1
|
Karrer LG, Mathew EN, Nava-Chavez J, Bhatti A, Delong RK. Evidence of Copper Nanoparticles and Poly I:C Modulating Cas9 Interaction and Cleavage of COR (Conserved Omicron RNA). Bioengineering (Basel) 2023; 10:bioengineering10050512. [PMID: 37237582 DOI: 10.3390/bioengineering10050512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Conserved omicron RNA (COR) is a 40 base long 99.9% conserved sequence in SARS-CoV-2 Omicron variant, predicted to form a stable stem loop, the targeted cleavage of which can be an ideal next step in controlling the spread of variants. The Cas9 enzyme has been traditionally utilized for gene editing and DNA cleavage. Previously Cas9 has been shown to be capable of RNA editing under certain conditions. Here we investigated the ability of Cas9 to bind to single-stranded conserved omicron RNA (COR) and examined the effect of copper nanoparticles (Cu NPs) and/or polyinosinic-polycytidilic acid (poly I:C) on the RNA cleavage ability of Cas9. The interaction of the Cas9 enzyme and COR with Cu NPs was shown by dynamic light scattering (DLS) and zeta potential measurements and was confirmed by two-dimensional fluorescence difference spectroscopy (2-D FDS). The interaction with and enhanced cleavage of COR by Cas9 in the presence of Cu NPs and poly I:C was shown by agarose gel electrophoresis. These data suggest that Cas9-mediated RNA cleavage may be potentiated at the nanoscale level in the presence of nanoparticles and a secondary RNA component. Further explorations in vitro and in vivo may contribute to the development of a better cellular delivery platform for Cas9.
Collapse
Affiliation(s)
- Lindy G Karrer
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Elza Neelima Mathew
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| | - Juliet Nava-Chavez
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| | - Abeera Bhatti
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| | - Robert K Delong
- Landmark Bio, Innovation Development Laboratory, Watertown, MA 02472, USA
| |
Collapse
|
2
|
Fedorenko S, Stepanov A, Bochkova O, Kholin K, Nizameev I, Voloshina A, Tyapkina O, Samigullin D, Kleshnina S, Akhmadeev B, Romashchenko A, Zavjalov E, Amirov R, Mustafina A. Specific nanoarchitecture of silica nanoparticles codoped with the oppositely charged Mn 2+ and Ru 2+ complexes for dual paramagnetic-luminescent contrasting effects. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 49:102665. [PMID: 36822334 DOI: 10.1016/j.nano.2023.102665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023]
Abstract
The silica nanoparticles (SNs) co-doped with paramagnetic ([Mn(HL)]n-,) and luminescent ([Ru(dipy)3]2+) complexes are represented. The specific distribution of [Mn(HL)]n- within the SNs allows to achieve about ten-fold enhancing in magnetic relaxivities in comparison with those of [Mn(HL)]n- in solutions. The leaching of [Mn(HL)]n- from the shell can be minimized through the co-doping of [Ru(dipy)3]2+ into the core of the SNs. The co-doped SNs exhibit colloid stability in aqueous solutions, including those modeling a blood serum. The surface of the co-doped SNs was also decorated by amino- and carboxy-groups. The cytotoxicity, hemoagglutination and hemolytic activities of the co-doped SNs are on the levels convenient for "in vivo" studies, although the amino-decorated SNs cause more noticeable agglutination and suppression of cell viability. The co-doped SNs being intravenously injected into mice allows to reveal their biodistribution in both ex vivo and in vivo conditions through confocal microscopy and magnetic resonance imaging correspondingly.
Collapse
Affiliation(s)
- Svetlana Fedorenko
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, 420088 Kazan, Russia.
| | - Alexey Stepanov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, 420088 Kazan, Russia
| | - Olga Bochkova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, 420088 Kazan, Russia
| | - Kirill Kholin
- Kazan National Research Technological University, 68, K. Marx str., 420015 Kazan, Russia
| | - Irek Nizameev
- Kazan National Research Technological University, 68, K. Marx str., 420015 Kazan, Russia
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, 420088 Kazan, Russia
| | - Oksana Tyapkina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevski str., 420111 Kazan, Russia
| | - Dmitry Samigullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevski str., 420111 Kazan, Russia; Kazan National Research Technical University named after A.N. Tupolev - KAI, 10 K. Marx str., 420111 Kazan, Russia
| | - Sofiya Kleshnina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, 420088 Kazan, Russia
| | - Bulat Akhmadeev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, 420088 Kazan, Russia
| | - Alexander Romashchenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Evgenii Zavjalov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Rustem Amirov
- Kazan (Volga region) Federal University, 18 Kremlyovskaya str., 420008 Kazan, Russia
| | - Asiya Mustafina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, 420088 Kazan, Russia
| |
Collapse
|
3
|
Scharf A, Limke A, Guehrs KH, von Mikecz A. Pollutants corrupt resilience pathways of aging in the nematode C. elegans. iScience 2022; 25:105027. [PMID: 36117993 PMCID: PMC9475316 DOI: 10.1016/j.isci.2022.105027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/06/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Delaying aging while prolonging health and lifespan is a major goal in aging research. One promising strategy is to focus on reducing negative interventions such as pollution and their accelerating effect on age-related degeneration and disease. Here, we used the short-lived model organism C. elegans to analyze whether two candidate pollutants corrupt general aging pathways. We show that the emergent pollutant silica nanoparticles (NPs) and the classic xenobiotic inorganic mercury reduce lifespan and cause a premature protein aggregation phenotype. Comparative mass spectrometry revealed that increased insolubility of proteins with important functions in proteostasis is a shared phenotype of intrinsic- and pollution-induced aging supporting the hypothesis that proteostasis is a central resilience pathway controlling lifespan and aging. The presented data demonstrate that pollutants corrupt intrinsic aging pathways. Reducing pollution is, therefore, an important step to increasing healthy aging and prolonging life expectancies on a population level in humans and animals.
Collapse
Affiliation(s)
- Andrea Scharf
- IUF - Leibniz Research Institute for Environmental Medicine GmbH, Duesseldorf 40225, Germany
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Annette Limke
- IUF - Leibniz Research Institute for Environmental Medicine GmbH, Duesseldorf 40225, Germany
| | - Karl-Heinz Guehrs
- CF Proteomics, FLI-Leibniz-Institute on Aging -Fritz-Lipman-Institute (FLI), Jena 07745, Germany
| | - Anna von Mikecz
- IUF - Leibniz Research Institute for Environmental Medicine GmbH, Duesseldorf 40225, Germany
| |
Collapse
|
4
|
Taghizadeh A, Taghizadeh M, Yazdi MK, Zarrintaj P, Ramsey JD, Seidi F, Stadler FJ, Lee H, Saeb MR, Mozafari M. Mussel-inspired biomaterials: From chemistry to clinic. Bioeng Transl Med 2022; 7:e10385. [PMID: 36176595 PMCID: PMC9472010 DOI: 10.1002/btm2.10385] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/25/2022] [Accepted: 07/16/2022] [Indexed: 11/18/2022] Open
Abstract
After several billions of years, nature still makes decisions on its own to identify, develop, and direct the most effective material for phenomena/challenges faced. Likewise, and inspired by the nature, we learned how to take steps in developing new technologies and materials innovations. Wet and strong adhesion by Mytilidae mussels (among which Mytilus edulis-blue mussel and Mytilus californianus-California mussel are the most well-known species) has been an inspiration in developing advanced adhesives for the moist condition. The wet adhesion phenomenon is significant in designing tissue adhesives and surgical sealants. However, a deep understanding of engaged chemical moieties, microenvironmental conditions of secreted proteins, and other contributing mechanisms for outstanding wet adhesion mussels are essential for the optimal design of wet glues. In this review, all aspects of wet adhesion of Mytilidae mussels, as well as different strategies needed for designing and fabricating wet adhesives are discussed from a chemistry point of view. Developed muscle-inspired chemistry is a versatile technique when designing not only wet adhesive, but also, in several more applications, especially in the bioengineering area. The applications of muscle-inspired biomaterials in various medical applications are summarized for future developments in the field.
