1
|
Sak K. The path of GPR87: from a P2Y-like receptor to its role in cancer progression. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4803-4815. [PMID: 39641798 DOI: 10.1007/s00210-024-03684-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
GPR87 is a G protein-coupled seven-transmembrane receptor first described as an orphan receptor in 2001. Despite its high structural homology to several extracellular nucleotide-activated P2Y receptors and sharing conserved sequence motifs in transmembrane regions, identification of endogenous ligands from the class of nucleotides and their analogues has failed for GPR87. Although lysophosphatidic acid was proposed to be a natural ligand for this cell surface receptor, these data are preliminary and inconsistent, and IUPHAR is currently considering GPR87 as an orphan receptor. Thus, the endogenous ligands and physiological functions of GPR87 are still required to be determined and/or confirmed. The remarkably higher expression of GPR87 in human malignant tissues compared to the normal healthy ones clearly suggests that this receptor may be involved in the development and progression of cancerous neoplasms. Therefore, in this review article, the main focus is placed on the oncogenic role of GPR87 in various human malignancies, presenting it as a potential novel target site for therapeutic interventions using both humanized monoclonal antibodies and gene therapy but also selective antagonists which are still waiting for their identification. Furthermore, the importance of the expression of GPR87 as a predictive biomarker for evaluating the prognosis and overall survival of cancer patients is also highlighted.
Collapse
|
2
|
Ou Z, Fu S, Yi J, Huang J, Zhu W. Diagnostic value of expressions of cancer stem cell markers for adverse outcomes of hepatocellular carcinoma and their associations with prognosis: A Bayesian network meta‑analysis. Oncol Lett 2024; 28:536. [PMID: 39290959 PMCID: PMC11406626 DOI: 10.3892/ol.2024.14669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/02/2024] [Indexed: 09/19/2024] Open
Abstract
The expression of cancer stem cell (CSC) markers adversely affect the survival prognosis of patients with hepatocellular carcinoma (HCC), but it is not clear which cancer stem cell marker has the best predictive effect on the survival prognosis and diagnostic value indicators of patients with HCC. Therefore, the present study performed a network meta-analysis to compare the prognostic and diagnostic value of the expressions of several CSC markers for patients with HCC and to identify the most efficient CSC marker. Studies on the associations of positive CSC markers with the overall survival (OS) rate, disease-free survival (DFS) rate, recurrence-free survival (RFS) rate, recurrence rate, differentiation, microvascular invasion and metastasis in patients with HCC were included in the network meta-analysis following searches on the PubMed, Embase, Elsevier and The Cochrane Library databases from January 1, 2013 to November 17, 2023. The Quality Assessment of Diagnostic Accuracy Studies-2 tool was used to assess the quality assessment of studies, and R (version 4.3.1), Stata (version 15.0) and Review Manager (version 5.3) were used for analysis. A total of 37 studies involving 3,980 participants were included. For patients with HCC, simultaneous positivity of cytokeratin 19 (CK19) and epithelial cell adhesion molecule (EpCAM) was the strongest predictor of the OS rate [surface under the cumulative ranking curve (SUCRA), 78.65%], positive keratin 19 (K19) was the strongest predictor of the RFS and DFS rates (SUCRA, 98.93 and 84.95%, respectively), and simultaneous positivity of EpCAM and cluster of differentiation (CD)90 was the strongest predictor of the recurrence rate (SUCRA, 5.61%). In addition, positivity of CD56, K19 and CD133 had the best diagnostic efficacy for poor differentiation [superiority index, 7.4498; 95% confidence interval (CI): 0.3333, 13.0000], microvascular invasion (superiority index, 8.4777; 95% CI: 0.2308, 17.0000), and metastasis (superiority index, 5.6097; 95% CI: 0.3333, 11.0000), respectively. In conclusion, no single CSC marker possessed the best predictive effect on all indexes of survival prognosis and diagnosis of patients with HCC. In terms of survival prognosis, simultaneous positivity of CK19 and EpCAM demonstrated the strongest predictive effect on the OS rate, suggesting an association with a low OS rate in patients with HCC; positive K19 revealed the strongest predictive effect on the RFS rate and DFS rate, suggesting an association with low RFS and DFS rates in patients with HCC; and simultaneous positivity of EpCAM and CD90 had the strongest predictive effect on the recurrence rate, suggesting a high recurrence rate in patients with HCC patients. In terms of diagnostic value, CD56, K19 and CD133 were the strongest predictors of poor differentiation, microvascular invasion and metastasis, respectively. In the future, well-designed randomized controlled trials are required to further confirm these findings.
Collapse
Affiliation(s)
- Zhengrong Ou
- Ward Two, Department of General Surgery, Yueyang Hospital Affiliated to Hunan Normal University, Yueyang, Hunan 414000, P.R. China
| | - Shoushuo Fu
- Department of Respiratory and Critical Care Medicine, Yueyang Hospital Affiliated to Hunan Normal University, Yueyang, Hunan 414000, P.R. China
| | - Jian Yi
- Ward Two, Department of General Surgery, Yueyang Hospital Affiliated to Hunan Normal University, Yueyang, Hunan 414000, P.R. China
| | - Jingxuan Huang
- Ward Two, Department of General Surgery, Yueyang Hospital Affiliated to Hunan Normal University, Yueyang, Hunan 414000, P.R. China
| | - Weidong Zhu
- Ward Two, Department of General Surgery, Yueyang Hospital Affiliated to Hunan Normal University, Yueyang, Hunan 414000, P.R. China
| |
Collapse
|
3
|
Miao X, Hu J, Chai C, Tang H, Zhao Z, Luo W, Zhou W, Xu H. Establishment and characterization of a new intrahepatic cholangiocarcinoma cell line derived from a Chinese patient. Cancer Cell Int 2022; 22:418. [PMID: 36578029 PMCID: PMC9795767 DOI: 10.1186/s12935-022-02840-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Patients with intrahepatic cholangiocarcinoma (ICC) require chemotherapy due to late detection, rapid disease progression, and low surgical resection rate. Tumor cell lines are extremely important in cancer research for drug discovery and development. Here, we established and characterized a new intrahepatic cholangiocarcinoma cell line, ICC-X1. STR testing confirmed the absence of cross-contamination and high similarity to the original tissue. ICC-X1 exhibited typical epithelial morphology and formed tumor spheres in the suspension culture. The population doubling time was approximately 48 h. The cell line had a complex hypotriploid karyotype. The cell line exhibited a strong migration ability in vitro and cell inoculation into BALB/c nude mice led to the formation of xenografts. Additionally, ICC-X1 cells were sensitive to gemcitabine and paclitaxel but resistant to 5-fluorouracil and oxaliplatin. RNA sequencing revealed that the upregulated cancer-related genes were mainly enriched in several signaling pathways, including the TNF signaling pathway, NOD-like receptor signaling pathway, and NF-κB signaling pathway. The downregulated cancer-related genes were mainly enriched in the Rap1 signaling pathway and Hippo signaling pathway among other pathways. In conclusion, we have created a new ICC cell line derived from Chinese patients. This cell line can be used as a preclinical model to study ICC, specifically tumor metastasis and drug resistance mechanisms.
