1
|
Gao C, Chen C, Liu N, Liu F, Su X, Liu C, Huang Q. Genetic Diversity and Association Analysis of Traits Related to Water-Use Efficiency and Nitrogen-Use Efficiency of Populus deltoides Based on SSR Markers. Int J Mol Sci 2024; 25:11515. [PMID: 39519070 PMCID: PMC11547121 DOI: 10.3390/ijms252111515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/08/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Populus deltoides is one of the primary tree species for bioenergy production in temperate regions. In arid/semi-arid northern China, the scarcity of water and nitrogen significantly limits the productivity of poplar plantations. The identification of relevant molecular markers can promote the breeding of resource-efficient varieties. In this study, 188 genotypes of P. deltoides from six provenances served as experimental material. Genetic differentiation analysis, analysis of molecular variance (AMOVA), principal coordinate analysis (PCoA), unweighted pair group method with arithmetic mean (UPGMA) clustering, and genetic structure analysis were performed using selected simple sequence repeat (SSR) markers. Based on these analyses, the association analysis of water-use efficiency (WUE) and nitrogen-use efficiency (NUE) were conducted using general linear model (GLM) and mixed linear model (MLM) approaches. The results showed that 15 pairs of SSR primers successfully amplified across all 188 individuals, with an average of 7.33 alleles (Na) observed per primer pair. The polymorphism information content (PIC) ranged from 0.060 to 0.897, with an average of 0.544, indicating high genetic diversity in the selected markers. The average inbreeding coefficient intra-population (Fis), inbreeding coefficient inter-population (Fit), and inter-population genetic fraction coefficient (Fst) values were 0.005, 0.135, and 0.132, respectively, indicating high heterozygosity, substantial inbreeding within populations, and moderate genetic differentiation, with an average gene flow (Nm) of 1.964, suggesting substantial gene flow between populations. Additionally, molecular variance was primarily within individuals (84.12%). Genetic structure analysis revealed four subgroups, with some degree of genetic admixture among the provenances. In the GLM model, 11 markers were significantly associated with five traits (p < 0.05), with an average contribution rate of 15.82%. Notably, SSR132 and SSR143 were significantly associated with multiple traits (p < 0.05). The MLM model identified two markers (SSR47 and SSR85) significantly associated with ground diameter (p < 0.05) and one marker (SSR80) significantly associated with NUE (p < 0.05). This study identifies loci associated with WUE and NUE, laying a foundation for future genetic improvement and marker-assisted breeding strategies in poplar.
Collapse
Affiliation(s)
- Chengcheng Gao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (C.G.); (C.C.); (N.L.); (F.L.); (X.S.)
- Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing 100091, China
| | - Cun Chen
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (C.G.); (C.C.); (N.L.); (F.L.); (X.S.)
- Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing 100091, China
| | - Ning Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (C.G.); (C.C.); (N.L.); (F.L.); (X.S.)
- UGent-Woodlab (Laboratory of Wood Technology), Department of Environment, Ghent University, 9000 Ghent, Belgium
| | - Fenfen Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (C.G.); (C.C.); (N.L.); (F.L.); (X.S.)
- Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing 100091, China
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (C.G.); (C.C.); (N.L.); (F.L.); (X.S.)
- Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing 100091, China
| | - Chenggong Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (C.G.); (C.C.); (N.L.); (F.L.); (X.S.)
- Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing 100091, China
| | - Qinjun Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (C.G.); (C.C.); (N.L.); (F.L.); (X.S.)
- Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing 100091, China
| |
Collapse
|
2
|
Li Z, Chen R, Wen Y, Liu H, Chen Y, Wu X, Yang Y, Wu X, Zhou Y, Liu J. Comprehensive analysis of the UDP-glucuronate decarboxylase (UXS) gene family in tobacco and functional characterization of NtUXS16 in Golgi apparatus in Arabidopsis. BMC PLANT BIOLOGY 2023; 23:551. [PMID: 37936064 PMCID: PMC10631120 DOI: 10.1186/s12870-023-04575-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND UDP-glucuronate decarboxylase (also named UXS) converts UDP-glucuronic acid (UDP-GlcA) to UDP-xylose (UDP-Xyl) by decarboxylation of the C6-carboxylic acid of glucuronic acid. UDP-Xyl is an important sugar donor that is required for the synthesis of plant cell wall polysaccharides. RESULTS In this study, we first carried out the genome-wide identification of NtUXS genes in tobacco. A total of 17 NtUXS genes were identified, which could be divided into two groups (Group I and II), and the Group II UXSs can be further divided into two subgroups (Group IIa and IIb). Furthermore, the protein structures, intrachromosomal distributions and gene structures were thoroughly analyzed. To experimentally verify the subcellular localization of NtUXS16 protein, we transformed tobacco BY-2 cells with NtUXS16 fused to the monomeric red fluorescence protein (mRFP) at the C terminus under the control of the cauliflower mosaic virus (CaMV) 35S promoter. The fluorescent signals of NtUXS16-mRFP were localized to the medial-Golgi apparatus. Contrary to previous predictions, protease digestion analysis revealed that NtUXS16 is not a type II membrane protein. Overexpression of NtUXS16 in Arabidopsis seedling in darkness led to a significant increase in hypocotyl length and a reduction in root length compared with the wild type. In summary, these results suggest Golgi apparatus localized-NtUXS16 plays an important role in hypocotyl and root growth in the dark. CONCLUSION Our findings facilitate our understanding of the novel functions of NtUXS16 and provide insights for further exploration of the biological roles of NtUXS genes in tobacco.
Collapse
Affiliation(s)
- Zhimin Li
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Runping Chen
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Yufang Wen
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Hanxiang Liu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Yangyang Chen
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Xiaoyu Wu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Youxin Yang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Xinru Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yong Zhou
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China.
| | - Jianping Liu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.
| |
Collapse
|
3
|
Wu L, Zheng Y, Jiao F, Wang M, Zhang J, Zhang Z, Huang Y, Jia X, Zhu L, Zhao Y, Guo J, Chen J. Identification of quantitative trait loci for related traits of stalk lodging resistance using genome-wide association studies in maize (Zea mays L.). BMC Genom Data 2022; 23:76. [PMID: 36319954 PMCID: PMC9623923 DOI: 10.1186/s12863-022-01091-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 10/10/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Stalk lodging is one of the main factors affecting maize (Zea mays L.) yield and limiting mechanized harvesting. Developing maize varieties with high stalk lodging resistance requires exploring the genetic basis of lodging resistance-associated agronomic traits. Stalk strength is an important indicator to evaluate maize lodging and can be evaluated by measuring stalk rind penetrometer resistance (RPR) and stalk buckling strength (SBS). Along with morphological traits of the stalk for the third internodes length (TIL), fourth internode length (FIL), third internode diameter (TID), and the fourth internode diameter (FID) traits are associated with stalk lodging resistance. RESULTS In this study, a natural population containing 248 diverse maize inbred lines genotyped with 83,057 single nucleotide polymorphism (SNP) markers was used for genome-wide association study (GWAS) for six stalk lodging resistance-related traits. The heritability of all traits ranged from 0.59 to 0.72 in the association mapping panel. A total of 85 significant SNPs were identified for the association mapping panel using best linear unbiased prediction (BLUP) values of all traits. Additionally, five candidate genes were associated with stalk strength traits, which were either directly or indirectly associated with cell wall components. CONCLUSIONS These findings contribute to our understanding of the genetic basis of maize stalk lodging and provide valuable theoretical guidance for lodging resistance in maize breeding in the future.
