1
|
Abati E, Mauri E, Rimoldi M, Madini B, Patria F, Comi GP, Corti S. Sleep and sleep-related breathing disorders in patients with spinal muscular atrophy: a changing perspective from novel treatments? Front Neurol 2024; 15:1299205. [PMID: 38895692 PMCID: PMC11184139 DOI: 10.3389/fneur.2024.1299205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/07/2024] [Indexed: 06/21/2024] Open
Abstract
Spinal Muscular Atrophy (SMA) is an inherited neuromuscular disorder characterized by progressive muscle weakness and atrophy, resulting from the degeneration of motor neurons in the spinal cord. A critical aspect of SMA is its impact on respiratory function. As the disease progresses, respiratory muscles, in particular intercostal muscles, become increasingly affected, leading to breathing difficulties and respiratory failure. Without intervention, many children with SMA type 1 die from respiratory failure before their second year of life. While assisted ventilation has improved survival, it often results in ventilator dependence. The development of new SMN-augmenting therapies has renewed optimism, but their long-term impact on respiratory function is uncertain, and non-invasive respiratory support remains an important part of SMA management. Despite the importance of respiratory support in SMA, knowledge regarding sleep disorders in this population is limited. This review aims to synthesize existing literature on sleep and sleep-related breathing disorders in patients with SMA, with a focus on SMA type 1. We summarize evidence of sleep-disordered breathing and respiratory failure in SMA, as well as outcomes and survival benefits associated with non-invasive or invasive ventilation with or without pharmacological therapies. We also discuss current knowledge regarding the effects of novel disease-modifying therapies for SMA on respiratory function and sleep. In conclusion, optimal care for children with SMA requires a multidisciplinary approach that includes neurology and respiratory specialists. This review highlights the importance of monitoring sleep and respiratory function in SMA, as well as the potential benefits and challenges associated with assisted ventilation combined with new therapies.
Collapse
Affiliation(s)
- Elena Abati
- Neurology Unit, Department of Neuroscience and Mental Health, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Dino Ferrari Centre, Milan, Italy
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Eleonora Mauri
- Neurophysiopathology Unit, Department of Neuroscience and Mental Health, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Martina Rimoldi
- Neurology Unit, Department of Neuroscience and Mental Health, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Dino Ferrari Centre, Milan, Italy
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Barbara Madini
- Pediatric Pneumonology, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Patria
- Pediatric Pneumonology, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Pietro Comi
- Neurology Unit, Department of Neuroscience and Mental Health, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Dino Ferrari Centre, Milan, Italy
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Stefania Corti
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
- Neuromuscular Disease Unit, Department of Neurosciences and Mental Health, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
2
|
Leckie J, Yokota T. Potential of Cell-Penetrating Peptide-Conjugated Antisense Oligonucleotides for the Treatment of SMA. Molecules 2024; 29:2658. [PMID: 38893532 PMCID: PMC11173757 DOI: 10.3390/molecules29112658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a severe neuromuscular disorder that is caused by mutations in the survival motor neuron 1 (SMN1) gene, hindering the production of functional survival motor neuron (SMN) proteins. Antisense oligonucleotides (ASOs), a versatile DNA-like drug, are adept at binding to target RNA to prevent translation or promote alternative splicing. Nusinersen is an FDA-approved ASO for the treatment of SMA. It effectively promotes alternative splicing in pre-mRNA transcribed from the SMN2 gene, an analog of the SMN1 gene, to produce a greater amount of full-length SMN protein, to compensate for the loss of functional protein translated from SMN1. Despite its efficacy in ameliorating SMA symptoms, the cellular uptake of these ASOs is suboptimal, and their inability to penetrate the CNS necessitates invasive lumbar punctures. Cell-penetrating peptides (CPPs), which can be conjugated to ASOs, represent a promising approach to improve the efficiency of these treatments for SMA and have the potential to transverse the blood-brain barrier to circumvent the need for intrusive intrathecal injections and their associated adverse effects. This review provides a comprehensive analysis of ASO therapies, their application for the treatment of SMA, and the encouraging potential of CPPs as delivery systems to improve ASO uptake and overall efficiency.
