1
|
Agnihotri SK, Cai J. Investigating the Effects of Transcranial Alternating Current Stimulation on Cortical Oscillations and Network Dynamics. Brain Sci 2024; 14:767. [PMID: 39199461 PMCID: PMC11353238 DOI: 10.3390/brainsci14080767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Transcranial electrical brain stimulation techniques like transcranial direct current (tDCS) and transcranial alternating current (tACS) have emerged as potential tools for treating neurological diseases by modulating cortical excitability. These techniques deliver small electric currents to the brain non-invasively through electrodes on the scalp. tDCS uses constant direct current which weakly alters the membrane voltage of cortical neurons, while tACS utilizes alternating current to target and enhance cortical oscillations, though the underlying mechanisms are not fully understood more specifically. To elucidate how tACS perturbs endogenous network dynamics, we simulated spiking neuron network models. We identified distinct roles of the depolarizing and hyperpolarizing phases in driving network activity towards and away from the strong nonlinearity provided by pyramidal neurons. Exploring resonance effects, we found matching tACS frequency to the network's endogenous resonance frequency creates greater entrainment. Based on this, we developed an algorithm to determine the network's endogenous frequency, phase, and amplitude, then deliver optimized tACS to entrain network oscillations. Together, these computational results provide mechanistic insight into the effects of tACS on network dynamics and could inform future closed-loop tACS systems that dynamically tune stimulation parameters to ongoing brain activity.
Collapse
|
2
|
Tan R, Ma R, Chu F, Zhou X, Wang X, Yin T, Liu Z. Study on Improving the Modulatory Effect of Rhythmic Oscillations by Transcranial Magneto-Acoustic Stimulation. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1796-1805. [PMID: 38691431 DOI: 10.1109/tnsre.2024.3395641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
In hippocampus, synaptic plasticity and rhythmic oscillations reflect the cytological basis and the intermediate level of cognition, respectively. Transcranial ultrasound stimulation (TUS) has demonstrated the ability to elicit changes in neural response. However, the modulatory effect of TUS on synaptic plasticity and rhythmic oscillations was insufficient in the present studies, which may be attributed to the fact that TUS acts mainly through mechanical forces. To enhance the modulatory effect on synaptic plasticity and rhythmic oscillations, transcranial magneto-acoustic stimulation (TMAS) which induced a coupled electric field together with TUS's ultrasound field was applied. The modulatory effect of TMAS and TUS with a pulse repetition frequency of 100 Hz were compared. TMAS/TUS were performed on C57 mice for 7 days at two different ultrasound intensities (3 W/cm2 and 5 W/cm [Formula: see text]. Behavioral tests, long-term potential (LTP) and local field potentials in vivo were performed to evaluate TUS/TMAS modulatory effect on cognition, synaptic plasticity and rhythmic oscillations. Protein expression based on western blotting were used to investigate the under- lying mechanisms of these beneficial effects. At 5 W/cm2, TMAS-induced LTP were 113.4% compared to the sham group and 110.5% compared to TUS. Moreover, the relative power of high gamma oscillations (50-100Hz) in the TMAS group ( 1.060±0.155 %) was markedly higher than that in the TUS group ( 0.560±0.114 %) and sham group ( 0.570±0.088 %). TMAS significantly enhanced the synchronization of theta and gamma oscillations as well as theta-gamma cross-frequency coupling. Whereas, TUS did not show relative enhancements. TMAS provides enhanced effect for modulating the synaptic plasticity and rhythmic oscillations in hippocampus.
Collapse
|
3
|
Li Y, Wang JZ, Deng YM, Wang K, Yang L, Long C. Amyloid-β Protein Precursor Regulates Electrophysiological Properties in the Hippocampus via Altered Kv1.4 Expression and Function in Mice. J Alzheimers Dis 2023; 92:1241-1256. [PMID: 36872774 DOI: 10.3233/jad-220606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
BACKGROUND Amyloid-β protein precursor (AβPP) is enriched in neurons. However, the mechanism underlying AβPP regulation of neuronal activity is poorly understood. Potassium channels are critically involved in neuronal excitability. In hippocampus, A-type potassium channels are highly expressed and involved in determining neuronal spiking. OBJECTIVE We explored hippocampal local field potential (LFP) and spiking in the presence and absence of AβPP, and the potential involvement of an A-type potassium channel. METHODS We used in vivo extracellular recording and whole-cell patch-clamp recording to determine neuronal activity, current density of A-type potassium currents, and western blot to detect changes in related protein levels. RESULTS Abnormal LFP was observed in AβPP-/- mice, including reduced beta and gamma power, and increased epsilon and ripple power. The firing rate of glutamatergic neurons reduced significantly, in line with an increased action potential rheobase. Given that A-type potassium channels regulate neuronal firing, we measured the protein levels and function of two major A-type potassium channels and found that the post-transcriptional level of Kv1.4, but not Kv4.2, was significantly increased in the AβPP-/- mice. This resulted in a marked increase in the peak time of A-type transient outward potassium currents in both glutamatergic and gamma-aminobutyric acid-ergic (GABAergic) neurons. Furthermore, a mechanistic experiment using human embryonic kidney 293 (HEK293) cells revealed that the AβPP deficiency-induced increase in Kv1.4 may not involve protein-protein interaction between AβPP and Kv1.4. CONCLUSION This study suggests that AβPP modulates neuronal firing and oscillatory activity in the hippocampus, and Kv1.4 may be involved in mediating the modulation.