Collapse
Affiliation(s)
- Lifen Wu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Hebei, Baoding 071001 China
| | - Yunxiao Zheng
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Hebei, Baoding 071001 China
| | - Fuchao Jiao
- grid.412608.90000 0000 9526 6338College of Agronomy, Qingdao Agricultural University, Shandong, Qingdao 266109 China
| | - Ming Wang
- grid.412608.90000 0000 9526 6338College of Agronomy, Qingdao Agricultural University, Shandong, Qingdao 266109 China
| | - Jing Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Hebei, Baoding 071001 China
| | - Zhongqin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Hebei, Baoding 071001 China
| | - Yaqun Huang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Hebei, Baoding 071001 China
| | - Xiaoyan Jia
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Hebei, Baoding 071001 China
| | - Liying Zhu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Hebei, Baoding 071001 China
| | - Yongfeng Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Hebei, Baoding 071001 China
| | - Jinjie Guo
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Hebei, Baoding 071001 China
| | - Jingtang Chen
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Hebei, Baoding 071001 China ,grid.412608.90000 0000 9526 6338College of Agronomy, Qingdao Agricultural University, Shandong, Qingdao 266109 China
| |
Collapse
|
4
|
Mamat A, Tusong K, Xu J, Yan P, Mei C, Wang J. Integrated transcriptomic and proteomic analysis reveals the complex molecular mechanisms underlying stone cell formation in Korla pear. Sci Rep 2021; 11:7688. [PMID: 33833305 PMCID: PMC8032765 DOI: 10.1038/s41598-021-87262-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/25/2021] [Indexed: 11/09/2022] Open
Abstract
Korla pear (Pyrus sinkiangensis Yü) is a landrace selected from a hybrid pear species in the Xinjiang Autonomous Region in China. In recent years, pericarp roughening has been one of the major factors that adversely affects fruit quality. Compared with regular fruits, rough-skin fruits have a greater stone cell content. Stone cells compose sclerenchyma tissue that is formed by secondary thickening of parenchyma cell walls. In this work, we determined the main components of stone cells by isolating them from the pulp of rough-skin fruits at the ripening stage. Stone cell staining and apoptosis detection were then performed on fruit samples that were collected at three different developmental stages (20, 50 and 80 days after flowering (DAF)) representing the prime, late and stationary stages of stone cell differentiation, respectively. The same batches of samples were used for parallel transcriptomic and proteomic analysis to identify candidate genes and proteins that are related to SCW biogenesis in Korla pear fruits. The results showed that stone cells are mainly composed of cellulose (52%), hemicellulose (23%), lignin (20%) and a small amount of polysaccharides (3%). The periods of stone cell differentiation and cell apoptosis were synchronous and primarily occurred from 0 to 50 DAF. The stone cell components increased abundantly at 20 DAF but then decreased gradually. A total of 24,268 differentially expressed genes (DEGs) and 1011 differentially accumulated proteins (DAPs) were identified from the transcriptomic and proteomic data, respectively. We screened the DEGs and DAPs that were enriched in SCW-related pathways, including those associated with lignin biosynthesis (94 DEGs and 31 DAPs), cellulose and xylan biosynthesis (46 DEGs and 18 DAPs), S-adenosylmethionine (SAM) metabolic processes (10 DEGs and 3 DAPs), apoplastic ROS production (16 DEGs and 2 DAPs), and cell death (14 DEGs and 6 DAPs). Among the identified DEGs and DAPs, 63 significantly changed at both the transcript and protein levels during the experimental periods. In addition, the majority of these identified genes and proteins were expressed the most at the prime stage of stone cell differentiation, but their levels gradually decreased at the later stages.
Collapse
Affiliation(s)
- Aisajan Mamat
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, 403 Nanchang Road, Urumqi, 830091, China.
| | - Kuerban Tusong
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, 403 Nanchang Road, Urumqi, 830091, China
| | - Juan Xu
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, 403 Nanchang Road, Urumqi, 830091, China
| | - Peng Yan
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, 403 Nanchang Road, Urumqi, 830091, China
| | - Chuang Mei
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, 403 Nanchang Road, Urumqi, 830091, China
| | - Jixun Wang
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, 403 Nanchang Road, Urumqi, 830091, China
| |
Collapse
|
5
|
Zhang W, Qin W, Li H, Wu AM. Biosynthesis and Transport of Nucleotide Sugars for Plant Hemicellulose. FRONTIERS IN PLANT SCIENCE 2021; 12:723128. [PMID: 34868108 PMCID: PMC8636097 DOI: 10.3389/fpls.2021.723128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/22/2021] [Indexed: 05/13/2023]
Abstract
Hemicellulose is entangled with cellulose through hydrogen bonds and meanwhile acts as a bridge for the deposition of lignin monomer in the secondary wall. Therefore, hemicellulose plays a vital role in the utilization of cell wall biomass. Many advances in hemicellulose research have recently been made, and a large number of genes and their functions have been identified and verified. However, due to the diversity and complexity of hemicellulose, the biosynthesis and regulatory mechanisms are yet unknown. In this review, we summarized the types of plant hemicellulose, hemicellulose-specific nucleotide sugar substrates, key transporters, and biosynthesis pathways. This review will contribute to a better understanding of substrate-level regulation of hemicellulose synthesis.