Collapse
Affiliation(s)
- Jamie Leckie
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Sciences Research, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
3
|
Selvakumaran J, Ursu S, Bowerman M, Lu-Nguyen N, Wood MJ, Malerba A, Yáñez-Muñoz RJ. An Induced Pluripotent Stem Cell-Derived Human Blood-Brain Barrier (BBB) Model to Test the Crossing by Adeno-Associated Virus (AAV) Vectors and Antisense Oligonucleotides. Biomedicines 2023; 11:2700. [PMID: 37893074 PMCID: PMC10604610 DOI: 10.3390/biomedicines11102700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The blood-brain barrier (BBB) is the specialised microvasculature system that shields the central nervous system (CNS) from potentially toxic agents. Attempts to develop therapeutic agents targeting the CNS have been hindered by the lack of predictive models of BBB crossing. In vitro models mimicking the human BBB are of great interest, and advances in induced pluripotent stem cell (iPSC) technologies and the availability of reproducible differentiation protocols have facilitated progress. In this study, we present the efficient differentiation of three different wild-type iPSC lines into brain microvascular endothelial cells (BMECs). Once differentiated, cells displayed several features of BMECs and exhibited significant barrier tightness as measured by trans-endothelial electrical resistance (TEER), ranging from 1500 to >6000 Ωcm2. To assess the functionality of our BBB models, we analysed the crossing efficiency of adeno-associated virus (AAV) vectors and peptide-conjugated antisense oligonucleotides, both currently used in genetic approaches for the treatment of rare diseases. We demonstrated superior barrier crossing by AAV serotype 9 compared to serotype 8, and no crossing by a cell-penetrating peptide-conjugated antisense oligonucleotide. In conclusion, our study shows that iPSC-based models of the human BBB display robust phenotypes and could be used to screen drugs for CNS penetration in culture.
Collapse
Affiliation(s)
- Jamuna Selvakumaran
- AGCTlab, Centre of Gene and Cell Therapy, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (J.S.); (S.U.)
| | - Simona Ursu
- AGCTlab, Centre of Gene and Cell Therapy, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (J.S.); (S.U.)
| | - Melissa Bowerman
- School of Medicine, Keele University, Staffordshire ST4 7QB, UK;
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Ngoc Lu-Nguyen
- Gene Medicine Laboratory for Rare Diseases, Centre of Gene and Cell Therapy, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (N.L.-N.); (A.M.)
| | - Matthew J. Wood
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Oxford OX3 7TY, UK;
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford OX3 9DU, UK
| | - Alberto Malerba
- Gene Medicine Laboratory for Rare Diseases, Centre of Gene and Cell Therapy, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (N.L.-N.); (A.M.)
| | - Rafael J. Yáñez-Muñoz
- AGCTlab, Centre of Gene and Cell Therapy, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (J.S.); (S.U.)
| |
Collapse
|
4
|
Arabi F, Mansouri V, Ahmadbeigi N. Gene therapy clinical trials, where do we go? An overview. Biomed Pharmacother 2022; 153:113324. [PMID: 35779421 DOI: 10.1016/j.biopha.2022.113324] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 12/18/2022] Open
Abstract
There have been many ups and downs since the introduction of gene therapy as a therapeutic modality for diseases. However, the journey of gene therapy has reached a fundamental milestone, as evidenced by the increasing number of gene therapy products on the market. Looking at the currently approved and under-approval products, as well as the numerous clinical trials in this field, gene therapy has a promising future. Trend of changes in gene therapy strategies, vectors, and targets could be insightful for pharmaceutical companies, policymakers, and researchers. In this paper, following a brief history of gene therapy, we reviewed current gene therapy products as well as gene therapies that may be approved in the near future. We also looked at ten-year changes in gene therapy clinical trials strategies, such as the use of vectors, target cells, transferred genes, and ex-vivo/in-vivo methods, as well as the major fields that gene therapy has entered. Although gene therapy was initially used to treat genetic diseases, cancer now has the greatest number of gene therapy clinical trials. Changes in gene therapy strategies, particularly in pioneering countries in this field, may point to the direction of future clinical products.
Collapse
Affiliation(s)
- Fatemeh Arabi
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran
| | - Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran
| | - Naser Ahmadbeigi
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran.