Collapse
Affiliation(s)
- Yi Li
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jin-Zhao Wang
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yue-Ming Deng
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Kun Wang
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Li Yang
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Cheng Long
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
- School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
4
|
Montesinos J, Pera M, Larrea D, Guardia‐Laguarta C, Agrawal RR, Velasco KR, Yun TD, Stavrovskaya IG, Xu Y, Koo SY, Snead AM, Sproul AA, Area‐Gomez E. The Alzheimer's disease-associated C99 fragment of APP regulates cellular cholesterol trafficking. EMBO J 2020; 39:e103791. [PMID: 32865299 PMCID: PMC7560219 DOI: 10.15252/embj.2019103791] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
The link between cholesterol homeostasis and cleavage of the amyloid precursor protein (APP), and how this relationship relates to Alzheimer's disease (AD) pathogenesis, is still unknown. Cellular cholesterol levels are regulated through crosstalk between the plasma membrane (PM), where most cellular cholesterol resides, and the endoplasmic reticulum (ER), where the protein machinery that regulates cholesterol levels resides. The intracellular transport of cholesterol from the PM to the ER is believed to be activated by a lipid-sensing peptide(s) in the ER that can cluster PM-derived cholesterol into transient detergent-resistant membrane domains (DRMs) within the ER, also called the ER regulatory pool of cholesterol. When formed, these cholesterol-rich domains in the ER maintain cellular homeostasis by inducing cholesterol esterification as a mechanism of detoxification while attenuating its de novo synthesis. In this manuscript, we propose that the 99-aa C-terminal fragment of APP (C99), when delivered to the ER for cleavage by γ-secretase, acts as a lipid-sensing peptide that forms regulatory DRMs in the ER, called mitochondria-associated ER membranes (MAM). Our data in cellular AD models indicates that increased levels of uncleaved C99 in the ER, an early phenotype of the disease, upregulates the formation of these transient DRMs by inducing the internalization of extracellular cholesterol and its trafficking from the PM to the ER. These results suggest a novel role for C99 as a mediator of cholesterol disturbances in AD, potentially explaining early hallmarks of the disease.
Collapse
Affiliation(s)
- Jorge Montesinos
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNYUSA
| | - Marta Pera
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNYUSA
- Present address:
Basic Sciences DepartmentFaculty of Medicine and Health SciencesUniversitat Internacional de CatalunyaBarcelonaSpain
| | - Delfina Larrea
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNYUSA
| | | | - Rishi R Agrawal
- Institute of Human NutritionColumbia University Irving Medical CenterNew YorkNYUSA
| | - Kevin R Velasco
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNYUSA
| | - Taekyung D Yun
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNYUSA
| | | | - Yimeng Xu
- Biomarkers Core LaboratoryColumbia University Irving Medical CenterNew YorkNYUSA
| | - So Yeon Koo
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNYUSA
| | - Amanda M Snead
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNYUSA
| | - Andrew A Sproul
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNYUSA
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNYUSA
| | - Estela Area‐Gomez
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNYUSA
- Institute of Human NutritionColumbia University Irving Medical CenterNew YorkNYUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNYUSA
| |
Collapse
|
5
|
Mehr A, Hick M, Ludewig S, Müller M, Herrmann U, von Engelhardt J, Wolfer DP, Korte M, Müller UC. Lack of APP and APLP2 in GABAergic Forebrain Neurons Impairs Synaptic Plasticity and Cognition. Cereb Cortex 2020; 30:4044-4063. [PMID: 32219307 DOI: 10.1093/cercor/bhaa025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Amyloid-β precursor protein (APP) is central to the pathogenesis of Alzheimer's disease, yet its physiological functions remain incompletely understood. Previous studies had indicated important synaptic functions of APP and the closely related homologue APLP2 in excitatory forebrain neurons for spine density, synaptic plasticity, and behavior. Here, we show that APP is also widely expressed in several interneuron subtypes, both in hippocampus and cortex. To address the functional role of APP in inhibitory neurons, we generated mice with a conditional APP/APLP2 double knockout (cDKO) in GABAergic forebrain neurons using DlxCre mice. These DlxCre cDKO mice exhibit cognitive deficits in hippocampus-dependent spatial learning and memory tasks, as well as impairments in species-typic nesting and burrowing behaviors. Deficits at the behavioral level were associated with altered neuronal morphology and synaptic plasticity Long-Term Potentiation (LTP). Impaired basal synaptic transmission at the Schafer collateral/CA1 pathway, which was associated with altered compound excitatory/inhibitory synaptic currents and reduced action potential firing of CA1 pyramidal cells, points to a disrupted excitation/inhibition balance in DlxCre cDKOs. Together, these impairments may lead to hippocampal dysfunction. Collectively, our data reveal a crucial role of APP family proteins in inhibitory interneurons to maintain functional network activity.
