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Yajie Jiang
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Q.W.); (Y.J.); (C.W.); (N.W.); (H.H.); (T.Z.)
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Xuegang Luo
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Q.W.); (Y.J.); (C.W.); (N.W.); (H.H.); (T.Z.)
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
- Correspondence: (X.L.); (L.C.); Tel.: +86-22-60601104 (X.L.); +86-15382999119 (L.C.)
| | - Chang Wang
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Q.W.); (Y.J.); (C.W.); (N.W.); (H.H.); (T.Z.)
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Nan Wang
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Q.W.); (Y.J.); (C.W.); (N.W.); (H.H.); (T.Z.)
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Hongpeng He
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Q.W.); (Y.J.); (C.W.); (N.W.); (H.H.); (T.Z.)
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Tongcun Zhang
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Q.W.); (Y.J.); (C.W.); (N.W.); (H.H.); (T.Z.)
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Liehuan Chen
- College of Animal Sciences and Technology, Zhongkai Agricultural Engineering College, Guangzhou 510225, China
- Guangzhou Youlan Marine Biological Technology Co., Ltd., Guangzhou 510530, China
- Correspondence: (X.L.); (L.C.); Tel.: +86-22-60601104 (X.L.); +86-15382999119 (L.C.)
| |
Collapse
|
5
|
Li N, Zhang Y, Li HP, Han L, Yan XM, Li HB, Du W, Zhang JS, Yu QL. Differential expression of mRNA-miRNAs related to intramuscular fat content in the longissimus dorsi in Xinjiang brown cattle. PLoS One 2018; 13:e0206757. [PMID: 30412616 PMCID: PMC6226300 DOI: 10.1371/journal.pone.0206757] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/18/2018] [Indexed: 02/07/2023] Open
Abstract
In this study, we examined the role of mRNAs and miRNAs in variations in intramuscular fat content in the longissimus dorsi muscle in Xinjiang brown cattle. Two groups of Xinjiang brown cattle with extremely different intramuscular fat content in the longissimus dorsi were selected for combined of miRNA and mRNA analysis using an RNA-Seq. In total, 296 mRNAs and 362 miRNAs were significantly differentially expressed, including 155 newly predicted miRNAs, 275 significantly upregulated genes, 252 significantly upregulated miRNAs, 21 significantly downregulated genes and 110 significantly downregulated miRNAs. The combined miRNA and mRNA analysis identified 96 differentially expressed miRNAs and 27 differentially expressed mRNAs. In all, 47 upregulated miRNAs had a regulatory effect on 14 differentially downregulated target genes, and 49 downregulated miRNAs had a regulatory effect on 13 upregulated target genes. To verify the sequencing results, 10 differentially expressed genes (DEGs) and 10 differentially expressed miRNAs were selected for qRT-PCR. The qRT-PCR results confirmed the sequencing results. The results of this study shed light on the molecular regulation of bovine adipose tissue, which might help with the development of new strategies for improving meat quality and animal productivity in beef cattle to provide healthier meat products for consumers.
