1
|
Wu H, Zhang Y, Liang J, Wu J, Zhang Y, Su H, Zhang Q, Shen Y, Shen S, Wang L, Zou X, Hang C, Zhang S, Lv Y. Lithium chloride induces apoptosis by activating endoplasmic reticulum stress in pancreatic cancer. Transl Oncol 2023; 38:101792. [PMID: 37806114 PMCID: PMC10579530 DOI: 10.1016/j.tranon.2023.101792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/11/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023] Open
Abstract
Lithium compounds, a classic class of metal complex medicine that target GSK 3β and are widely known as mood-stabilizer, have recently been reported as potential anti-tumor drugs. The objective of this investigation was to explore the anticancer potential of lithium chloride (LiCl) and elucidate its mode of action in pancreatic cancer cells. The MTT, colony formation, and Edu assay were used to evaluate the impact of LiCl on pancreatic cancer cell proliferation. Various methods were employed to investigate the anti-tumor activity of LiCl and its underlying mechanisms. Cell cycle analysis and apoptosis detection assays were utilized for in vitro experiments, while the orthotopic pancreatic cancer mouse model was employed to evaluate the effectiveness of LiCl treatment in vivo. Furthermore, the impact of LiCl on the proliferation of patient-derived organoids was also studied. The results demonstrated that LiCl inhibited the proliferation of pancreatic cancer (PC) cells, induced G2/M phase arrest, and activated apoptosis. Notably, the triggering of endoplasmic reticulum (ER) stress by LiCl was observed, leading to the activation of the PERK/CHOP/GADD34 pathway, which subsequently promoted apoptosis in PC cells. In the future, Lithium compounds could become an essential adjunct in the treatment of human pancreatic cancer.
Collapse
Affiliation(s)
- Hao Wu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 Jiangsu, PR China; Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China; Department of Geriatrics, Nanjing Red Cross Hospital, No. 242, Baixia Road, Qinhuai District, Nanjing 21000 Jiangsu, PR China
| | - Yin Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 Jiangsu, PR China; Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China
| | - Jiawei Liang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 Jiangsu, PR China; Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China
| | - Jianzhuang Wu
- Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210033 Jiangsu, PR China
| | - Yixuan Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 Jiangsu, PR China; Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China
| | - Haochen Su
- Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China; Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008 Jiangsu, PR China
| | - Qiyue Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 Jiangsu, PR China; Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China
| | - Yonghua Shen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 Jiangsu, PR China; Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China
| | - Shanshan Shen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 Jiangsu, PR China; Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 Jiangsu, PR China; Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 Jiangsu, PR China; Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China; Department of Gastroenterology, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210023 Jiangsu, PR China
| | - Cheng Hang
- Department of Gastroenterology, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Taicang 215400 Jiangsu, PR China.
| | - Shu Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 Jiangsu, PR China; Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China.
| | - Ying Lv
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 Jiangsu, PR China; Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China; Department of Gastroenterology, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210023 Jiangsu, PR China.
| |
Collapse
|
2
|
Chen Q, Shen L, Li S. Emerging role of inositol monophosphatase in cancer. Biomed Pharmacother 2023; 161:114442. [PMID: 36841024 DOI: 10.1016/j.biopha.2023.114442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023] Open
Abstract
Inositol monophosphatase (IMPase) is an enzyme with two homologs-IMPA1 and IMPA2-that is responsible for dephosphorylating myo-inositol monophosphate to generate myo-inositol. IMPase has been extensively studied in neuropsychiatric diseases and is regarded as a susceptibility gene. Recently, emerging evidence has implied that IMPase is linked to cancer development and progression and correlates with patient survival outcomes. Interestingly, whether it acts as a tumor-promoter or tumor-suppressor is inconsistent among different research studies. In this review, we summarize the latest findings on IMPase in cancer, focusing on exploring the underlying mechanisms for its pro- and anticancer roles. In addition, we discuss the potential methods of IMPase regulation in cancer cells and the possible approaches for IMPase intervention in clinical practice.
Collapse
Affiliation(s)
- Qian Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Shan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
3
|
Villegas-Vázquez EY, Quintas-Granados LI, Cortés H, González-Del Carmen M, Leyva-Gómez G, Rodríguez-Morales M, Bustamante-Montes LP, Silva-Adaya D, Pérez-Plasencia C, Jacobo-Herrera N, Reyes-Hernández OD, Figueroa-González G. Lithium: A Promising Anticancer Agent. Life (Basel) 2023; 13:537. [PMID: 36836894 PMCID: PMC9966411 DOI: 10.3390/life13020537] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Lithium is a therapeutic cation used to treat bipolar disorders but also has some important features as an anti-cancer agent. In this review, we provide a general overview of lithium, from its transport into cells, to its innovative administration forms, and based on genomic, transcriptomic, and proteomic data. Lithium formulations such as lithium acetoacetate (LiAcAc), lithium chloride (LiCl), lithium citrate (Li3C6H5O7), and lithium carbonate (Li2CO3) induce apoptosis, autophagy, and inhibition of tumor growth and also participate in the regulation of tumor proliferation, tumor invasion, and metastasis and cell cycle arrest. Moreover, lithium is synergistic with standard cancer therapies, enhancing their anti-tumor effects. In addition, lithium has a neuroprotective role in cancer patients, by improving their quality of life. Interestingly, nano-sized lithium enhances its anti-tumor activities and protects vital organs from the damage caused by lipid peroxidation during tumor development. However, these potential therapeutic activities of lithium depend on various factors, such as the nature and aggressiveness of the tumor, the type of lithium salt, and its form of administration and dosage. Since lithium has been used to treat bipolar disorder, the current study provides an overview of its role in medicine and how this has changed. This review also highlights the importance of this repurposed drug, which appears to have therapeutic cancer potential, and underlines its molecular mechanisms.
Collapse
Affiliation(s)
- Edgar Yebrán Villegas-Vázquez
- Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| | | | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
| | | | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Miguel Rodríguez-Morales
- Licenciatura en Médico Cirujano, Facultad de Ciencias de la Salud Universidad Anáhuac Norte, Academia de Genética Médica, Naucalpan de Juárez 52786, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | | | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Ciudad de México 14080, Mexico
- Laboratorio de Genómica, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Nadia Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Medicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - Octavio Daniel Reyes-Hernández
- Laboratorio de Biología Molecular del Cáncer, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| |
Collapse
|
4
|
Yang C, Zhu B, Zhan M, Hua ZC. Lithium in Cancer Therapy: Friend or Foe? Cancers (Basel) 2023; 15:cancers15041095. [PMID: 36831437 PMCID: PMC9954674 DOI: 10.3390/cancers15041095] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Lithium, a trace element important for fetal health and development, is considered a metal drug with a well-established clinical regime, economical production process, and a mature storage system. Several studies have shown that lithium affects tumor development by regulating inositol monophosphate (IMPase) and glycogen synthase kinase-3 (GSK-3). Lithium can also promote proliferation and programmed cell death (PCD) in tumor cells through a number of new targets, such as the nuclear receptor NR4A1 and Hedgehog-Gli. Lithium may increase cancer treatment efficacy while reducing side effects, suggesting that it can be used as an adjunctive therapy. In this review, we summarize the effects of lithium on tumor progression and discuss the underlying mechanisms. Additionally, we discuss lithium's limitations in antitumor clinical applications, including its narrow therapeutic window and potential pro-cancer effects on the tumor immune system.
Collapse
Affiliation(s)
- Chunhao Yang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Bo Zhu
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
- Correspondence: (B.Z.); (Z.-C.H.)
| | - Mingjie Zhan
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zi-Chun Hua
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Correspondence: (B.Z.); (Z.-C.H.)
| |
Collapse
|
5
|
Understanding the Roles of the Hedgehog Signaling Pathway during T-Cell Lymphopoiesis and in T-Cell Acute Lymphoblastic Leukemia (T-ALL). Int J Mol Sci 2023; 24:ijms24032962. [PMID: 36769284 PMCID: PMC9917970 DOI: 10.3390/ijms24032962] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The Hedgehog (HH) signaling network is one of the main regulators of invertebrate and vertebrate embryonic development. Along with other networks, such as NOTCH and WNT, HH signaling specifies both the early patterning and the polarity events as well as the subsequent organ formation via the temporal and spatial regulation of cell proliferation and differentiation. However, aberrant activation of HH signaling has been identified in a broad range of malignant disorders, where it positively influences proliferation, survival, and therapeutic resistance of neoplastic cells. Inhibitors targeting the HH pathway have been tested in preclinical cancer models. The HH pathway is also overactive in other blood malignancies, including T-cell acute lymphoblastic leukemia (T-ALL). This review is intended to summarize our knowledge of the biological roles and pathophysiology of the HH pathway during normal T-cell lymphopoiesis and in T-ALL. In addition, we will discuss potential therapeutic strategies that might expand the clinical usefulness of drugs targeting the HH pathway in T-ALL.