Collapse
Affiliation(s)
- Annika Mehr
- Department of Functional Genomics, Institute of Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, 69120 Heidelberg, Germany
| | - Meike Hick
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Susann Ludewig
- Division of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Michaela Müller
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Ulrike Herrmann
- Division of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Jakob von Engelhardt
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - David P Wolfer
- Institute of Anatomy, University of Zürich, 8057 Zürich, Switzerland.,Institute of Human Movement Sciences and Sport, ETH Zürich, 8057 Zürich, Switzerland
| | - Martin Korte
- Division of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany.,AG Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Ulrike C Müller
- Department of Functional Genomics, Institute of Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, 69120 Heidelberg, Germany.,Division of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|
6
|
Abstract
The Amyloid Precursor Protein (APP) is infamous for its proposed pivotal role in the pathogenesis of Alzheimer’s disease (AD). Much research on APP focusses on potential contributions to neurodegeneration, mostly based on mouse models with altered expression or mutated forms of APP. However, cumulative evidence from recent years indicates the indispensability of APP and its metabolites for normal brain physiology. APP contributes to the regulation of synaptic transmission, plasticity, and calcium homeostasis. It plays an important role during development and it exerts neuroprotective effects. Of particular importance is the soluble secreted fragment APPsα which mediates many of its physiological actions, often counteracting the effects of the small APP-derived peptide Aβ. Understanding the contribution of APP for normal functions of the nervous system is of high importance, both from a basic science perspective and also as a basis for generating new pathophysiological concepts and therapeutic approaches in AD. In this article, we review the physiological functions of APP and its metabolites, focusing on synaptic transmission, plasticity, calcium signaling, and neuronal network activity.
Collapse
Affiliation(s)
- Dimitri Hefter
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany.,RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Susann Ludewig
- Helmholtz Centre for Infection Research, Neuroinflammation and Neurodegeneration Group, Braunschweig, Germany.,Cellular Neurobiology, Zoological Institute, Technical University Braunschweig, Braunschweig, Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Martin Korte
- Helmholtz Centre for Infection Research, Neuroinflammation and Neurodegeneration Group, Braunschweig, Germany.,Cellular Neurobiology, Zoological Institute, Technical University Braunschweig, Braunschweig, Germany
| |
Collapse
|
7
|
New Alzheimer's disease model mouse specialized for analyzing the function and toxicity of intraneuronal Amyloid β oligomers. Sci Rep 2019; 9:17368. [PMID: 31757975 PMCID: PMC6874556 DOI: 10.1038/s41598-019-53415-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/29/2019] [Indexed: 11/11/2022] Open
Abstract
Oligomers of intracellular amyloid β protein (Aβ) are strongly cytotoxic and play crucial roles in synaptic transmission and cognitive function in Alzheimer’s disease (AD). However, there is currently no AD model mouse in which to specifically analyze the function of Aβ oligomers only. We have now developed a novel AD model mouse, an Aβ-GFP transgenic mouse (Aβ-GFP Tg), that expresses the GFP-fused human Aβ1-42 protein, which forms only Aβ oligomers within neurons throughout their life. The fusion proteins are expressed mainly in the hippocampal CA1-CA2 region and cerebral cortex, and are not secreted extracellularly. The Aβ-GFP Tg mice exhibit increased tau phosphorylation, altered spine morphology, decreased expressions of the GluN2B receptor and neuroligin in synaptic regions, attenuated hippocampal long-term potentiation, and impaired object recognition memory compared with non-Tg littermates. Interestingly, these dysfunctions have already appeared in 2–3-months-old animals. The Aβ-GFP fusion protein is bioactive and highly toxic, and induces the similar synaptic dysfunctions as the naturally generated Aβ oligomer derived from postmortem AD patient brains and synthetic Aβ oligomers. Thus, Aβ-GFP Tg mouse is a new tool specialized to analyze the function of Aβ oligomers in vivo and to find subtle changes in synapses in early symptoms of AD.