| |
Collapse
|
5
|
Zhang L, Abendroth F, Vázquez O. A Chemical Biology Perspective to Therapeutic Regulation of RNA Splicing in Spinal Muscular Atrophy (SMA). ACS Chem Biol 2022; 17:1293-1307. [PMID: 35639849 DOI: 10.1021/acschembio.2c00161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Manipulation of RNA splicing machinery has emerged as a drug modality. Here, we illustrate the potential of this novel paradigm to correct aberrant splicing events focused on the recent therapeutic advances in spinal muscular atrophy (SMA). SMA is an incurable neuromuscular disorder and at present the primary genetic cause of early infant death. This Review summarizes the exciting journey from the first reported SMA cases to the currently approved splicing-switching treatments, i.e., antisense oligonucleotides and small-molecule modifiers. We emphasize both chemical structures and molecular bases for recognition. We briefly discuss the advantages and disadvantages of these treatments and include the remaining challenges and future directions. Finally, we also predict that these success stories will contribute to further therapies for human diseases by RNA-splicing control.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Frank Abendroth
- Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Olalla Vázquez
- Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, Karl-von-Frisch-Straße 14, 35043 Marburg, Germany
| |
Collapse
|
6
|
Toosaranont J, Ruschadaariyachat S, Mujchariyakul W, Arora JK, Charoensawan V, Suktitipat B, Palmer TN, Fletcher S, Wilton SD, Mitrpant C. Antisense Oligonucleotide Induction of the hnRNPA1b Isoform Affects Pre-mRNA Splicing of SMN2 in SMA Type I Fibroblasts. Int J Mol Sci 2022; 23:ijms23073937. [PMID: 35409296 PMCID: PMC8999010 DOI: 10.3390/ijms23073937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a severe, debilitating neuromuscular condition characterised by loss of motor neurons and progressive muscle wasting. SMA is caused by a loss of expression of SMN1 that encodes the survival motor neuron (SMN) protein necessary for the survival of motor neurons. Restoration of SMN expression through increased inclusion of SMN2 exon 7 is known to ameliorate symptoms in SMA patients. As a consequence, regulation of pre-mRNA splicing of SMN2 could provide a potential molecular therapy for SMA. In this study, we explored if splice switching antisense oligonucleotides could redirect the splicing repressor hnRNPA1 to the hnRNPA1b isoform and restore SMN expression in fibroblasts from a type I SMA patient. Antisense oligonucleotides (AOs) were designed to promote exon 7b retention in the mature mRNA and induce the hnRNPA1b isoform. RT-PCR and western blot analysis were used to assess and monitor the efficiency of different AO combinations. A combination of AOs targeting multiple silencing motifs in hnRNPA1 pre-mRNA led to robust hnRNPA1b induction, which, in turn, significantly increased expression of full-length SMN (FL-SMN) protein. A combination of PMOs targeting the same motifs also strongly induced hnRNPA1b isoform, but surprisingly SMN2 exon 5 skipping was detected, and the PMO cocktail did not lead to a significant increase in expression of FL-SMN protein. We further performed RNA sequencing to assess the genome-wide effects of hnRNPA1b induction. Some 3244 genes were differentially expressed between the hnRNPA1b-induced and untreated SMA fibroblasts, which are functionally enriched in cell cycle and chromosome segregation processes. RT-PCR analysis demonstrated that expression of the master regulator of these enrichment pathways, MYBL2 and FOXM1B, were reduced in response to PMO treatment. These findings suggested that induction of hnRNPA1b can promote SMN protein expression, but not at sufficient levels to be clinically relevant.
Collapse
Affiliation(s)
- Jarichad Toosaranont
- Department of Biochemistry, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (J.T.); (S.R.); (B.S.)
| | - Sukanya Ruschadaariyachat
- Department of Biochemistry, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (J.T.); (S.R.); (B.S.)
| | - Warasinee Mujchariyakul
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10700, Thailand; (W.M.); (J.K.A.); (V.C.)
| | - Jantarika Kumar Arora
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10700, Thailand; (W.M.); (J.K.A.); (V.C.)
| | - Varodom Charoensawan
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10700, Thailand; (W.M.); (J.K.A.); (V.C.)
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom 73170, Thailand
- Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Bhoom Suktitipat
- Department of Biochemistry, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (J.T.); (S.R.); (B.S.)
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Thomas N. Palmer
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA 6009, Australia; (T.N.P.); (S.F.); (S.D.W.)
| | - Sue Fletcher
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA 6009, Australia; (T.N.P.); (S.F.); (S.D.W.)
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia
| | - Steve D. Wilton
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA 6009, Australia; (T.N.P.); (S.F.); (S.D.W.)
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia
| | - Chalermchai Mitrpant
- Department of Biochemistry, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (J.T.); (S.R.); (B.S.)
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA 6009, Australia; (T.N.P.); (S.F.); (S.D.W.)
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia
- Correspondence:
| |
Collapse
|
7
|
Abstract
Bifunctional antisense oligonucleotide (AON) is a specially designed AON to regulate pre-messenger RNA (pre-mRNA) splicing of a target gene. It is composed of two domains. The antisense domain contains sequences complementary to the target gene. The tail domain includes RNA sequences that recruit RNA binding proteins which may act positively or negatively in pre-mRNA splicing. This approach can be designed as targeted oligonucleotide enhancers of splicing, named TOES, for exon inclusion; or as targeted oligonucleotide silencers of splicing, named TOSS, for exon skipping. Here, we provide detailed methods for the design of TOES for exon inclusion, using SMN2 exon 7 splicing as an example. A number of annealing sites and the tail sequences previously published are listed. We also present methodology of assessing the effects of TOES on exon inclusion in fibroblasts cultured from a SMA patient. The effects of TOES on SMN2 exon 7 splicing were validated at RNA level by PCR and quantitative real-time PCR, and at protein level by western blotting.