Collapse
|
6
|
Elmadbouh OHM, Pandol SJ, Edderkaoui M. Glycogen Synthase Kinase 3β: A True Foe in Pancreatic Cancer. Int J Mol Sci 2022; 23:14133. [PMID: 36430630 PMCID: PMC9696080 DOI: 10.3390/ijms232214133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Glycogen synthase kinase 3 beta (GSK-3β) is a serine/threonine protein kinase involved in multiple normal and pathological cell functions, including cell signalling and metabolism. GSK-3β is highly expressed in the onset and progression of multiple cancers with strong involvement in the regulation of proliferation, apoptosis, and chemoresistance. Multiple studies showed pro- and anti-cancer roles of GSK-3β creating confusion about the benefit of targeting GSK-3β for treating cancer. In this mini-review, we focus on the role of GSK-3β in pancreatic cancer. We demonstrate that the proposed anti-cancer roles of GSK-3β are not relevant to pancreatic cancer, and we argue why GSK-3β is, indeed, a very promising therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Omer H. M. Elmadbouh
- Department of Medicine, Division of Gastroenterology and Hepatology, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Stephen J. Pandol
- Department of Medicine, Division of Gastroenterology and Hepatology, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mouad Edderkaoui
- Department of Medicine, Division of Gastroenterology and Hepatology, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
7
|
Quatannens D, Verhoeven Y, Van Dam P, Lardon F, Prenen H, Roeyen G, Peeters M, Smits ELJ, Van Audenaerde J. Targeting hedgehog signaling in pancreatic ductal adenocarcinoma. Pharmacol Ther 2022; 236:108107. [PMID: 34999181 DOI: 10.1016/j.pharmthera.2022.108107] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a leading cause of cancer related death. The urgent need for effective therapies is highlighted by the lack of adequate targeting. In PDAC, hedgehog (Hh) signaling is known to be aberrantly activated, which prompted the pathway as a possible target for effective treatment for PDAC patients. Unfortunately, specific targeting of upstream molecules within the Hh signaling pathway failed to bring clinical benefit. This led to the ongoing debate on Hh targeting as a therapeutic treatment for PDAC patients. Additionally, concurrent non-canonical activation routes also result in translocation of Gli transcription factors into the nucleus. Therefore, different downstream targets of the Hh signaling pathway were identified and evaluated in preclinical and clinical research. In this review we summarize the variety of Hh signaling antagonists in different preclinical models of PDAC. Furthermore, we discuss published and ongoing clinical trials that evaluated Hh antagonists and point out the current hurdles and future perspectives in the light of redesigning Hh-targeting therapies for the treatment of PDAC patients.
Collapse
Affiliation(s)
- Delphine Quatannens
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| | - Yannick Verhoeven
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| | - Peter Van Dam
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Unit of Gynecologic Oncology, University Hospital Antwerp (UZA), Antwerp, Belgium.
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| | - Hans Prenen
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Department of Oncology, University Hospital Antwerp (UZA), Antwerp, Belgium.
| | - Geert Roeyen
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Department of Hepatobiliary Transplantation and Endocrine Surgery, University Hospital Antwerp (UZA), Antwerp, Belgium.
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Department of Oncology, University Hospital Antwerp (UZA), Antwerp, Belgium.
| | - Evelien L J Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| | - Jonas Van Audenaerde
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
8
|
Ahmed MB, Alghamdi AAA, Islam SU, Lee JS, Lee YS. cAMP Signaling in Cancer: A PKA-CREB and EPAC-Centric Approach. Cells 2022; 11:cells11132020. [PMID: 35805104 PMCID: PMC9266045 DOI: 10.3390/cells11132020] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is one of the most common causes of death globally. Despite extensive research and considerable advances in cancer therapy, the fundamentals of the disease remain unclear. Understanding the key signaling mechanisms that cause cancer cell malignancy may help to uncover new pharmaco-targets. Cyclic adenosine monophosphate (cAMP) regulates various biological functions, including those in malignant cells. Understanding intracellular second messenger pathways is crucial for identifying downstream proteins involved in cancer growth and development. cAMP regulates cell signaling and a variety of physiological and pathological activities. There may be an impact on gene transcription from protein kinase A (PKA) as well as its downstream effectors, such as cAMP response element-binding protein (CREB). The position of CREB downstream of numerous growth signaling pathways implies its oncogenic potential in tumor cells. Tumor growth is associated with increased CREB expression and activation. PKA can be used as both an onco-drug target and a biomarker to find, identify, and stage tumors. Exploring cAMP effectors and their downstream pathways in cancer has become easier using exchange protein directly activated by cAMP (EPAC) modulators. This signaling system may inhibit or accelerate tumor growth depending on the tumor and its environment. As cAMP and its effectors are critical for cancer development, targeting them may be a useful cancer treatment strategy. Moreover, by reviewing the material from a distinct viewpoint, this review aims to give a knowledge of the impact of the cAMP signaling pathway and the related effectors on cancer incidence and development. These innovative insights seek to encourage the development of novel treatment techniques and new approaches.
Collapse
Affiliation(s)
- Muhammad Bilal Ahmed
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
| | | | - Salman Ul Islam
- Department of Pharmacy, Cecos University, Peshawar, Street 1, Sector F 5 Phase 6 Hayatabad, Peshawar 25000, Pakistan;
| | - Joon-Seok Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
| | - Young-Sup Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
- Correspondence: ; Tel.: +82-53-950-6353; Fax: +82-53-943-2762
| |
Collapse
|
9
|
Anticancer Effect of Heparin-Taurocholate Conjugate on Orthotopically Induced Exocrine and Endocrine Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13225775. [PMID: 34830928 PMCID: PMC8616444 DOI: 10.3390/cancers13225775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Pancreatic cancer has a less than 9% 5-year survival rate among patients because it is very difficult to detect and diagnose early. Combinatorial chemotherapy with surgery or radiotherapy is a potential remedy to treat pancreatic cancer. However, these strategies still have side effects such as hair loss, skin soreness and fatigue. To overcome these side effects, angiogenesis inhibitors such as sunitinib are used to deliver targeted blood vessels around tumor tissues, including pancreatic cancer tumors. It is still controversial whether antiangiogenesis therapy is sufficient to treat pancreatic cancer. So far, many scientists have not been focused on the tumor types of pancreatic cancer when they have developed antipancreatic cancer medication. Here, we used heparin–taurocholate (LHT) as an anticancer drug to treat pancreatic cancer through inhibition of angiogenic growth factors. In this study, we examined the anticancer efficacy of LHT on various types of pancreatic cancer in an orthotopic model. Abstract Pancreatic cancers are classified based on where they occur, and are grouped into those derived from exocrine and those derived from neuroendocrine tumors, thereby experiencing different anticancer effects under medication. Therefore, it is necessary to develop anticancer drugs that can inhibit both types. To this end, we developed a heparin–taurocholate conjugate, i.e., LHT, to suppress tumor growth via its antiangiogenic activity. Here, we conducted a study to determine the anticancer efficacy of LHT on pancreatic ductal adenocarcinoma (PDAC) and pancreatic neuroendocrine tumor (PNET), in an orthotopic animal model. LHT reduced not only proliferation of cancer cells, but also attenuated the production of VEGF through ERK dephosphorylation. LHT effectively reduced the migration, invasion and tube formation of endothelial cells via dephosphorylation of VEGFR, ERK1/2, and FAK protein. Especially, these effects of LHT were much stronger on PNET (RINm cells) than PDAC (PANC1 and MIA PaCa-2 cells). Eventually, LHT reduced ~50% of the tumor weights and tumor volumes of all three cancer cells in the orthotopic model, via antiproliferation of cancer cells and antiangiogenesis of endothelial cells. Interestingly, LHT had a more dominant effect in the PNET-induced tumor model than in PDAC in vivo. Collectively, these findings demonstrated that LHT could be a potential antipancreatic cancer medication, regardless of pancreatic cancer types.
Collapse
|
10
|
Pecoraro C, Faggion B, Balboni B, Carbone D, Peters GJ, Diana P, Assaraf YG, Giovannetti E. GSK3β as a novel promising target to overcome chemoresistance in pancreatic cancer. Drug Resist Updat 2021; 58:100779. [PMID: 34461526 DOI: 10.1016/j.drup.2021.100779] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is an aggressive malignancy with increasing incidence and poor prognosis due to its late diagnosis and intrinsic chemoresistance. Most pancreatic cancer patients present with locally advanced or metastatic disease characterized by inherent resistance to chemotherapy. These features pose a series of therapeutic challenges and new targets are urgently needed. Glycogen synthase kinase 3 beta (GSK3β) is a conserved serine/threonine kinase, which regulates key cellular processes including cell proliferation, DNA repair, cell cycle progression, signaling and metabolic pathways. GSK3β is implicated in non-malignant and malignant diseases including inflammation, neurodegenerative diseases, diabetes and cancer. GSK3β recently emerged among the key factors involved in the onset and progression of pancreatic cancer, as well as in the acquisition of chemoresistance. Intensive research has been conducted on key oncogenic functions of GSK3β and its potential as a druggable target; currently developed GSK3β inhibitors display promising results in preclinical models of distinct tumor types, including pancreatic cancer. Here, we review the latest findings about GSK-3β biology and its role in the development and progression of pancreatic cancer. Moreover, we discuss therapeutic agents targeting GSK3β that could be administered as monotherapy or in combination with other drugs to surmount chemoresistance. Several studies are also defining potential gene signatures to identify patients who might benefit from GSK3β-based therapeutic intervention. This detailed overview emphasizes the urgent need of additional molecular studies on the impact of GSK3β inhibition as well as structural analysis of novel compounds and omics studies of predictive biomarkers.