Collapse
Affiliation(s)
- Xin Miao
- grid.410727.70000 0001 0526 1937State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000 China
| | - Jinjing Hu
- grid.412643.60000 0004 1757 2902The Forth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000 Gansu China
| | - Changpeng Chai
- grid.412643.60000 0004 1757 2902The Forth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000 Gansu China
| | - Huan Tang
- grid.412643.60000 0004 1757 2902The Forth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000 Gansu China
| | - Zhenjie Zhao
- grid.412643.60000 0004 1757 2902The Forth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000 Gansu China
| | - Wei Luo
- grid.412643.60000 0004 1757 2902The Forth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000 Gansu China
| | - Wence Zhou
- grid.411294.b0000 0004 1798 9345Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, 730000 China ,grid.32566.340000 0000 8571 0482The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000 China
| | - Hao Xu
- grid.412643.60000 0004 1757 2902The Forth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000 Gansu China
| |
Collapse
|
4
|
GPR87 Promotes Metastasis through the AKT-eNOS-NO Axis in Lung Adenocarcinoma. Cancers (Basel) 2021; 14:cancers14010019. [PMID: 35008182 PMCID: PMC8750422 DOI: 10.3390/cancers14010019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
Lung adenocarcinoma is one of the leading causes of cancer-related deaths. Despite the availability of advanced anticancer drugs for lung cancer treatment, the prognosis of patients still remains poor. There is a need to explore novel oncogenic mechanisms to overcome these therapeutic limitations. The functional experiments in vitro and in vivo were performed to evaluate the role of GPR87 expression on lung adenocarcinoma metastasis. The public lung adenocarcinoma dataset was used to determine the clinical relevance of GPR87 expression in patients with lung adenocarcinoma. GPR87 is upregulated in various cancer; however, the biological function of GPR87 has not yet been established in lung adenocarcinoma. In this study, we found that GPR87 expression is upregulated in lung adenocarcinoma and is associated with poor patient prognosis. Additionally, we showed that GPR87 overexpression promotes invasiveness and metastasis of lung adenocarcinoma cells. Furthermore, we demonstrated that AKT-eNOS-NO signaling is a novel downstream pathway of GPR87 in lung adenocarcinoma. Conversely, we confirmed that silencing of GPR87 expression suppressed these phenotypes. Our results reveal the oncogenic function of GPR87 in cancer progression and metastasis through the activation of eNOS as a key mediator. Therefore, we propose that targeting eNOS could be a novel therapeutic strategy to improve the clinical treatment of lung adenocarcinoma.
Collapse
|
5
|
Yang Y, Li Y, Qi R, Zhang L. Development and Validation of a Combined Glycolysis and Immune Prognostic Model for Melanoma. Front Immunol 2021; 12:711145. [PMID: 34659201 PMCID: PMC8517401 DOI: 10.3389/fimmu.2021.711145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/15/2021] [Indexed: 11/26/2022] Open
Abstract
Background Glycolytic effects and immune microenvironments play important roles in the development of melanoma. However, reliable biomarkers for prognostic prediction of melanoma as based on glycolysis and immune status remain to be identified. Methods Glycolysis-related genes (GRGs) were obtained from the Molecular Signatures database and immune-related genes (IRGs) were downloaded from the ImmPort dataset. Prognostic GRGs and IRGs in the TCGA (The Cancer Genome Atlas) and GSE65904 datasets were identified. Least absolute shrinkage and selection operator (LASSO) Cox regression and multivariate Cox regression were used for model construction. Glycolysis expression profiles and the infiltration of immune cells were analyzed and compared. Finally, in vitro experiments were performed to assess the expression and function of these CIGI genes. Results Four prognostic glycolysis- and immune-related signatures (SEMA4D, IFITM1, KIF20A and GPR87) were identified for use in constructing a comprehensive glycolysis and immune (CIGI) model. CIGI proved to be a stable, predictive method as determined from different datasets and subgroups of patients and served as an independent prognostic factor for melanoma patients. In addition, patients in the high-CIGI group showed increased levels of glycolytic gene expressions and exhibited immune-suppressive features. Finally, SEMA4D and IFITM1 may function as tumor suppressor genes, while KIF20A and GPR87 may function as oncogenes in melanoma as revealed from results of in vitro experiments. Conclusion In this report we present our findings on the development and validation of a novel prognostic classifier for use in patients with melanoma as based on glycolysis and immune expression profiles.
Collapse
Affiliation(s)
- Yang Yang
- Department of Dermatology, The First Hospital of China Medical University and National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang, China
| | - Yaling Li
- Department of Dermatology, The First Hospital of China Medical University and National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang, China
| | - Ruiqun Qi
- Department of Dermatology, The First Hospital of China Medical University and National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang, China
| | - Lan Zhang
- Department of Dermatology, The First Hospital of China Medical University and National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang, China
| |
Collapse
|
6
|
Batool S, Bin-T-Abid D, Batool H, Shahid S, Saleem M, Khan AU, Hamid A, Mahmood MS, Ashraf NM. Development of multi-epitope vaccine constructs for non-small cell lung cancer (NSCLC) against USA human leukocyte antigen background: an immunoinformatic approach toward future vaccine designing. Expert Opin Biol Ther 2021; 21:1525-1533. [PMID: 34547976 DOI: 10.1080/14712598.2021.1981285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVES The design of peptide-based vaccines for cancer is a promising immunotherapy that can induce a cancer-specific cytotoxic response in tumor cells. METHODS Herein, we used the immunoinformatic approach in designing a multi-epitope vaccine targeting G-protein coupled receptor 87 (GPCR-87), cystine/glutamate transporter (SLC7A11), Immunoglobulin binding protein 1 (IGBP1), and thioredoxin domain-containing protein 5 (TXNDC5), which can potentially contribute to NSCLC. The MHC-I and MHC-II epitopes selected for the fusion construct were evaluated for their antigenic and non-allergenic natures via VaxiJen and AllerTop. RESULTS A total of five epitopes, four class-I (FIFYLKNIV, CRYTSVLFY, RYLKVVKPF, and RQAKIQRYK), and one class-II (NQVRGYPTLLWFRDG), having combined USA population coverage of 100%, were used to make ten possible multi-epitope fusion constructs. In these constructs, PADRE, a universal T-helper epitope, and RSO9, a TLR4 agonist, were fused as adjuvants. The molecular docking analysis revealed that two constructs were showing significant binding affinities toward HLA-A*02:01, the most prevalent HLA allele in USA. Moreover, MD simulations marked one construct as a promising therapeutic candidate. CONCLUSION The multi-epitope vaccine constructs designed using immunogenic, and non-allergenic peptides of NSCLS tumor-associated proteins are likely to pose significant therapeutic efficacies in cancer immunotherapy due to their high binding affinities toward HLA molecules.
Collapse
Affiliation(s)
- Sana Batool
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan.,School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Duaa Bin-T-Abid
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Hina Batool
- Department of Life Science, School of Science, University of Management Technology, Lahore, Pakistan
| | - Saher Shahid
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Mahjabeen Saleem
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Azmat Ullah Khan
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat Pakistan
| | | | - Malik Siddique Mahmood
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan.,Department of Biochemistry, Nur International University, Lahore, Pakistan
| | - Naeem Mahmood Ashraf
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat Pakistan
| |
Collapse
|
7
|
Guo K, Lai C, Shi J, Tang Z, Liu C, Li K, Xu K. A Novel Risk Factor Model Based on Glycolysis-Associated Genes for Predicting the Prognosis of Patients With Prostate Cancer. Front Oncol 2021; 11:605810. [PMID: 34595101 PMCID: PMC8476926 DOI: 10.3389/fonc.2021.605810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 08/24/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Prostate cancer (PCa) is one of the most prevalent cancers among males, and its mortality rate is increasing due to biochemical recurrence (BCR). Glycolysis has been proven to play an important regulatory role in tumorigenesis. Although several key regulators or predictors involved in PCa progression have been found, the relationship between glycolysis and PCa is unclear; we aimed to develop a novel glycolysis-associated multifactor prediction model for better predicting the prognosis of PCa. METHODS Differential mRNA expression profiles derived from the Cancer Genome Atlas (TCGA) PCa cohort were generated through the "edgeR" package. Glycolysis-related genes were obtained from the GSEA database. Univariate Cox and LASSO regression analyses were used to identify genes significantly associated with disease-free survival. ROC curves were applied to evaluate the predictive value of the model. An external dataset derived from Gene Expression Omnibus (GEO) was used to verify the predictive ability. Glucose consumption and lactic production assays were used to assess changes in metabolic capacity, and Transwell assays were used to assess the invasion and migration of PC3 cells. RESULTS Five glycolysis-related genes were applied to construct a risk score prediction model. Patients with PCa derived from TCGA and GEO (GSE70770) were divided into high-risk and low-risk groups according to the median. In the TCGA cohort, the high-risk group had a poorer prognosis than the low-risk group, and the results were further verified in the GSE70770 cohort. In vitro experiments demonstrated that knocking down HMMR, KIF20A, PGM2L1, and ANKZF1 separately led to less glucose consumption, less lactic production, and inhibition of cell migration and invasion, and the results were the opposite with GPR87 knockdown. CONCLUSION The risk score based on five glycolysis-related genes may serve as an accurate prognostic marker for PCa patients with BCR.