Collapse
Affiliation(s)
- Wenjuan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
| | - Wenqi Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
| | - Huiling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
| | - Ai-min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Ai-min Wu,
| |
Collapse
|
6
|
Yang Y, He R, Zheng J, Hu Z, Wu J, Leng P. Development of EST-SSR markers and association mapping with floral traits in Syringa oblata. BMC PLANT BIOLOGY 2020; 20:436. [PMID: 32957917 PMCID: PMC7507607 DOI: 10.1186/s12870-020-02652-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/15/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Lilac (Syringa oblata) is an important woody plant with high ornamental value. However, very limited genetic marker resources are currently available, and little is known about the genetic architecture of important ornamental traits for S. oblata, which is hindering its genetic studies. Therefore, it is of great significance to develop effective molecular markers and understand the genetic architecture of complex floral traits for the genetic research of S. oblata. RESULTS In this study, a total of 10,988 SSRs were obtained from 9864 unigene sequences with an average of one SSR per 8.13 kb, of which di-nucleotide repeats were the dominant type (32.86%, 3611). A set of 2042 primer pairs were validated, out of which 932 (45.7%) exhibited successful amplifications, and 248 (12.1%) were polymorphic in eight S. oblata individuals. In addition, 30 polymorphic EST-SSR markers were further used to assess the genetic diversity and the population structure of 192 cultivated S. oblata individuals. Two hundred thirty-four alleles were detected, and the PIC values ranged from 0.23 to 0.88 with an average of 0.51, indicating a high level of genetic diversity within this cultivated population. The analysis of population structure showed two major subgroups in the association population. Finally, 20 significant associations were identified involving 17 markers with nine floral traits using the mixed linear model. Moreover, marker SO104, SO695 and SO790 had significant relationship with more than one trait. CONCLUSION The results showed newly developed markers were valuable resource and provided powerful tools for genetic breeding of lilac. Beyond that, our study could serve an efficient foundation for further facilitate genetic improvement of floral traits for lilac.
Collapse
Affiliation(s)
- Yunyao Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
| | - Ruiqing He
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
| | - Jian Zheng
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 102206, China
| | - Zenghui Hu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 102206, China
| | - Jing Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China.
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China.
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 102206, China.
| | - Pingsheng Leng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 102206, China
| |
Collapse
|
7
|
Liu N, Cheng F. Association mapping for yield traits in Paeonia rockii based on SSR markers within transcription factors of comparative transcriptome. BMC PLANT BIOLOGY 2020; 20:245. [PMID: 32487017 PMCID: PMC7265254 DOI: 10.1186/s12870-020-02449-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 05/18/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND Allelic variation underlying the quantitative traits in plants is caused by the extremely complex regulation process. Tree peony originated in China is a peculiar ornamental, medicinal and oil woody plant. Paeonia rockii, one of tree peony species, is a precious emerging woody oil crop. However, in this valuable plant, the study of functional loci associated with yield traits has rarely been identified. Therefore, to explore the genetic architecture of 24 yield quantitative traits, the association mapping was first reported in 420 unrelated cultivated P. rockii individuals based on the next-generation sequencing (NGS) and single-molecule long-read sequencing (SMLRS). RESULTS The developed 58 pairs of polymorphic expressed sequence tag-simple sequence repeat (EST-SSR) markers from 959 candidate transcription factors (TFs) associated with yield were used for genotyping the 420 P. rockii accessions. We observed a high level of genetic diversity (polymorphic information content, PIC = 0.514) and low linkage disequilibrium (LD) between EST-SSRs. Moreover, four subpopulations in the association population were revealed by STRUCTURE analyses. Further, single-marker association analysis identified 141 significant associations, involving 17 quantitative traits and 41 EST-SSRs. These loci were mainly from AP2, TCP, MYB, HSF, bHLH, GATA, and B3 gene families and showed a small proportion of the phenotypic variance (3.79 to 37.45%). CONCLUSIONS Our results summarize a valuable collection of functional loci associated with yield traits in P. rockii, and provide a precious resource that reveals allelic variation underlying quantitative traits in Paeonia and other woody oil crops.
Collapse
Affiliation(s)
- Na Liu
- Peony International Institute, Beijing Advanced Innovation Center of Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Fangyun Cheng
- Peony International Institute, Beijing Advanced Innovation Center of Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
8
|
Du Q, Lu W, Quan M, Xiao L, Song F, Li P, Zhou D, Xie J, Wang L, Zhang D. Genome-Wide Association Studies to Improve Wood Properties: Challenges and Prospects. FRONTIERS IN PLANT SCIENCE 2018; 9:1912. [PMID: 30622554 PMCID: PMC6309013 DOI: 10.3389/fpls.2018.01912] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/10/2018] [Indexed: 05/02/2023]
Abstract
Wood formation is an excellent model system for quantitative trait analysis due to the strong associations between the transcriptional and metabolic traits that contribute to this complex process. Investigating the genetic architecture and regulatory mechanisms underlying wood formation will enhance our understanding of the quantitative genetics and genomics of complex phenotypic variation. Genome-wide association studies (GWASs) represent an ideal statistical strategy for dissecting the genetic basis of complex quantitative traits. However, elucidating the molecular mechanisms underlying many favorable loci that contribute to wood formation and optimizing GWAS design remain challenging in this omics era. In this review, we summarize the recent progress in GWAS-based functional genomics of wood property traits in major timber species such as Eucalyptus, Populus, and various coniferous species. We discuss several appropriate experimental designs for extensive GWAS in a given undomesticated tree population, such as omics-wide association studies and high-throughput phenotyping technologies. We also explain why more attention should be paid to rare allelic and major structural variation. Finally, we explore the potential use of GWAS for the molecular breeding of trees. Such studies will help provide an integrated understanding of complex quantitative traits and should enable the molecular design of new cultivars.
Collapse
Affiliation(s)
- Qingzhang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wenjie Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Mingyang Quan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Liang Xiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Fangyuan Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Peng Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Daling Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jianbo Xie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Longxin Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
9
|
Lu N, Mei F, Wang Z, Wang N, Xiao Y, Kong L, Qu G, Ma W, Wang J. Single-nucleotide polymorphisms(SNPs) in a sucrose synthase gene are associated with wood properties in Catalpa fargesii bur. BMC Genet 2018; 19:99. [PMID: 30384853 PMCID: PMC6211571 DOI: 10.1186/s12863-018-0686-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/19/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Association study is a powerful means for identifying molecular markers, such as single-nucleotide polymorphisms (SNPs) associated with important traits in forest trees. Catalpa fargesii Bur is a valuable commercial tree in China and identifying SNPs that associate with wood property would make a foundation of the marker-assisted breeding in the future. However, related work has not been reported yet. RESULTS We cloned a 2887 bp long sucrose synthase (SUS) gene from the genome of C. fargesii, which is a key enzyme in sucrose metabolism and also associated to wood formation in trees, coding 806 amino acids that expressed mainly in young branches, xylem, and leaves according to real-time quantitative PCR. Then we identified allelic variations of CfSUS associated with nine wood quality associated traits in Catalpa fargesii Bur. Totally, 135 SNPs were identified through cloning and sequencing the CfSUS locus from a mapping population (including 93 unrelated individuals) and 47 of which were genotyped as common SNPs (minor allele frequency > 5%) in the association population that comprised of 125 unrelated individuals collected from main distribution area. Nucleotide diversity and linkage disequilibrium (LD) analysis showed CfSUS has a relative low SNP diversity (πT = 0.0034) and low LD (r2 dropped below 0.1 within 1600 bp). Using the association analysis, we found 11 common SNPs and 14 haplotypes were significantly associated with the traits (false discovery rate, Q<0.1), explaining 3.21-12.41% of the phenotypic variance. These results provide molecular markers above associated with wood basic density, pore rate, and six other traits of wood, which have potential applications in breeding of Catalpa fargesii Bur. CONCLUSION We first cloned a SUS gene in C. fargesii, then identified several SNPs and haplotypes that associated with wood properties within this gene, suggesting CfSUS participates in the wood formation of C. fargesii. Moreover, molecular markers we identified in this study may be applied into marker-assisted breeding of C. fargesii in the future.