Collapse
Affiliation(s)
- Camilla Pecoraro
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Beatrice Faggion
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands
| | - Beatrice Balboni
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy, and Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Department of Biochemistry, Medical University of Gdansk, Poland
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, 56017 San Giuliano Terme (Pisa), Italy.
| |
Collapse
|
11
|
Park R, Coveler AL, Cavalcante L, Saeed A. GSK-3β in Pancreatic Cancer: Spotlight on 9-ING-41, Its Therapeutic Potential and Immune Modulatory Properties. BIOLOGY 2021; 10:biology10070610. [PMID: 34356465 PMCID: PMC8301062 DOI: 10.3390/biology10070610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Glycogen synthase kinase-3 beta is a protein kinase implicated in the promotion and development of various cancers, including pancreatic cancer. In cell culture and animal studies, drugs targeting the inhibition of this protein show treatment potential in pancreatic cancer. Studies show targeting this protein for treatment may overcome resistance to conventional chemotherapy in pancreatic tumors. Early-stage clinical trials are currently studying small molecule inhibitors targeting glycogen synthase kinase-3 beta and interim results show favorable results. Recent studies also suggest that targeting this protein will create synergy with immunotherapy, such as checkpoint inhibitors. Future studies should aim to study new combination treatments involving glycogen synthase kinase-3 beta targeting drugs with chemotherapy and immunotherapy in pancreatic cancer. Abstract Glycogen synthase kinase-3 beta is a ubiquitously and constitutively expressed molecule with pleiotropic function. It acts as a protooncogene in the development of several solid tumors including pancreatic cancer through its involvement in various cellular processes including cell proliferation, survival, invasion and metastasis, as well as autophagy. Furthermore, the level of aberrant glycogen synthase kinase-3 beta expression in the nucleus is inversely correlated with tumor differentiation and survival in both in vitro and in vivo models of pancreatic cancer. Small molecule inhibitors of glycogen synthase kinase-3 beta have demonstrated therapeutic potential in pre-clinical models and are currently being evaluated in early phase clinical trials involving pancreatic cancer patients with interim results showing favorable results. Moreover, recent studies support a rationale for the combination of glycogen synthase kinase-3 beta inhibitors with chemotherapy and immunotherapy, warranting the evaluation of novel combination regimens in the future.
Collapse
Affiliation(s)
- Robin Park
- Department of Medicine, MetroWest Medical Center, Tufts University School of Medicine, Framingham, MA 01702, USA;
| | - Andrew L. Coveler
- Department of Medicine, Division of Oncology, University of Washington, Seattle, WA 98109-1024, USA;
| | | | - Anwaar Saeed
- Department of Medicine, Division of Medical Oncology, Kansas University Cancer Center & Research Institute, Kansas, KS 66205, USA
- Correspondence: ; Tel.: +1-913-588-6077
| |
Collapse
|
12
|
Wehbe N, Slika H, Mesmar J, Nasser SA, Pintus G, Baydoun S, Badran A, Kobeissy F, Eid AH, Baydoun E. The Role of Epac in Cancer Progression. Int J Mol Sci 2020; 21:ijms21186489. [PMID: 32899451 PMCID: PMC7555121 DOI: 10.3390/ijms21186489] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer continues to be a prime contributor to global mortality. Despite tremendous research efforts and major advances in cancer therapy, much remains to be learned about the underlying molecular mechanisms of this debilitating disease. A better understanding of the key signaling events driving the malignant phenotype of cancer cells may help identify new pharmaco-targets. Cyclic adenosine 3',5'-monophosphate (cAMP) modulates a plethora of biological processes, including those that are characteristic of malignant cells. Over the years, most cAMP-mediated actions were attributed to the activity of its effector protein kinase A (PKA). However, studies have revealed an important role for the exchange protein activated by cAMP (Epac) as another effector mediating the actions of cAMP. In cancer, Epac appears to have a dual role in regulating cellular processes that are essential for carcinogenesis. In addition, the development of Epac modulators offered new routes to further explore the role of this cAMP effector and its downstream pathways in cancer. In this review, the potentials of Epac as an attractive target in the fight against cancer are depicted. Additionally, the role of Epac in cancer progression, namely its effect on cancer cell proliferation, migration/metastasis, and apoptosis, with the possible interaction of reactive oxygen species (ROS) in these phenomena, is discussed with emphasis on the underlying mechanisms and pathways.
Collapse
Affiliation(s)
- Nadine Wehbe
- Department of Biology, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon; (N.W.); (J.M.)
| | - Hasan Slika
- Department of Pharmacology and Therapeutics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon;
| | - Joelle Mesmar
- Department of Biology, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon; (N.W.); (J.M.)
| | - Suzanne A. Nasser
- Department of Pharmacology, Beirut Arab University, P.O. Box 11-5020 Beirut, Lebanon;
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sharjah, P.O. Box 27272 Sharjah, UAE;
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
| | - Serine Baydoun
- Department of Radiology, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon;
| | - Adnan Badran
- Department of Basic Sciences, University of Petra, P.O. Box 961343, Amman 11196, Jordan;
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon;
| | - Ali H. Eid
- Department of Pharmacology and Therapeutics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon;
- Department of Pharmacology and Therapeutics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
- Correspondence: (A.H.E.); (E.B.); Tel.: +961-1-350-000 (ext. 4891) (A.H.E. & E.B.)
| | - Elias Baydoun
- Department of Biology, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon; (N.W.); (J.M.)
- Correspondence: (A.H.E.); (E.B.); Tel.: +961-1-350-000 (ext. 4891) (A.H.E. & E.B.)
| |
Collapse
|
13
|
Gonulcu SC, Unal B, Bassorgun IC, Ozcan M, Coskun HS, Elpek GO. Expression of Notch pathway components (Numb, Itch, and Siah-1) in colorectal tumors: A clinicopathological study. World J Gastroenterol 2020; 26:3814-3833. [PMID: 32774060 PMCID: PMC7383841 DOI: 10.3748/wjg.v26.i26.3814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/18/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The role of the Notch pathway in carcinogenesis and tumor progression has been demonstrated in many organs, including the colon. Accordingly, studies aimed at developing therapies targeting this pathway in various cancers require the identification of several factors that may play a role in regulating Notch-1 expression. Although Numb, Itch, and seven in absentia homolog-1 (Siah-1) have been shown to contribute to the regulation of Notch signaling, their role in colorectal carcinogenesis and tumor progression has not been fully elucidated to date. AIM To evaluate Numb, Itch, and Siah-1 expression in colorectal tumors to clarify their relationship with Notch-1 expression and their role in carcinogenesis and tumor behavior. METHODS Expression of Notch-1, Numb, Itch, and Siah-1 was investigated in 50 colorectal carcinomas, 30 adenomas, and 20 healthy colonic tissues by immunohistochemistry and quantitative real-time polymerase chain reaction (PCR) analyses. RESULTS In contrast to Notch-1, which is expressed at higher levels in tumor tissues and adenomas, expression of Numb, Itch, and Siah-1 was stronger and more frequent in normal mucosa (P < 0.01). There was a positive correlation between Notch-1 expression and high histological grade, the presence of lymph node metastasis, and advanced-stage tumors, whereas expression of Numb, Itch, and Siah-1 was absent or reduced in tumors with these clinicopathological parameters (P < 0.05). In survival analysis, expression of Notch was related to poor prognosis but that of Numb, Itch, and Siah-1 correlated with improved survival (P < 0.05). Multivariate analysis revealed Notch-1 expression and loss of Numb expression to be independent prognostic parameters together with lymph node metastasis (P < 0.05). CONCLUSION Our findings support the role of Notch-1 in colorectal carcinoma and indicate that loss of Numb, Itch, and Siah-1 expression is associated with carcinogenesis. Our data also suggest that these three proteins might be involved in the Notch-1 pathway during colorectal carcinoma (CRC) progression and might play an essential role in approaches targeting Notch as novel molecular therapies for CRC.
Collapse
Affiliation(s)
- Sinem Cil Gonulcu
- Department of Pathology, Akdeniz University, School of Medicine, Antalya 07070, Turkey
| | - Betul Unal
- Department of Pathology, Akdeniz University, School of Medicine, Antalya 07070, Turkey
| | | | - Mualla Ozcan
- Department of Pathology, Akdeniz University, School of Medicine, Antalya 07070, Turkey
| | - Hasan Senol Coskun
- Department of Oncology, Akdeniz University, School of Medicine, Antalya 07070, Turkey
| | - Gulsum Ozlem Elpek
- Department of Pathology, Akdeniz University, School of Medicine, Antalya 07070, Turkey
| |
Collapse
|
14
|
Ding L, Billadeau DD. Glycogen synthase kinase-3β: a novel therapeutic target for pancreatic cancer. Expert Opin Ther Targets 2020; 24:417-426. [PMID: 32178549 DOI: 10.1080/14728222.2020.1743681] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer death in the United States with a single-digit 5-year survival rate despite advances in understanding the genetics and biology of the disease. Glycogen synthase kinase-3α (GSK-3α) and GSK-3β are serine/threonine kinases that localize to the cytoplasm, mitochondria and nucleus. Although they are highly homologous within their kinase domains and phosphorylate an overlapping set of target proteins, genetic studies have shown that GSK-3β regulates the activity of several proteins that promote neoplastic transformation. Significantly, GSK-3β is progressively overexpressed during PDAC development where it participates in tumor progression, survival and chemoresistance. Thus, GSK-3β has become an attractive target for treating PDAC.Areas covered: This review summarizes the mechanisms regulating GSK-3β activity, including upstream translational and post-translational regulation, as well as the downstream targets and their functions in PDAC cell growth, metastasis and chemoresistance.Expert opinion: The activity of GSK-3 kinases are considered cell- and context-specific. In PDAC, oncogenic KRas drives the transcriptional expression of the GSK-3β gene, which has been shown to regulate cancer cell proliferation and survival, as well as resistance to chemotherapy. Thus, the combination of GSK-3 inhibitors with chemotherapeutic drugs could be a promising strategy for PDAC.
Collapse
Affiliation(s)
- Li Ding
- The Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Daniel D Billadeau
- The Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
15
|
Vidri RJ, Fitzgerald TL. GSK-3: An important kinase in colon and pancreatic cancers. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118626. [PMID: 31987793 DOI: 10.1016/j.bbamcr.2019.118626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/17/2022]
Abstract
In this review, the role of glycogen synthase kinase 3 (GSK-3) in pancreatic and colon cancers will be explored. GSK-3 plays a fundamental role in many metabolic processes, primarily as the final enzyme in glycogen synthesis. Active β-catenin represents the final step for the transcription of Wnt target genes. Both GSK-3 and β-catenin are key in the neoplastic transformation and tumorigenesis of human cells. Despite the advances in diagnosis and treatment of pancreatic malignancies, survival remains dismal. Continued poor outcomes are attributable to tumor cell resistance and high frequency of metastatic disease. Survival for patients diagnosed with colon cancer is often excellent, and many patients achieve long term remission. However, the incidence of colon cancers continues to increase, especially among the young. The future use of targeted therapy in pancreatic and colo-rectal cancer utilizing GSK-3 may be promising, pending a more thorough understanding of potential downstream effects. This article is part of a Special Issue entitled: GSK-3 and related kinases in cancer, neurological and other disorders edited by James McCubrey, Agnieszka Gizak and Dariusz Rakus.