Collapse
Affiliation(s)
- Kaixuan Guo
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cong Lai
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Juanyi Shi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhuang Tang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cheng Liu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kuiqing Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kewei Xu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Deng T, Ye Q, Jin C, Wu M, Chen K, Yang J, Chen Z, Yu X, Chen G, Wang Y. Identification and validation of a glycolysis-associated multiomics prognostic model for hepatocellular carcinoma. Aging (Albany NY) 2021; 13:7481-7498. [PMID: 33686959 PMCID: PMC7993684 DOI: 10.18632/aging.202613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
Increased glycolysis has been reported as a major metabolic hallmark in many cancers, and is closely related to malignant behavior of tumors. However, the potential mechanism of glycolysis in hepatocellular carcinoma (HCC) and its prognostic value are not well understood. To address this, we investigated glycolysis-related gene expression data of patients with HCC from TCGA and ICGC. Patients were categorized into three different glycolysis-associated subgroups: Glycolysis-M, Glycolysis-H, and Glycolysis-L. We found that Glycolysis-H combined with Glycolysis-M (Glycolysis-H+M) subgroup was associated with poor overall survival and distinct cancer stem cell characteristics and immune infiltrate patterns. Additionally, multiomics-based analyses were conducted to evaluate genomic patterns of glycolysis subgroups, including their gene mutations, copy number variations, and RNA-sequencing data. Finally, a glycolysis-associated multiomics prognostic model (GMPM) consisting of 19 glycolysis-associated genes was developed. The capability of GMPM in categorizing patients with HCC into high- and low-risk groups was validated with independent HCC datasets. Finally, GMPM was confirmed as an independent risk factor for the prognosis of patients with HCC. We believe that our findings provide new insights into the mechanism of glycolysis and highlight the potential clinical value of GMPM in predicting the prognosis of patients with HCC.
Collapse
Affiliation(s)
- Tuo Deng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qian Ye
- Department of Clinical Laboratory, Wenzhou People's Hospital, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Chen Jin
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mingliang Wu
- Department of Oncology, The First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kaiyu Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinhuan Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ziyan Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - XiXiang Yu
- Department of Oncology, The First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
9
|
Wang J, Xu M, Li DD, Abudukelimu W, Zhou XH. GPR37 promotes the malignancy of lung adenocarcinoma via TGF-β/Smad pathway. Open Med (Wars) 2020; 16:24-32. [PMID: 33364431 PMCID: PMC7730288 DOI: 10.1515/med-2021-0011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/30/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
This paper aimed to research the function and in-depth mechanism of GPR37 in lung adenocarcinoma (LUAD). Herein, based on TCGA and Oncomine databases, we revealed that GPR37 was expressed at high levels in LUAD, and upregulation of GPR37 was related to the poor outcomes. Furthermore, biological function experiments in vitro were utilized to assess whether GPR37 impacts malignant phenotype of LUAD cells. Gain- or loss-of-function assays indicated that the upregulation of GPR37 contributed to improving the proliferation, migration, and invasion of LUAD cells in vitro, while knockdown of GPR37 can inhibit the malignant biological behaviors. Then, we found that depletion of GPR37 resulted in a decrease in the expression of TGF-β1 as well as the extents of Smad2 and Smad3 phosphorylation, while overexpression of GPR37 presented opposite outcomes. Altogether, our findings indicated that GPR37 is a potential oncogene of LUAD, and its promoting effects on the malignant progression of LUAD may be realized via TGF-β/Smad pathway.
Collapse
Affiliation(s)
- Jian Wang
- Department of Respiration, Midong Branch of People's Hospital of Xinjiang Autonomous Region, 1302-17 Midong South Road, Urumqi, Xinjiang, People's Republic of China
| | - Min Xu
- Department of Medical, Midong Branch of People's Hospital of Xinjiang Autonomous Region, Urumqi, Xinjiang, People's Republic of China
| | - Dan-Dan Li
- Department of Endocrinology, Midong Branch of People's Hospital of Xinjiang Autonomous Region, Xinjiang, Urumqi, People's Republic of China
| | - Wujikenayi Abudukelimu
- Department of Respiration, Midong Branch of People's Hospital of Xinjiang Autonomous Region, 1302-17 Midong South Road, Urumqi, Xinjiang, People's Republic of China
| | - Xiu-Hong Zhou
- Department of Respiration, Midong Branch of People's Hospital of Xinjiang Autonomous Region, 1302-17 Midong South Road, Urumqi, Xinjiang, People's Republic of China
| |
Collapse
|
10
|
Pan X, Huang L, Mo D, Liang Y, Huang Z, Zhu B, Fang M. SNP rs2240688 in CD133 gene on susceptibility and clinicopathological features of hepatocellular carcinoma. Transl Cancer Res 2020; 9:5940-5948. [PMID: 35117206 PMCID: PMC8799249 DOI: 10.21037/tcr-19-2690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 08/21/2020] [Indexed: 01/30/2023]
Abstract
Background CD133 is one of the important cancer stem cells (CSCs) markers of hepatocellular carcinoma (HCC). The aim of this study was to explore the relationship between CD133 single-nucleotide polymorphisms (SNPs) and risk factors associated with HCC susceptibility and clinicopathological features in HCC cases and healthy controls from the Guangxi region of southern China. Methods A case control study was conducted, including 565 HCC patients and 561 control subjects. The genotyping of rs2240688 was performed using the SNaPshot method. Unconditional logistic regression was used to correct for gender, age, and other confounding factors. Odds ratio (OR) and its 95% confidence interval (CI) were calculated to analyze the relationship between allele and genotype frequency and the risk of HCC. Results The distribution frequencies of CD133 alleles and genotypes in the HCC case group and the control group were statistically significant (P<0.05). The CA heterozygous (P=0.003, OR =1.463, 95% CI: 1.134–1.887) and CC homozygous genotypes (P=0.036, OR =1.910, 95% CI: 1.044–3.493), as well as C carrier status (P=0.004, OR =1.465, 95% CI: 1.136–1.889) and C alleles (P=0.004, OR =1.465, 95% CI: 1.136–1.889), were associated with an increased risk of HCC. Additionally, in the subgroup analysis of CD133 rs2240688 polymorphism and clinical characteristics, the results showed that the genotype distribution of CD133 rs2240688 was significantly different in genotype distribution of metastasis and alanine aminotransferase (ALT). Conclusions the expression of miRNA binding site rs2240688 of tumor stem cell marker gene CD133 in HCC may be a promising marker for the prediction of HCC, but larger studies are still needed.