Collapse
Affiliation(s)
- Nan Lu
- State Key Laboratory of Forest Genetics and Tree Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Fang Mei
- State Key Laboratory of Forest Genetics and Tree Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Zhi Wang
- State Key Laboratory of Forest Genetics and Tree Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Nan Wang
- State Key Laboratory of Forest Genetics and Tree Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Yao Xiao
- State Key Laboratory of Forest Genetics and Tree Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Lisheng Kong
- Department of Biology, Centre for Forest Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC Canada
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040 People’s Republic of China
| | - Wenjun Ma
- State Key Laboratory of Forest Genetics and Tree Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Junhui Wang
- State Key Laboratory of Forest Genetics and Tree Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| |
Collapse
|
10
|
Luo X, Cao D, Zhang J, Chen L, Xia X, Li H, Zhao D, Zhang F, Xue H, Chen L, Li Y, Cao S. Integrated microRNA and mRNA expression profiling reveals a complex network regulating pomegranate (Punica granatum L.) seed hardness. Sci Rep 2018; 8:9292. [PMID: 29915181 PMCID: PMC6006261 DOI: 10.1038/s41598-018-27664-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/05/2018] [Indexed: 12/31/2022] Open
Abstract
The breeding of new soft-seeded pomegranate cultivars provides new products for the market and increases farmers' incomes, yet the genetic architecture mediating seed hardness is largely unknown. Here, the seed hardness and hundred-seed weights of 26 cultivars were determined in 2 successive years. We conducted miRNA and mRNA sequencing to analyse the seeds of two varieties of Punica granatum: soft-seeded Tunisia and hard-seeded Sanbai, at 60 and 120 d after flowering. Seed hardness was strongly positively correlated with hundred-seed weight. We detected 25 and 12 differentially expressed miRNA-mRNA pairs with negative regulatory relationships between the two genotypes at 60 and 120 d after flowering, respectively. These miRNA-mRNA pairs mainly regulated seed hardness by altering cell wall structure. Transcription factors including NAC1, WRKY and MYC, which are involved in seed hardness, were targeted by differentially expressed mdm-miR164e and mdm-miR172b. Thus, seed hardness is the result of a complex biological process regulated by a miRNA-mRNA network in pomegranate. These results will help us understand the complexity of seed hardness and help to elucidate the miRNA-mediated molecular mechanisms that contribute to seed hardness in pomegranate.
Collapse
Affiliation(s)
- Xiang Luo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, P.R. China
| | - Da Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, P.R. China
| | - Jianfeng Zhang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, P.R. China
| | - Li Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Xiaocong Xia
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, P.R. China
| | - Haoxian Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, P.R. China
| | - Diguang Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, P.R. China
| | - Fuhong Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, P.R. China
| | - Hui Xue
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, P.R. China
| | - Lina Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, P.R. China
| | - Yongzhou Li
- College of Horticultural Science, Henan Agricultural University, Zhengzhou, 450002, P.R. China
| | - Shangyin Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, P.R. China.
| |
Collapse
|
11
|
Wildhagen H, Paul S, Allwright M, Smith HK, Malinowska M, Schnabel SK, Paulo MJ, Cattonaro F, Vendramin V, Scalabrin S, Janz D, Douthe C, Brendel O, Buré C, Cohen D, Hummel I, Le Thiec D, van Eeuwijk F, Keurentjes JJB, Flexas J, Morgante M, Robson P, Bogeat-Triboulot MB, Taylor G, Polle A. Genes and gene clusters related to genotype and drought-induced variation in saccharification potential, lignin content and wood anatomical traits in Populus nigra. TREE PHYSIOLOGY 2018; 38:320-339. [PMID: 28541580 PMCID: PMC5982782 DOI: 10.1093/treephys/tpx054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/03/2017] [Indexed: 05/03/2023]
Abstract
Wood is a renewable resource that can be employed for the production of second generation biofuels by enzymatic saccharification and subsequent fermentation. Knowledge on how the saccharification potential is affected by genotype-related variation of wood traits and drought is scarce. Here, we used three Populus nigra L. genotypes from habitats differing in water availability to (i) investigate the relationships between wood anatomy, lignin content and saccharification and (ii) identify genes and co-expressed gene clusters related to genotype and drought-induced variation in wood traits and saccharification potential. The three poplar genotypes differed in wood anatomy, lignin content and saccharification potential. Drought resulted in reduced cambial activity, decreased vessel and fiber lumina, and increased the saccharification potential. The saccharification potential was unrelated to lignin content as well as to most wood anatomical traits. RNA sequencing of the developing xylem revealed that 1.5% of the analyzed genes were differentially expressed in response to drought, while 67% differed among the genotypes. Weighted gene correlation network analysis identified modules of co-expressed genes correlated with saccharification potential. These modules were enriched in gene ontology terms related to cell wall polysaccharide biosynthesis and modification and vesicle transport, but not to lignin biosynthesis. Among the most strongly saccharification-correlated genes, those with regulatory functions, especially kinases, were prominent. We further identified transcription factors whose transcript abundances differed among genotypes, and which were co-regulated with genes for biosynthesis and modifications of hemicelluloses and pectin. Overall, our study suggests that the regulation of pectin and hemicellulose metabolism is a promising target for improving wood quality of second generation bioenergy crops. The causal relationship of the identified genes and pathways with saccharification potential needs to be validated in further experiments.