Collapse
Affiliation(s)
- Roberto J Vidri
- Division of Surgical Oncology, Tufts University School of Medicine-Maine Medical Center, Portland, ME, United States of America
| | - Timothy L Fitzgerald
- Division of Surgical Oncology, Tufts University School of Medicine-Maine Medical Center, Portland, ME, United States of America.
| |
Collapse
|
16
|
Pisanu C, Williams MJ, Ciuculete DM, Olivo G, Del Zompo M, Squassina A, Schiöth HB. Evidence that genes involved in hedgehog signaling are associated with both bipolar disorder and high BMI. Transl Psychiatry 2019; 9:315. [PMID: 31754094 PMCID: PMC6872724 DOI: 10.1038/s41398-019-0652-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/23/2019] [Accepted: 10/20/2019] [Indexed: 12/16/2022] Open
Abstract
Patients with bipolar disorder (BD) show higher frequency of obesity and type 2 diabetes (T2D), but the underlying genetic determinants and molecular pathways are not well studied. Using large publicly available datasets, we (1) conducted a gene-based analysis using MAGMA to identify genes associated with BD and body mass index (BMI) or T2D and investigated their functional enrichment; and (2) performed two meta-analyses between BD and BMI, as well as BD and T2D using Metasoft. Target druggability was assessed using the Drug Gene Interaction Database (DGIdb). We identified 518 and 390 genes significantly associated with BD and BMI or BD and T2D, respectively. A total of 52 and 12 genes, respectively, were significant after multiple testing correction. Pathway analyses conducted on nominally significant targets showed that genes associated with BD and BMI were enriched for the Neuronal cell body Gene Ontology (GO) term (p = 1.0E-04; false discovery rate (FDR) = 0.025) and different pathways, including the Signaling by Hedgehog pathway (p = 4.8E-05, FDR = 0.02), while genes associated with BD and T2D showed no specific enrichment. The meta-analysis between BD and BMI identified 64 relevant single nucleotide polymorphisms (SNPs). While the majority of these were located in intergenic regions or in a locus on chromosome 16 near and in the NPIPL1 and SH2B1 genes (best SNP: rs4788101, p = 2.1E-24), five were located in the ETV5 gene (best SNP: rs1516725, p = 1E-24), which was previously associated with both BD and obesity, and one in the RPGRIP1L gene (rs1477199, p = 5.7E-09), which was also included in the Signaling by Hedgehog pathway. The meta-analysis between BD and T2D identified six significant SNPs, three of which were located in ALAS1 (best SNP: rs352165, p = 3.4E-08). Thirteen SNPs associated with BD and BMI, and one with BD and T2D, were located in genes which are part of the druggable genome. Our results support the hypothesis of shared genetic determinants between BD and BMI and point to genes involved in Hedgehog signaling as promising targets.
Collapse
Affiliation(s)
- Claudia Pisanu
- Unit of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden.
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.
| | - Michael J Williams
- Unit of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Diana M Ciuculete
- Unit of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Gaia Olivo
- Unit of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Maria Del Zompo
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Helgi B Schiöth
- Unit of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden.
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
17
|
Ding L, Madamsetty VS, Kiers S, Alekhina O, Ugolkov A, Dube J, Zhang Y, Zhang JS, Wang E, Dutta SK, Schmitt DM, Giles FJ, Kozikowski AP, Mazar AP, Mukhopadhyay D, Billadeau DD. Glycogen Synthase Kinase-3 Inhibition Sensitizes Pancreatic Cancer Cells to Chemotherapy by Abrogating the TopBP1/ATR-Mediated DNA Damage Response. Clin Cancer Res 2019; 25:6452-6462. [PMID: 31533931 DOI: 10.1158/1078-0432.ccr-19-0799] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/03/2019] [Accepted: 08/02/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is a predominantly fatal common malignancy with inadequate treatment options. Glycogen synthase kinase 3β (GSK-3β) is an emerging target in human malignancies including PDAC.Experimental Design: Pancreatic cancer cell lines and patient-derived xenografts were treated with a novel GSK-3 inhibitor 9-ING-41 alone or in combination with chemotherapy. Activation of the DNA damage response pathway and S-phase arrest induced by gemcitabine were assessed in pancreatic tumor cells with pharmacologic inhibition or siRNA depletion of GSK-3 kinases by immunoblotting, flow cytometry, and immunofluorescence. RESULTS 9-ING-41 treatment significantly increased pancreatic tumor cell killing when combined with chemotherapy. Inhibition of GSK-3 by 9-ING-41 prevented gemcitabine-induced S-phase arrest suggesting an impact on the ATR-mediated DNA damage response. Both 9-ING-41 and siRNA depletion of GSK-3 kinases impaired the activation of ATR leading to the phosphorylation and activation of Chk1. Mechanistically, depletion or knockdown of GSK-3 kinases resulted in the degradation of the ATR-interacting protein TopBP1, thus limiting the activation of ATR in response to single-strand DNA damage. CONCLUSIONS These data identify a previously unknown role for GSK-3 kinases in the regulation of the TopBP1/ATR/Chk1 DNA damage response pathway. The data also support the inclusion of patients with PDAC in clinical studies of 9-ING-41 alone and in combination with gemcitabine.
Collapse
Affiliation(s)
- Li Ding
- The Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Vijay S Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, Florida
| | - Spencer Kiers
- The Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Olga Alekhina
- The Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota
| | | | - John Dube
- The Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Yu Zhang
- The Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Jin-San Zhang
- The Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota.,Center for Precision Medicine, The First Affiliated Hospital of Wenzhou Medical University, Institute of Life Science, Wenzhou University, Zhejiang, China
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, Florida
| | - Shamit K Dutta
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, Florida
| | | | | | | | | | | | - Daniel D Billadeau
- The Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
18
|
Li J, Yao Q, Xu Y, Zhang H, Li LL, Wang L. Lithium Chloride-Releasing 3D Printed Scaffold for Enhanced Cartilage Regeneration. Med Sci Monit 2019; 25:4041-4050. [PMID: 31147532 PMCID: PMC6559007 DOI: 10.12659/msm.916918] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background We synthetized a 3D printed poly-ɛ-caprolactone (PCL) scaffold with polydopamine (PDA) coating and lithium chloride (LiCl) deposition for cartilage tissue engineering and analyzed its effect on promoting rabbit bone marrow mesenchymal stem cells (rBMSC) chondrogenesis in vitro. Material/Methods PCL scaffolds were prepared by 3D printing with a well-designed CAD digital model, then modified by PDA coating to produce PCL-PDA scaffolds. Finally, LiCl was deposited on the PDA coating to produce PCL-PDA-Li scaffolds. The physicochemical properties, bioactivity, and biocompatibility of PCL-PDA-Li scaffolds were accessed by comparing them with PCL scaffolds and PCL-PDA scaffolds. Results 3D PCL scaffolds exhibited excellent mechanical integrity as designed. PDA coating and LiCl deposition improved surface hydrophilicity without sacrificing mechanical strength. Li+ release was durable and ion concentration did not reach the cytotoxicity level. This in vitro study showed that, compared to PCL scaffolds, PCL-PDA and PCL-PDA-Li scaffolds significantly increased glycosaminoglycan (GAG) formation and chondrogenic marker gene expression, while PCL-PDA-Li scaffolds showed far higher rBMSC viability and chondrogenesis. Conclusions 3D printed PCL-PDA-Li scaffolds promoted chondrogenesis in vitro and may provide a good method for lithium administration and be a potential candidate for cartilage tissue engineering.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Orthopedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Qingqiang Yao
- Department of Orthopedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Yan Xu
- Department of Orthopedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Huikang Zhang
- Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Liang-Liang Li
- Department of Orthopedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Liming Wang
- Department of Orthopedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Key Lab of Additive Manufacturing Technology, nstitute of Digital Medicine, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
19
|
Montagnani V, Stecca B. Role of Protein Kinases in Hedgehog Pathway Control and Implications for Cancer Therapy. Cancers (Basel) 2019; 11:cancers11040449. [PMID: 30934935 PMCID: PMC6520855 DOI: 10.3390/cancers11040449] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 02/08/2023] Open
Abstract
Hedgehog (HH) signaling is an evolutionarily conserved pathway that is crucial for growth and tissue patterning during embryonic development. It is mostly quiescent in the adult, where it regulates tissue homeostasis and stem cell behavior. Aberrant reactivation of HH signaling has been associated to several types of cancer, including those in the skin, brain, prostate, breast and hematological malignancies. Activation of the canonical HH signaling is triggered by binding of HH ligand to the twelve-transmembrane protein PATCHED. The binding releases the inhibition of the seven-transmembrane protein SMOOTHENED (SMO), leading to its phosphorylation and activation. Hence, SMO activates the transcriptional effectors of the HH signaling, that belong to the GLI family of transcription factors, acting through a not completely elucidated intracellular signaling cascade. Work from the last few years has shown that protein kinases phosphorylate several core components of the HH signaling, including SMO and the three GLI proteins, acting as powerful regulatory mechanisms to fine tune HH signaling activities. In this review, we will focus on the mechanistic influence of protein kinases on HH signaling transduction. We will also discuss the functional consequences of this regulation and the possible implications for cancer therapy.