Collapse
|
8
|
Schneider J, Berndt N, Papageorgiou IE, Maurer J, Bulik S, Both M, Draguhn A, Holzhütter HG, Kann O. Local oxygen homeostasis during various neuronal network activity states in the mouse hippocampus. J Cereb Blood Flow Metab 2019; 39:859-873. [PMID: 29099662 PMCID: PMC6501513 DOI: 10.1177/0271678x17740091] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/02/2017] [Indexed: 12/14/2022]
Abstract
Cortical information processing comprises various activity states emerging from timed synaptic excitation and inhibition. However, the underlying energy metabolism is widely unknown. We determined the cerebral metabolic rate of oxygen (CMRO2) along a tissue depth of <0.3 mm in the hippocampal CA3 region during various network activities, including gamma oscillations and sharp wave-ripples that occur during wakefulness and sleep. These physiological states associate with sensory perception and memory formation, and critically depend on perisomatic GABA inhibition. Moreover, we modelled vascular oxygen delivery based on quantitative microvasculature analysis. (1) Local CMRO2 was highest during gamma oscillations (3.4 mM/min), medium during sharp wave-ripples, asynchronous activity and isoflurane application (2.0-1.6 mM/min), and lowest during tetrodotoxin application (1.4 mM/min). (2) Energy expenditure of axonal and synaptic signaling accounted for >50% during gamma oscillations. (3) CMRO2 positively correlated with number and synchronisation of activated synapses, and neural multi-unit activity. (4) The median capillary distance was 44 µm. (5) The vascular oxygen partial pressure of 33 mmHg was needed to sustain oxidative phosphorylation during gamma oscillations. We conclude that gamma oscillations featuring high energetics require a hemodynamic response to match oxygen consumption of respiring mitochondria, and that perisomatic inhibition significantly contributes to the brain energy budget.
Collapse
Affiliation(s)
- Justus Schneider
- Institute of Physiology and Pathophysiology, and Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Nikolaus Berndt
- Computational Systems Biochemistry, Institute of Biochemistry, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Ismini E Papageorgiou
- Institute of Physiology and Pathophysiology, and Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Jana Maurer
- Institute of Physiology and Pathophysiology, and Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Sascha Bulik
- Computational Systems Biochemistry, Institute of Biochemistry, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Both
- Institute of Physiology and Pathophysiology, and Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, and Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Hermann-Georg Holzhütter
- Computational Systems Biochemistry, Institute of Biochemistry, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, and Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
9
|
Truong PH, Ciccotosto GD, Cappai R. Analysis of Motor Function in Amyloid Precursor-Like Protein 2 Knockout Mice: The Effects of Ageing and Sex. Neurochem Res 2018; 44:1356-1366. [PMID: 30362021 DOI: 10.1007/s11064-018-2669-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/18/2018] [Accepted: 10/20/2018] [Indexed: 12/19/2022]
Abstract
The amyloid precursor protein (APP) is a member of a conserved gene family that includes the amyloid precursor-like proteins 1 (APLP1) and 2 (APLP2). APP and APLP2 share a high degree of similarity, and have overlapping patterns of spatial and temporal expression in the central and peripheral tissues, in particular at the neuromuscular junction. APP-family knockout (KO) studies have helped elucidate aspects of function and functional redundancy amongst the APP-family members. In the present study, we investigated motor performance of APLP2-KO mice and the effect sex differences and age-related changes have on motor performance. APLP2-KO and WT (on C57Bl6 background) littermates control mice from 8 (young adulthood) to 48 weeks (middle age) were investigated. Analysis of motor neuron and muscle morphology showed APLP2-KO females but not males, had less age-related motor function impairments. We observed age and sex differences in both motor neuron number and muscle fiber size distribution for APLP2-KO mice compared to WT (C57Bl6). These alterations in the motor neuron number and muscle fiber distribution pattern may explain why female APLP2-KO mice have far better motor function behaviour during ageing.