Collapse
Affiliation(s)
- Na Li
- Department of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu, China
- Department of Research Livestock, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, China
| | - Yang Zhang
- Department of Research Livestock, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, China
| | - Hai-Peng Li
- Department of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ling Han
- Department of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiang-Min Yan
- Department of Research Livestock, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, China
| | - Hong-Bo Li
- Department of Research Livestock, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, China
| | - Wei Du
- Department of Research Livestock, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, China
| | - Jin-Shan Zhang
- Department of Research Livestock, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, China
| | - Qun-Li Yu
- Department of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Yang S, Si L, Fan L, Jian W, Pei H, Lin R. Polysaccharide IV from Lycium barbarum L. Improves Lipid Profiles of Gestational Diabetes Mellitus of Pregnancy by Upregulating ABCA1 and Downregulating Sterol Regulatory Element-Binding Transcription 1 via miR-33. Front Endocrinol (Lausanne) 2018; 9:49. [PMID: 29527188 PMCID: PMC5829030 DOI: 10.3389/fendo.2018.00049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 02/05/2018] [Indexed: 01/24/2023] Open
Abstract
Lycium barbarum L. (LBL) has beneficial effects on gestational diabetes mellitus (GDM) but the related mechanism remains unclear. Polysaccharides of LBL (LBLP) are the main bioactive components of LBL. miR-33, ATP-binding cassette transporter A1 (ABCA1) and sterol regulatory element-binding transcription 1 (SREBF1) affect lipid profiles, which are associated with GDM risk. LBLP may exert protective against GDM by affecting these molecules. Four LBLP fractions: LBLP-I, LBLP-II, LBLP-III, and LBLP-IV were isolated from LBL and further purified by using DEAE-Sephadex column. The effects of purified each fraction on pancreatic beta cells were comparatively evaluated. A total of 158 GDM patients were recruited and randomly divided into LBL group (LG) and placebo group (CG). miR-33 levels, lipid profiles, insulin resistance and secretory functions were measured. The association between serum miR-33 levels and lipid profiles were evaluated by using Spearman's rank-order correlation test. After 4-week therapy, LBL reduced miR-33 level, insulin resistance and increased insulin secretion of GDM patients. LBL increased the levels of ABCA1, high-density lipoprotein cholesterol (HDL-C) and reduced miR-33, SREBF1, low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), triglyceride (TG), and malondialdehyde. Homeostatic model assessment of β-cell function and insulin resistance was lower in LG than in CG, whereas homeostatic model assessment of β-cell function and insulin secretory function was higher in LG than in CG. There was a strong positive association between miR-33 level and TG, or TC and or LDL-C, and a strong negative association between miR-33 level and HDL-C. The levels of miR-33 had negative relation with ABCA1 and positive relation with SREBF1. ABCA1 has negative relation with TG, TC, and LDL-C and positive relation with HDL-C. Inversely, SREBF1 had positive relation with TG, TC, and LDL-C and negative relation with HDL-C. The main bioactive compound LBLP-IV of LBL increased insulin secretion of beta cells and the levels of ABCA1, and reduced miR-33 levels and SREBF1 in beta cells. However, LBLP-IV could not change the levels of these molecules anymore when miR-33 was overexpressed or silenced. LBLP-IV had the similar effects with LBL on beta cells while other components had no such effects. Thus, LBLP-IV from LBL improves lipid profiles by upregulating ABCA1 and downregulating SREBF1 via miR-33.
Collapse
Affiliation(s)
- Shuli Yang
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| | - Lihui Si
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| | - Limei Fan
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| | - Wenwen Jian
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| | - Huilin Pei
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| | - Ruixin Lin
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Ruixin Lin,
| |
Collapse
|
7
|
Muanprasat C, Chatsudthipong V. Chitosan oligosaccharide: Biological activities and potential therapeutic applications. Pharmacol Ther 2016; 170:80-97. [PMID: 27773783 DOI: 10.1016/j.pharmthera.2016.10.013] [Citation(s) in RCA: 327] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chitosan oligosaccharide (COS) is an oligomer of β-(1➔4)-linked d-glucosamine. COS can be prepared from the deacetylation and hydrolysis of chitin, which is commonly found in the exoskeletons of arthropods and insects and the cell walls of fungi. COS is water soluble, non-cytotoxic, readily absorbed through the intestine and mainly excreted in the urine. Of particular importance, COS and its derivatives have been demonstrated to possess several biological activities including anti-inflammation, immunostimulation, anti-tumor, anti-obesity, anti-hypertension, anti-Alzheimer's disease, tissue regeneration promotion, drug and DNA delivery enhancement, anti-microbial, anti-oxidation and calcium-absorption enhancement. The mechanisms of actions of COS have been found to involve the modulation of several important pathways including the suppression of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPK) and the activation of AMP-activated protein kinase (AMPK). This review summarizes the current knowledge of the preparation methods, pharmacokinetic profiles, biological activities, potential therapeutic applications and safety profiles of COS and its derivatives. In addition, future research directions are discussed.
Collapse
Affiliation(s)
- Chatchai Muanprasat
- Excellent Center for Drug Discovery and Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok 10400, Thailand.
| | - Varanuj Chatsudthipong
- Excellent Center for Drug Discovery and Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|