Collapse
Affiliation(s)
- Valentina Montagnani
- Core Research Laboratory⁻Institute for Cancer Research, Prevention and Clinical Network (ISPRO), 50139 Florence, Italy.
| | - Barbara Stecca
- Core Research Laboratory⁻Institute for Cancer Research, Prevention and Clinical Network (ISPRO), 50139 Florence, Italy.
| |
Collapse
|
20
|
Effects of lithium on the secretory production of recombinant antibody from insect cells. In Vitro Cell Dev Biol Anim 2018; 55:1-6. [PMID: 30382493 DOI: 10.1007/s11626-018-0303-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 10/15/2018] [Indexed: 01/30/2023]
Abstract
Monoclonal antibodies and antibody fragments are widely used in therapeutics and diagnoses. While mammalian cells serve as the host cells for antibody production, insect cells can produce large quantities of secretory antibodies in serum-free suspension cultures. The effects of lithium on the processes of autophagy and apoptosis in mammalian cells are well chronicled. In the present study, stably transformed insect cells, which produce an engineered antibody molecule, were cultured with lithium chloride in a serum-free medium. Treatment with lithium chloride induced autophagy and apoptosis in recombinant insect cells and led to increases in the yields of secreted antibodies.
Collapse
|
21
|
Wang X, Fang Z, Wang A, Luo C, Cheng X, Lu M. Lithium Suppresses Hedgehog Signaling via Promoting ITCH E3 Ligase Activity and Gli1-SUFU Interaction in PDA Cells. Front Pharmacol 2017; 8:820. [PMID: 29249966 PMCID: PMC5715333 DOI: 10.3389/fphar.2017.00820] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/30/2017] [Indexed: 01/02/2023] Open
Abstract
Dysregulation of Hedgehog (Hh) signaling pathway is one of the hallmarks of pancreatic ductal adenocarcinoma (PDA). Lithium, a clinical mood stabilizer for the treatment of mental disorders, is known to suppress tumorigenic potential of PDA cells by targeting the Hh/Gli signaling pathway. In this study, we investigated the molecular mechanism of lithium induced down-regulation of Hh/Gli1. Our data show that lithium promotes the poly-ubiquitination and proteasome-mediated degradation of Gli1 through activating E3 ligase ITCH. Additionally, lithium enhances interaction between Gli1 and SUFU via suppressing GSK3β, which phosphorylates SUFU and destabilizes the SUFU-Gli1 inhibitory complex. Our studies illustrate a novel mechanism by which lithium suppresses Hh signaling via simultaneously promoting ITCH-dependent Gli1 ubiquitination/degradation and SUFU-mediated Gli1 inhibition.
Collapse
Affiliation(s)
- Xinshuo Wang
- State Key Laboratory of Natural Medicines, School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China.,School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zijian Fang
- State Key Laboratory of Natural Medicines, School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Anlin Wang
- State Key Laboratory of Natural Medicines, School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Cheng Luo
- State Key Laboratory of Natural Medicines, School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Meiling Lu
- State Key Laboratory of Natural Medicines, School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
22
|
Wang X, Luo C, Cheng X, Lu M. Lithium and an EPAC-specific inhibitor ESI-09 synergistically suppress pancreatic cancer cell proliferation and survival. Acta Biochim Biophys Sin (Shanghai) 2017; 49:573-580. [PMID: 28475672 DOI: 10.1093/abbs/gmx045] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Indexed: 01/03/2023] Open
Abstract
Our previous studies showed that while lithium suppresses proliferation and induces apoptosis in pancreatic cancer cells, the inhibition of exchange proteins directly activated by cyclic adenosine monophosphate (cAMP) (EPAC)1 blocks pancreatic cancer cell migration and invasion. In this study, we further investigated the combinatory effects of lithium and EPAC-specific inhibitor (ESI)-09, an EPAC-specific inhibitor, on pancreatic cancer cell proliferation and viability, and explored whether lithium synergistically cooperates with EPAC inhibition in suppressing pancreatic cancer cell tumorigenicity. The cell viability of pancreatic cancer cell lines PANC-1 and MiaPaCa-2 was measured after 48 h of incubation with different dose combination of lithium and ESI-09. Flow cytometric analysis was carried out to further verify the impact of lithium and ESI-09 upon PANC-1 cell proliferation and apoptosis. To investigate the mechanism that the effects generated by lithium and ESI-09 on PANC-1 cells, the intracellular cAMP level was measured by an ELISA-based cAMP immunoassay. Our data showed that lithium and ESI-09 synergistically inhibit pancreatic cancer cell growth and survival. Furthermore, our results revealed a novel mechanism in which the synergism between lithium and ESI-09 is not mediated by the inhibitory effect of lithium toward GSK3β, but by lithium's ability to suppress cAMP/protein kinase A signaling.
Collapse
Affiliation(s)
- Xinshuo Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng Luo
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Meiling Lu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
23
|
Schleicher SB, Zaborski JJ, Riester R, Zenkner N, Handgretinger R, Kluba T, Traub F, Boehme KA. Combined application of arsenic trioxide and lithium chloride augments viability reduction and apoptosis induction in human rhabdomyosarcoma cell lines. PLoS One 2017; 12:e0178857. [PMID: 28575066 PMCID: PMC5456379 DOI: 10.1371/journal.pone.0178857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 05/21/2017] [Indexed: 12/18/2022] Open
Abstract
Rhabdomyosarcomas (RMS) are the most prevalent soft tissue sarcomas affecting children and adolescents. Despite intensive treatment consisting of multimodal chemotherapy and surgery RMS patients diagnosed with metastatic disease expect long term survival rates of only 20%. Often multidrug resistance arises upon initial response emphasizing the need for new therapeutic drugs to improve treatment efficiency. Previously, we demonstrated the efficacy of the FDA approved drug arsenic trioxide (ATO) specifically inhibiting viability and clonal growth as well as inducing cell death in human RMS cell lines of different subtypes. In this study, we combined low dose ATO with lithium chloride (LiCl), which is approved as mood stabilizer for the treatment of bipolar disorder, but also inhibits growth and survival of different cancer cell types in pre-clinical research. Indeed, we could show additive effects of LiCl and ATO on viability reduction, decrease of colony formation as well as cell death induction. In the course of this, LiCl induced inhibitory glycogen synthase kinase-3β (GSK-3β) serine 9 phosphorylation, whereas glioma associated oncogene family 1 (GLI1) protein expression was particularly reduced by combined ATO and LiCl treatment in RD and RH-30 cell lines, showing high rates of apoptotic cell death. These results imply that combination of ATO with LiCl or another drug targeting GSK-3 is a promising strategy to enforce the treatment efficiency in resistant and recurrent RMS.
Collapse
Affiliation(s)
- Sabine B. Schleicher
- Eberhard Karls University Tuebingen, Children’s Hospital, Department of Hematology and Oncology, Tuebingen, Germany
| | - Julian J. Zaborski
- Eberhard Karls University Tuebingen, Department of Orthopedic Surgery, Laboratory of Cell Biology, Tuebingen, Germany
| | - Rosa Riester
- Eberhard Karls University Tuebingen, Department of Orthopedic Surgery, Laboratory of Cell Biology, Tuebingen, Germany
| | - Natascha Zenkner
- Eberhard Karls University Tuebingen, Department of Orthopedic Surgery, Laboratory of Cell Biology, Tuebingen, Germany
| | - Rupert Handgretinger
- Eberhard Karls University Tuebingen, Children’s Hospital, Department of Hematology and Oncology, Tuebingen, Germany
| | - Torsten Kluba
- Eberhard Karls University Tuebingen, Department of Orthopedic Surgery, Tuebingen, Germany
| | - Frank Traub
- Eberhard Karls University Tuebingen, Department of Orthopedic Surgery, Laboratory of Cell Biology, Tuebingen, Germany
- Eberhard Karls University Tuebingen, Department of Orthopedic Surgery, Tuebingen, Germany
| | - Karen A. Boehme
- Eberhard Karls University Tuebingen, Department of Orthopedic Surgery, Laboratory of Cell Biology, Tuebingen, Germany
- * E-mail:
| |
Collapse
|
24
|
Boursi B, Finkelman B, Giantonio BJ, Haynes K, Rustgi AK, Rhim AD, Mamtani R, Yang YX. A Clinical Prediction Model to Assess Risk for Pancreatic Cancer Among Patients With New-Onset Diabetes. Gastroenterology 2017; 152:840-850.e3. [PMID: 27923728 PMCID: PMC5337138 DOI: 10.1053/j.gastro.2016.11.046] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/27/2016] [Accepted: 11/28/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Approximately 50% of all patients with pancreatic ductal adenocarcinoma (PDA) develop diabetes mellitus before their cancer diagnosis. Screening individuals with new-onset diabetes might allow earlier diagnosis of PDA. We sought to develop and validate a PDA risk prediction model to identify high-risk individuals among those with new-onset diabetes. METHODS We conducted a retrospective cohort study in a population representative database from the United Kingdom. Individuals with incident diabetes after the age of 35 years and 3 or more years of follow-up after diagnosis of diabetes were eligible for inclusion. Candidate predictors consisted of epidemiologic and clinical characteristics available at the time of diabetes diagnosis. Variables with P values <.25 in the univariable analyses were evaluated using backward stepwise approach. Model discrimination was assessed using receiver operating characteristic curve analysis. Calibration was evaluated using the Hosmer-Lemeshow test. Results were internally validated using a bootstrapping procedure. RESULTS We analyzed data from 109,385 patients with new-onset diabetes. Among them, 390 (0.4%) were diagnosed with PDA within 3 years. The final model (area under the curve, 0.82; 95% confidence interval, 0.75-0.89) included age, body mass index, change in body mass index, smoking, use of proton pump inhibitors, and anti-diabetic medications, as well as levels of hemoglobin A1C, cholesterol, hemoglobin, creatinine, and alkaline phosphatase. Bootstrapping validation showed negligible optimism. If the predicted risk threshold for definitive PDA screening was set at 1% over 3 years, only 6.19% of the new-onset diabetes population would undergo definitive screening, which would identify patients with PDA with 44.7% sensitivity, 94.0% specificity, and a positive predictive value of 2.6%. CONCLUSIONS We developed a risk model based on widely available clinical parameters to help identify patients with new-onset diabetes who might benefit from PDA screening.