Collapse
Affiliation(s)
- Henning Wildhagen
- Forest Botany and Tree Physiology, Georg-August University of Goettingen, Büsgenweg 2, 37077 Göttingen, Germany
- HAWK University of Applied Sciences and Arts, Faculty of Resource Management, Büsgenweg 1a, 37077 Göttingen, Germany
| | - Shanty Paul
- Forest Botany and Tree Physiology, Georg-August University of Goettingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Mike Allwright
- Center for Biological Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Hazel K Smith
- Center for Biological Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Marta Malinowska
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, SY233EE, UK
| | - Sabine K Schnabel
- Biometris, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - M João Paulo
- Biometris, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | | - Vera Vendramin
- IGA Technology Services, via Jacopo Linussio 51, 33100 Udine, Italy
| | - Simone Scalabrin
- IGA Technology Services, via Jacopo Linussio 51, 33100 Udine, Italy
| | - Dennis Janz
- Forest Botany and Tree Physiology, Georg-August University of Goettingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Cyril Douthe
- Universidad de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Oliver Brendel
- EEF, INRA, Université de Lorraine, rue d'Amance, 54280 Champenoux, France
| | - Cyril Buré
- EEF, INRA, Université de Lorraine, rue d'Amance, 54280 Champenoux, France
| | - David Cohen
- EEF, INRA, Université de Lorraine, rue d'Amance, 54280 Champenoux, France
| | - Irène Hummel
- EEF, INRA, Université de Lorraine, rue d'Amance, 54280 Champenoux, France
| | - Didier Le Thiec
- EEF, INRA, Université de Lorraine, rue d'Amance, 54280 Champenoux, France
| | - Fred van Eeuwijk
- Biometris, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jaume Flexas
- Universidad de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Michele Morgante
- Università Di Udine, Istituto di Genomica Applicata, via Jacopo Linussio 51, 33100 Udine, Italy
| | - Paul Robson
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, SY233EE, UK
| | | | - Gail Taylor
- Center for Biological Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Andrea Polle
- Forest Botany and Tree Physiology, Georg-August University of Goettingen, Büsgenweg 2, 37077 Göttingen, Germany
- Corresponding author ()
| |
Collapse
|
12
|
Salehizadeh H, Yan N, Farnood R. Recent advances in polysaccharide bio-based flocculants. Biotechnol Adv 2017; 36:92-119. [PMID: 28993221 DOI: 10.1016/j.biotechadv.2017.10.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 09/09/2017] [Accepted: 10/05/2017] [Indexed: 01/03/2023]
Abstract
Natural polysaccharides, derived from biomass feedstocks, marine resources, and microorganisms, have been attracting considerable attention as benign and environmentally friendly substitutes for synthetic polymeric products. Besides many other applications, these biopolymers are rapidly emerging as viable alternatives to harmful synthetic flocculating agents for the removal of contaminants from water and wastewater. In recent years, a great deal of effort has been devoted to improve the production and performance of polysaccharide bio-based flocculants. In this review, current trends in preparation and chemical modification of polysaccharide bio-based flocculants and their flocculation performance are discussed. Aspects including mechanisms of flocculation, biosynthesis, classification, purification and characterization, chemical modification, the effect of physicochemical factors on flocculating activity, and recent applications of polysaccharide bio-based flocculants are summarized and presented.
Collapse
Affiliation(s)
- Hossein Salehizadeh
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, Ontario M5S 3E5, Canada.
| | - Ning Yan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, Ontario M5S 3E5, Canada; Faculty of Forestry, University of Toronto, 33 Willcocks St., Toronto, Ontario M5S 3B3, Canada.
| | - Ramin Farnood
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, Ontario M5S 3E5, Canada.
| |
Collapse
|
13
|
Bygdell J, Srivastava V, Obudulu O, Srivastava MK, Nilsson R, Sundberg B, Trygg J, Mellerowicz EJ, Wingsle G. Protein expression in tension wood formation monitored at high tissue resolution in Populus. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3405-3417. [PMID: 28633298 PMCID: PMC5853651 DOI: 10.1093/jxb/erx186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/30/2017] [Indexed: 05/18/2023]
Abstract
Tension wood (TW) is a specialized tissue with contractile properties that is formed by the vascular cambium in response to gravitational stimuli. We quantitatively analysed the proteomes of Populus tremula cambium and its xylem cell derivatives in stems forming normal wood (NW) and TW to reveal the mechanisms underlying TW formation. Phloem-, cambium-, and wood-forming tissues were sampled by tangential cryosectioning and pooled into nine independent samples. The proteomes of TW and NW samples were similar in the phloem and cambium samples, but diverged early during xylogenesis, demonstrating that reprogramming is an integral part of TW formation. For example, 14-3-3, reactive oxygen species, ribosomal and ATPase complex proteins were found to be up-regulated at early stages of xylem differentiation during TW formation. At later stages of xylem differentiation, proteins involved in the biosynthesis of cellulose and enzymes involved in the biosynthesis of rhamnogalacturonan-I, rhamnogalacturonan-II, arabinogalactan-II and fasciclin-like arabinogalactan proteins were up-regulated in TW. Surprisingly, two isoforms of exostosin family proteins with putative xylan xylosyl transferase function and several lignin biosynthesis proteins were also up-regulated, even though xylan and lignin are known to be less abundant in TW than in NW. These data provided new insight into the processes behind TW formation.
Collapse
Affiliation(s)
- Joakim Bygdell
- Department of Chemistry, Umeå University, Umeå, Sweden
- Computational life science cluster (CLiC), Umeå University, Sweden
| | - Vaibhav Srivastava
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Ogonna Obudulu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Manoj K Srivastava
- Crop Improvement Division, Indian Grassland and Fodder Research Institute, Jhansi, UP, India
| | - Robert Nilsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Björn Sundberg
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Johan Trygg
- Department of Chemistry, Umeå University, Umeå, Sweden
- Computational life science cluster (CLiC), Umeå University, Sweden
| | - Ewa J Mellerowicz
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Gunnar Wingsle
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
14
|
Shi W, Quan M, Du Q, Zhang D. The Interactions between the Long Non-coding RNA NERDL and Its Target Gene Affect Wood Formation in Populus tomentosa. FRONTIERS IN PLANT SCIENCE 2017; 8:1035. [PMID: 28674544 PMCID: PMC5475392 DOI: 10.3389/fpls.2017.01035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 05/30/2017] [Indexed: 05/13/2023]
Abstract
Long non-coding RNAs (lncRNAs) are important regulatory factors for plant growth and development, but little is known about the allelic interactions of lncRNAs with mRNA in perennial plants. Here, we analyzed the interaction of the NERD (Needed for RDR2-independent DNA methylation) Populus tomentosa gene PtoNERD with its putative regulator, the lncRNA NERDL (NERD-related lncRNA), which partially overlaps with the promoter region of this gene. Expression analysis in eight tissues showed a positive correlation between NERDL and PtoNERD (r = 0.62), suggesting that the interaction of NERDL with its putative target might be involved in wood formation. We conducted association mapping in a natural population of P. tomentosa (435 unrelated individuals) to evaluate genetic variation and the interaction of the lncRNA NERDL with PtoNERD. Using additive and dominant models, we identified 30 SNPs (P < 0.01) associated with five tree growth and wood property traits. Each SNP explained 3.90-8.57% of phenotypic variance, suggesting that NERDL and its putative target play a common role in wood formation. Epistasis analysis uncovered nine SNP-SNP association pairs between NERDL and PtoNERD, with an information gain of -7.55 to 2.16%, reflecting the strong interactions between NERDL and its putative target. This analysis provides a powerful method for deciphering the genetic interactions of lncRNAs with mRNA and dissecting the complex genetic network of quantitative traits in trees.