Collapse
Affiliation(s)
- Haiyan Zhou
- Genetic and Genomics Medicine Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK.
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK.
| |
Collapse
|
8
|
Ottesen EW, Luo D, Singh NN, Singh RN. High Concentration of an ISS-N1-Targeting Antisense Oligonucleotide Causes Massive Perturbation of the Transcriptome. Int J Mol Sci 2021; 22:ijms22168378. [PMID: 34445083 PMCID: PMC8395096 DOI: 10.3390/ijms22168378] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/14/2021] [Accepted: 07/31/2021] [Indexed: 12/17/2022] Open
Abstract
Intronic splicing silencer N1 (ISS-N1) located within Survival Motor Neuron 2 (SMN2) intron 7 is the target of a therapeutic antisense oligonucleotide (ASO), nusinersen (Spinraza), which is currently being used for the treatment of spinal muscular atrophy (SMA), a leading genetic disease associated with infant mortality. The discovery of ISS-N1 as a promising therapeutic target was enabled in part by Anti-N1, a 20-mer ASO that restored SMN2 exon 7 inclusion by annealing to ISS-N1. Here, we analyzed the transcriptome of SMA patient cells treated with 100 nM of Anti-N1 for 30 h. Such concentrations are routinely used to demonstrate the efficacy of an ASO. While 100 nM of Anti-N1 substantially stimulated SMN2 exon 7 inclusion, it also caused massive perturbations in the transcriptome and triggered widespread aberrant splicing, affecting expression of essential genes associated with multiple cellular processes such as transcription, splicing, translation, cell signaling, cell cycle, macromolecular trafficking, cytoskeletal dynamics, and innate immunity. We validated our findings with quantitative and semiquantitative PCR of 39 candidate genes associated with diverse pathways. We also showed a substantial reduction in off-target effects with shorter ISS-N1-targeting ASOs. Our findings are significant for implementing better ASO design and dosing regimens of ASO-based drugs.
Collapse
|
9
|
Spinal muscular atrophy: Broad disease spectrum and sex-specific phenotypes. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166063. [PMID: 33412266 DOI: 10.1016/j.bbadis.2020.166063] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
Spinal muscular atrophy (SMA) is one of the major genetic disorders associated with infant mortality. More than 90% of cases of SMA result from deletions of or mutations in the Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, does not compensate for the loss of SMN1 due to predominant skipping of exon 7. The spectrum of SMA is broad, ranging from prenatal death to infant mortality to survival into adulthood. All tissues, including brain, spinal cord, bone, skeletal muscle, heart, lung, liver, pancreas, gastrointestinal tract, kidney, spleen, ovary and testis, are directly and/or indirectly affected in SMA. Accumulating evidence on impaired mitochondrial biogenesis and defects in X chromosome-linked modifying factors, coupled with the sexual dimorphic nature of many tissues, point to sex-specific vulnerabilities in SMA. Here we review the role of sex in the pathogenesis of SMA.
Collapse
|
10
|
Singh RN, Seo J, Singh NN. RNA in spinal muscular atrophy: therapeutic implications of targeting. Expert Opin Ther Targets 2020; 24:731-743. [PMID: 32538213 DOI: 10.1080/14728222.2020.1783241] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Spinal muscular atrophy (SMA) is caused by low levels of the Survival Motor Neuron (SMN) protein due to deletions of or mutations in the SMN1 gene. Humans carry another nearly identical gene, SMN2, which mostly produces a truncated and less stable protein SMNΔ7 due to predominant skipping of exon 7. Elevation of SMN upon correction of SMN2 exon 7 splicing and gene therapy have been proven to be the effective treatment strategies for SMA. AREAS COVERED This review summarizes existing and potential SMA therapies that are based on RNA targeting.We also discuss the mechanistic basis of RNA-targeting molecules. EXPERT OPINION The discovery of intronic splicing silencer N1 (ISS-N1) was the first major step towards developing the currently approved antisense-oligonucleotide (ASO)-directed therapy (SpinrazaTM) based on the correction of exon 7 splicing of the endogenous SMN2pre-mRNA. Recently, gene therapy (Zolgensma) has become the second approved treatment for SMA. Small compounds (currently in clinical trials) capable of restoring SMN2 exon 7 inclusion further expand the class of the RNA targeting molecules for SMA therapy. Endogenous RNA targets, such as long non-coding RNAs, circular RNAs, microRNAs and ribonucleoproteins, could be potentially exploited for developing additional SMA therapies.