Collapse
Affiliation(s)
- Ben Boursi
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA;,Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA;,Tel-Aviv University, Tel-Aviv, Israel
| | - Brian Finkelman
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bruce J. Giantonio
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA;,Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin Haynes
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anil K. Rustgi
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew D. Rhim
- Sheikh Ahmed Bin Zayed Al Nahyan Center for Pancreatic Cancer Research and Department of Gastroenterology, Hepatology and Nutrition, University of Texas M.D. Anderson Cancer Center
| | - Ronac Mamtani
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA;,Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Yu-Xiao Yang
- Department of Medicine and Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
25
|
Wang Y, Hsu JM, Kang Y, Wei Y, Lee PC, Chang SJ, Hsu YH, Hsu JL, Wang HL, Chang WC, Li CW, Liao HW, Chang SS, Xia W, Ko HW, Chou CK, Fleming JB, Wang H, Hwang RF, Chen Y, Qin J, Hung MC. Oncogenic Functions of Gli1 in Pancreatic Adenocarcinoma Are Supported by Its PRMT1-Mediated Methylation. Cancer Res 2016; 76:7049-7058. [PMID: 27758883 PMCID: PMC5135656 DOI: 10.1158/0008-5472.can-16-0715] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/04/2016] [Accepted: 08/10/2016] [Indexed: 12/13/2022]
Abstract
The oncogenic transcription factor Gli1 is a critical effector in the Hedgehog (Hh) pathway, which is necessary for the development and progression of pancreatic ductal adenocarcinoma (PDAC). Although TGFβ and K-Ras are known regulators of Gli1 gene transcription in this setting, it is not understood how Gli1 functional activity is regulated. Here, we report the identification of Gli1 as a substrate for the protein arginine N-methyltransferase PRMT1 in PDAC. We found that PRMT1 methylates Gli1 at R597, promoting its transcriptional activity by enhancing the binding of Gli1 to its target gene promoters. Interruption of Gli1 methylation attenuates oncogenic functions of Gli1 and sensitizes PDAC cells to gemcitabine treatment. In human PDAC specimens, the levels of both total Gli1 and methylated Gli1 were correlated positively with PRMT1 protein levels. Notably, PRMT1 regulated Gli1 independently of the canonical Hh pathway as well as the TGFβ/Kras-mediated noncanonical Hh pathway, thereby signifying a novel regulatory mechanism for Gli1 transcriptional activity. Taken together, our results identified a new posttranslational modification of Gli1 that underlies its pivotal oncogenic functions in PDAC. Cancer Res; 76(23); 7049-58. ©2016 AACR.
Collapse
Affiliation(s)
- Yan Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jung-Mao Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ya'an Kang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pei-Chih Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shing-Jyh Chang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Obstetrics and Gynecology, Hsinchu Mackay Memorial Hospital, Hsinchu, Taiwan
| | - Yi-Hsin Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer L Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hung-Ling Wang
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
| | - Wei-Chao Chang
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Wei Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hsin-Wei Liao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - Shih-Shin Chang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - How-Wen Ko
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - Chao-Kai Chou
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason B Fleming
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rosa F Hwang
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yue Chen
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Jun Qin
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
- Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
26
|
Elmaci İ, Altinoz MA. A Metabolic Inhibitory Cocktail for Grave Cancers: Metformin, Pioglitazone and Lithium Combination in Treatment of Pancreatic Cancer and Glioblastoma Multiforme. Biochem Genet 2016; 54:573-618. [PMID: 27377891 DOI: 10.1007/s10528-016-9754-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/23/2016] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer (PC) and glioblastoma multiforme (GBM) are among the human cancers with worst prognosis which require an urgent need for efficient therapies. Here, we propose to apply to treat both malignancies with a triple combination of drugs, which are already in use for different indications. Recent studies demonstrated a considerable link between risk of PC and diabetes. In experimental models, anti-diabetogenic agents suppress growth of PC, including metformin (M), pioglitazone (P) and lithium (L). L is used in psychiatric practice, yet also bears anti-diabetic potential and selectively inhibits glycogen synthase kinase-3 beta (GSK-3β). M, a biguanide class anti-diabetic agent shows anticancer activity via activating AMP-activated protein kinase (AMPK). Glitazones bind to PPAR-γ and inhibit NF-κB, triggering cell proliferation, apoptosis resistance and synthesis of inflammatory cytokines in cancer cells. Inhibition of inflammatory cytokines could simultaneously decrease tumor growth and alleviate cancer cachexia, having a major role in PC mortality. Furthermore, mutual synergistic interactions exist between PPAR-γ and GSK-3β, between AMPK and GSK-3β and between AMPK and PPAR-γ. In GBM, M blocks angiogenesis and migration in experimental models. Very noteworthy, among GBM patients with type 2 diabetes, usage of M significantly correlates with better survival while reverse is true for sulfonylureas. In experimental models, P synergies with ligands of RAR, RXR and statins in reducing growth of GBM. Further, usage of P was found to be lesser in anaplastic astrocytoma and GBM patients, indicating a protective effect of P against high-grade gliomas. L is accumulated in GBM cells faster and higher than in neuroblastoma cells, and its levels further increase with chronic exposure. Recent studies revealed anti-invasive potential of L in GBM cell lines. Here, we propose that a triple-agent regime including drugs already in clinical usage may provide a metabolic adjuvant therapy for PC and GBM.
Collapse
Affiliation(s)
- İlhan Elmaci
- Department of Neurosurgery, Memorial Hospital, Istanbul, Turkey
- Neuroacademy Group, Istanbul, Turkey
| | - Meric A Altinoz
- Department of Immunology, Experimental Medicine Research Center, Istanbul, Turkey.
| |
Collapse
|
27
|
Erguven M, Oktem G, Kara AN, Bilir A. Lithium chloride has a biphasic effect on prostate cancer stem cells and a proportional effect on midkine levels. Oncol Lett 2016; 12:2948-2955. [PMID: 27703531 DOI: 10.3892/ol.2016.4946] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/01/2016] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer (PCa) is the second most frequent type of cancer in men worldwide and the levels of differentiation growth factor midkine (MK) are increased in PCa. Cancer and/or the treatment process itself may lead to psychiatric disorders. Lithium chloride (LiCl) has anti-manic properties and has been used in cancer therapy; however, it has a queried safety profile. In addition, cancer stem cells are responsible for the heterogeneous phenotype of tumor cells; they are involved in progression, metastasis, recurrence and therapy resistance in various cancer types. The aims of the present study were to investigate the effect of different concentrations of LiCl on PCa stem cells (whether a shift from tumorigenic to non-tumorigenic cells occurs) and to determine if these results can be explained through changes in MK levels. Monolayer and spheroid cultures of human prostate stem cells and non-stem cells were incubated with low (1, 10 µM) and high (100, 500 µM) concentrations of LiCl for 72 h. Cell proliferation, apoptotic indices, MK levels and ultrastructure were evaluated. Cells stimulated with low concentrations showed high proliferation, low apoptotic indices, high MK levels and more healthy ultrastructure. Opposite results were obtained at high concentrations. Furthermore, stem cells were more sensitive to stimulation and more resistant to inhibition than non-stem cells. LiCl exhibited concentration-dependent effects on stem cell and non-stem cell groups. MK levels were not involved in the biphasic effect of LiCl; however, they were proportionally affected. To the best of our knowledge, the present study was the first to show the effect of LiCl on PCa stem cells through MK.
Collapse
Affiliation(s)
- Mine Erguven
- Department of Medical Biochemistry, Faculty of Medicine, İstanbul Aydın University, Küçükçekmece 34295, İstanbul, Turkey
| | - Gulperi Oktem
- Department of Histology and Embryology, School of Medicine, Ege University, Bornova 35040, İzmir, Turkey
| | - Ali Nail Kara
- Department of Histology and Embryology, İstanbul Faculty of Medicine, İstanbul University, Capa 34390, İstanbul, Turkey
| | - Ayhan Bilir
- Department of Histology and Embryology, Emine-Bahaeddin Nakıboğlu Faculty of Medicine, Zirve University, Gaziantep 27260, Turkey
| |
Collapse
|
28
|
Maeng YS, Lee R, Lee B, Choi SI, Kim EK. Lithium inhibits tumor lymphangiogenesis and metastasis through the inhibition of TGFBIp expression in cancer cells. Sci Rep 2016; 6:20739. [PMID: 26857144 PMCID: PMC4746585 DOI: 10.1038/srep20739] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 01/07/2016] [Indexed: 12/30/2022] Open
Abstract
Metastasis is the main cause of mortality in cancer patients. Although there are many anti-cancer drugs targeting tumor growth, anti-metastatic agents are rarely developed. Angiogenesis and lymphangiogenesis are crucial for cancer progression; in particular, lymphangiogenesis is pivotal for metastasis in cancer. Here we report that lithium inhibits colon cancer metastasis by blocking lymphangiogenesis. Lithium reduces the expression of transforming growth factor-β-induced protein (TGFBIp) in colon cancer cells by inhibiting Smad3 phosphorylation via GSK3β inactivation. Moreover, lithium inhibits lymphatic endothelial cell migration, which is increased upon TGFBIp expression in tumor cells. Lithium had no significant effect on SW620 tumor growth in vitro and in vivo; however, it inhibited lymphangiogenesis in tumors. In tumor xenografts model, lithium was found to prevent metastasis to the lungs, liver, and lymph nodes by inhibiting TGFBIp-induced tumor lymphangiogenesis. Collectively, our findings demonstrate a novel role of lithium in the inhibition of colon cancer metastasis by blocking TGFBIp expression, and thereby TGFBIp-induced lymphangiogenesis, in primary tumors.