Collapse
Affiliation(s)
- Xiaolan Pan
- Department of Clinical Laboratory, Guangxi Medical University Affiliated Tumor Hospital, Nanning, China
| | - Lingsha Huang
- Department of Clinical Laboratory, Guangxi Medical University Affiliated Tumor Hospital, Nanning, China
| | - Dan Mo
- Department of Surgery, Maternal and Child Health Hospital of the Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yihua Liang
- Department of Clinical Laboratory, Guangxi Medical University Affiliated Tumor Hospital, Nanning, China
| | - Zhaodong Huang
- Department of Clinical Laboratory, Guangxi Medical University Affiliated Tumor Hospital, Nanning, China
| | - Bo Zhu
- Department of Clinical Laboratory, Guangxi Medical University Affiliated Tumor Hospital, Nanning, China
| | - Min Fang
- Department of Clinical Laboratory, Guangxi Medical University Affiliated Tumor Hospital, Nanning, China
| |
Collapse
|
11
|
Wu M, Li X, Liu R, Yuan H, Liu W, Liu Z. Development and validation of a metastasis-related Gene Signature for predicting the Overall Survival in patients with Pancreatic Ductal Adenocarcinoma. J Cancer 2020; 11:6299-6318. [PMID: 33033514 PMCID: PMC7532518 DOI: 10.7150/jca.47629] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal, aggressive cancer characterized by invasiveness and metastasis. In this study, we aimed to propose a gene prediction model based on metastasis-related genes (MTGs) to more accurately predict PDAC prognosis. Methods: Differentially expressed MTGs (DE-MTGs) were identified via integrated analysis of gene expression omnibus (GEO) datasets and Human Cancer Metastasis Database (HCMDB). Overall survival (OS) related DE-MTGs were then identified and a prognostic gene signature was established using Lasso-Cox regression with TCGA-PAAD datasets. Tumor immunity was analyzed using ESTIMATE and CIBERSORT algorithms. Finally, a nomogram predicting 1-year, 2-year, and 3-year OS of PDAC patients was established based on the prognostic gene signature and relevant clinical parameters using a stepwise Cox regression model. Results: A total of 36 DE-MTGs related to OS were identified in PDAC. Consequently, an MTG-based gene signature comprising of RACGAP1, RARRES3, TPX2, MMP28, GPR87, KIF14, and TSPAN7 was established to predict the OS of PDAC. The MTG-based gene signature was able to distinguish high-risk patients with significantly poorer prognosis and accurately predict OS of PDAC in both the training and external validation datasets. Cox regression analysis indicated that the MTG-based gene signature was an independent prognostic factor in PDAC. The gene set enrichment analysis (GSEA) showed that molecular alterations in the high-risk group were associated with multiple oncological pathways. Moreover, analysis of tumor immunity revealed significantly higher levels of follicular helper T cells and M0 macrophage infiltration, and lower levels of infiltrating naïve B cells, CD8 T cells, monocytes, and resting dendritic cells in the high-risk group. Immune cell infiltration levels were significantly associated with the expression of the seven DE-MTGs. Finally, a nomogram was established by incorporating the prognostic gene signature and clinical parameters, which was superior to the AJCC staging system in predicting the OS of PDAC patients. Conclusions: The DE-MTGs we identified were closely associated with the progress and prognosis of PDAC and are potential therapeutic targets. The MTG-based gene signature and nomogram may serve to improve the individualized prediction of survival, assisting in clinical decision-making.
Collapse
Affiliation(s)
- Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaobin Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Rui Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hongwei Yuan
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ziwen Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Gromisch C, Qadan M, Machado MA, Liu K, Colson Y, Grinstaff MW. Pancreatic Adenocarcinoma: Unconventional Approaches for an Unconventional Disease. Cancer Res 2020; 80:3179-3192. [PMID: 32220831 PMCID: PMC7755309 DOI: 10.1158/0008-5472.can-19-2731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 02/08/2020] [Accepted: 03/24/2020] [Indexed: 12/16/2022]
Abstract
This review highlights current treatments, limitations, and pitfalls in the management of pancreatic cancer and discusses current research in novel targets and drug development to overcome these clinical challenges. We begin with a review of the clinical landscape of pancreatic cancer, including genetic and environmental risk factors, as well as limitations in disease diagnosis and prevention. We next discuss current treatment paradigms for pancreatic cancer and the shortcomings of targeted therapy in this disease. Targeting major driver mutations in pancreatic cancer, such as dysregulation in the KRAS and TGFβ signaling pathways, have failed to improve survival outcomes compared with nontargeted chemotherapy; thus, we describe new advances in therapy such as Ras-binding pocket inhibitors. We then review next-generation approaches in nanomedicine and drug delivery, focusing on preclinical advancements in novel optical probes, antibodies, small-molecule agents, and nucleic acids to improve surgical outcomes in resectable disease, augment current therapies, expand druggable targets, and minimize morbidity. We conclude by summarizing progress in current research, identifying areas for future exploration in drug development and nanotechnology, and discussing future prospects for management of this disease.
Collapse
Affiliation(s)
- Christopher Gromisch
- Departments of Pharmacology and Experimental Therapeutics, Biomedical Engineering, and Chemistry, Boston University, Boston, Massachusetts
| | - Motaz Qadan
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Mariana Albuquerque Machado
- Departments of Pharmacology and Experimental Therapeutics, Biomedical Engineering, and Chemistry, Boston University, Boston, Massachusetts
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology and Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
| | - Yolonda Colson
- Division of Thoracic Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Mark W Grinstaff
- Departments of Pharmacology and Experimental Therapeutics, Biomedical Engineering, and Chemistry, Boston University, Boston, Massachusetts.
| |
Collapse
|
13
|
Wang J, Xu C, Cheng Q, Zhao J, Wu S, Li W, Ma W, Liu C, Jiang X. RNA Sequencing Revealed Signals of Evolution From Gallbladder Stone to Gallbladder Carcinoma. Front Oncol 2020; 10:823. [PMID: 32547950 PMCID: PMC7272658 DOI: 10.3389/fonc.2020.00823] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/28/2020] [Indexed: 12/24/2022] Open
Abstract
Gallbladder stone is a major risk factor for gallbladder carcinoma (GBC), while there is still a controversy whether period of follow-up since newly diagnoses of asymptomatic gallstones increases the risk of GBC. In this study, 10 GBC patients and 30 patients with gallstones were admitted to our hospital. Patients with gallstones were divided into 3 groups according to the follow-up time, involving 10 patients with follow-up period of 1–3 years (GS3 group), 10 patients with follow-up period of 5–10 years (GS5 group), and 10 patients with follow-up period of more than 10 years (GS10 group). Tumor and para-tumor tissues of GBC patients, and gallbladder tissues of gallstone patients were collected. RNA sequencing was performed on the 50 samples. Besides, 1,704 differentially expressed genes (DEGs) were identified in tumors compared with para-tumor tissues of 10 GBC patients, which were enriched into some well-known cancer-related pathways, such as PI3K-Akt, mitogen-activated protein kinase (MAPK), Ras, and Wnt signaling pathways, and the most significant pathway was neuroactive ligand-receptor interaction. Patients with gallstones with periods of follow-up equal to 1–3 and > 10 years showed to have higher cancer risk than those with 5–10 years. ALPP and GPR87 are potential biomarkers for predicting cancer risk in patients with gallstones. The in vitro results revealed that GPR-87 can promote the proliferation, migration, and invasion of GBC cells. Herein, we explored the relationship between GBC patients and patients with gallstones with different periods of follow-up in transcriptome level.
Collapse
Affiliation(s)
- Jinghan Wang
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Chang Xu
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Qingbao Cheng
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Jiangman Zhao
- Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai, China.,Shanghai Zhangjiang Institute of Medical Innovation, Shanghai, China
| | - Shouxin Wu
- Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai, China.,Shanghai Zhangjiang Institute of Medical Innovation, Shanghai, China
| | - Wushuang Li
- Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai, China.,Shanghai Zhangjiang Institute of Medical Innovation, Shanghai, China
| | - Wencong Ma
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Chen Liu
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Xiaoqing Jiang
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| |
Collapse
|
14
|
Jiang J, Yu C, Guo X, Zhang H, Tian S, Cai K, He Z, Sun C. G Protein-Coupled Receptor GPR87 Promotes the Expansion of PDA Stem Cells through Activating JAK2/STAT3. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:384-393. [PMID: 32405536 PMCID: PMC7210383 DOI: 10.1016/j.omto.2020.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
Cancer stem cells are the main reason for drug resistance and tumor relapse, and screening the targets for cancer stem cells is essential for tumor therapy. Here, we studied the role and regulatory mechanism of a G protein-coupled receptor named as G protein-coupled receptor 87 (GPR87) in the expansion of pancreatic ductal adenocarcinoma (PDA) stem cells. We found that GPR87 was an independent prognostic factor for PDA patients: patients with high GPR87 had a poor outcome. GPR87 significantly promoted the sphere formation ability, increased side population (SP) cell number, increased the expression of PDA stem cell markers, and increased the tumor initiation ability, suggesting that GPR87 promotes the expansion of PDA stem cells. Mechanism analysis suggested that signal transducer and activator of transcription 3 (STAT3) directly bound to the promoter of GPR87 to increase GPR87 expression; inversely, GPR87 also activated STAT3. Further analysis suggested that GPR87 activated Janus kinase 2 (JAK2), which can activate STAT3, inhibiting JAK2 activation in GPR87-overexpressing PDA cells, which significantly inhibited the expansion of PDA stem cells; these findings suggested that GPR87, JAK2, and STAT3 formed a positive feedback loop increasing PDA stem cell population. In PDA specimens, GPR87 expression is positively correlated with the phosphorylation level of STAT3 and JAK2, confirming GPR87 promoted PDA stem cell expansion through activating JAK2/STAT3. In summary, we found that GPR87, together with JAK2 and STAT3, formed a positive feedback loop to promote the expansion of PDA stem cells.