Collapse
Affiliation(s)
- Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University , Ames, IA, USA
| | - Joonbae Seo
- Department of Biomedical Sciences, Iowa State University , Ames, IA, USA
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University , Ames, IA, USA
| |
Collapse
|
11
|
Aung-Htut MT, Ham KA, Tchan M, Johnsen R, Schnell FJ, Fletcher S, Wilton SD. Splice modulating antisense oligonucleotides restore some acid-alpha-glucosidase activity in cells derived from patients with late-onset Pompe disease. Sci Rep 2020; 10:6702. [PMID: 32317649 PMCID: PMC7174337 DOI: 10.1038/s41598-020-63461-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/30/2020] [Indexed: 01/16/2023] Open
Abstract
Pompe disease is caused by mutations in the GAA gene, resulting in deficient lysosomal acid-α-glucosidase activity in patients, and a progressive decline in mobility and respiratory function. Enzyme replacement therapy is one therapeutic option, but since not all patients respond to this treatment, alternative interventions should be considered. One GAA mutation, c.-32-13T > G, impacts upon normal exon 2 splicing and is found in two-thirds of late-onset cases. We and others have explored a therapeutic strategy using splice modulating phosphorodiamidate morpholino oligomers to enhance GAA exon 2 inclusion in the mature mRNA of patients with one c.-32-13T > G allele. We designed 20 oligomers and treated fibroblasts derived from five patients to identify an oligomer sequence that maximally increased enzyme activity in all fibroblasts. The most effective splice correcting oligomer was chosen to treat forced-myogenic cells, derived from fibroblasts from nine patients carrying the c.-32-13T > G mutation. After transfection, we show increased levels of the full-length GAA transcript, acid-α-glucosidase protein, and enzyme activity in all patients’ myogenic cells, regardless of the nature of the mutation in the other allele. This data encourages the initiation of clinical trials to assess the therapeutic efficacy of this oligomer for those patients carrying the c.-32-13T > G mutation.
Collapse
Affiliation(s)
- May Thandar Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, 6150, Australia.,Perron Institute for Neurological and Translational Science and Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, 6009, Australia
| | - Kristin A Ham
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, 6150, Australia.,Perron Institute for Neurological and Translational Science and Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, 6009, Australia
| | - Michel Tchan
- Genetic Medicine, Westmead Hospital, Sydney, 2145, Australia.,Sydney Medical School, The University of Sydney, Sydney, 2006, Australia
| | - Russell Johnsen
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, 6150, Australia
| | | | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, 6150, Australia. .,Perron Institute for Neurological and Translational Science and Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, 6009, Australia.
| | - Steve D Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, 6150, Australia. .,Perron Institute for Neurological and Translational Science and Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, 6009, Australia.
| |
Collapse
|
12
|
Li JJ, Lin X, Tang C, Lu YQ, Hu X, Zuo E, Li H, Ying W, Sun Y, Lai LL, Chen HZ, Guo XX, Zhang QJ, Wu S, Zhou C, Shen X, Wang Q, Lin MT, Ma LX, Wang N, Krainer AR, Shi L, Yang H, Chen WJ. Disruption of splicing-regulatory elements using CRISPR/Cas9 to rescue spinal muscular atrophy in human iPSCs and mice. Natl Sci Rev 2019; 7:92-101. [PMID: 34691481 PMCID: PMC8446915 DOI: 10.1093/nsr/nwz131] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/27/2019] [Accepted: 08/28/2019] [Indexed: 12/22/2022] Open
Abstract
We here report a genome-editing strategy to correct spinal muscular atrophy (SMA). Rather
than directly targeting the pathogenic exonic mutations, our strategy employed Cas9 and
guide-sgRNA for the targeted disruption of intronic splicing-regulatory elements. We
disrupted intronic splicing silencers (ISSs, including ISS-N1 and ISS + 100) of survival
motor neuron (SMN) 2, a key modifier gene of SMA, to enhance exon 7 inclusion and
full-length SMN expression in SMA iPSCs. Survival of splicing-corrected iPSC-derived motor
neurons was rescued with SMN restoration. Furthermore, co-injection of Cas9 mRNA from
Streptococcus pyogenes (SpCas9) or Cas9 from Staphylococcus
aureus (SaCas9) alongside their corresponding sgRNAs targeting ISS-N1 into
zygotes rescued 56% and 100% of severe SMA transgenic mice
(Smn−/−, SMN2tg/−). The median
survival of the resulting mice was extended to >400 days. Collectively, our study
provides proof-of-principle for a new strategy to therapeutically intervene in SMA and
other RNA-splicing-related diseases.