Collapse
Affiliation(s)
- Yong-Sun Maeng
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Rina Lee
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Boram Lee
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung-Il Choi
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Eung Kweon Kim
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea.,Institute of Vision Research, Severance Biomedical Science Institute, Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
29
|
Thompson CL, Wiles A, Poole CA, Knight MM. Lithium chloride modulates chondrocyte primary cilia and inhibits Hedgehog signaling. FASEB J 2016; 30:716-26. [PMID: 26499268 DOI: 10.1096/fj.15-274944] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 10/05/2015] [Indexed: 11/28/2024]
Abstract
Lithium chloride (LiCl) exhibits significant therapeutic potential as a treatment for osteoarthritis. Hedgehog signaling is activated in osteoarthritis, where it promotes chondrocyte hypertrophy and cartilage matrix catabolism. Hedgehog signaling requires the primary cilium such that maintenance of this compartment is essential for pathway activity. Here we report that LiCl (50 mM) inhibits Hedgehog signaling in bovine articular chondrocytes such that the induction of GLI1 and PTCH1 expression is reduced by 71 and 55%, respectively. Pathway inhibition is associated with a 97% increase in primary cilia length from 2.09 ± 0.7 μm in untreated cells to 4.06 ± 0.9 μm in LiCl-treated cells. We show that cilia elongation disrupts trafficking within the axoneme with a 38% reduction in Arl13b ciliary localization at the distal region of the cilium, consistent with the role of Arl13b in modulating Hedgehog signaling. In addition, we demonstrate similar increases in cilia length in human chondrocytes in vitro and after administration of dietary lithium to Wistar rats in vivo. Our data provide new insights into the effects of LiCl on chondrocyte primary cilia and Hedgehog signaling and shows for the first time that pharmaceutical targeting of the primary cilium may have therapeutic benefits in the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Clare L Thompson
- *Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom; and Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Anna Wiles
- *Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom; and Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - C Anthony Poole
- *Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom; and Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Martin M Knight
- *Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom; and Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
30
|
Jia Y, Xie J. Promising molecular mechanisms responsible for gemcitabine resistance in cancer. Genes Dis 2015; 2:299-306. [PMID: 30258872 PMCID: PMC6150077 DOI: 10.1016/j.gendis.2015.07.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/20/2015] [Indexed: 01/18/2023] Open
Abstract
Gemcitabine is the first-line treatment for pancreatic ductual adenocarcinoma (PDAC) as well as acts against a wide range of other solid tumors. Patients usually have a good initial response to gemcitabine-based chemotherapy but would eventually develop resistance. To improve survival and prognosis of cancer patients, better understanding of the mechanisms responsible for gemcitabine resistance and discovery of new therapeutic strategies are in great need. Amounting evidence indicate that the developmental pathways, such as Hedgehog (Hh), Wnt and Notch, become reactivated in gemcitabine-resistant cancer cells. Thus, the strategies for targeting these pathways may sensitize cancer cells to gemcitabine treatment. In this review, we will summarize recent development in this area of research and discuss strategies to overcome gemcitabine resistance. Given the cross-talk between these three developmental signaling pathways, designing clinical trials using a cocktail of inhibitory agents targeting all these pathways may be more effective. Ultimately, our hope is that targeting these developmental pathways may be an effective way to improve the gemcitabine treatment outcome in cancer patients.
Collapse
Affiliation(s)
- Yanfei Jia
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, China
| | - Jingwu Xie
- Division of Hematology and Oncology, Department of Pediatrics, Wells Center for Pediatric Research, Indiana University Simon Cancer Center, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
31
|
Thompson CL, Yasmin H, Varone A, Wiles A, Poole CA, Knight MM. Lithium chloride prevents interleukin-1β induced cartilage degradation and loss of mechanical properties. J Orthop Res 2015; 33:1552-9. [PMID: 26174175 PMCID: PMC4973828 DOI: 10.1002/jor.22913] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/23/2015] [Indexed: 02/04/2023]
Abstract
Osteoarthritis is a chronic degenerative disease that affects the articular cartilage. Recent studies have demonstrated that lithium chloride exhibits significant efficacy as a chondroprotective agent, blocking cartilage degradation in response to inflammatory cytokines. However, conflicting literature suggests lithium may affect the physicochemical properties of articular cartilage and thus long-term exposure may negatively affect the mechanical functionality of this tissue. This study aims to investigate the effect of lithium chloride on the biomechanical properties of healthy and interleukin-1β treated cartilage in vitro and examines the consequences of long-term exposure to lithium on cartilage health in vivo. Bovine cartilage explants were treated with lithium chloride for 12 days. Chondrocyte viability, matrix catabolism and the biomechanical properties of bovine cartilage explants were not significantly altered following treatment. Consistent with these findings, long term-exposure (9 months) to dietary lithium did not induce osteoarthritis in rats, as determined by histological staining. Moreover, lithium chloride did not induce the expression of catabolic enzymes in human articular chondrocytes. In an inflammatory model of cartilage destruction, lithium chloride blocked interleukin-1β signaling in the form of nitric oxide and prostaglandin E2 release and prevented matrix catabolism such that the loss of mechanical integrity observed with interleukin-1β alone was inhibited. This study provides further support for lithium chloride as a novel compound for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Clare L. Thompson
- Institute of Bioengineering and School of Engineering and Materials ScienceQueen Mary University of LondonLondonUnited Kingdom
| | - Habiba Yasmin
- Institute of Bioengineering and School of Engineering and Materials ScienceQueen Mary University of LondonLondonUnited Kingdom
| | - Anna Varone
- Institute of Bioengineering and School of Engineering and Materials ScienceQueen Mary University of LondonLondonUnited Kingdom
| | - Anna Wiles
- Dunedin School of MedicineUniversity of OtagoDunedinNew Zealand
| | | | - Martin M. Knight
- Institute of Bioengineering and School of Engineering and Materials ScienceQueen Mary University of LondonLondonUnited Kingdom
| |
Collapse
|
32
|
O’Donovan TR, Rajendran S, O’Reilly S, O’Sullivan GC, McKenna SL. Lithium Modulates Autophagy in Esophageal and Colorectal Cancer Cells and Enhances the Efficacy of Therapeutic Agents In Vitro and In Vivo. PLoS One 2015; 10:e0134676. [PMID: 26248051 PMCID: PMC4527721 DOI: 10.1371/journal.pone.0134676] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/13/2015] [Indexed: 12/22/2022] Open
Abstract
Many epithelial cancers, particularly gastrointestinal tract cancers, remain poor prognosis diseases, due to resistance to cytotoxic therapy and local or metastatic recurrence. We have previously shown that apoptosis incompetent esophageal cancer cells induce autophagy in response to chemotherapeutic agents and this can facilitate their recovery. However, known pharmacological inhibitors of autophagy could not enhance cytotoxicity. In this study, we have examined two well known, clinically approved autophagy inducers, rapamycin and lithium, for their effects on chemosensitivity in apoptosis incompetent cancer cells. Both lithium and rapamycin were shown to induce autophagosomes in esophageal and colorectal cancer cells by western blot analysis of LC3 isoforms, morphology and FACS quantitation of Cyto-ID or mCherry-GFP-LC3. Analysis of autophagic flux indicates inefficient autophagosome processing in lithium treated cells, whereas rapamycin treated cells showed efficient flux. Viability and recovery was assessed by clonogenic assays. When combined with the chemotherapeutic agent 5-fluorouracil, rapamycin was protective. In contrast, lithium showed strong enhancement of non-apoptotic cell death. The combination of lithium with 5-fluorouracil or oxaliplatin was then tested in the syngenic mouse (balb/c) colorectal cancer model—CT26. When either chemotherapeutic agent was combined with lithium a significant reduction in tumor volume was achieved. In addition, survival was dramatically increased in the combination group (p < 0.0001), with > 50% of animals achieving long term cure without re-occurrence (> 1 year tumor free). Thus, combination treatment with lithium can substantially improve the efficacy of chemotherapeutic agents in apoptosis deficient cancer cells. Induction of compromised autophagy may contribute to this cytotoxicity.
Collapse
Affiliation(s)
- Tracey R. O’Donovan
- Leslie C. Quick Laboratory, Cork Cancer Research Centre, BioSciences Institute, University College Cork, Cork, Ireland
| | - Simon Rajendran
- Leslie C. Quick Laboratory, Cork Cancer Research Centre, BioSciences Institute, University College Cork, Cork, Ireland
| | - Seamus O’Reilly
- Department of Medical Oncology, Cork University Hospital, Cork, Ireland
| | - Gerald C. O’Sullivan
- Leslie C. Quick Laboratory, Cork Cancer Research Centre, BioSciences Institute, University College Cork, Cork, Ireland
| | - Sharon L. McKenna
- Leslie C. Quick Laboratory, Cork Cancer Research Centre, BioSciences Institute, University College Cork, Cork, Ireland
- * E-mail:
| |
Collapse
|
33
|
Fitzgerald TL, Lertpiriyapong K, Cocco L, Martelli AM, Libra M, Candido S, Montalto G, Cervello M, Steelman L, Abrams SL, McCubrey JA. Roles of EGFR and KRAS and their downstream signaling pathways in pancreatic cancer and pancreatic cancer stem cells. Adv Biol Regul 2015; 59:65-81. [PMID: 26257206 DOI: 10.1016/j.jbior.2015.06.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/04/2015] [Indexed: 01/06/2023]
Abstract
Pancreatic cancer is currently the fourth most common cancer, is increasing in incidence and soon will be the second leading cause of cancer death in the USA. This is a deadly malignancy with an incidence that approximates the mortality with 44,000 new cases and 36,000 deaths each year. Surgery, although only modestly successful, is the only curative option. However, due the locally aggressive nature and early metastasis, surgery can be performed on less than 20% of patients. Cytotoxic chemotherapy is palliative, has significant toxicity and improves survival very little. Thus new treatment paradigms are needed desperately. Due to the extremely high frequency of KRAS gene mutations (>90%) detected in pancreatic cancer patients, the roles of the epidermal growth factor receptor (EGFR), Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTORC1/GSK-3 pathways have been investigated in pancreatic cancer for many years. Constitutively active Ras can activate both of these pathways and there is cross talk between Ras and EGFR which is believed to be important in driving metastasis. Mutant KRAS may also drive the expression of GSK-3 through Raf/MEK/ERK-mediated effects on GSK-3 transcription. GSK-3 can then regulate the expression of NF-kappaB which is important in modulating pancreatic cancer chemoresistance. While the receptors and many downstream signaling molecules have been identified and characterized, there is still much to learn about these pathways and how their deregulation can lead to cancer. Multiple inhibitors to EGFR, PI3K, mTOR, GSK-3, Raf, MEK and hedgehog (HH) have been developed and are being evaluated in various cancers. Current research often focuses on the role of these pathways in cancer stem cells (CSC), with the goal to identify sites where therapeutic resistance may develop. Relatively novel fields of investigation such as microRNAs and drugs used for other diseases e.g., diabetes, (metformin) and malaria (chloroquine) have provided new information about therapeutic resistance and CSCs. This review will focus on recent advances in the field and how they affect pancreatic cancer research and treatment.