Collapse
Affiliation(s)
- Wan Shi
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Mingyang Quan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Qingzhang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- *Correspondence: Deqiang Zhang,
| |
Collapse
|
15
|
Yin S, Kong JQ. Transcriptome-guided gene isolation and functional characterization of UDP-xylose synthase and UDP-D-apiose/UDP-D-xylose synthase families from Ornithogalum caudatum Ait. PLANT CELL REPORTS 2016; 35:2403-2421. [PMID: 27591771 DOI: 10.1007/s00299-016-2044-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/23/2016] [Indexed: 06/06/2023]
Abstract
The present study first identified the involvement of OcUAXS2 and OcUXS1-3 in anticancer polysaccharides biosynthesis in O. caudatum. UDP-xylose synthase (UXS) and UDP-D-apiose/UDP-D-xylose synthase (UAXS), both capable of converting UDP-D-glucuronic acid to UDP-D-xylose, are believed to transfer xylosyl residue to anticancer polysaccharides biosynthesis in Ornithogalum caudatum Ait. However, the cDNA isolation and functional characterization of genes encoding the two enzymes from O. caudatum has never been documented. Previously, the transcriptome sequencing of O. caudatum was performed in our laboratory. In this study, a total of six and two unigenes encoding UXS and UAXS were first retrieved based on RNA-Seq data. The eight putative genes were then successfully isolated from transcriptome of O. caudatum by reverse transcription polymerase chain reaction (RT-PCR). Phylogenetic analysis revealed the six putative UXS isoforms can be classified into three types, one soluble and two distinct putative membrane-bound. Moreover, the two UAXS isoenzymes were predicted to be soluble forms. Subsequently, these candidate cDNAs were characterized to be bona fide genes by functional expression in Escherichia coli individually. Although UXS and UAXS catalyzed the same reaction, their biochemical properties varied significantly. It is worth noting that a ratio switch of UDP-D-xylose/UDP-D-apiose for UAXS was established, which is assumed to be helpful for its biotechnological application. Furthermore, a series of mutants were generated to test the function of NAD+ binding motif GxxGxxG. Most importantly, the present study determined the involvement of OcUAXS2 and OcUXS1-3 in xylose-containing polysaccharides biosynthesis in O. caudatum. These data provide a comprehensive knowledge for UXS and UAXS families in plants.
Collapse
Affiliation(s)
- Sen Yin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Ministry of Health Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Qiang Kong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Ministry of Health Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
16
|
Kuang B, Zhao X, Zhou C, Zeng W, Ren J, Ebert B, Beahan CT, Deng X, Zeng Q, Zhou G, Doblin MS, Heazlewood JL, Bacic A, Chen X, Wu AM. Role of UDP-Glucuronic Acid Decarboxylase in Xylan Biosynthesis in Arabidopsis. MOLECULAR PLANT 2016; 9:1119-1131. [PMID: 27179920 DOI: 10.1016/j.molp.2016.04.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/18/2016] [Accepted: 04/26/2016] [Indexed: 05/04/2023]
Abstract
UDP-xylose (UDP-Xyl) is the Xyl donor used in the synthesis of major plant cell-wall polysaccharides such as xylan (as a backbone-chain monosaccharide) and xyloglucan (as a branching monosaccharide). The biosynthesis of UDP-Xyl from UDP-glucuronic acid (UDP-GlcA) is irreversibly catalyzed by UDP-glucuronic acid decarboxylase (UXS). Until now, little has been known about the physiological roles of UXS in plants. Here, we report that AtUXS1, AtUXS2, and AtUXS4 are located in the Golgi apparatus whereas AtUXS3, AtUXS5, and AtUXS6 are located in the cytosol. Although all six single AtUXS T-DNA mutants and the uxs1 usx2 uxs4 triple mutant show no obvious phenotype, the uxs3 uxs5 uxs6 triple mutant has an irregular xylem phenotype. Monosaccharide analysis showed that Xyl levels decreased in uxs3 uxs5 uxs6 and linkage analysis confirmed that the xylan content in uxs3 xus5 uxs6 declined, indicating that UDP-Xyl from cytosol AtUXS participates in xylan synthesis. Gel-permeation chromatography showed that the molecular weight of non-cellulosic polysaccharides in the triple mutants, mainly composed of xylans, is lower than that in the wild type, suggesting an effect on the elongation of the xylan backbone. Upon saccharification treatment stems of the uxs3 uxs5 uxs6 triple mutants released monosaccharides with a higher efficiency than those of the wild type. Taken together, our results indicate that the cytosol UXS plays a more important role than the Golgi-localized UXS in xylan biosynthesis.
Collapse
Affiliation(s)
- Beiqing Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Xianhai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Chun Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Zeng
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Berit Ebert
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Cherie T Beahan
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Xiaomei Deng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Qingyin Zeng
- Institute of Botany, The Chinese Academy of Science, Beijing 100093, China
| | - Gongke Zhou
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Monika S Doblin
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Joshua L Heazlewood
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia; Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Xiaoyang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; Guangdong Province Research Center of woody forage engineering technology, Guangzhou, 510642, China.
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; Guangdong Province Research Center of woody forage engineering technology, Guangzhou, 510642, China.
| |
Collapse
|
17
|
Du Q, Tian J, Yang X, Pan W, Xu B, Li B, Ingvarsson PK, Zhang D. Identification of additive, dominant, and epistatic variation conferred by key genes in cellulose biosynthesis pathway in Populus tomentosa†. DNA Res 2015; 22:53-67. [PMID: 25428896 PMCID: PMC4379978 DOI: 10.1093/dnares/dsu040] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/22/2014] [Indexed: 12/29/2022] Open
Abstract
Economically important traits in many species generally show polygenic, quantitative inheritance. The components of genetic variation (additive, dominant and epistatic effects) of these traits conferred by multiple genes in shared biological pathways remain to be defined. Here, we investigated 11 full-length genes in cellulose biosynthesis, on 10 growth and wood-property traits, within a population of 460 unrelated Populus tomentosa individuals, via multi-gene association. To validate positive associations, we conducted single-marker analysis in a linkage population of 1,200 individuals. We identified 118, 121, and 43 associations (P< 0.01) corresponding to additive, dominant, and epistatic effects, respectively, with low to moderate proportions of phenotypic variance (R(2)). Epistatic interaction models uncovered a combination of three non-synonymous sites from three unique genes, representing a significant epistasis for diameter at breast height and stem volume. Single-marker analysis validated 61 associations (false discovery rate, Q ≤ 0.10), representing 38 SNPs from nine genes, and its average effect (R(2) = 3.8%) nearly 2-fold higher than that identified with multi-gene association, suggesting that multi-gene association can capture smaller individual variants. Moreover, a structural gene-gene network based on tissue-specific transcript abundances provides a better understanding of the multi-gene pathway affecting tree growth and lignocellulose biosynthesis. Our study highlights the importance of pathway-based multiple gene associations to uncover the nature of genetic variance for quantitative traits and may drive novel progress in molecular breeding.