Collapse
Affiliation(s)
- Ali Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook UniversityCheonanRepublic of Korea
| | - Mohsen Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook UniversityCheonanRepublic of Korea
| | - Mohsen Khodadadi Yazdi
- Center of Excellence in ElectrochemistrySchool of Chemistry, College of Science, University of TehranTehranIran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State UniversityStillwaterOklahomaUSA
| | - Joshua D. Ramsey
- School of Chemical Engineering, Oklahoma State UniversityStillwaterOklahomaUSA
| | - Farzad Seidi
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjingChina
| | - Florian J. Stadler
- College of Materials Science and EngineeringShenzhen Key Laboratory of Polymer Science and TechnologyGuangdongChina
| | - Haeshin Lee
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of ChemistryGdańsk University of TechnologyGdańskPoland
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative MedicineIran University of Medical SciencesTehranIran
- Present address:
Lunenfeld‐Tanenbaum Research InstituteMount Sinai Hospital, University of TorontoToronto, ONCanada
| |
Collapse
|
5
|
Trevisan R, Ranasinghe P, Jayasundara N, Di Giulio RT. Nanoplastics in Aquatic Environments: Impacts on Aquatic Species and Interactions with Environmental Factors and Pollutants. TOXICS 2022; 10:toxics10060326. [PMID: 35736934 PMCID: PMC9230143 DOI: 10.3390/toxics10060326] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/20/2022] [Accepted: 06/09/2022] [Indexed: 12/24/2022]
Abstract
Plastic production began in the early 1900s and it has transformed our way of life. Despite the many advantages of plastics, a massive amount of plastic waste is generated each year, threatening the environment and human health. Because of their pervasiveness and potential for health consequences, small plastic residues produced by the breakdown of larger particles have recently received considerable attention. Plastic particles at the nanometer scale (nanoplastics) are more easily absorbed, ingested, or inhaled and translocated to other tissues and organs than larger particles. Nanoplastics can also be transferred through the food web and between generations, have an influence on cellular function and physiology, and increase infections and disease susceptibility. This review will focus on current research on the toxicity of nanoplastics to aquatic species, taking into account their interactive effects with complex environmental mixtures and multiple stressors. It intends to summarize the cellular and molecular effects of nanoplastics on aquatic species; discuss the carrier effect of nanoplastics in the presence of single or complex environmental pollutants, pathogens, and weathering/aging processes; and include environmental stressors, such as temperature, salinity, pH, organic matter, and food availability, as factors influencing nanoplastic toxicity. Microplastics studies were also included in the discussion when the data with NPs were limited. Finally, this review will address knowledge gaps and critical questions in plastics’ ecotoxicity to contribute to future research in the field.
Collapse
Affiliation(s)
- Rafael Trevisan
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88037-000, Brazil
- Correspondence:
| | - Prabha Ranasinghe
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA; (P.R.); (N.J.); (R.T.D.G.)
| | - Nishad Jayasundara
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA; (P.R.); (N.J.); (R.T.D.G.)
| | - Richard T. Di Giulio
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA; (P.R.); (N.J.); (R.T.D.G.)
| |
Collapse
|
6
|
Garcia Romeu H, Deville S, Salvati A. Time- and Space-Resolved Flow-Cytometry of Cell Organelles to Quantify Nanoparticle Uptake and Intracellular Trafficking by Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100887. [PMID: 34272923 DOI: 10.1002/smll.202100887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/15/2021] [Indexed: 05/20/2023]
Abstract
The design of targeted nanomedicines requires intracellular space- and time-resolved data of nanoparticle distribution following uptake. Current methods to study intracellular trafficking, such as dynamic colocalization by fluorescence microscopy in live cells, are usually low throughput and require extensive analysis of large datasets to quantify colocalization in several individual cells. Here a method based on flow cytometry to easily detect and characterize the organelles in which nanoparticles are internalized and trafficked over time is proposed. Conventional cell fractionation methods are combined with immunostaining and high-sensitivity organelle flow cytometry to get space-resolved data of nanoparticle intracellular distribution. By extracting the organelles at different times, time-resolved data of nanoparticle intracellular trafficking are obtained. The method is validated by determining how nanoparticle size affects the kinetics of arrival to the lysosomes. The results demonstrate that this method allows high-throughput analysis of nanoparticle uptake and intracellular trafficking by cells, therefore it can be used to determine how nanoparticle design affects their intracellular behavior.
Collapse
Affiliation(s)
- Hector Garcia Romeu
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, 9713AV, The Netherlands
| | - Sarah Deville
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, 9713AV, The Netherlands
- Health Unit, Flemish Institute for Technological Research, Boeretang 200, Mol, 2400, Belgium
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, 9713AV, The Netherlands
| |
Collapse
|
7
|
Ji Y, Wang Y, Shen D, Kang Q, Chen L. Mucin corona delays intracellular trafficking and alleviates cytotoxicity of nanoplastic-benzopyrene combined contaminant. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124306. [PMID: 33109409 DOI: 10.1016/j.jhazmat.2020.124306] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Nanoplastics have recently become a worldwide concern as newly emerging airborne pollutants, which can associate with polycyclic aromatic hydrocarbons (PAHs) and form combined contaminant nanoparticles (CCNPs). After being inhaled in the respiratory system, the CCNPs would first encounter the mucous gel layer being rich in mucin. Herein, polystyrene-benzopyrene (PS@Bap) NPs were prepared as CCNPs model and their interaction with mucin and the resultant biological responses were studied. It was observed that mucin corona stably attached to the CCNPs surface, which significantly altered the fate of the CCNPs in lung epithelial cells (A 549 cell line). The mucin corona would 1) stably adsorbed on PS@Bap at the early stages of endocytosis until degraded during the lysosomal transport and maturation process, 2) delay intracellular trafficking of PS@Bap and the progress of Bap detached from PS, 3) enhance uptake of PS@Bap but reduce the cytotoxicity elicited by PS@Bap, as indicated by cell viability, generation of reactive oxygen species, impairment on mitochondrial function, and further cell apoptosis. In addition, in vivo study also verified the enhanced effect of PS on the development of an acute lung inflammatory response induced by Bap. This study highlights the significance of incorporating the effects of mucin for precisely assessing the respiratory system toxicity of nanoplastics based CCNPs in atmospheric environments.
Collapse
Affiliation(s)
- Yunxia Ji
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Dazhong Shen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
8
|
Ji Y, Wang Y, Shen D, Kang Q, Ma J, Chen L. Revisiting the cellular toxicity of benzo[ a]pyrene from the view of nanoclusters: size- and nanoplastic adsorption-dependent bioavailability. NANOSCALE 2021; 13:1016-1028. [PMID: 33393578 DOI: 10.1039/d0nr06747d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Benzo[a]pyrene (Bap) is one of the main organic pollutants in the atmospheric haze that is rich in fine water drops and particulate matters. The understanding of the Bap's form in water is of great importance to unveil its real biological effects toward the respiratory system. To date, various reports have documented its toxicological effects in the molecular form. Herein, we found that Bap existed as self-aggregated nanoclusters of tunable sizes rather than as dissolved molecules in water and different sized nanoclusters illustrated varied cytotoxicity. These findings indicated that the size, which has been ignored in previous studies, is also a dominant parameter similar to the molecular concentration for determining Bap's cytotoxicity. Polystyrene (PS) nanoparticles, as a model for nanoplastics, could adsorb Bap nanoclusters and serve as carriers that enter the cells. The combination effect interestingly altered the cytotoxicity distinction of Bap of different sizes. The intracellular fate of the nanoparticles and subcellular organelle damages were studied to unveil the mechanisms of cytotoxic distinction. Small Bap nanoclusters entered cells faster than their large counterparts. The Bap of the PS@Bap complex was stably adsorbed on PS at the early stages of endocytosis until it was detached during the lysosomal transport and maturation process. The dissociated Bap may bypass the lysosome pathway and be released into the cytosol with a nanocluster structure or relocate into the endoplasmic reticulum. On the other hand, the detached PS preferred to bind to the mitochondria or be excreted out of the cell via the lysosomal pathway. Moreover, the PS@Bap complex resulted in a significant loss of the mitochondrial membrane potential and induced apoptosis through the mitochondria-involved apoptosis pathway. This study provides a new perspective towards the toxicological mechanism of insoluble hydrophobic organic compounds and reveals the environmental significance of nanoplastics for regulating the biological effects of conventional pollutants.
Collapse
Affiliation(s)
- Yunxia Ji
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China. and CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China. and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Dazhong Shen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Jiping Ma
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China. and Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
9
|
Kheirallah DAM, El-Samad LM, Abdel-Moneim AM. DNA damage and ovarian ultrastructural lesions induced by nickel oxide nano-particles in Blaps polycresta (Coleoptera: Tenebrionidae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141743. [PMID: 32891989 DOI: 10.1016/j.scitotenv.2020.141743] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/28/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
Nickel oxide nanoparticles (NiO-NPs) have extensively used in industrial and consumer products. The present study conducted to gain more knowledge about the safe use of NiO-NPs and also to understand their impact on the environment and biological systems. Herein, we examined the genotoxic and ultra-structural effects of a sublethal dose of NiO-NPs (0.03 mg/g) on the ovarian tissues of the ground beetle, Blaps polycresta. The mean diameter of NiO-NPs was 24.49 ± 3.88 nm, as obtained through transmission electron microscopy (TEM). In terms of DNA damage levels, the frequency of micronucleus (MN) formation was highly significant in the NiO-NPs treated group versus the controls. Besides, NiO-NPs treatment resulted in a significant increase in the tail length of comets. Further, electron microscopy revealed a progressive increase in chromatin condensation of the ovarian nurse and follicular cells, in addition to the accumulation of lysosomes and endo-lysosomes in their cytoplasm. In conclusion, NiO-NPs are capable of gaining access to the ovary of B. polycresta and causing DNA damage and a high degree of cellular toxicity in the ovarian cells. The present study highlights, for the first time, the adverse effects of these NPs to female gonads of insects and raised the concern of its genotoxic potential. It would be of interest to investigate NiO-NPs mediated intracellular ROS generation in future studies.