Collapse
Affiliation(s)
- Phan H Truong
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Giuseppe D Ciccotosto
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Roberto Cappai
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
10
|
Huo Q, Chen M, He Q, Zhang J, Li B, Jin K, Chen X, Long C, Yang L. Prefrontal Cortical GABAergic Dysfunction Contributes to Aberrant UP-State Duration in APP Knockout Mice. Cereb Cortex 2018; 27:4060-4072. [PMID: 27552836 DOI: 10.1093/cercor/bhw218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 06/24/2016] [Indexed: 01/07/2023] Open
Abstract
Genetic and biochemical studies have focused on the role of amyloid β protein in the pathogenesis of Alzheimer's disease. In comparison, the physiological roles of its precursor protein, amyloid precursor protein (APP), in synaptic and network activity is less well studied. Using an APP knockout (APP-/-) mouse model, we show that the duration of UP state, which is a key feature of cortical synaptic integration occurring predominantly during slow-wave sleep, is significantly increased in the prefrontal cortex (PFC) in the absence of APP. This was accompanied by a specific reduction in the glutamine synthetase and tissue GABA content and sequential upregulation in the levels of GABABR expression. Pharmacological reinforcement of GABA signaling by application of either a GABA uptake inhibitor or an agonist of GABABR rescued the abnormality of UP-state duration and the former rescues altered GABABR expression as well. In addition to revealing an essential role of APP in the regulation of PFC network function, this study evidences the viability of GABA signaling pathway and its receptors, especially GABABRs, as a target for the treatment of aberrant neural network activity and thus information processing.
Collapse
Affiliation(s)
- Qingwei Huo
- School of Psychology South China Normal University, Guangzhou 510631, China.,School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ming Chen
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Quansheng He
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jiajia Zhang
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Bo Li
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Kai Jin
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xi Chen
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Brain Science Institute, South China Normal University, Guangzhou 510631, China
| | - Li Yang
- School of Psychology South China Normal University, Guangzhou 510631, China.,Brain Science Institute, South China Normal University, Guangzhou 510631, China.,Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
11
|
|
12
|
Pera M, Larrea D, Guardia-Laguarta C, Montesinos J, Velasco KR, Agrawal RR, Xu Y, Chan RB, Di Paolo G, Mehler MF, Perumal GS, Macaluso FP, Freyberg ZZ, Acin-Perez R, Enriquez JA, Schon EA, Area-Gomez E. Increased localization of APP-C99 in mitochondria-associated ER membranes causes mitochondrial dysfunction in Alzheimer disease. EMBO J 2017; 36:3356-3371. [PMID: 29018038 PMCID: PMC5731665 DOI: 10.15252/embj.201796797] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 08/18/2017] [Accepted: 09/01/2017] [Indexed: 12/31/2022] Open
Abstract
In the amyloidogenic pathway associated with Alzheimer disease (AD), the amyloid precursor protein (APP) is cleaved by β‐secretase to generate a 99‐aa C‐terminal fragment (C99) that is then cleaved by γ‐secretase to generate the β‐amyloid (Aβ) found in senile plaques. In previous reports, we and others have shown that γ‐secretase activity is enriched in mitochondria‐associated endoplasmic reticulum (ER) membranes (MAM) and that ER–mitochondrial connectivity and MAM function are upregulated in AD. We now show that C99, in addition to its localization in endosomes, can also be found in MAM, where it is normally processed rapidly by γ‐secretase. In cell models of AD, however, the concentration of unprocessed C99 increases in MAM regions, resulting in elevated sphingolipid turnover and an altered lipid composition of both MAM and mitochondrial membranes. In turn, this change in mitochondrial membrane composition interferes with the proper assembly and activity of mitochondrial respiratory supercomplexes, thereby likely contributing to the bioenergetic defects characteristic of AD.
Collapse
Affiliation(s)
- Marta Pera
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Delfina Larrea
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | | | - Jorge Montesinos
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Kevin R Velasco
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Rishi R Agrawal
- Institute of Human Nutrition, Columbia University Medical Campus, New York, NY, USA
| | - Yimeng Xu
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Robin B Chan
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Mark F Mehler
- Departments of Neurology, Neuroscience, and Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Geoffrey S Perumal
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Frank P Macaluso
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zachary Z Freyberg
- Departments of Psychiatry and Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rebeca Acin-Perez
- Cardiovascular Metabolism Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Jose Antonio Enriquez
- Cardiovascular Metabolism Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Eric A Schon
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.,Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| | - Estela Area-Gomez
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
13
|
Amyloid Precursor Protein Protects Neuronal Network Function after Hypoxia via Control of Voltage-Gated Calcium Channels. J Neurosci 2017; 36:8356-71. [PMID: 27511009 DOI: 10.1523/jneurosci.4130-15.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/19/2016] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Acute cerebral ischemia and chronic neurovascular diseases share various common mechanisms with neurodegenerative diseases, such as disturbed cellular calcium and energy homeostasis and accumulation of toxic metabolites. A link between these conditions may be constituted by amyloid precursor protein (APP), which plays a pivotal role in the pathogenesis of Alzheimer's disease, but has also been associated with the response to acute hypoxia and regulation of calcium homeostasis. We therefore studied hypoxia-induced loss of function and recovery upon reoxygenation in hippocampal slices of mice lacking APP (APP(-/-)) or selectively expressing its soluble extracellular domain (APPsα-KI). Transient hypoxia disrupted electrical activity at the network and cellular level. In mice lacking APP, these impairments were significantly more severe, showing increased rise of intracellular calcium, faster loss of function, and higher incidence of spreading depression. Likewise, functional recovery upon reoxygenation was much slower and less complete than in controls. Most of these deficits were rescued by selective expression of the soluble extracellular fragment APPsα, or by pharmacological block of L-type calcium channels. We conclude that APP supports neuronal resistance toward acute hypoxia. This effect is mediated by the secreted APPsα-domain and involves L-type calcium channels. SIGNIFICANCE STATEMENT Amyloid precursor protein (APP) is involved in the pathophysiology of Alzheimer's disease, but its normal function in the brain remains elusive. Here, we describe a neuroprotective role of the protein in acute hypoxia. Functional recovery of mouse hippocampal networks after transient reduction of oxygen supply was strongly impaired in animals lacking APP. Most protective effects are mediated by the soluble extracellular fragment APPsα and involve L-type calcium channels. Thus, APP contributes to calcium homeostasis in situations of metabolic stress. This finding may shed light on the physiological function of APP and may be important for understanding mechanisms of neurodegenerative diseases.