Collapse
Affiliation(s)
- Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Jiaxing Tian
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Xiaohui Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Wei Pan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Baohua Xu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Bailian Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China Department of Forestry, North Carolina State University, Raleigh, NC 27695-8203, USA
| | - Pär K Ingvarsson
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, Umeå SE-901 87, Sweden
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| |
Collapse
|
18
|
Muchero W, Guo J, DiFazio SP, Chen JG, Ranjan P, Slavov GT, Gunter LE, Jawdy S, Bryan AC, Sykes R, Ziebell A, Klápště J, Porth I, Skyba O, Unda F, El-Kassaby YA, Douglas CJ, Mansfield SD, Martin J, Schackwitz W, Evans LM, Czarnecki O, Tuskan GA. High-resolution genetic mapping of allelic variants associated with cell wall chemistry in Populus. BMC Genomics 2015; 16:24. [PMID: 25613058 PMCID: PMC4307895 DOI: 10.1186/s12864-015-1215-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 01/02/2015] [Indexed: 11/13/2022] Open
Abstract
Background QTL cloning for the discovery of genes underlying polygenic traits has historically been cumbersome in long-lived perennial plants like Populus. Linkage disequilibrium-based association mapping has been proposed as a cloning tool, and recent advances in high-throughput genotyping and whole-genome resequencing enable marker saturation to levels sufficient for association mapping with no a priori candidate gene selection. Here, multiyear and multienvironment evaluation of cell wall phenotypes was conducted in an interspecific P. trichocarpa x P. deltoides pseudo-backcross mapping pedigree and two partially overlapping populations of unrelated P. trichocarpa genotypes using pyrolysis molecular beam mass spectrometry, saccharification, and/ or traditional wet chemistry. QTL mapping was conducted using a high-density genetic map with 3,568 SNP markers. As a fine-mapping approach, chromosome-wide association mapping targeting a QTL hot-spot on linkage group XIV was performed in the two P. trichocarpa populations. Both populations were genotyped using the 34 K Populus Infinium SNP array and whole-genome resequencing of one of the populations facilitated marker-saturation of candidate intervals for gene identification. Results Five QTLs ranging in size from 0.6 to 1.8 Mb were mapped on linkage group XIV for lignin content, syringyl to guaiacyl (S/G) ratio, 5- and 6-carbon sugars using the mapping pedigree. Six candidate loci exhibiting significant associations with phenotypes were identified within QTL intervals. These associations were reproducible across multiple environments, two independent genotyping platforms, and different plant growth stages. cDNA sequencing for allelic variants of three of the six loci identified polymorphisms leading to variable length poly glutamine (PolyQ) stretch in a transcription factor annotated as an ANGUSTIFOLIA C-terminus Binding Protein (CtBP) and premature stop codons in a KANADI transcription factor as well as a protein kinase. Results from protoplast transient expression assays suggested that each of the polymorphisms conferred allelic differences in the activation of cellulose, hemicelluloses, and lignin pathway marker genes. Conclusion This study illustrates the utility of complementary QTL and association mapping as tools for gene discovery with no a priori candidate gene selection. This proof of concept in a perennial organism opens up opportunities for discovery of novel genetic determinants of economically important but complex traits in plants. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1215-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wellington Muchero
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Jianjun Guo
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA. .,Current address: Department of Plant Biology, Carnegie Institute for Science, Stanford, CA, 94305, USA.
| | - Stephen P DiFazio
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA.
| | - Jin-Gui Chen
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Priya Ranjan
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Gancho T Slavov
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3EB, UK.
| | - Lee E Gunter
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Sara Jawdy
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Anthony C Bryan
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Robert Sykes
- Bioscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA.
| | - Angela Ziebell
- Bioscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA.
| | - Jaroslav Klápště
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada. .,Department of Genetics and Physiology of Forest Trees, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences in Prague, Kamýcká 129, 165 21, Praha 6, Czech Republic.
| | - Ilga Porth
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Oleksandr Skyba
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Faride Unda
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Carl J Douglas
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Shawn D Mansfield
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Joel Martin
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA.
| | - Wendy Schackwitz
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA.
| | - Luke M Evans
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA.
| | - Olaf Czarnecki
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Gerald A Tuskan
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
19
|
Puchner C, Eixelsberger T, Nidetzky B, Brecker L. Saturation transfer difference NMR to study substrate and product binding to human UDP-xylose synthase (hUXS1A) during catalytic event. RSC Adv 2015. [DOI: 10.1039/c5ra18284k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The human form of UDP-xylose synthase (hUXS1A) is studied with respect to its substrate and co-enzyme binding in binary and ternary complexes using saturation transfer difference (STD) NMR and in situ NMR.
Collapse
Affiliation(s)
- Claudia Puchner
- University of Vienna
- Institute of Organic Chemistry
- A-1090 Vienna
- Austria
| | - Thomas Eixelsberger
- Graz University of Technology
- Institute of Biotechnology and Biochemical Engineering
- A-8010 Graz
- Austria
| | - Bernd Nidetzky
- Graz University of Technology
- Institute of Biotechnology and Biochemical Engineering
- A-8010 Graz
- Austria
| | - Lothar Brecker
- University of Vienna
- Institute of Organic Chemistry
- A-1090 Vienna
- Austria
| |
Collapse
|
20
|
Wei Z, Zhang G, Du Q, Zhang J, Li B, Zhang D. Association mapping for morphological and physiological traits in Populus simonii. BMC Genet 2014; 15 Suppl 1:S3. [PMID: 25079290 PMCID: PMC4118617 DOI: 10.1186/1471-2156-15-s1-s3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND To optimize marker-assisted selection programs, knowledge of the genetic architecture of phenotypic traits is very important for breeders. Generally, most phenotypes, e.g. morphological and physiological traits, are quantitatively inherited, and thus detection of the genes underlying variation for these traits is difficult. Association mapping based on linkage disequilibrium has recently become a powerful approach to map genes or quantitative trait loci (QTL) in plants. RESULTS In this study, association analysis using 20 simple sequence repeat (SSR) markers was performed to detect the marker loci linked to 13 morphological traits and 10 physiological traits in a wild P. simonii population that consisted of 528 individuals sampled from 16 sites along the Yellow River in China. Based on a model controlling for both population structure (Q) and relative kinship (K), three SSR markers (GCPM_616-1 in 31.2 Mb on LG I, GCPM_4055-2 in 5.7 Mb on LG XV, and GCPM_3142 of unknown location) were identified for seven traits. GCPM_616-1 was associated with five morphological traits (R2 = 5.14-10.09%), whereas GCPM_3142 (15.03%) and GCPM_4055-2 (13.26%) were associated with one morphological trait and one physiological trait, respectively. CONCLUSIONS The results suggest that this wild population is suitable for association mapping and the identified markers will be suitable for marker-assisted selection breeding or detection of target genes or QTL in the near future.