Collapse
|
10
|
Xu H, Casabianca LB. Dual Fluorescence and NMR Study for the Interaction between Xanthene Dyes and Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:385-390. [PMID: 33356333 DOI: 10.1021/acs.langmuir.0c03020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Fluorescent dyes and nanoparticles (NPs) have been widely used together to make novel biosensors, taking advantage of their unique characteristics. It is crucial to have techniques that enable us to gain detailed and high-resolution information regarding the interaction between NPs and fluorescent dyes. In this work, we chose rhodamine B (RhB) and amidine- and carboxylate-modified polystyrene (CML) NPs as models and employed both NMR (1H and STD-NMR) and optical (UV-vis and fluorescence) techniques to investigate the interaction between NPs and fluorescent dyes. From UV-vis and fluorescence spectroscopy, we see that there are larger red shifts when rhodamine B binds to carboxylate-modified polystyrene NPs than amidine-modified NPs. Correspondingly, RhB has broader NMR peaks and a larger STD effect when binding to CML NPs than amidine NPs. Results from these two techniques validate each other. It is notable that the NMR techniques provide more reliable data than UV-vis and fluorescence methods. Moreover, we show that NMR techniques, especially STD-NMR, can provide more atomic-level binding geometry information. The higher STD effect of the smaller aromatic ring of RhB implies that this aromatic ring is closer to the surface of NPs when binding to polystyrene NPs.
Collapse
Affiliation(s)
- Hui Xu
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Leah Beck Casabianca
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
11
|
Fedorenko S, Elistratova J, Stepanov A, Khazieva A, Mikhailov M, Sokolov M, Kholin K, Nizameev I, Mendes R, Rümmeli M, Gemming T, Weise B, Giebeler L, Mikhailova D, Dutz S, Zahn D, Voloshina A, Sapunova A, Daminova A, Fedosimova S, Mustafina A. ROS-generation and cellular uptake behavior of amino-silica nanoparticles arisen from their uploading by both iron-oxides and hexamolybdenum clusters. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111305. [DOI: 10.1016/j.msec.2020.111305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/08/2020] [Accepted: 07/22/2020] [Indexed: 12/20/2022]
|
12
|
Effects of Airborne Nanoparticles on the Nervous System: Amyloid Protein Aggregation, Neurodegeneration and Neurodegenerative Diseases. NANOMATERIALS 2020; 10:nano10071349. [PMID: 32664217 PMCID: PMC7407104 DOI: 10.3390/nano10071349] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 01/18/2023]
Abstract
How the environment contributes to neurodegenerative diseases such as Alzheimer’s is not well understood. In recent years, science has found augmenting evidence that nano-sized particles generated by transport (e.g., fuel combustion, tire wear and brake wear) may promote Alzheimer’s disease (AD). Individuals residing close to busy roads are at higher risk of developing AD, and nanomaterials that are specifically generated by traffic-related processes have been detected in human brains. Since AD represents a neurodegenerative disease characterized by amyloid protein aggregation, this review summarizes our current knowledge on the amyloid-generating propensity of traffic-related nanomaterials. Certain nanoparticles induce the amyloid aggregation of otherwise soluble proteins in in vitro laboratory settings, cultured neuronal cells and vertebrate or invertebrate animal models. We discuss the challenges for future studies, namely, strategies to connect the wet laboratory with the epidemiological data in order to elucidate the molecular bio-interactions of airborne nanomaterials and their effects on human health.
Collapse
|
13
|
Trevisan R, Uzochukwu D, Di Giulio RT. PAH SORPTION TO NANOPLASTICS AND THE TROJAN HORSE EFFECT AS DRIVERS OF MITOCHONDRIAL TOXICITY AND PAH LOCALIZATION IN ZEBRAFISH. FRONTIERS IN ENVIRONMENTAL SCIENCE 2020; 8:78. [PMID: 34322495 PMCID: PMC8315355 DOI: 10.3389/fenvs.2020.00078] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plastics are world-wide pollutants that pose a potential threat to wildlife and human health. Small plastic particles, such as microplastics and nanoplastics, are easily ingested, and can act as a Trojan Horse by carrying microorganisms and pollutants. This study investigated the potential role of the Trojan Horse effect in the toxicity of nanoplastics to the vertebrate model organism, zebrafish (Danio rerio). First, we investigated if this effect could affect the toxicity of nanoplastics. Second, we analyzed if it could contribute to the biodistribution of the associated contaminants. And third, we focused on its effect on the mitochondrial toxicity of nanoplastics. We incubated 44 nm polystyrene nanoparticles with a real-world mixture of polycyclic aromatic hydrocarbons (PAHs) for 7 days and removed the free PAHs by ultrafiltration. We dosed embryos with 1 ppm of nanoplastics (NanoPS) or PAH-sorbed nanoplastics (PAH-NanoPS). Neither type of plastic particle caused changes in embryonic and larval development. Fluorescence microscopy and increased EROD activity suggested the uptake of PAHs in larvae exposed to PAH-NanoPS. This coincided with higher concentrations in the yolk sac and the brain. However, PAH-only exposure leads to their accumulation in the yolk sac but not in the brain, suggesting that that the spatial distribution of bioaccumulated PAHs can differ depending on their source of exposure. Both nanoplastic particles affected mitochondrial energy metabolism but caused different adverse effects. While NanoPS decreased NADH production, PAH-NanoPS decreased mitochondrial coupling efficiency and spare respiratory capacity. In summary, the addition of PAHs to the surface of nanoplastics did not translate into increased developmental toxicity. Low levels of PAHs were accumulated in the organisms, and the transfer of PAHs seems to happen in tissues and possibly organelles where nanoplastics accumulate. Disruption of the energy metabolism in the mitochondria may be a key factor in the toxicity of nanoplastics, and the Trojan Horse effect may amplify this effect.
Collapse
Affiliation(s)
- Rafael Trevisan
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Daniel Uzochukwu
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | | |
Collapse
|
14
|
Bacterial magnetic particles-polyethylenimine vectors deliver target genes into multiple cell types with a high efficiency and low toxicity. Appl Microbiol Biotechnol 2020; 104:6799-6812. [PMID: 32548689 DOI: 10.1007/s00253-020-10729-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/01/2020] [Accepted: 06/07/2020] [Indexed: 10/24/2022]
Abstract
Bacterial magnetic particles (BMPs) are biosynthesized magnetic nano-scale materials with excellent dispersibility and biomembrane enclosure properties. In this study, we demonstrate that BMPs augment the ability of polyethylenimine (PEI) to deliver target DNA into difficult-to-transfect primary porcine liver cells, with transfection efficiency reaching over 30%. Compared with standard lipofection and polyfection, BMP-PEI gene vectors significantly enhanced the transfection efficiencies for the primary porcine liver cells and C2C12 mouse myoblast cell lines. To better understand the mechanism of magnetofection using BMP-PEI/DNA vectors, transmission electron microscopy (TEM) images of transfected Cos-7, HeLa, and HEP-G2 cells were observed. We found that the BMP-PEI/DNA complexes were trafficked into the cytoplasm and nucleus by way of vesicular transport and endocytosis. Our study builds support for the versatile BMP-PEI vector transfection system, which might be exploited to transfect a wide range of cell types or even to reach specific targets in the treatment of disease. KEY POINTS: • We constructed a BMP-PEI gene delivery vector by combining BMPs and PEI. • The vector significantly enhanced transfection efficiencies in eukaryotic cell lines. • The transfection mechanism of this vector was explained in our study.