Collapse
|
14
|
Hefter D, Draguhn A. APP as a Protective Factor in Acute Neuronal Insults. Front Mol Neurosci 2017; 10:22. [PMID: 28210211 PMCID: PMC5288400 DOI: 10.3389/fnmol.2017.00022] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/16/2017] [Indexed: 12/25/2022] Open
Abstract
Despite its key role in the molecular pathology of Alzheimer’s disease (AD), the physiological function of amyloid precursor protein (APP) is unknown. Increasing evidence, however, points towards a neuroprotective role of this membrane protein in situations of metabolic stress. A key observation is the up-regulation of APP following acute (stroke, cardiac arrest) or chronic (cerebrovascular disease) hypoxic-ischemic conditions. While this mechanism may increase the risk or severity of AD, APP by itself or its soluble extracellular fragment APPsα can promote neuronal survival. Indeed, different animal models of acute hypoxia-ischemia, traumatic brain injury (TBI) and excitotoxicity have revealed protective effects of APP or APPsα. The underlying mechanisms involve APP-mediated regulation of calcium homeostasis via NMDA receptors (NMDAR), voltage-gated calcium channels (VGCC) or internal calcium stores. In addition, APP affects the expression of survival- or apoptosis-related genes as well as neurotrophic factors. In this review, we summarize the current understanding of the neuroprotective role of APP and APPsα and possible implications for future research and new therapeutic strategies.
Collapse
Affiliation(s)
- Dimitri Hefter
- Institute of Physiology and Pathophysiology, Heidelberg UniversityHeidelberg, Germany; Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheim, Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Heidelberg University Heidelberg, Germany
| |
Collapse
|
15
|
Kepp KP. Alzheimer's disease due to loss of function: A new synthesis of the available data. Prog Neurobiol 2016; 143:36-60. [PMID: 27327400 DOI: 10.1016/j.pneurobio.2016.06.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/10/2016] [Accepted: 06/11/2016] [Indexed: 12/11/2022]
Abstract
Alzheimer's Disease (AD) is a highly complex disease involving a broad range of clinical, cellular, and biochemical manifestations that are currently not understood in combination. This has led to many views of AD, e.g. the amyloid, tau, presenilin, oxidative stress, and metal hypotheses. The amyloid hypothesis has dominated the field with its assumption that buildup of pathogenic β-amyloid (Aβ) peptide causes disease. This paradigm has been criticized, yet most data suggest that Aβ plays a key role in the disease. Here, a new loss-of-function hypothesis is synthesized that accounts for the anomalies of the amyloid hypothesis, e.g. the curious pathogenicity of the Aβ42/Aβ40 ratio, the loss of Aβ caused by presenilin mutation, the mixed phenotypes of APP mutations, the poor clinical-biochemical correlations for genetic variant carriers, and the failure of Aβ reducing drugs. The amyloid-loss view accounts for recent findings on the structure and chemical features of Aβ variants and their coupling to human patient data. The lost normal function of APP/Aβ is argued to be metal transport across neuronal membranes, a view with no apparent anomalies and substantially more explanatory power than the gain-of-function amyloid hypothesis. In the loss-of-function scenario, the central event of Aβ aggregation is interpreted as a loss of soluble, functional monomer Aβ rather than toxic overload of oligomers. Accordingly, new research models and treatment strategies should focus on remediation of the functional amyloid balance, rather than strict containment of Aβ, which, for reasons rationalized in this review, has failed clinically.