Collapse
Affiliation(s)
- Jianxin Jiang
- Department of Hepatic-Biliary Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei 430030, People's Republic of China
| | - Chao Yu
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, 28 Guiyi Road, Guiyang, Guizhou 550000, People's Republic of China
| | - Xingjun Guo
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave., Wuhan, Hubei 430030, People's Republic of China
| | - Hao Zhang
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, 28 Guiyi Road, Guiyang, Guizhou 550000, People's Republic of China
| | - She Tian
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, 28 Guiyi Road, Guiyang, Guizhou 550000, People's Republic of China
| | - Kun Cai
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, 28 Guiyi Road, Guiyang, Guizhou 550000, People's Republic of China
| | - Zhiwei He
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, 28 Guiyi Road, Guiyang, Guizhou 550000, People's Republic of China
| | - Chengyi Sun
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, 28 Guiyi Road, Guiyang, Guizhou 550000, People's Republic of China
| |
Collapse
|
15
|
Lysophosphatidic Acid and Autotaxin-associated Effects on the Initiation and Progression of Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11070958. [PMID: 31323936 PMCID: PMC6678549 DOI: 10.3390/cancers11070958] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023] Open
Abstract
The intestinal epithelium interacts dynamically with the immune system to maintain its barrier function to protect the host, while performing the physiological roles in absorption of nutrients, electrolytes, water and minerals. The importance of lysophosphatidic acid (LPA) and its receptors in the gut has been progressively appreciated. LPA signaling modulates cell proliferation, invasion, adhesion, angiogenesis, and survival that can promote cancer growth and metastasis. These effects are equally important for the maintenance of the epithelial barrier in the gut, which forms the first line of defense against the milieu of potentially pathogenic stimuli. This review focuses on the LPA-mediated signaling that potentially contributes to inflammation and tumor formation in the gastrointestinal tract.
Collapse
|
16
|
Li Y, Wang M, Huang BW, Ping Y, You J, Gao JQ. Transcriptome-wide elucidation of liposomal formulations for anticancer drug delivery. Int J Nanomedicine 2017; 12:8557-8572. [PMID: 29238192 PMCID: PMC5716676 DOI: 10.2147/ijn.s148975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although widely used in chemotherapy, free doxorubicin (Dox) might enhance cell malignancy undesirably. Liposomal Dox (Doxlipo) has been clinically approved for the treatment of breast cancer due to reduced systematical toxicity and increased tumor targeting, yet the transcriptome-wide elucidation of the Doxlipo formulations remains elusive. To this end, we explored the impact of two Dox liposomal formulations, Doxlipo mainly containing hydrogenated soy phosphatidylcholine or 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, on the transcriptional pattern of MCF-7 cells. The two types of Dox liposomal formulations with different drug release kinetics were investigated to reveal the relationship between the formulation and tumor malignancy. Interestingly, we found that liposomal formulation significantly altered the transcriptional pattern of a wide range of genes. Under equivalent dosage of Dox, free Dox substantially changed the expression of ANK1, ACTA2, GPR87, GDF15, FZD6, and WNT4 in MCF-7 cells. Notably, free Dox induced much higher expression of ABCB1 and significantly enhanced the cell migration behavior in comparison with HSPC Doxlipo under a similar level of cytotoxicity. Finally, siRNA targeting GPR87 was codelivered with cationic Doxlipo to reduce the expression of malignancy-related genes. Our study, for the first time, provides an overview of the influence of formulation on the malignancy at transcriptional level and reveals the relationship between cytotoxicity and cell malignancy from the formulation aspect, offering valuable reference for the future formulation design for anticancer drug delivery.
Collapse
Affiliation(s)
- Ying Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences.,Zhejiang Province Key Laboratory of Anticancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Meng Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences.,Zhejiang Province Key Laboratory of Anticancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Bu-Wei Huang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences.,Zhejiang Province Key Laboratory of Anticancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yuan Ping
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Jian You
- Institute of Pharmaceutics, College of Pharmaceutical Sciences
| | - Jian-Qing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences.,Zhejiang Province Key Laboratory of Anticancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
17
|
You N, Tan Y, Zhou L, Huang X, Wang W, Wang L, Wu K, Mi N, Li J, Zheng L. Tg737 acts as a key driver of invasion and migration in liver cancer stem cells and correlates with poor prognosis in patients with hepatocellular carcinoma. Exp Cell Res 2017; 358:217-226. [PMID: 28663060 DOI: 10.1016/j.yexcr.2017.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 06/08/2017] [Accepted: 06/23/2017] [Indexed: 12/16/2022]
Abstract
We previously demonstrated that the Tg737 gene plays a critical role in the carcinogenesis of hepatocellular carcinoma (HCC). However, few systematic investigations have focused on the biological function of Tg737 in the invasion and migration of liver cancer stem cells (LCSCs) and on its clinical significance. In this study, Tg737 overexpression was achieved via gene transfection in MHCC97-H side population (SP) cells, which are considered a model for LCSCs in scientific studies. Tg737 overexpression significantly inhibited the invasion and migration of SP cells in an extracellular signal-regulated kinase1/2 (ERK1/2)/matrix metalloproteinase-2 (MMP-2)-dependent manner. Furthermore, Tg737 expression was frequently decreased in HCC tissues relative to that in adjacent noncancerous liver tissues. This decreased expression was significantly associated with tumor differentiation, the American Joint Committee on Cancer (AJCC) stage, metastasis, tumor size, vascular invasion, alpha-fetoprotein (AFP) levels, and tumor number. Moreover, multivariate Cox regression analyses demonstrated that Tg737 expression was an independent factor for predicting the overall survival of HCC patients. Notably, Kaplan-Meier analysis further showed that overall survival was significantly worse among patients with low Tg737 expression. Collectively, our findings demonstrated that Tg737 is a poor prognostic marker in patients with HCC, which may be due to its ability to promote LCSCs invasion and migration. These results provide a basis for investigating of Tg737 as a novel prognostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Nan You
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Ye Tan
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Liang Zhou
- Department of General Surgery, The 155 Central Hospital of PLA, Kaifeng, He'nan 475000, China
| | - Xiaobing Huang
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Weiwei Wang
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Liang Wang
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Ke Wu
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Na Mi
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jing Li
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Lu Zheng
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
18
|
Wang L, Zhou W, Zhong Y, Huo Y, Fan P, Zhan S, Xiao J, Jin X, Gou S, Yin T, Wu H, Liu T. Overexpression of G protein-coupled receptor GPR87 promotes pancreatic cancer aggressiveness and activates NF-κB signaling pathway. Mol Cancer 2017; 16:61. [PMID: 28288630 PMCID: PMC5348802 DOI: 10.1186/s12943-017-0627-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 02/27/2017] [Indexed: 12/13/2022] Open
Abstract