Collapse
|
15
|
Rawashdeh RY, Harb AM, AlHasan AM. Biological interaction levels of zinc oxide nanoparticles; lettuce seeds as case study. Heliyon 2020; 6:e03983. [PMID: 32509982 PMCID: PMC7264067 DOI: 10.1016/j.heliyon.2020.e03983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/07/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Seed germination is a critical stage in plant life, and recent practices use nanomaterials for the improvement of plant seed germination indices. This study was conducted to assess the effect of laboratory prepared zinc oxide nanoparticles on the physiological and biochemical changes of lettuce seeds. METHODS Lettuce seeds were soaked in a suspension of moderately polydisperse zinc oxide nanoparticles at two different concentrations (25 ppm or 50 ppm) and shaken for 3 h at 25 °C. Seeds treatment was followed subsequently by two to three days drying at ambient conditions. Treated seeds were stored for 3-4 weeks, at ambient conditions and then tested for germination in petri dishes. Germination was observed on daily basis and seedling length was measured. After imbibition and before the start of the visible germination, seeds were examined for topography and surface analysis using the scanning electron microscope and zinc uptake was measured by using the atomic absorption spectrometry and the energy dispersive X-ray. The pattern of mobilization of biomolecules was analyzed to detect any differences among different seed groups. RESULTS There was no loss of viability for the nanoparticles treated seeds. Indeed their germination was enhanced and their biomass increased. The activated performance of the nanoparticles imbibed seeds has been found to be correlated with an increased level of Zn inside lettuce seeds. The recorded measurements show a significant enhancement of seedling length. Interaction of zinc oxide nanoparticles with lettuce seeds mediates a variation in the biochemical processes. Changes detected in treated seeds were as following: reduced levels of the total carbohydrates (including simple saccharides and polysaccharides), higher capacity of protein synthesis, an elevated level of starch as well as an increased activity of antioxidant enzymes. DISCUSSION AND CONCLUSION Lettuce seeds primed with ZnO nanoparticles were found not only to maintain seed viability but even to exhibit a detectable level of germination enhancement compared to the control seeds. Overall, the promoted response of lettuce seeds during early stages of seed growth is encouraging for the application of ZnO NPs for seed priming for better germination indices.
Collapse
|
16
|
Piechulek A, Berwanger LC, von Mikecz A. Silica nanoparticles disrupt OPT-2/PEP-2-dependent trafficking of nutrient peptides in the intestinal epithelium. Nanotoxicology 2019; 13:1133-1148. [DOI: 10.1080/17435390.2019.1643048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Annette Piechulek
- IUF – Leibniz Research Institute for Environmental Medicine, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Lutz C. Berwanger
- IUF – Leibniz Research Institute for Environmental Medicine, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Anna von Mikecz
- IUF – Leibniz Research Institute for Environmental Medicine, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
17
|
Cheruku S, D'Olieslaeger L, Smisdom N, Smits J, Vanderzande D, Maes W, Ameloot M, Ethirajan A. Fluorescent PCDTBT Nanoparticles with Tunable Size for Versatile Bioimaging. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2497. [PMID: 31390806 PMCID: PMC6695891 DOI: 10.3390/ma12152497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 01/03/2023]
Abstract
Conjugated polymer nanoparticles exhibit very interesting properties for use as bio-imaging agents. In this paper, we report the synthesis of PCDTBT (poly([9-(1'-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophene-diyl)) nanoparticles of varying sizes using the mini-emulsion and emulsion/solvent evaporation approach. The effect of the size of the particles on the optical properties is investigated using UV-Vis absorption and fluorescence emission spectroscopy. It is shown that PCDTBT nanoparticles have a fluorescence emission maximum around 710 nm, within the biological near-infrared "optical window". The photoluminescence quantum yield shows a characteristic trend as a function of size. The particles are not cytotoxic and are taken up successfully by human lung cancer carcinoma A549 cells. Irrespective of the size, all particles show excellent fluorescent brightness for bioimaging. The fidelity of the particles as fluorescent probes to study particle dynamics in situ is shown as a proof of concept by performing raster image correlation spectroscopy. Combined, these results show that PCDTBT is an excellent candidate to serve as a fluorescent probe for near-infrared bio-imaging.
Collapse
Affiliation(s)
- Srujan Cheruku
- Nanobiophysics and Soft Matter Interfaces group (NSI), Institute for Materials Research (IMO-IMOMEC), UHasselt-Hasselt University, 3590 Diepenbeek, Belgium
| | - Lien D'Olieslaeger
- Nanobiophysics and Soft Matter Interfaces group (NSI), Institute for Materials Research (IMO-IMOMEC), UHasselt-Hasselt University, 3590 Diepenbeek, Belgium
| | - Nick Smisdom
- Biomedical Research Institute (BIOMED), UHasselt-Hasselt University, 3590 Diepenbeek, Belgium
| | - Joeri Smits
- Nanobiophysics and Soft Matter Interfaces group (NSI), Institute for Materials Research (IMO-IMOMEC), UHasselt-Hasselt University, 3590 Diepenbeek, Belgium
| | - Dirk Vanderzande
- Design & Synthesis of Organic Semiconductors (DSOS), Institute for Materials Research (IMO-IMOMEC), UHasselt-Hasselt University, 3590 Diepenbeek, Belgium
- IMEC, Associated lab IMOMEC, 3590 Diepenbeek, Belgium
| | - Wouter Maes
- Design & Synthesis of Organic Semiconductors (DSOS), Institute for Materials Research (IMO-IMOMEC), UHasselt-Hasselt University, 3590 Diepenbeek, Belgium
- IMEC, Associated lab IMOMEC, 3590 Diepenbeek, Belgium
| | - Marcel Ameloot
- Biomedical Research Institute (BIOMED), UHasselt-Hasselt University, 3590 Diepenbeek, Belgium
| | - Anitha Ethirajan
- Nanobiophysics and Soft Matter Interfaces group (NSI), Institute for Materials Research (IMO-IMOMEC), UHasselt-Hasselt University, 3590 Diepenbeek, Belgium.
- IMEC, Associated lab IMOMEC, 3590 Diepenbeek, Belgium.
| |
Collapse
|
18
|
Depalo N, Fanizza E, Vischio F, Denora N, Laquintana V, Cutrignelli A, Striccoli M, Giannelli G, Agostiano A, Curri ML, Scavo MP. Imaging modification of colon carcinoma cells exposed to lipid based nanovectors for drug delivery: a scanning electron microscopy investigation. RSC Adv 2019; 9:21810-21825. [PMID: 35518842 PMCID: PMC9066453 DOI: 10.1039/c9ra02381j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/10/2019] [Indexed: 11/21/2022] Open
Abstract
The adsorption at cell surfaces and cell internalization of two drug delivery lipid based nanovectors has been investigated by means of Field Emission Scanning Electron Microscopy (FE-SEM) operating at low beam voltage on two different colon carcinoma cell lines, CaCo-2 and CoLo-205, that were compared with the M14 melanoma cell line, as a reference. The cells were incubated with the investigated multifunctional nanovectors, based on liposomes and magnetic micelles loaded with 5-fluorouracil, as a chemotherapeutic agent, and a FE-SEM systematic investigation was performed, enabling a detailed imaging of any morphological changes of the drug exposed cells as a function of time. The results of the FE-SEM investigation were validated by MTS assay and immunofluorescence staining of the Ki-67 protein performed on the investigated cell lines at different times. The two nanoformulations resulted in a comparable effect on CaCo-2 and M14 cell lines, while for CoLo 205 cells, the liposomes provided an cytotoxic activity higher than that observed in the case of the micelles. The study highlighted the high potential of FE-SEM as a valuable complementary technique for imaging and monitoring in time the drug effects on the selected cells exposed to the two different nanoformulations.
Collapse
Affiliation(s)
- Nicoletta Depalo
- Institute for Physical-Chemical Processes (IPCF)-CNR SS Bari Via Orabona 4 70125 Bari Italy
| | - Elisabetta Fanizza
- Institute for Physical-Chemical Processes (IPCF)-CNR SS Bari Via Orabona 4 70125 Bari Italy
- Università degli Studi di Bari Aldo Moro, Dipartimento di Chimica Via Orabona 4 70125 Bari Italy
| | - Fabio Vischio
- Università degli Studi di Bari Aldo Moro, Dipartimento di Chimica Via Orabona 4 70125 Bari Italy
| | - Nunzio Denora
- Institute for Physical-Chemical Processes (IPCF)-CNR SS Bari Via Orabona 4 70125 Bari Italy
- Università degli Studi di Bari Aldo Moro, Dipartimento di Farmacia, Scienze del Farmaco Via Orabona 4 70125 Bari Italy
| | - Valentino Laquintana
- Università degli Studi di Bari Aldo Moro, Dipartimento di Farmacia, Scienze del Farmaco Via Orabona 4 70125 Bari Italy
| | - Annalisa Cutrignelli
- Università degli Studi di Bari Aldo Moro, Dipartimento di Farmacia, Scienze del Farmaco Via Orabona 4 70125 Bari Italy
| | - Marinella Striccoli
- Institute for Physical-Chemical Processes (IPCF)-CNR SS Bari Via Orabona 4 70125 Bari Italy
| | - Gianluigi Giannelli
- Personalized Medicine Laboratory, National Institute of Gastroenterology - Research Hospital "S. De Bellis" Via Turi 27, Castellana Grotte Bari Italy
| | - Angela Agostiano
- Institute for Physical-Chemical Processes (IPCF)-CNR SS Bari Via Orabona 4 70125 Bari Italy
- Università degli Studi di Bari Aldo Moro, Dipartimento di Chimica Via Orabona 4 70125 Bari Italy
| | - Maria Lucia Curri
- Institute for Physical-Chemical Processes (IPCF)-CNR SS Bari Via Orabona 4 70125 Bari Italy
- Università degli Studi di Bari Aldo Moro, Dipartimento di Chimica Via Orabona 4 70125 Bari Italy
| | - Maria Principia Scavo
- Personalized Medicine Laboratory, National Institute of Gastroenterology - Research Hospital "S. De Bellis" Via Turi 27, Castellana Grotte Bari Italy
| |
Collapse
|
19
|
Cellular Uptake Mechanisms and Detection of Nanoparticle Uptake by Advanced Imaging Methods. BIOLOGICAL RESPONSES TO NANOSCALE PARTICLES 2019. [DOI: 10.1007/978-3-030-12461-8_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
20
|
Abstract
As a consequence of their increase in annual production and widespread distribution in the environment, nanoparticles potentially pose a significant public health risk. The sought-after catalytic activity granted by their physiochemical properties doubles as a hazard to physiological processes following exposure through inhalation, oral, transdermal, subcutaneous, and intravenous uptake. Upon uptake into the body, their size, morphology, surface charge, coating, and chemical composition augment the response of biological systems to the materials and enhance their toxicity. Identification of each property is necessary to predict the harm imposed by foreign nanomaterials in the body. Assay methods ranging from endotoxin and lactate dehydrogenase (LDH) signaling to apoptosis and oxidative stress detection supply valuable techniques for exposing biomarkers of nanoparticle-induced cellular damage. Spectroscopic investigation of epithelial barrier permeation and distribution within living cells reveals the proclivity of nanoparticles to penetrate the body's natural defensive boundaries and deposit themselves in cytotoxic locations. Combination of the various characterization methodologies and assays is required for every new nanoparticulate system despite preexisting data for similar systems due to the lack of deterministic trends among investigated nanoparticles. The propensity of nanomaterials to denature proteins and oxidize substrates in their local environment generates significant concern for the applicability of several traditional in vitro assays, and the modification of susceptible approaches into novel methods suitable for the evaluation of nanoparticles comprises the focus of future work centered on nanoparticle toxicity analysis.