Collapse
Affiliation(s)
- Jin-Jing Li
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China.,Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Xiang Lin
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China.,Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Cheng Tang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ying-Qian Lu
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Xinde Hu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Erwei Zuo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - He Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenqin Ying
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yidi Sun
- Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lu-Lu Lai
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Hai-Zhu Chen
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Xin-Xin Guo
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Qi-Jie Zhang
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China.,Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Shuang Wu
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Changyang Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaowen Shen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qifang Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Min-Ting Lin
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China.,Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Li-Xiang Ma
- Department of Anatomy, Histology & Embryology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China.,Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Linyu Shi
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China.,Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
13
|
Abstract
The application of antisense oligonucleotides (AONs) to modify pre-messenger RNA splicing has great potential for treating genetic diseases. The strategies used to redirect splicing for therapeutic purpose involve the use of AONs complementary to splice motifs, enhancer or silencer sequences. AONs to block intronic splicing silencer motifs can efficiently augment exon 7 inclusion in survival motor neuron 2 (SMN2) gene and have demonstrated robust therapeutic effects in both preclinical studies and clinical trials in spinal muscular atrophy (SMA), which has led to a recently approved drug. AONs with phosphorodiamidate morpholino oligomer (PMO) backbone have shown target engagement with restoration of the defective protein in Duchenne muscular dystrophy (DMD) and their safety profile lead to a recent conditional approval for one DMD PMO drug. PMO AONs are also effective in correcting SMN2 exon 7 splicing and rescuing SMA transgenic mice. Here we provide the details of methods that our lab has used to evaluate PMO-mediated SMN2 exon 7 inclusion in the in vivo studies conducted in SMA transgenic mice. The methods comprise mouse experiment procedures, assessment of PMOs on exon 7 inclusion at RNA levels by reverse transcription (RT-) PCR and quantitative real-time PCR. In addition, we present methodology for protein quantification using western blot in mouse tissues, on neuropathology assessment of skeletal muscle (muscle pathology and neuromuscular junction staining) as well as behaviour test in the SMA mice (righting reflex).
Collapse
Affiliation(s)
- Haiyan Zhou
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Session, Developmental Neurosciences Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Session, Developmental Neurosciences Programme, Great Ormond Street Institute of Child Health, University College London, London, UK.
| |
Collapse
|
14
|
Tips to Design Effective Splice-Switching Antisense Oligonucleotides for Exon Skipping and Exon Inclusion. Methods Mol Biol 2019; 1828:79-90. [PMID: 30171536 DOI: 10.1007/978-1-4939-8651-4_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Antisense-mediated exon skipping and exon inclusion have proven to be powerful tools for treating neuromuscular diseases. The approval of Exondys 51 (eteplirsen) and Spinraza (nusinersen) for the treatment of patients with Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA) was the most noteworthy accomplishment in 2016. Exon skipping uses short DNA-like molecules called antisense oligonucleotides (AONs) to correct the disrupted reading frame, allowing the production of functional quasi-dystrophin proteins, and ameliorate the progression of the disease. Exon inclusion for SMA employs an AON targeting an intronic splice silencer site to include an exon which is otherwise spliced out. Recently, these strategies have also been explored in many other genetic disorders, including dysferlin-deficient muscular dystrophy (e.g., Miyoshi myopathy; MM, limb-girdle muscular dystrophy type 2B; LGMD2B, and distal myopathy with anterior tibial onset; DMAT), laminin α2 chain (merosin)-deficient congenital muscular dystrophy (MDC1A), sarcoglycanopathy (e.g., limb-girdle muscular dystrophy type 2C; LGMD2C), and Fukuyama congenital muscular dystrophy (FCMD). A major challenge in exon skipping and exon inclusion is the difficulty in designing effective AONs. The mechanism of mRNA splicing is highly complex, and the efficacy of AONs is often unpredictable. We will discuss the design of effective AONs for exon skipping and exon inclusion in this chapter.
Collapse
|
15
|
Aslesh T, Maruyama R, Yokota T. Systemic and ICV Injections of Antisense Oligos into SMA Mice and Evaluation. Methods Mol Biol 2019; 1828:455-465. [PMID: 30171559 DOI: 10.1007/978-1-4939-8651-4_28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Spinal muscular atrophy (SMA) is the most common genetic cause of infantile death caused by mutations in the SMN1 gene. Nusinersen (Spinraza), an antisense therapy-based drug with the 2'-methoxyethoxy (2'MOE) chemistry approved by the FDA in 2016, brought antisense drugs into the spotlight. Antisense-mediated exon inclusion targeting SMN2 leads to SMN protein expression. Although effective, 2'MOE has weaknesses such as the inability to cross the blood-brain barrier and the high cost of treatment. To investigate new chemistries of antisense oligonucleotides (ASOs), SMA mouse models can serve as an important source. Here we describe methods to test the efficacy of ASOs, such as phosphorodiamidate morpholino oligomers (PMOs), in a severe SMA mouse model.