Background Pancreatic cancer is a highly lethal disease and has the worst prognosis of any major malignancy. G protein-coupled receptor GPR87 is reported to be overexpressed in multiple cancers. The clinical significance and biological role of GPR87 in pancreatic cancer, however, remain to be established. Methods GPR87 expression in pancreatic cancer cell lines, paired patient tissues were determined using western blotting and Real-time PCR. Ninety-six human pancreatic cancer tissue samples were analyzed by immunochemistry (IHC) to investigate the association between GPR87 expression and the clinicopathological characteristics of pancreatic cancer. Functional assays, such as anchorage-independent growth, chicken chorioallantoic membrane (CAM) assay, transwell matrix penetration assay, and Annexin V-FITC and PI staining and a xenograft tumor model were used to determine the oncogenic role of GPR87 in human pancreatic cancer progression. The effect of GPR87 on NF-κB signaling pathway was further investigated using the luciferase reporter assays, and by detection of the NF-κB signaling downstream genes. Results Herein, we reported that GPR87 was markedly overexpressed in pancreatic cancer cells and clinical tissues. Immunohistochemical analysis showed that the expression of GPR87 significantly correlated with patients’ clinicopathologic features, including clinical stage and tumor-nodule-metastasis (TNM) classification. Pancreatic cancer patients with higher levels of GPR87 expression had shorter overall survival compared to patients with lower GPR87 levels. We gained valuable insights into the mechanism of GPR87 expression in pancreatic cancer cells by demonstrating that overexpressing GPR87 significantly enhanced, whereas silencing endogenous GPR87 inhibited, the proliferation, angiogenesis and increased resistance to gemcitabine-induced apoptosis of pancreatic cancer in vitro and tumorigenicity of pancreatic cancer cells in vivo. Finally, we demonstrated that GPR87 enhanced pancreatic cancer aggressiveness by activating NF-κB signaling pathway. Conclusions: Taken together, these findings suggest that GPR87 plays a critical oncogenic role in pancreatic cancer progression and highlight its potential as a target for pancreatic cancer therapy. Conclusions Our findings suggest that GPR87 plays a critical oncogenic role in pancreatic cancer progression and highlight its potential as a target for pancreatic cancer therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0627-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li Wang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Wei Zhou
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Yunfeng Zhong
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Yongbao Huo
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Ping Fan
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Sudong Zhan
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Jun Xiao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Xin Jin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Shanmiao Gou
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Tao Yin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Tao Liu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China. .,Department of Digestive Surgical Oncology, Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
19
|
Lee JH, Hur W, Hong SW, Kim JH, Kim SM, Lee EB, Yoon SK. ELK3 promotes the migration and invasion of liver cancer stem cells by targeting HIF-1α. Oncol Rep 2016; 37:813-822. [PMID: 27959451 DOI: 10.3892/or.2016.5293] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/25/2016] [Indexed: 11/06/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common solid cancer and the third most common cause of cancer-related mortality. HCC develops via a multistep process associated with genetic aberrations that facilitate HCC invasion and migration and promote metastasis. A growing body of evidence indicates that cancer stem cells (CSCs) are responsible for tumorigenesis, cancer cell invasion and metastasis. Despite the extremely small proportion of cancer cells represented by this subpopulation of HCC cells, CSCs play a key role in cancer metastasis and poor prognosis. ELK3 (Net/SAP-2/Erp) is a transcription factor that is activated by the Ras/extracellular signal-regulated kinase (ERK) signaling pathway. It plays several important roles in various physiological processes, including cell migration, invasion, wound healing, angiogenesis and tumorigenesis. In the present study, we investigated the role of ELK3 in cancer cell invasion and metastasis in CD133+/CD44+ liver cancer stem cells (LCSCs). We isolated LCSCs expressing CD133 and CD44 from Huh7 HCC cells and evaluated their metastatic potential using invasion and migration assays. We found that CD133+/CD44+ cells had increased metastatic potential compared with non-CD133+/CD44+ cells. We also demonstrated that ELK3 expression was upregulated in CD133+/CD44+ cells and that this aberration enhanced cell migration and invasion. In addition, we identified the molecular mechanism by which ELK3 promotes cancer cell migration and invasion. We found that silencing of ELK3 expression in CD133+/CD44+ LCSCs attenuated their metastatic potential by modulating the expression of heat shock-induced factor-1α (HIF-1α). Collectively, the results of the present study demonstrated that ELK3 overexpression promoted metastasis in CD133+/CD44+ cells by regulating HIF-1α expression and that silencing of ELK3 expression attenuated the metastatic potential of CD133+/CD44+ LCSCs. In conclusion, modulation of ELK3 expression may represent a novel therapeutic strategy for preventing HCC metastasis and invasion.
Collapse
Affiliation(s)
- Joon Ho Lee
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Wonhee Hur
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sung Woo Hong
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jung-Hee Kim
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sung Min Kim
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Eun Byul Lee
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
20
|
Xu Z, Zhu L, Wu W, Liao Y, Zhang W, Deng Z, Shen J, Yuan Q, Zheng L, Zhang Y, Shen W. Immediate early response protein 2 regulates hepatocellular carcinoma cell adhesion and motility via integrin β1-mediated signaling pathway. Oncol Rep 2016; 37:259-272. [DOI: 10.3892/or.2016.5215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 10/25/2016] [Indexed: 11/05/2022] Open
|
21
|
Histone variant H3F3A promotes lung cancer cell migration through intronic regulation. Nat Commun 2016; 7:12914. [PMID: 27694942 PMCID: PMC5477500 DOI: 10.1038/ncomms12914] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/16/2016] [Indexed: 01/12/2023] Open
Abstract
Although several somatic single nucleotide variations in histone H3.3 have been investigated as cancer drivers, other types of aberration have not been well studied. Here, we demonstrate that overexpression of H3F3A, encoding H3.3, is associated with lung cancer progression and promotes lung cancer cell migration by activating metastasis-related genes. H3.3 globally activates gene expression through the occupation of intronic regions in lung cancer cells. Moreover, H3.3 binding regions show characteristics of regulatory DNA elements. We show that H3.3 is deposited at a specific intronic region of GPR87, where it modifies the chromatin status and directly activates GPR87 transcription. The expression levels of H3F3A and GPR87, either alone or in combination, are robust prognostic markers for early-stage lung cancer, and may indicate potential for the development of treatments involving GPR87 antagonists. In summary, our results demonstrate that intronic regulation by H3F3A may be a target for the development of novel therapeutic strategies. Histone variants act as transcriptional activators and repressors and have been linked to cancer progression. Park and Choi et al. show that the histone H3.3 overexpression is associated with early-stage lung cancer, and promotes cancer cell migration by upregulating a G-protein-coupled receptor.
Collapse
|
22
|
Jayachandran A, Dhungel B, Steel JC. Epithelial-to-mesenchymal plasticity of cancer stem cells: therapeutic targets in hepatocellular carcinoma. J Hematol Oncol 2016; 9:74. [PMID: 27578206 PMCID: PMC5006452 DOI: 10.1186/s13045-016-0307-9] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/24/2016] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the most common and lethal malignancies worldwide despite the development of various therapeutic strategies. A better understanding of the mechanisms responsible for HCC initiation and progression is essential for the development of more effective therapies. The cancer stem cell (CSC) model has provided new insights into the development and progression of HCC. CSCs are specialized tumor cells that are capable of self-renewal and have long-term repopulation potential. As they are important mediators of tumor proliferation, invasion, metastasis, therapy resistance, and cancer relapse, the selective targeting of this crucial population of cells has the potential to improve HCC patient outcomes and survival. In recent years, the role of epithelial-to-mesenchymal transition (EMT) in the advancement of HCC has gained increasing attention. This multi-step reprograming process resulting in a phenotype switch from an epithelial to a mesenchymal cellular state has been closely associated with the acquisition of stem cell-like attributes in tumors. Moreover, CSC mediates tumor metastasis by maintaining plasticity to transition between epithelial or mesenchymal states. Therefore, understanding the molecular mechanisms of the reprograming switches that determine the progression through EMT and generation of CSC is essential for developing clinically relevant drug targets. This review provides an overview of the proposed roles of CSC in HCC and discusses recent results supporting the emerging role of EMT in facilitating hepatic CSC plasticity. In particular, we discuss how these important new insights may facilitate rational development of combining CSC- and EMT-targeted therapies in the future.