Collapse
Affiliation(s)
- Dustin T Savage
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA
| | - J Zach Hilt
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA
| | - Thomas D Dziubla
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
21
|
Chakraborty A, Dalal C, Jana NR. Colloidal Nanobioconjugate with Complementary Surface Chemistry for Cellular and Subcellular Targeting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13461-13471. [PMID: 29699394 DOI: 10.1021/acs.langmuir.8b00376] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Chemically and biochemically functionalized colloidal nanoparticles with appropriate surface chemistry are essential for various biomedical applications. Although a variety of approaches are now available in making such functional nanoparticles and nanobioconjugates, the lack of complementary surface chemistry often leads to poor performance with respect to intended biomedical applications. This feature article will focus on our efforts to make colloidal nanobioconjugates with appropriate/complementary surface chemistry for better performance of a designed nanoprobe with respect to cellular and subcellular targeting applications. In particular, we emphasize polyacrylate-based coating chemistry followed by a conjugation strategy for transforming <10 nm inorganic nanoparticle to colloidal nanoprobe of 20-50 nm hydrodynamic size. We show that a colloidal nanoprobe can be chemically designed to control the cell-nanoparticle interaction, cellular endocytosis, and targeting/labeling of subcellular compartments. Further study should be directed to adapt this surface chemistry to different nanoparticles, fine tune the surface chemistry for targeting/imaging on the subcellular/molecular length scale, and develop a delivery nanocarrier for subcellular compartments.
Collapse
Affiliation(s)
- Atanu Chakraborty
- Centre for Advanced Materials , Indian Association for the Cultivation of Science , Kolkata - 700032 , India
| | - Chumki Dalal
- Centre for Advanced Materials , Indian Association for the Cultivation of Science , Kolkata - 700032 , India
| | - Nikhil R Jana
- Centre for Advanced Materials , Indian Association for the Cultivation of Science , Kolkata - 700032 , India
| |
Collapse
|
22
|
Impact of nanoparticle surface functionalization on the protein corona and cellular adhesion, uptake and transport. J Nanobiotechnology 2018; 16:70. [PMID: 30219059 PMCID: PMC6138932 DOI: 10.1186/s12951-018-0394-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 09/05/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Upon ingestion, nanoparticles can interact with the intestinal epithelial barrier potentially resulting in systemic uptake of nanoparticles. Nanoparticle properties have been described to influence the protein corona formation and subsequent cellular adhesion, uptake and transport. Here, we aimed to study the effects of nanoparticle size and surface chemistry on the protein corona formation and subsequent cellular adhesion, uptake and transport. Caco-2 intestinal cells, were exposed to negatively charged polystyrene nanoparticles (PSNPs) (50 and 200 nm), functionalized with sulfone or carboxyl groups, at nine nominal concentrations (15-250 μg/ml) for 10 up to 120 min. The protein coronas were analysed by LC-MS/MS. RESULTS Subtle differences in the protein composition of the two PSNPs with different surface chemistry were noted. High-content imaging analysis demonstrated that sulfone PSNPs were associated with the cells to a significantly higher extent than the other PSNPs. The apparent cellular adhesion and uptake of 200 nm PSNPs was not significantly increased compared to 50 nm PSNPs with the same surface charge and chemistry. Surface chemistry outweighs the impact of size on the observed PSNP cellular associations. Also transport of the sulfone PSNPs through the monolayer of cells was significantly higher than that of carboxyl PSNPs. CONCLUSIONS The results suggest that the composition of the protein corona and the PSNP surface chemistry influences cellular adhesion, uptake and monolayer transport, which might be predictive of the intestinal transport potency of NPs.
Collapse
|
23
|
Li J, He X, Yang Y, Li M, Xu C, Yu R. Risk assessment of silica nanoparticles on liver injury in metabolic syndrome mice induced by fructose. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:366-374. [PMID: 29448021 DOI: 10.1016/j.scitotenv.2018.02.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/30/2018] [Accepted: 02/04/2018] [Indexed: 06/08/2023]
Abstract
This study aims to assess the effects and the mechanisms of silica nanoparticles (SiNPs) on hepatotoxicity in both normal and metabolic syndrome mouse models induced by fructose. Here, we found that SiNPs exposure lead to improved insulin resistance in metabolic syndrome mice, but markedly worsened hepatic ballooning, inflammation infiltration, and fibrosis. Moreover, SiNPs exposure aggravated liver injury in metabolic syndrome mice by causing serious DNA damage. Following SiNPs exposure, liver superoxide dismutase and catalase activities in metabolic syndrome mice were stimulated, which is accompanied by significantly increased malondialdehyde and 8-hydroxy-2-deoxyguanosine levels as compared to normal mice. Scanning electron microscope (SEM) revealed that SiNPs were more readily deposited in the liver mitochondria of metabolic syndrome mice, resulting in more severe mitochondrial injury as compared to normal mice. We speculated that SiNPs-induced mitochondrial injury might be the cause of hepatic oxidative stress, which further lead to a series of liver lesions as observed in mice following SiNPs exposure. Based on these results, it is likely that SiNPs will increase the risk and severity of liver disease in individuals with metabolic syndrome. Therefore, SiNPs should be used cautiously in food additives and clinical settings.
Collapse
Affiliation(s)
- Jianmei Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences Nanjing University, Nanjing 210023, China
| | - Xiwei He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yang Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Chenke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Rong Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences Nanjing University, Nanjing 210023, China
| |
Collapse
|
24
|
An updated review of the genotoxicity of respirable crystalline silica. Part Fibre Toxicol 2018; 15:23. [PMID: 29783987 PMCID: PMC5963024 DOI: 10.1186/s12989-018-0259-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/09/2018] [Indexed: 12/22/2022] Open
Abstract
Human exposure to (certain forms of) crystalline silica (CS) potentially results in adverse effects on human health. Since 1997 IARC has classified CS as a Group 1 carcinogen [1], which was confirmed in a later review in 2012 [2]. The genotoxic potential and mode of genotoxic action of CS was not conclusive in either of the IARC reviews, although a proposal for mode of actions was made in an extensive review of the genotoxicity of CS by Borm, Tran and Donaldson in 2011 [3]. The present study identified 141 new papers from search strings related to genotoxicity of respirable CS (RCS) since 2011 and, of these, 17 relevant publications with genotoxicity data were included in this detailed review. Studies on in vitro genotoxic endpoints primarily included micronucleus (MN) frequency and % fragmented DNA as measured in the comet assay, and were mostly negative, apart from two studies using primary or cultured macrophages. In vivo studies confirmed the role of persistent inflammation due to quartz surface toxicity leading to anti-oxidant responses in mice and rats, but DNA damage was only seen in rats. The role of surface characteristics was strengthened by in vitro and in vivo studies using aluminium or hydrophobic treatment to quench the silanol groups on the CS surface. In conclusion, the different modes of action of RCS-induced genotoxicity have been evaluated in a series of independent, adequate studies since 2011. Earlier conclusions on the role of inflammation driven by quartz surface in genotoxic and carcinogenic effects after inhalation are confirmed and findings support a practical threshold. Whereas classic in vitro genotoxicity studies confirm an earlier no-observed effect level (NOEL) in cell cultures of 60-70 μg/cm2, transformation frequency in SHE cells suggests a lower threshold around 5 μg/cm2. Both levels are only achieved in vivo at doses (2–4 mg) beyond in vivo doses (> 200 μg) that cause persistent inflammation and tissue remodelling in the rat lung.