Collapse
Affiliation(s)
- Kasper P Kepp
- Technical University of Denmark, DTU Chemistry, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
16
|
Miraldi Utz V. Nature versus nurture: A systematic approach to elucidate gene–environment interactions in the development of myopic refractive errors. Ophthalmic Genet 2016; 38:117-121. [DOI: 10.1080/13816810.2016.1183216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Virginia Miraldi Utz
- Abrahamson Pediatric Eye Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
17
|
Tkatchenko AV, Tkatchenko TV, Guggenheim JA, Verhoeven VJM, Hysi PG, Wojciechowski R, Singh PK, Kumar A, Thinakaran G, Consortium for Refractive Error and Myopia (CREAM), Williams C. APLP2 Regulates Refractive Error and Myopia Development in Mice and Humans. PLoS Genet 2015; 11:e1005432. [PMID: 26313004 PMCID: PMC4551475 DOI: 10.1371/journal.pgen.1005432] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/07/2015] [Indexed: 11/19/2022] Open
Abstract
Myopia is the most common vision disorder and the leading cause of visual impairment worldwide. However, gene variants identified to date explain less than 10% of the variance in refractive error, leaving the majority of heritability unexplained (“missing heritability”). Previously, we reported that expression of APLP2 was strongly associated with myopia in a primate model. Here, we found that low-frequency variants near the 5’-end of APLP2 were associated with refractive error in a prospective UK birth cohort (n = 3,819 children; top SNP rs188663068, p = 5.0 × 10−4) and a CREAM consortium panel (n = 45,756 adults; top SNP rs7127037, p = 6.6 × 10−3). These variants showed evidence of differential effect on childhood longitudinal refractive error trajectories depending on time spent reading (gene x time spent reading x age interaction, p = 4.0 × 10−3). Furthermore, Aplp2 knockout mice developed high degrees of hyperopia (+11.5 ± 2.2 D, p < 1.0 × 10−4) compared to both heterozygous (-0.8 ± 2.0 D, p < 1.0 × 10−4) and wild-type (+0.3 ± 2.2 D, p < 1.0 × 10−4) littermates and exhibited a dose-dependent reduction in susceptibility to environmentally induced myopia (F(2, 33) = 191.0, p < 1.0 × 10−4). This phenotype was associated with reduced contrast sensitivity (F(12, 120) = 3.6, p = 1.5 × 10−4) and changes in the electrophysiological properties of retinal amacrine cells, which expressed Aplp2. This work identifies APLP2 as one of the “missing” myopia genes, demonstrating the importance of a low-frequency gene variant in the development of human myopia. It also demonstrates an important role for APLP2 in refractive development in mice and humans, suggesting a high level of evolutionary conservation of the signaling pathways underlying refractive eye development. Gene variants identified by GWAS studies to date explain only a small fraction of myopia cases because myopia represents a complex disorder thought to be controlled by dozens or even hundreds of genes. The majority of genetic variants underlying myopia seems to be of small effect and/or low frequency, which makes them difficult to identify using classical genetic approaches, such as GWAS, alone. Here, we combined gene expression profiling in a monkey model of myopia, human GWAS, and a gene-targeted mouse model of myopia to identify one of the “missing” myopia genes, APLP2. We found that a low-frequency risk allele of APLP2 confers susceptibility to myopia only in children exposed to large amounts of daily reading, thus, providing an experimental example of the long-hypothesized gene-environment interaction between nearwork and genes underlying myopia. Functional analysis of APLP2 using an APLP2 knockout mouse model confirmed functional significance of APLP2 in refractive development and implicated a potential role of synaptic transmission at the level of glycinergic amacrine cells of the retina for the development of myopia. Furthermore, mouse studies revealed that lack of Aplp2 has a dose-dependent suppressive effect on susceptibility to form-deprivation myopia, providing a potential gene-specific target for therapeutic intervention to treat myopia.