Collapse
Affiliation(s)
- Zunzheng Wei
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Guanyu Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Jinfeng Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Bailian Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| |
Collapse
|
21
|
Du Q, Wang L, Zhou D, Yang H, Gong C, Pan W, Zhang D. Allelic variation within the S-adenosyl-L-homocysteine hydrolase gene family is associated with wood properties in Chinese white poplar (Populus tomentosa). BMC Genet 2014; 15 Suppl 1:S4. [PMID: 25079429 PMCID: PMC4118623 DOI: 10.1186/1471-2156-15-s1-s4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background S-adenosyl-l-homocysteine hydrolase (SAHH) is the only eukaryotic enzyme capable of S-adenosyl-l-homocysteine (SAH) catabolism for the maintenance of cellular transmethylation potential. Recently, biochemical and genetic studies in herbaceous species have obtained important discoveries in the function of SAHH, and an extensive characterization of SAHH family in even one tree species is essential, but currently lacking. Results Here, we first identified the SAHH family from Populus tomentosa using molecular cloning method. Phylogenetic analyses of 28 SAHH proteins from dicotyledons, monocotyledons, and lower plants revealed that the sequences formed two monophyletic groups: the PtrSAHHA with PtoSAHHA and PtrSAHHB with PtoSAHHB. Examination of tissue-specific expression profiles of the PtoSAHH family revealed similar expression patterns; high levels of expression in xylem were found. Nucleotide diversity and linkage disequilibrium (LD) in the PtoSAHH family, sampled from P. tomentosa natural distribution, revealed that PtoSAHH harbors high single-nucleotide polymorphism (SNP) diversity (π=0.01059±0.00122 and 0.00930±0.00079,respectively) and low LD (r2 > 0.1, within 800 bp and 2,200 bp, respectively). Using an LD-linkage analysis approach, two noncoding SNPs (PtoSAHHB_1065 and PtoSAHHA_2203) and the corresponding haplotypes were found to significantly associate with α-cellulose content, and a nonsynonymous SNP (PtoSAHHB_410) within the SAHH signature motifs showed significant association with fiber length, with an average of 3.14% of the phenotypic variance explained. Conclusions The present study demonstrates that PtoSAHHs were split off prior to the divergence of interspecies in Populus, and SAHHs may play a key role promoting transmethylation reactions in the secondary cell walls biosynthesis in trees. Hence, our findings provide insights into SAHH function and evolution in woody species and also offer a theoretical basis for marker-aided selection breeding to improve the wood quality of Populus.
Collapse
|
22
|
Zhao X, Ouyang K, Gan S, Zeng W, Song L, Zhao S, Li J, Doblin MS, Bacic A, Chen XY, Marchant A, Deng X, Wu AM. Biochemical and molecular changes associated with heteroxylan biosynthesis in Neolamarckia cadamba (Rubiaceae) during xylogenesis. FRONTIERS IN PLANT SCIENCE 2014; 5:602. [PMID: 25426124 PMCID: PMC4224071 DOI: 10.3389/fpls.2014.00602] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/16/2014] [Indexed: 05/07/2023]
Abstract
Wood, derived from plant secondary growth, is a commercially important material. Both cellulose and lignin assembly have been well studied during wood formation (xylogenesis), but heteroxylan biosynthesis is less well defined. Elucidation of the heteroxylan biosynthetic pathway is crucial to understand the mechanism of wood formation. Here, we use Neolamarckia cadamba, a fast-growing tropical tree, as a sample to analyze heteroxylan formation at the biochemical and molecular levels during wood formation. Analysis of the non-cellulosic polysaccharides isolated from N. cadamba stems shows that heteroxylans dominate non-cellulosic polysaccharides and increase with xylogenesis. Microsomes isolated from stems of 1-year-old N. cadamba exhibited UDP-Xyl synthase and xylosyltransferase activities with the highest activity present in the middle and basal stem regions. To further understand the genetic basis of heteroxylan synthesis, RNA sequencing (RNA-seq) was used to generate transcriptomes of N. cadamba during xylogenesis. The RNA-seq results showed that genes related to heteroxylan synthesis had higher expression levels in the middle and basal part of the stem compared to the apical part. Our results describe the heteroxylan distribution and heteroxylan synthesis trait in N. cadamba and give a new example for understanding the mechanism of heteroxylan synthesis in tropical tree species in future.
Collapse
Affiliation(s)
- Xianhai Zhao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, GuangzhouChina
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, GuangzhouChina
| | - Kunxi Ouyang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, GuangzhouChina
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, GuangzhouChina
| | - Siming Gan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, BeijingChina
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, GuangzhouChina
| | - Wei Zeng
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, The University of Melbourne, Parkville, VICAustralia
| | - Lili Song
- Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, HangzhouChina
| | - Shuai Zhao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, GuangzhouChina
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, GuangzhouChina
| | - Juncheng Li
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, GuangzhouChina
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, GuangzhouChina
| | - Monika S. Doblin
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, The University of Melbourne, Parkville, VICAustralia
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, The University of Melbourne, Parkville, VICAustralia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VICAustralia
| | - Xiao-Yang Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, GuangzhouChina
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, GuangzhouChina
| | - Alan Marchant
- Centre for Biological Sciences, University of Southampton, SouthamptonUK
| | - Xiaomei Deng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, GuangzhouChina
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, GuangzhouChina
- College of Forest, South China Agricultural University, GuangzhouChina
- *Correspondence: Xiaomei Deng and Ai-Min Wu, College of Forest, South China Agricultural University, Guangzhou 510642, China e-mail: ;
| | - Ai-Min Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, GuangzhouChina
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, GuangzhouChina
- College of Forest, South China Agricultural University, GuangzhouChina
- *Correspondence: Xiaomei Deng and Ai-Min Wu, College of Forest, South China Agricultural University, Guangzhou 510642, China e-mail: ;
| |
Collapse
|