Collapse
|
25
|
Scipioni L, Di Bona M, Vicidomini G, Diaspro A, Lanzanò L. Local raster image correlation spectroscopy generates high-resolution intracellular diffusion maps. Commun Biol 2018; 1:10. [PMID: 30271897 PMCID: PMC6053083 DOI: 10.1038/s42003-017-0010-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/15/2017] [Indexed: 01/01/2023] Open
Abstract
Raster image correlation spectroscopy (RICS) is a powerful method for measuring molecular diffusion in live cells directly from images acquired on a laser scanning microscope. However, RICS only provides single average diffusion coefficients from regions with a lateral size on the order of few micrometers, which means that its spatial resolution is mainly limited to the cellular level. Here we introduce the local RICS (L-RICS), an easy-to-use tool that generates high resolution maps of diffusion coefficients from images acquired on a laser scanning microscope. As an application we show diffusion maps of a green fluorescent protein (GFP) within the nucleus and within the nucleolus of live cells at an effective spatial resolution of 500 nm. We find not only that diffusion in the nucleolus is slowed down compared to diffusion in the nucleoplasm, but also that diffusion in the nucleolus is highly heterogeneous. Lorenzo Scipioni et al. present Local Raster Image Correlation Spectroscopy (L-RICS), a method for generating sub-micrometer diffusion maps. They apply L-RICS to GFP in live cells and find that diffusion coefficients differ between the nucleus and nucleolus and are highly heterogeneous within compartments.
Collapse
Affiliation(s)
- Lorenzo Scipioni
- Nanoscopy, Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy.,Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Via All'Opera Pia, 13, 16145, Genoa, Italy
| | - Melody Di Bona
- Nanoscopy, Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy.,Department of Physics, University of Genoa, via Dodecaneso 33, 16146, Genoa, Italy
| | - Giuseppe Vicidomini
- Molecular Microscopy and Spectroscopy, Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Alberto Diaspro
- Nanoscopy, Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy.,Department of Physics, University of Genoa, via Dodecaneso 33, 16146, Genoa, Italy.,Nikon Imaging Center, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Luca Lanzanò
- Nanoscopy, Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy.
| |
Collapse
|
26
|
Crucial role of chelatable iron in silver nanoparticles induced DNA damage and cytotoxicity. Redox Biol 2018; 15:435-440. [PMID: 29351884 PMCID: PMC5975067 DOI: 10.1016/j.redox.2018.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 12/21/2022] Open
Abstract
Damage to mitochondria and subsequent ROS leakage is a commonly accepted mechanism of nanoparticle toxicity. However, malfunction of mitochondria results in generation of superoxide anion radical (O2•-), which due to the relatively low chemical reactivity is rather unlikely to cause harmful effects triggered by nanoparticles. We show that treatment of HepG2 cells with silver nanoparticles (AgNPs) resulted in generation of H2O2 instead of O2•-, as measured by ROS specific mitochondrial probes. Moreover, addition of a selective iron chelator diminished AgNPs toxicity. Altogether these results suggest that O2•- generated during NPs induced mitochondrial collapse is rapidly dismutated to H2O2, which in the presence of iron ions undergoes a Fenton reaction to produce an extremely reactive hydroxyl radical (•OH). Clarification of the mechanism of NPs-dependent generation of •OH and demonstration of the crucial role of iron ions in NPs toxicity will facilitate our understanding of NPs toxicity and the design of safe nanomaterials. Superoxide radical is the main product generated by nanosilver exposed mitochondria. Iron chelation prevent the cell from nanosilver induced DNA damage. Iron chelation diminish nanosilver cytotoxicity. Nanosilver toxicity depends on Fenton reaction involving superoxide-derived H2O2.
Collapse
|
27
|
Morgan A, Galal MK, Ogaly HA, Ibrahim MA, Abd-Elsalam RM, Noshy P. Tiron ameliorates oxidative stress and inflammation in titanium dioxide nanoparticles induced nephrotoxicity of male rats. Biomed Pharmacother 2017; 93:779-787. [PMID: 28709131 DOI: 10.1016/j.biopha.2017.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/17/2017] [Accepted: 07/03/2017] [Indexed: 12/11/2022] Open
Abstract
Although the widespread use of titanium dioxide nanoparticles (TiO2 NPs), few studies were conducted on its hazard influence on human health. Tiron a synthetic vitamin E analog was proven to be a mitochondrial targeting antioxidant. The current investigation was performed to assess the efficacy of tiron against TiO2 NPs induced nephrotoxicity. Eighty adult male rats divided into four different groups were used: group I was the control, group II received TiO2 NPs (100mg\Kg BW), group III received TiO2 NPs plus tiron (470mg\kg BW), and group IV received tiron alone. Urea, creatinine and total protein concentrations were measured in serum to assess the renal function. Antioxidant status was estimated by determining the activities of glutathione peroxidase, superoxide dismutase, malondialdehyde (MDA) level and glutathione concentration in renal tissue. As well as Renal fibrosis was evaluated though measuring of transforming growth factor-β1 (TGFβ1) and matrix metalloproteinase 9 (MMP9) expression levels and histopathological examination. TiO2 NPs treated rats showed marked elevation of renal indices, depletion of renal antioxidant enzymes with marked increase in MDA concentration as well as significant up-regulation in fibrotic biomarkers TGFβ1 and MMP9. Oral administration of tiron to TiO2 NPs treated rats significantly attenuate the renal dysfunction through decreasing of renal indices, increasing of antioxidant enzymes activities, down-regulate the expression of fibrotic genes and improving the histopathological picture for renal tissue. In conclusion, tiron was proved to attenuate the nephrotoxicity induced by TiO2 NPs through its radical scavenging and metal chelating potency.
Collapse
Affiliation(s)
- Ashraf Morgan
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Mona K Galal
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Hanan A Ogaly
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Marwa A Ibrahim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Reham M Abd-Elsalam
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Peter Noshy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
28
|
Tammam SN, Azzazy HM, Lamprecht A. The effect of nanoparticle size and NLS density on nuclear targeting in cancer and normal cells; impaired nuclear import and aberrant nanoparticle intracellular trafficking in glioma. J Control Release 2017; 253:30-36. [DOI: 10.1016/j.jconrel.2017.02.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/26/2017] [Indexed: 10/20/2022]
|
29
|
An Intermittent Model for Intracellular Motions of Gold Nanostars by k-Space Scattering Image Correlation. Biophys J 2016; 109:2246-58. [PMID: 26636936 DOI: 10.1016/j.bpj.2015.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/09/2015] [Accepted: 10/21/2015] [Indexed: 11/20/2022] Open
Abstract
Anisotropic metallic nanoparticles have been devised as powerful potential tools for in vivo imaging, photothermal therapy, and drug delivery thanks to plasmon-enhanced absorption and scattering cross sections, ease in synthesis and functionalization, and controlled cytotoxicity. The rational design of all these applications requires the characterization of the nanoparticles intracellular trafficking pathways. In this work, we exploit live-cell time-lapse confocal reflectance microscopy and image correlation in both direct and reciprocal space to investigate the intracellular transport of branched gold nanostars (GNSs). Different transport mechanisms, spanning from pure Brownian diffusion to (sub-)ballistic superdiffusion, are revealed by temporal and spatio-temporal image correlation spectroscopy on the tens-of-seconds timescale. According to these findings, combined with numerical simulations and with a Bayesian (hidden Markov model-based) analysis of single particle tracking data, we ascribe the superdiffusive, subballistic behavior characterizing the GNSs dynamics to a two-state switching between Brownian diffusion in the cytoplasm and molecular motor-mediated active transport. For the investigation of intermittent-type transport phenomena, we derive an analytical theoretical framework for Fourier-space image correlation spectroscopy (kICS). At first, we evaluate the influence of all the dynamic and kinetic parameters (the diffusion coefficient, the drift velocity, and the transition rates between the diffusive and the active transport regimes) on simulated kICS correlation functions. Then we outline a protocol for data analysis and employ it to derive whole-cell maps for each parameter underlying the GNSs intracellular dynamics. Capable of identifying even simpler transport phenomena, whether purely diffusive or ballistic, our intermittent kICS approach allows an exhaustive investigation of the dynamics of GNSs and biological macromolecules.