Collapse
Affiliation(s)
- Aparna Jayachandran
- The University of Queensland School of Medicine and the Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, Queensland, Australia
| | - Bijay Dhungel
- The University of Queensland School of Medicine and the Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, Queensland, Australia
| | - Jason C Steel
- The University of Queensland School of Medicine and the Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, Queensland, Australia.
| |
Collapse
|
23
|
Gao B, Shao Q, Choudhry H, Marcus V, Dong K, Ragoussis J, Gao ZH. Weighted gene co-expression network analysis of colorectal cancer liver metastasis genome sequencing data and screening of anti-metastasis drugs. Int J Oncol 2016; 49:1108-18. [PMID: 27571956 DOI: 10.3892/ijo.2016.3591] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/03/2016] [Indexed: 11/06/2022] Open
Abstract
Approximately 9% of cancer-related deaths are caused by colorectal cancer (CRC). CRC patients are prone to liver metastasis, which is the most important cause for the high CRC mortality rate. Understanding the molecular mechanism of CRC liver metastasis could help us to find novel targets for the effective treatment of this deadly disease. Using weighted gene co-expression network analysis on the sequencing data of CRC with and with metastasis, we identified 5 colorectal cancer liver metastasis related modules which were labeled as brown, blue, grey, yellow and turquoise. In the brown module, which represents the metastatic tumor in the liver, gene ontology (GO) analysis revealed functions including the G-protein coupled receptor protein signaling pathway, epithelial cell differentiation and cell surface receptor linked signal transduction. In the blue module, which represents the primary CRC that has metastasized, GO analysis showed that the genes were mainly enriched in GO terms including G-protein coupled receptor protein signaling pathway, cell surface receptor linked signal transduction, and negative regulation of cell differentiation. In the yellow and turquoise modules, which represent the primary non-metastatic CRC, 13 downregulated CRC liver metastasis-related candidate miRNAs were identified (e.g. hsa-miR-204, hsa-miR-455, etc.). Furthermore, analyzing the DrugBank database and mining the literature identified 25 and 12 candidate drugs that could potentially block the metastatic processes of the primary tumor and inhibit the progression of metastatic tumors in the liver, respectively. Data generated from this study not only furthers our understanding of the genetic alterations that drive the metastatic process, but also guides the development of molecular-targeted therapy of colorectal cancer liver metastasis.
Collapse
Affiliation(s)
- Bo Gao
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Qin Shao
- Department of Pathology, The Research Institute of McGill University Health Center, Montreal, Québec H4A 3J1, Canada
| | - Hani Choudhry
- McGill University and Genome Quebec Innovation Centre, Montreal, Québec H3B 1S6, Canada
| | - Victoria Marcus
- Department of Pathology, The Research Institute of McGill University Health Center, Montreal, Québec H4A 3J1, Canada
| | - Kung Dong
- Department of Pathology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Jiannis Ragoussis
- McGill University and Genome Quebec Innovation Centre, Montreal, Québec H3B 1S6, Canada
| | - Zu-Hua Gao
- Department of Pathology, The Research Institute of McGill University Health Center, Montreal, Québec H4A 3J1, Canada
| |
Collapse
|
24
|
Liu C, Li Y, Xing Y, Cao B, Yang F, Yang T, Ai Z, Wei Y, Jiang J. The Interaction between Cancer Stem Cell Marker CD133 and Src Protein Promotes Focal Adhesion Kinase (FAK) Phosphorylation and Cell Migration. J Biol Chem 2016; 291:15540-50. [PMID: 27226554 DOI: 10.1074/jbc.m115.712976] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Indexed: 12/28/2022] Open
Abstract
CD133, a widely known cancer stem cell marker, has been proved to promote tumor metastasis. However, the mechanism by which CD133 regulates metastasis remains largely unknown. Here, we report that CD133 knockdown inhibits cancer cell migration, and CD133 overexpression promotes cell migration. CD133 expression is beneficial to activate the Src-focal adhesion kinase (FAK) signaling pathway. Further studies show that CD133 could interact with Src, and the region between amino acids 845 and 857 in the CD133 C-terminal domain is indispensable for its interaction with Src. The interaction activates Src to phosphorylate its substrate FAK and to promote cell migration. Likewise, a Src binding-deficient CD133 mutant loses the abilities to increase Src and FAK phosphorylation and to promote cell migration. Inhibition of Src activity by PP2, a known Src activity inhibitor, could block the activation of FAK phosphorylation and cell migration induced by CD133. In summary, our data suggest that activation of FAK by the interaction between CD133 and Src promotes cell migration, providing clues to understand the migratory mechanism of CD133(+) tumor cells.
Collapse
Affiliation(s)
- Chanjuan Liu
- From the Key Laboratory of Glycoconjugates Research, Ministry of Public Health, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai 200032, China and
| | - Yinan Li
- From the Key Laboratory of Glycoconjugates Research, Ministry of Public Health, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai 200032, China and
| | - Yang Xing
- From the Key Laboratory of Glycoconjugates Research, Ministry of Public Health, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai 200032, China and
| | - Benjin Cao
- From the Key Laboratory of Glycoconjugates Research, Ministry of Public Health, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai 200032, China and
| | - Fan Yang
- From the Key Laboratory of Glycoconjugates Research, Ministry of Public Health, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai 200032, China and
| | - Tianxiao Yang
- From the Key Laboratory of Glycoconjugates Research, Ministry of Public Health, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai 200032, China and
| | - Zhilong Ai
- Division of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuanyan Wei
- From the Key Laboratory of Glycoconjugates Research, Ministry of Public Health, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai 200032, China and
| | - Jianhai Jiang
- From the Key Laboratory of Glycoconjugates Research, Ministry of Public Health, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai 200032, China and
| |
Collapse
|
25
|
Metabolomic analysis of human cirrhosis, hepatocellular carcinoma, non-alcoholic fatty liver disease and non-alcoholic steatohepatitis diseases. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2016; 9:158-73. [PMID: 27458508 PMCID: PMC4947130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Metabolome analysis is used to evaluate the characteristics and interactions of low molecular weight metabolites under a specific set of conditions. In cirrhosis, hepatocellular carcinoma, non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatotic hepatitis (NASH) the liver does not function thoroughly due to long-term damage. Unfortunately the early detection of cirrhosis, HCC, NAFLD and NASH is a clinical problem and determining a sensitive, specific and predictive novel method based on biomarker discovery is an important task. On the other hand, metabolomics has been reported as a new and powerful technology in biomarker discovery and dynamic field that cause global comprehension of system biology. In this review, it has been collected a heterogeneous set of metabolomics published studies to discovery of biomarkers in researches to introduce diagnostic biomarkers for early detection and the choice of patient-specific therapies.
Collapse
|
26
|
Molecular mechanisms of target recognition by lipid GPCRs: relevance for cancer. Oncogene 2015; 35:4021-35. [PMID: 26640151 DOI: 10.1038/onc.2015.467] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/02/2015] [Accepted: 11/02/2015] [Indexed: 12/18/2022]
|
27
|
G Protein-Coupled Receptor 87 (GPR87) Promotes Cell Proliferation in Human Bladder Cancer Cells. Int J Mol Sci 2015; 16:24319-31. [PMID: 26473854 PMCID: PMC4632752 DOI: 10.3390/ijms161024319] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/21/2015] [Accepted: 09/24/2015] [Indexed: 11/23/2022] Open
Abstract
G protein-coupled receptor 87 (GPR87) is a newly deorphanized member of the cell surface molecule G protein-coupled receptor family. GPR signaling was shown to play a role in promotion of cell growth and survival, metastasis, and drug resistance. The overexpression of GPR87 has also been reported in many malignant tumors including bladder cancer. The aim of the present study is to examine the effect of silencing GPR87 expression with a replication-deficient recombinant adenoviral vector expressing short hairpin RNA targeting GPR87 (Ad-shGPR87) and to explore the underlying molecular mechanisms in bladder cancer cells. Six GPR87-expressing human bladder cancer cells, HT1197, HT1376, J82, RT112, TCCSUP and UMUC3, were used. Infection with Ad-shGPR87 effectively downregulated the GPR87 expression, and significantly reduced the percentage of viable cells in 4 of 6 cell lines as detected by an MTT assay. Significant inhibition on cell proliferation with Ad-shGPR87 was observed in the wild-type p53 bladder cancer cell lines (HT1197, RT112, TCCSUP and UMUC3), but not in the mutant p53 cells (HT1376 and J82). As represented by a wild-type p53 RT112 cell, Ad-shGPR87 infection significantly enhanced p53 and p21 expression and caused caspase-dependent apoptosis. Furthermore, the treatment with Ad-shGPR87 exerted a significant antitumor effect against the GPR87-expressing RT112 xenografts. GPR87 appeared to be a promising target for gene therapy, and Ad-shGPR87 had strong antitumor effects, specifically anti-proliferative and pro-apoptotic effects, against GPR87-expressing human bladder cancer cells.