Collapse
Affiliation(s)
- Tejal Aslesh
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Rika Maruyama
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada. .,The Friends of Garrett Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
16
|
Touznik A, Maruyama R, Yokota T. In Vitro Evaluation of Antisense-Mediated Exon Inclusion for Spinal Muscular Atrophy. Methods Mol Biol 2019; 1828:439-454. [PMID: 30171558 DOI: 10.1007/978-1-4939-8651-4_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Spinal muscular atrophy (SMA), the most common gentic cause of infantile death caused by mutations in the SMN1 gene, presents a unique case in the field of splice modulation therapy, where a gene (or lack of) is responsible for causing the disease phenotype but treatment is not focused around it. Antisense therapy targeting SMN2 which leads to SMN protein expression has been at the forefront of research when it comes to developing a feasible therapy for treating SMA. Recent FDA approval of an antisense-based drug with the 2'-methoxyethoxy (2'MOE) chemistry, called nusinersen (Spinraza), brought antisense drugs into the spotlight. The 2'MOE, although effective, has weaknesses such as the inability to cross the blood-brain barrier and the high cost of treatment. This propelled the research community to investigate new chemistries of antisense oligonucleotides (ASOs) that may be better in both treatment and cost efficiency. Here we describe two types of ASOs, phosphorodiamidate morpholino oligomers (PMOs) and locked nucleic acids (LNA)-DNA mixmers, being investigated as potential treatments for SMA, and methods used to test their efficacy, including quantitative RT-PCR, Western blotting, and immunofluorescence staining to detect SMN in nuclear gems/Cajal bodies, in type I SMA patient fibroblast cell lines.
Collapse
Affiliation(s)
- Aleksander Touznik
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Rika Maruyama
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada. .,The Friends of Garrett Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
17
|
Osman EY, Washington CW, Simon ME, Megiddo D, Greif H, Lorson CL. Analysis of Azithromycin Monohydrate as a Single or a Combinatorial Therapy in a Mouse Model of Severe Spinal Muscular Atrophy. J Neuromuscul Dis 2018; 4:237-249. [PMID: 28598854 DOI: 10.3233/jnd-170230] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a neurodegenerative autosomal recessive disorder characterized by the loss of α-motor neurons. A variety of molecular pathways are being investigated to elevate SMN protein expression in SMA models and in the clinic. One of these approaches involves stabilizing the SMNΔ7 protein by inducing translational read-through. Previous studies have demonstrated that functionality and stability are partially restored to the otherwise unstable SMNΔ7 by the addition of non-specific C-terminal peptide sequences, or by inducing a similar molecular event through the use of read-through inducing compounds such as aminoglycosides. OBJECTIVE The objective was to determine the efficacy of the macrolide Azithromycin (AZM), an FDA approved read-through-inducing compound, in the well-established severe mouse model of SMA. METHODS Initially, dosing regimen following ICV administrations of AZM at different post-natal days and concentrations was determined by their impact on SMN levels in disease-relevant tissues. Selected dose was then tested for phenotypic parameters changes as compared to the appropriate controls and in conjugation to another therapy. RESULTS AZM increases SMN protein in disease relevant tissues, however, this did not translate into similar improvements in the SMA phenotype in a severe mouse model of SMA. Co-administration of AZM and a previously developed antisense oligonucleotide that increases SMN2 splicing, resulted in an improvement in the SMA phenotype beyond either AZM or ASO alone, including a highly significant extension in survival with improvement in body weight and movement. CONCLUSIONS It is important to explore various approaches for SMA therapeutics, hence compounds that specifically induce SMNΔ7 read-through, without having prohibitive toxicity, may provide an alternative platform for a combinatorial treatment. Here we established that AZM activity at a low dose can increase SMN protein in disease-relevant animal model and can impact disease severity.