Collapse
|
30
|
Penjweini R, Deville S, D'Olieslaeger L, Berden M, Ameloot M, Ethirajan A. Intracellular localization and dynamics of Hypericin loaded PLLA nanocarriers by image correlation spectroscopy. J Control Release 2015; 218:82-93. [DOI: 10.1016/j.jconrel.2015.09.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 09/27/2015] [Accepted: 09/28/2015] [Indexed: 01/17/2023]
|
31
|
Scharf A, Gührs KH, von Mikecz A. Anti-amyloid compounds protect from silica nanoparticle-induced neurotoxicity in the nematode C. elegans. Nanotoxicology 2015; 10:426-35. [PMID: 26444998 PMCID: PMC4819850 DOI: 10.3109/17435390.2015.1073399] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Identifying nanomaterial-bio-interactions are imperative due to the broad introduction of nanoparticle (NP) applications and their distribution. Here, we demonstrate that silica NPs effect widespread protein aggregation in the soil nematode Caenorhabditis elegans ranging from induction of amyloid in nucleoli of intestinal cells to facilitation of protein aggregation in body wall muscles and axons of neural cells. Proteomic screening revealed that exposure of adult C. elegans with silica NPs promotes segregation of proteins belonging to the gene ontology (GO) group of “protein folding, proteolysis and stress response” to an SDS-resistant aggregome network. Candidate proteins in this group include chaperones, heat shock proteins and subunits of the 26S proteasome which are all decisively involved in protein homeostasis. The pathway of protein homeostasis was validated as a major target of silica NPs by behavioral phenotyping, as inhibitors of amyloid formation rescued NP-induced defects of locomotory patterns and egg laying. The analysis of a reporter worm for serotonergic neural cells revealed that silica NP-induced protein aggregation likewise occurs in axons of HSN neurons, where presynaptic accumulation of serotonin, e.g. disturbed axonal transport reduces the capacity for neurotransmission and egg laying. The results suggest that in C. elegans silica NPs promote a cascade of events including disturbance of protein homeostasis, widespread protein aggregation and inhibition of serotonergic neurotransmission which can be interrupted by compounds preventing amyloid fibrillation.
Collapse
Affiliation(s)
- Andrea Scharf
- a IUF - Leibniz Research Institute for Environmental Medicine at the Heinrich-Heine-University Duesseldorf , Düsseldorf , Germany and
| | - Karl-Heinz Gührs
- b CF Proteomics, FLI-Leibniz-Institute for Age Research, Fritz-Lipman-Institute e.V. , Jena , Germany
| | - Anna von Mikecz
- a IUF - Leibniz Research Institute for Environmental Medicine at the Heinrich-Heine-University Duesseldorf , Düsseldorf , Germany and
| |
Collapse
|
32
|
Functionalized Buckyballs for Visualizing Microbial Species in Different States and Environments. Sci Rep 2015; 5:13685. [PMID: 26347365 PMCID: PMC4561912 DOI: 10.1038/srep13685] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 08/03/2015] [Indexed: 12/04/2022] Open
Abstract
To date, in situ visualization of microbial density has remained an open problem. Here, functionalized buckyballs (e.g., C60-pyrrolidine tris acid) are shown to be a versatile platform that allows internalization within a microorganism without either adhering to the cell wall and cell membrane or binding to a matrix substrate such as soil. These molecular probes are validated via multi-scale imaging, to show association with microorganisms via fluorescence microscopy, positive cellular uptake via electron microscopy, and non-specific binding to the substrates through a combination of fluorescence and autoradiography imaging. We also demonstrate that cysteine-functionalized C60-pyrrolidine tris acid can differentiate live and dead microorganisms.
Collapse
|
33
|
Lopes CDF, Gomez-Lazaro M, Pêgo AP. Seeing is believing but quantifying is deciding. Nanomedicine (Lond) 2015; 10:2307-10. [DOI: 10.2217/nnm.15.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Cátia DF Lopes
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre 823, 4150–180 Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- FMUP – Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Maria Gomez-Lazaro
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre 823, 4150–180 Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- b.IMAGE – Bioimaging Centre for Biomaterials and Regenerative Therapies, INEB, Universidade do Porto, Porto, Portugal
| | - Ana Paula Pêgo
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre 823, 4150–180 Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- FEUP – Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
34
|
Qi R, Wang LP, Wang Q, Pande VS, Ren P. United polarizable multipole water model for molecular mechanics simulation. J Chem Phys 2015; 143:014504. [PMID: 26156485 PMCID: PMC4499046 DOI: 10.1063/1.4923338] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 06/21/2015] [Indexed: 11/14/2022] Open
Abstract
We report the development of a united AMOEBA (uAMOEBA) polarizable water model, which is computationally 3-5 times more efficient than the three-site AMOEBA03 model in molecular dynamics simulations while providing comparable accuracy for gas-phase and liquid properties. In this coarse-grained polarizable water model, both electrostatic (permanent and induced) and van der Waals representations have been reduced to a single site located at the oxygen atom. The permanent charge distribution is described via the molecular dipole and quadrupole moments and the many-body polarization via an isotropic molecular polarizability, all located at the oxygen center. Similarly, a single van der Waals interaction site is used for each water molecule. Hydrogen atoms are retained only for the purpose of defining local frames for the molecular multipole moments and intramolecular vibrational modes. The parameters have been derived based on a combination of ab initio quantum mechanical and experimental data set containing gas-phase cluster structures and energies, and liquid thermodynamic properties. For validation, additional properties including dimer interaction energy, liquid structures, self-diffusion coefficient, and shear viscosity have been evaluated. The results demonstrate good transferability from the gas to the liquid phase over a wide range of temperatures, and from nonpolar to polar environments, due to the presence of molecular polarizability. The water coordination, hydrogen-bonding structure, and dynamic properties given by uAMOEBA are similar to those derived from the all-atom AMOEBA03 model and experiments. Thus, the current model is an accurate and efficient alternative for modeling water.
Collapse
Affiliation(s)
- Rui Qi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Lee-Ping Wang
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Qiantao Wang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Vijay S Pande
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
35
|
Esser C, Rannug A. The aryl hydrocarbon receptor in barrier organ physiology, immunology, and toxicology. Pharmacol Rev 2015; 67:259-79. [PMID: 25657351 DOI: 10.1124/pr.114.009001] [Citation(s) in RCA: 375] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is an evolutionarily old transcription factor belonging to the Per-ARNT-Sim-basic helix-loop-helix protein family. AhR translocates into the nucleus upon binding of various small molecules into the pocket of its single-ligand binding domain. AhR binding to both xenobiotic and endogenous ligands results in highly cell-specific transcriptome changes and in changes in cellular functions. We discuss here the role of AhR for immune cells of the barrier organs: skin, gut, and lung. Both adaptive and innate immune cells require AhR signaling at critical checkpoints. We also discuss the current two prevailing views-namely, 1) AhR as a promiscuous sensor for small chemicals and 2) a role for AhR as a balancing factor for cell differentiation and function, which is controlled by levels of endogenous high-affinity ligands. AhR signaling is considered a promising drug and preventive target, particularly for cancer, inflammatory, and autoimmune diseases. Therefore, understanding its biology is of great importance.
Collapse
Affiliation(s)
- Charlotte Esser
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany (C.E.); and Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden (A.R.)
| | - Agneta Rannug
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany (C.E.); and Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden (A.R.)
| |
Collapse
|
36
|
Lee JA, Kim MK, Paek HJ, Kim YR, Kim MK, Lee JK, Jeong J, Choi SJ. Tissue distribution and excretion kinetics of orally administered silica nanoparticles in rats. Int J Nanomedicine 2014; 9 Suppl 2:251-60. [PMID: 25565843 PMCID: PMC4279759 DOI: 10.2147/ijn.s57939] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose The effects of particle size on the tissue distribution and excretion kinetics of silica nanoparticles and their biological fates were investigated following a single oral administration to male and female rats. Methods Silica nanoparticles of two different sizes (20 nm and 100 nm) were orally administered to male and female rats, respectively. Tissue distribution kinetics, excretion profiles, and fates in tissues were analyzed using elemental analysis and transmission electron microscopy. Results The differently sized silica nanoparticles mainly distributed to kidneys and liver for 3 days post-administration and, to some extent, to lungs and spleen for 2 days post-administration, regardless of particle size or sex. Transmission electron microscopy and energy dispersive spectroscopy studies in tissues demonstrated almost intact particles in liver, but partially decomposed particles with an irregular morphology were found in kidneys, especially in rats that had been administered 20 nm nanoparticles. Size-dependent excretion kinetics were apparent and the smaller 20 nm particles were found to be more rapidly eliminated than the larger 100 nm particles. Elimination profiles showed 7%–8% of silica nanoparticles were excreted via urine, but most nanoparticles were excreted via feces, regardless of particle size or sex. Conclusion The kidneys, liver, lungs, and spleen were found to be the target organs of orally-administered silica nanoparticles in rats, and this organ distribution was not affected by particle size or animal sex. In vivo, silica nanoparticles were found to retain their particulate form, although more decomposition was observed in kidneys, especially for 20 nm particles. Urinary and fecal excretion pathways were determined to play roles in the elimination of silica nanoparticles, but 20 nm particles were secreted more rapidly, presumably because they are more easily decomposed. These findings will be of interest to those seeking to predict potential toxicological effects of silica nanoparticles on target organs.