Collapse
Affiliation(s)
- Andrei V. Tkatchenko
- Department of Ophthalmology, Columbia University, New York, New York, United States of America
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
- * E-mail:
| | - Tatiana V. Tkatchenko
- Department of Ophthalmology, Columbia University, New York, New York, United States of America
| | - Jeremy A. Guggenheim
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Virginie J. M. Verhoeven
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Pirro G. Hysi
- Department of Twin Research and Genetic Epidemiology, King’s College London School of Medicine, London, United Kingdom
| | - Robert Wojciechowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Statistical Genetics Section, Inherited Disease Research Branch, National Human Genome Research Institute (NIH), Baltimore, Maryland, United States of America
| | - Pawan Kumar Singh
- Department of Ophthalmology, Wayne State University, Detroit, Michigan, United States of America
| | - Ashok Kumar
- Department of Ophthalmology, Wayne State University, Detroit, Michigan, United States of America
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, Michigan, United States of America
| | - Gopal Thinakaran
- Departments of Neurobiology, Neurology, and Pathology, University of Chicago, Chicago, Illinois, United States of America
| | | | - Cathy Williams
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
18
|
Jackson TC, Du L, Janesko-Feldman K, Vagni VA, Dezfulian C, Poloyac SM, Jackson EK, Clark RSB, Kochanek PM. The nuclear splicing factor RNA binding motif 5 promotes caspase activation in human neuronal cells, and increases after traumatic brain injury in mice. J Cereb Blood Flow Metab 2015; 35:655-66. [PMID: 25586139 PMCID: PMC4420885 DOI: 10.1038/jcbfm.2014.242] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/06/2014] [Accepted: 12/08/2014] [Indexed: 12/31/2022]
Abstract
Splicing factors (SFs) coordinate nuclear intron/exon splicing of RNA. Splicing factor disturbances can cause cell death. RNA binding motif 5 (RBM5) and 10 (RBM10) promote apoptosis in cancer cells by activating detrimental alternative splicing of key death/survival genes. The role(s) of RBM5/10 in neurons has not been established. Here, we report that RBM5 knockdown in human neuronal cells decreases caspase activation by staurosporine. In contrast, RBM10 knockdown augments caspase activation. To determine whether brain injury alters RBM signaling, we measured RBM5/10 protein in mouse cortical/hippocampus homogenates after controlled cortical impact (CCI) traumatic brain injury (TBI) plus hemorrhagic shock (CCI+HS). The RBM5/10 staining was higher 48 to 72 hours after injury and appeared to be increased in neuronal nuclei of the hippocampus. We also measured levels of other nuclear SFs known to be essential for cellular viability and report that splicing factor 1 (SF1) but not splicing factor 3A (SF3A) decreased 4 to 72 hours after injury. Finally, we confirm that RBM5/10 regulate protein expression of several target genes including caspase-2, cellular FLICE-like inhibitory protein (c-FLIP), LETM1 Domain-Containing Protein 1 (LETMD1), and amyloid precursor-like protein 2 (APLP2) in neuronal cells. Knockdown of RBM5 appeared to increase expression of c-FLIP(s), LETMD1, and APLP2 but decrease caspase-2.
Collapse
Affiliation(s)
- Travis C Jackson
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lina Du
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Keri Janesko-Feldman
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Vincent A Vagni
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Cameron Dezfulian
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Samuel M Poloyac
- Pharmaceutical Sciences Department, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Robert S B Clark
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Patrick M Kochanek
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
19
|
Hick M, Herrmann U, Weyer SW, Mallm JP, Tschäpe JA, Borgers M, Mercken M, Roth FC, Draguhn A, Slomianka L, Wolfer DP, Korte M, Müller UC. Acute function of secreted amyloid precursor protein fragment APPsα in synaptic plasticity. Acta Neuropathol 2015; 129:21-37. [PMID: 25432317 DOI: 10.1007/s00401-014-1368-x] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/11/2014] [Accepted: 11/12/2014] [Indexed: 11/24/2022]
Abstract
The key role of APP in the pathogenesis of Alzheimer disease is well established. However, postnatal lethality of double knockout mice has so far precluded the analysis of the physiological functions of APP and the APLPs in the brain. Previously, APP family proteins have been implicated in synaptic adhesion, and analysis of the neuromuscular junction of constitutive APP/APLP2 mutant mice showed deficits in synaptic morphology and neuromuscular transmission. Here, we generated animals with a conditional APP/APLP2 double knockout (cDKO) in excitatory forebrain neurons using NexCre mice. Electrophysiological recordings of adult NexCre cDKOs indicated a strong synaptic phenotype with pronounced deficits in the induction and maintenance of hippocampal LTP and impairments in paired pulse facilitation, indicating a possible presynaptic deficit. These deficits were also reflected in impairments in nesting behavior and hippocampus-dependent learning and memory tasks, including deficits in Morris water maze and radial maze performance. Moreover, while no gross alterations of brain morphology were detectable in NexCre cDKO mice, quantitative analysis of adult hippocampal CA1 neurons revealed prominent reductions in total neurite length, dendritic branching, reduced spine density and reduced spine head volume. Strikingly, the impairment of LTP could be selectively rescued by acute application of exogenous recombinant APPsα, but not APPsβ, indicating a crucial role for APPsα to support synaptic plasticity of mature hippocampal synapses on a rapid time scale. Collectively, our analysis reveals an essential role of APP family proteins in excitatory principal neurons for mediating normal dendritic architecture, spine density and morphology, synaptic plasticity and cognition.
Collapse
Affiliation(s)
- Meike Hick
- Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|