Collapse
Affiliation(s)
- Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology & Functional Genomics, Section of Pathology & Oncology, Via Androne, Catania, Italy, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology & Functional Genomics, Section of Pathology & Oncology, Via Androne, Catania, Italy, University of Catania, Catania, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Linda Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA.
| |
Collapse
|
34
|
Zinke J, Schneider FT, Harter PN, Thom S, Ziegler N, Toftgård R, Plate KH, Liebner S. β-Catenin-Gli1 interaction regulates proliferation and tumor growth in medulloblastoma. Mol Cancer 2015; 14:17. [PMID: 25645196 PMCID: PMC4320815 DOI: 10.1186/s12943-015-0294-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 01/12/2015] [Indexed: 11/13/2022] Open
Abstract
Background The Wnt/beta-catenin and the Hedgehog (Hh) pathway interact in various cell types while eliciting opposing or synergistic cellular effects. Both pathways are known as exclusive drivers of two distinct molecular subtypes of medulloblastoma (MB). In sonic hedgehog (Shh)-driven MB, activation of Wnt signaling has been shown to suppress tumor growth by either beta-catenin-dependent or -independent inhibition of Shh signaling. However, mechanistic insight in how beta-catenin inhibits the Hh pathway is not known. Findings Here we show that beta-catenin stabilization by the glycogen synthase kinase 3 inhibitor lithium chloride (LiCl) reduced growth of primary hedgehog-driven MB tumor spheres from patched heterozygous mice (Ptch+/-) in vitro. LiCl treatment of MB spheres down-regulated the Hh target Gli1, whereas the repressive Gli3 protein (Gli3R) was increased. Mechanistically, we show by co-immunoprecipitation and proximity ligation assay that stabilized beta-catenin physically interacts with Gli1, leading to Gli1 sequestration and inhibition of its transcriptional activity. Reduction of Hh signaling upon LiCl stimulation resulted in reduced proliferation, sphere self renewal, a G2/M arrest and induction of a senescent-like state, indicated by p21 upregulation and by increased staining of senescence-associated beta-galactosidase (SA-betaGal). Moreover, LiCl treatment of subcutaneously transplanted MB cells significantly reduced tumor initiation defined as “tumor take”. Although tumor progression was similar, LiCl-treated tumors showed decreased mitotic figures and phospho-histone H3 staining. Conclusion We propose that beta-catenin stabilization increases its physical interaction with Gli1, leading to Gli1 degradation and inhibition of Hh signaling, thereby promoting tumor cell senescence and suppression of “tumor take” in mice. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0294-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jenny Zinke
- Institute of Neurology (Edinger-Institute), Johann Wolfgang Goethe-University Frankfurt, Medical School, Heinrich-Hoffmann-Straße 7, 60528, Frankfurt, Germany.
| | - Fabian T Schneider
- Center for Biosciences and Department of Biosciences and Nutrition, Karolinska Institutet, Novum, Huddinge, Sweden. .,Current address: Department of Neuropathology, Institute of Pathology and Pathological Anatomy, Technical University Munich, Trogerstrasse 18, 81675, Munich, Germany.
| | - Patrick N Harter
- Institute of Neurology (Edinger-Institute), Johann Wolfgang Goethe-University Frankfurt, Medical School, Heinrich-Hoffmann-Straße 7, 60528, Frankfurt, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Sonja Thom
- Institute of Neurology (Edinger-Institute), Johann Wolfgang Goethe-University Frankfurt, Medical School, Heinrich-Hoffmann-Straße 7, 60528, Frankfurt, Germany.
| | - Nicole Ziegler
- Institute of Neurology (Edinger-Institute), Johann Wolfgang Goethe-University Frankfurt, Medical School, Heinrich-Hoffmann-Straße 7, 60528, Frankfurt, Germany.
| | - Rune Toftgård
- Center for Biosciences and Department of Biosciences and Nutrition, Karolinska Institutet, Novum, Huddinge, Sweden.
| | - Karl H Plate
- Institute of Neurology (Edinger-Institute), Johann Wolfgang Goethe-University Frankfurt, Medical School, Heinrich-Hoffmann-Straße 7, 60528, Frankfurt, Germany.
| | - Stefan Liebner
- Institute of Neurology (Edinger-Institute), Johann Wolfgang Goethe-University Frankfurt, Medical School, Heinrich-Hoffmann-Straße 7, 60528, Frankfurt, Germany.
| |
Collapse
|
35
|
Li L, Song H, Zhong L, Yang R, Yang XQ, Jiang KL, Liu BZ. Lithium Chloride Promotes Apoptosis in Human Leukemia NB4 Cells by Inhibiting Glycogen Synthase Kinase-3 Beta. Int J Med Sci 2015; 12:805-10. [PMID: 26516309 PMCID: PMC4615241 DOI: 10.7150/ijms.12429] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 09/02/2015] [Indexed: 01/10/2023] Open
Abstract
Acute promyelocytic leukemia (APL) is a subtype of acute myeloid leukemia (AML). With the application of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), APL becomes one of best prognosis of leukemia. However, ATRA and ATO are not effective against all APLs. Therefore, a new strategy for APL treatment is necessary. Here, we investigated whether lithium chloride (LiCl), a drug used for the treatment of mental illness, could promote apoptosis in human leukemia NB4 cells. We observed that treatment with LiCl significantly accelerated apoptosis in NB4 cells and led to cell cycle arrest at G2/M phase. Moreover, LiCl significantly increased the level of Ser9-phosphorylated glycogen synthase kinase 3β(p-GSK-3β), and decreased the level of Akt1 protein in a dose-dependent manner. In addition, LiCl inhibition of c-Myc also enhanced cell death with a concomitant increase in β-catnin. Taken together, these findings demonstrated that LiCl promoted apoptosis in NB4 cells through the Akt signaling pathway and that G2/M phase arrest was induced by increase of p-GSK-3β(S9).
Collapse
Affiliation(s)
- Liu Li
- 1. Central Laboratory of Yong-chuan hospital, Chongqing Medical University, Chongqing 402160, China. ; 2. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chong-qing Medical University, Chongqing 400016, China
| | - Hao Song
- 1. Central Laboratory of Yong-chuan hospital, Chongqing Medical University, Chongqing 402160, China
| | - Liang Zhong
- 2. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chong-qing Medical University, Chongqing 400016, China
| | - Rong Yang
- 2. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chong-qing Medical University, Chongqing 400016, China
| | - Xiao-Qun Yang
- 2. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chong-qing Medical University, Chongqing 400016, China
| | - Kai-Ling Jiang
- 2. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chong-qing Medical University, Chongqing 400016, China
| | - Bei-Zhong Liu
- 1. Central Laboratory of Yong-chuan hospital, Chongqing Medical University, Chongqing 402160, China. ; 2. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chong-qing Medical University, Chongqing 400016, China
| |
Collapse
|
36
|
Livingston MJ, Dong Z. Lithium in kidney diseases: big roles for the smallest metal. J Am Soc Nephrol 2014; 25:421-3. [PMID: 24408870 DOI: 10.1681/asn.2013111216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Man J Livingston
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Georgia Regents University, and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia; and
| | | |
Collapse
|
37
|
Intravenous and oral practolol in the acute stages of myocardial infarction. Cells 1978; 8:cells8020098. [PMID: 30699938 PMCID: PMC6407099 DOI: 10.3390/cells8020098] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/24/2019] [Accepted: 01/26/2019] [Indexed: 12/25/2022] Open
Abstract
The influence of routine administration of the beta adrenoceptor blocking drug practolol on the outcome of acute myocardial infarction has been studied in 94 patients. The study was restricted to patients under the age of 70 experiencing their first myocardial infarction and in whom there was no contraindication to beta blockade. In the treated group an initial dose intravenous practolol 15 mg was followed by five oral doses of practolol 200 mg at 12 h intervals. A significant reduction in heart rate and systolic blood pressure was apparent in the treated group within 2 h. No difference was detectable in the course of the acute stage of the illness between treated and control patients, apart from a significant reduction in the incidence of atrial fibrillation among those receiving practolol. Patients with inferior infarctions showed a tendency to develop potentially harmful bradycardia and hypotension on receiving practolol which lead to withdrawal of the drug in many cases. At regular review over 7 mth no detectable difference emerged between the treated and control groups in the incidence of cardiac failure, death or reinfarction.
Collapse
|