Collapse
Affiliation(s)
- Jeong-A Lee
- Department of Food Science and Technology, Seoul Women's University, Seoul, Republic of Korea
| | - Mi-Kyung Kim
- Department of Food Science and Technology, Seoul Women's University, Seoul, Republic of Korea
| | - Hee-Jeong Paek
- Department of Food Science and Technology, Seoul Women's University, Seoul, Republic of Korea
| | - Yu-Ri Kim
- Department of Biochemistry and Molecular Biology, Korea University Medical School and College, Seoul, Republic of Korea
| | - Meyoung-Kon Kim
- Department of Biochemistry and Molecular Biology, Korea University Medical School and College, Seoul, Republic of Korea
| | - Jong-Kwon Lee
- Toxicological Research Division, National Institute of Food and Drug Safety Evaluation, Chungchungbuk-do, Republic of Korea
| | - Jayoung Jeong
- Toxicological Research Division, National Institute of Food and Drug Safety Evaluation, Chungchungbuk-do, Republic of Korea
| | - Soo-Jin Choi
- Department of Food Science and Technology, Seoul Women's University, Seoul, Republic of Korea
| |
Collapse
|
37
|
Pretor S, Bartels J, Lorenz T, Dahl K, Finke JH, Peterat G, Krull R, Al-Halhouli AT, Dietzel A, Büttgenbach S, Behrends S, Reichl S, Müller-Goymann CC. Cellular Uptake of Coumarin-6 under Microfluidic Conditions into HCE-T Cells from Nanoscale Formulations. Mol Pharm 2014; 12:34-45. [DOI: 10.1021/mp500401t] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- S. Pretor
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106 Braunschweig, Germany
| | - J. Bartels
- Institut für Pharmakologie, Toxikologie und Klinische
Pharmazie, Technische Universität Braunschweig, Mendelssohnstraße
1, 38106 Braunschweig, Germany
| | - T. Lorenz
- Institut für Mikrotechnik, Technische Universität Braunschweig, Alte Salzdahlumer Straße 203, 38124 Braunschweig, Germany
| | - K. Dahl
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106 Braunschweig, Germany
| | - J. H. Finke
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106 Braunschweig, Germany
| | - G. Peterat
- Institute for Biochemical Engineering, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - R. Krull
- Institute for Biochemical Engineering, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - A. T. Al-Halhouli
- Institut für Mikrotechnik, Technische Universität Braunschweig, Alte Salzdahlumer Straße 203, 38124 Braunschweig, Germany
| | - A. Dietzel
- Institut für Mikrotechnik, Technische Universität Braunschweig, Alte Salzdahlumer Straße 203, 38124 Braunschweig, Germany
| | - S. Büttgenbach
- Institut für Mikrotechnik, Technische Universität Braunschweig, Alte Salzdahlumer Straße 203, 38124 Braunschweig, Germany
| | - S. Behrends
- Institut für Pharmakologie, Toxikologie und Klinische
Pharmazie, Technische Universität Braunschweig, Mendelssohnstraße
1, 38106 Braunschweig, Germany
| | - S. Reichl
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106 Braunschweig, Germany
| | - C. C. Müller-Goymann
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106 Braunschweig, Germany
| |
Collapse
|
38
|
Energy independent uptake and release of polystyrene nanoparticles in primary mammalian cell cultures. Exp Cell Res 2014; 330:240-247. [PMID: 25246129 DOI: 10.1016/j.yexcr.2014.09.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 01/03/2023]
Abstract
Nanoparticle (NPs) delivery systems in vivo promises to overcome many obstacles associated with the administration of drugs, vaccines, plasmid DNA and RNA materials, making the study of their cellular uptake a central issue in nanomedicine. The uptake of NPs may be influenced by the cell culture stage and the NPs physical-chemical properties. So far, controversial data on NPs uptake have been derived owing to the heterogeneity of NPs and the general use of immortalized cancer cell lines that often behave differently from each other and from primary mammalian cell cultures. Main aims of the present study were to investigate the uptake, endocytosis pathways, intracellular fate and release of well standardized model particles, i.e. fluorescent 44 nm polystyrene NPs (PS-NPs), on two primary mammalian cell cultures, i.e. bovine oviductal epithelial cells (BOEC) and human colon fibroblasts (HCF) by confocal microscopy and spectrofluorimetric analysis. Different drugs and conditions that inhibit specific internalization routes were used to understand the mechanisms that mediate PS-NP uptake. Our data showed that PS-NPs are rapidly internalized by both cell types 1) with similar saturation kinetics; 2) through ATP-independent processes, and 3) quickly released in the culture medium. Our results suggest that PS-NPs are able to rapidly cross the cell membrane through passive translocation during both uptake and release, and emphasize the need to carefully design NPs for drug delivery, to ensure their selective uptake and to optimize their retainment in the targeted cells.
Collapse
|
39
|
Kura AU, Fakurazi S, Hussein MZ, Arulselvan P. Nanotechnology in drug delivery: the need for more cell culture based studies in screening. Chem Cent J 2014; 8:46. [PMID: 25057288 PMCID: PMC4108003 DOI: 10.1186/1752-153x-8-46] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 07/10/2014] [Indexed: 01/27/2023] Open
Abstract
Advances in biomedical science are leading to upsurge synthesis of nanodelivery systems for drug delivery. The systems were characterized by controlled, targeted and sustained drug delivery ability. Humans are the target of these systems, hence, animals whose systems resembles humans were used to predict outcome. Thus, increasing costs in money and time, plus ethical concerns over animal usage. However, with consideration and planning in experimental conditions, in vitro pharmacological studies of the nanodelivery can mimic the in vivo system. This can function as a simple method to investigate the effect of such materials without endangering animals especially at screening phase.
Collapse
Affiliation(s)
- Aminu Umar Kura
- Laboratory of Vaccine and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 Selangor, Malaysia
| | - Sharida Fakurazi
- Laboratory of Vaccine and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 Selangor, Malaysia
- Faculty of Medicine and Health Science, Pharmacology Unit, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Selangor, Malaysia
| | - Palanisamy Arulselvan
- Laboratory of Vaccine and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 Selangor, Malaysia
| |
Collapse
|
40
|
Singh AP, Wohland T. Applications of imaging fluorescence correlation spectroscopy. Curr Opin Chem Biol 2014; 20:29-35. [DOI: 10.1016/j.cbpa.2014.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 11/16/2022]
|
41
|
Nanoparticles: Cellular Uptake and Cytotoxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 811:73-91. [DOI: 10.1007/978-94-017-8739-0_5] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Andersen H, Parhamifar L, Moein Moghimi S. Uptake and Intracellular Trafficking of Nanocarriers. INTRACELLULAR DELIVERY II 2014. [DOI: 10.1007/978-94-017-8896-0_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Scharf A, Piechulek A, von Mikecz A. Effect of nanoparticles on the biochemical and behavioral aging phenotype of the nematode Caenorhabditis elegans. ACS NANO 2013; 7:10695-703. [PMID: 24256469 DOI: 10.1021/nn403443r] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Invertebrate animal models such as the nematode Caenorhabditis elegans (C. elegans) are increasingly used in nanotechnological applications. Research in this area covers a wide range from remote control of worm behavior by nanoparticles (NPs) to evaluation of organismal nanomaterial safety. Despite of the broad spectrum of investigated NP-bio interactions, little is known about the role of nanomaterials with respect to aging processes in C. elegans. We trace NPs in single cells of adult C. elegans and correlate particle distribution with the worm's metabolism and organ function. By confocal microscopy analysis of fluorescently labeled NPs in living worms, we identify two entry portals for the uptake of nanomaterials via the pharynx to the intestinal system and via the vulva to the reproductive system. NPs are localized throughout the cytoplasm and the cell nucleus in single intestinal, and vulval B and D cells. Silica NPs induce an untimely accumulation of insoluble ubiquitinated proteins, nuclear amyloid and reduction of pharyngeal pumping that taken together constitute a premature aging phenotype of C. elegans on the molecular and behavioral level, respectively. Screening of different nanomaterials for their effects on protein solubility shows that polystyrene or silver NPs do not induce accumulation of ubiquitinated proteins suggesting that alteration of protein homeostasis is a unique property of silica NPs. The nematode C. elegans represents an excellent model to investigate the effect of different types of nanomaterials on aging at the molecule, cell, and whole organism level.
Collapse
Affiliation(s)
- Andrea Scharf
- IUF-Leibniz Research Institute for Environmental Medicine, Heinrich-Heine-University Duesseldorf , Auf'm Hennekamp 50, 40225 Düsseldorf, Germany
| | | | | |
Collapse
|