Collapse
|
28
|
Digital quantitation of HCC-associated stem cell markers and protein quality control factors using tissue arrays of human liver sections. Exp Mol Pathol 2014; 97:399-410. [PMID: 25218810 DOI: 10.1016/j.yexmp.2014.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 09/05/2014] [Indexed: 02/07/2023]
Abstract
The most common type of liver cancer, hepatocellular carcinoma (HCC), affects over 500,000 people in the world. In the present study, liver tumor resections were used to prepare tissue arrays to examine the intensity of fluorescence of IHC stained stem cell markers in liver tissue from malignant HCC tumors and accompanying surrounding non-tumor liver. We hypothesized that a correlation exists between the fluorescence intensity of IHC stained HCC and surrounding non-tumor liver compared to liver tissue from a completely normal liver. 120 liver resection specimens (including four normal controls) were placed on a single slide to make a tissue array. They were examined by digitally quantifying the intensity of fluorescence using immuno-histochemically stained stem cell markers and protein quality control proteins. The stem cell markers were OCT3/4, Nanog, CD133, pEZH2, CD49F and SOX2. The protein quality control proteins were FAT10, UBA-6 and ubiquitin. The data collected was used to compare normal liver tissue with HCCs and parent liver tissue resected surgically using antibodies to stem cell markers and quality control protein markers. The measurements of the stem cell marker CD133 indicated an increase of fluorescence intensity for both the parent liver tissue and the HCC liver tissues. The other stem cell markers changed as follows: Nanog and OCT3/4 were decreased in both the HCCs and the parent livers; PEZH2 was reduced in the HCCs; SOX2 was increased in the parent livers compared to the controls; and CD49f was decreased in HCCs only. Protein quality control markers FAT10 and ubiquitin were downregulated in both the HCCs and the adjacent non-tumor tissue compared to the controls. UBA6 was increased in both the HCCs and the parent livers, and the levels were higher in the HCCs compared to the parent livers.
Collapse
|
29
|
Liu F, Zhu C, Huang X, Cai J, Wang H, Wang X, He S, Liu C, Yang X, Zhang Y, Zhang T. A low level of GPR37 is associated with human hepatocellular carcinoma progression and poor patient survival. Pathol Res Pract 2014; 210:885-92. [PMID: 25169131 DOI: 10.1016/j.prp.2014.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 05/09/2014] [Accepted: 07/02/2014] [Indexed: 12/28/2022]
Abstract
GPR37, also known as parkin-associated endothelin-like receptor (Pael-R), is an orphan G protein-coupled receptor (GPCR). It has been reported that GPCRs play vital roles in the development and progression of cancer. To investigate the potential roles of GPR37 in hepatocellular carcinoma (HCC), expression of GPR37 was examined in human HCC samples. Immunohistochemistry and Western blot analyses were performed for GPR37 in 57 hepatocellular carcinoma samples. GPR37 expression was low in hepatocellular carcinoma as compared with the adjacent non-tumorous tissues. Clinicopathological analysis showed that GPR37 expression was significantly correlated with histological grade and the level of alpha fetal protein (AFP) (P = 0.000 and 0.002, respectively). The Kaplan-Meier survival curves revealed that decreasing GPR37 expression was associated with poor prognosis in HCC patients, while in vitro, following the release from serum starvation of HuH7 HCC cell, the expression of GPR37 was downregulated. In addition, the transient GPR37 knockdown by siRNA in HuH7 cells significantly decreased the apoptosis of hepatoma cells with activation of the phosphatidylinositol 3-kinase-Akt signaling pathway. Our data suggest that GPR37 may play an important role in the pathogenesis of hepatocellular carcinoma by affecting the proliferation of H CC cells, and it could be a novel potential molecular therapy target for HCC.
Collapse
MESH Headings
- Adult
- Aged
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/surgery
- Cell Line, Tumor
- Cell Proliferation
- Disease Progression
- Down-Regulation
- Female
- Hepatectomy
- Humans
- Immunohistochemistry
- Kaplan-Meier Estimate
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/mortality
- Liver Neoplasms/pathology
- Liver Neoplasms/surgery
- Male
- Middle Aged
- Neoplasm Grading
- Predictive Value of Tests
- Proportional Hazards Models
- RNA Interference
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction
- Time Factors
- Transfection
- Treatment Outcome
- Young Adult
Collapse
Affiliation(s)
- Fang Liu
- Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Changlai Zhu
- Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Xiaodong Huang
- Department of Pathology, Nantong University Cancer Hospital, Nantong, Jiangsu 226001, People's Republic of China
| | - Jing Cai
- Department of Pathology, Nantong University Cancer Hospital, Nantong, Jiangsu 226001, People's Republic of China
| | - Hua Wang
- Department of Pathology, Nantong University Cancer Hospital, Nantong, Jiangsu 226001, People's Republic of China
| | - Xinxiu Wang
- Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Song He
- Department of Pathology, Nantong University Cancer Hospital, Nantong, Jiangsu 226001, People's Republic of China
| | - Cheng Liu
- Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Xiaojing Yang
- Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Yixin Zhang
- Department of Pathology, Nantong University Cancer Hospital, Nantong, Jiangsu 226001, People's Republic of China.
| | - Tianyi Zhang
- Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, People's Republic of China.
| |
Collapse
|
30
|
|
31
|
Scaggiante B, Kazemi M, Pozzato G, Dapas B, Farra R, Grassi M, Zanconati F, Grassi G. Novel hepatocellular carcinoma molecules with prognostic and therapeutic potentials. World J Gastroenterol 2014; 20:1268-1288. [PMID: 24574801 PMCID: PMC3921509 DOI: 10.3748/wjg.v20.i5.1268] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/10/2013] [Accepted: 01/02/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the predominant form of primary liver cancer, is the sixth most common cancer worldwide and the third leading cause of cancer-related death. The difficulty to diagnose early cancer stages, the aggressive behaviors of HCC, and the poor effectiveness of therapeutic treatments, represent the reasons for the quite similar deaths per year and incidence number. Considering the fact that the diagnosis of HCC typically occurs in the advanced stages of the disease when the therapeutic options have only modest efficacy, the possibility to identify early diagnostic markers could be of significant benefit. So far, a large number of biomarkers have been associated to HCC progression and aggressiveness, but many of them turned out not to be of practical utility. This is the reason why active investigations are ongoing in this field. Given the huge amount of published works aimed at the identification of HCC biomarkers, in this review we mainly focused on the data published in the last year, with particular attention to the role of (1) molecular and biochemical cellular markers; (2) micro-interfering RNAs; (3) epigenetic variations; and (4) tumor stroma. It is worth mentioning that a significant number of the HCC markers described in the present review may be utilized also as targets for novel therapeutic approaches, indicating the tight relation between diagnosis and therapy. In conclusion, we believe that integrated researches among the different lines of investigation indicated above should represent the winning strategies to identify effective HCC markers and therapeutic targets.
Collapse
|