Collapse
Affiliation(s)
- Erkan Y Osman
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Charles W Washington
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Madeline E Simon
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | | | | | - Christian L Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
18
|
Flynn LL, Mitrpant C, Pitout IL, Fletcher S, Wilton SD. Antisense Oligonucleotide-Mediated Terminal Intron Retention of the SMN2 Transcript. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 11:91-102. [PMID: 29858094 PMCID: PMC5854547 DOI: 10.1016/j.omtn.2018.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/25/2018] [Accepted: 01/25/2018] [Indexed: 12/21/2022]
Abstract
The severe childhood disease spinal muscular atrophy (SMA) arises from the homozygous loss of the survival motor neuron 1 gene (SMN1). A homologous gene potentially encoding an identical protein, SMN2 can partially compensate for the loss of SMN1; however, the exclusion of a critical exon in the coding region during mRNA maturation results in insufficient levels of functional protein. The rate of transcription is known to influence the alternative splicing of gene transcripts, with a fast transcription rate correlating to an increase in alternative splicing. Conversely, a slower transcription rate is more likely to result in the inclusion of all exons in the transcript. Targeting SMN2 with antisense oligonucleotides to influence the processing of terminal exon 8 could be a way to slow transcription and induce the inclusion of exon 7. Interestingly, following oligomer treatment of SMA patient fibroblasts, we observed the inclusion of exon 7, as well as intron 7, in the transcript. Because the normal termination codon is located in exon 7, this exon/intron 7-SMN2 transcript should encode the normal protein and only carry a longer 3′ UTR. Further studies showed the extra 3′ UTR length contained a number of regulatory motifs that modify transcript and protein regulation, leading to translational repression of SMN. Although unlikely to provide therapeutic benefit for SMA patients, this novel technique for gene regulation could provide another avenue for the repression of undesirable gene expression in a variety of other diseases.
Collapse
Affiliation(s)
- Loren L Flynn
- Centre for Comparative Genomics, Murdoch University, Perth, WA, Australia; Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Chalermchai Mitrpant
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia; Department of Biochemistry, Mahidol University, Bangkok, Thailand
| | - Ianthe L Pitout
- Centre for Comparative Genomics, Murdoch University, Perth, WA, Australia; Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Sue Fletcher
- Centre for Comparative Genomics, Murdoch University, Perth, WA, Australia; Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Steve D Wilton
- Centre for Comparative Genomics, Murdoch University, Perth, WA, Australia; Perron Institute for Neurological and Translational Science, Perth, WA, Australia.
| |
Collapse
|
19
|
Goyal N, Narayanaswami P. Making sense of antisense oligonucleotides: A narrative review. Muscle Nerve 2017; 57:356-370. [PMID: 29105153 DOI: 10.1002/mus.26001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 12/14/2022]
Abstract
Synthetic nucleic acid sequences that bind to ribonucleic acid (RNA) through Watson-Crick base pairing are known as antisense oligonucleotides (ASOs) because they are complementary to "sense strand" nucleic acids. ASOs bind to selected sequences of RNA and regulate the expression of genes by several mechanisms depending on their chemical properties and targets. They can be used to restore deficient protein expression, reduce the expression of a toxic protein, modify functional effects of proteins, or reduce toxicity of mutant proteins. Two ASOs were approved by the U.S. Food and Drug Administration in 2016: eteplirsen for Duchenne muscular dystrophy and nusinersen for spinal muscular atrophy. Clinical trials in amyotrophic lateral sclerosis and familial amyloid polyneuropathy are ongoing. We review the chemistry, pharmacology, and mechanisms of action of ASOs, preclinical data, and clinical trials in neuromuscular diseases and discuss some ethical, regulatory, and policy considerations in the clinical development and use of ASOs. Muscle Nerve 57: 356-370, 2018.
Collapse
Affiliation(s)
- Neelam Goyal
- Neurology/Neuromuscular Disease, Stanford University Hospital, 213 Quarry Road MC 5979, Palo Alto, Ca 94303
| | - Pushpa Narayanaswami
- Neurology/Neuromuscular Disease, Neurology TCC-8, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts, 02215
| |
Collapse
|
20
|
Singh NN, Howell MD, Androphy EJ, Singh RN. How the discovery of ISS-N1 led to the first medical therapy for spinal muscular atrophy. Gene Ther 2017; 24:520-526. [PMID: 28485722 DOI: 10.1038/gt.2017.34] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/14/2017] [Accepted: 04/26/2017] [Indexed: 12/14/2022]
Abstract
Spinal muscular atrophy (SMA), a prominent genetic disease of infant mortality, is caused by low levels of survival motor neuron (SMN) protein owing to deletions or mutations of the SMN1 gene. SMN2, a nearly identical copy of SMN1 present in humans, cannot compensate for the loss of SMN1 because of predominant skipping of exon 7 during pre-mRNA splicing. With the recent US Food and Drug Administration approval of nusinersen (Spinraza), the potential for correction of SMN2 exon 7 splicing as an SMA therapy has been affirmed. Nusinersen is an antisense oligonucleotide that targets intronic splicing silencer N1 (ISS-N1) discovered in 2004 at the University of Massachusetts Medical School. ISS-N1 has emerged as the model target for testing the therapeutic efficacy of antisense oligonucleotides using different chemistries as well as different mouse models of SMA. Here, we provide a historical account of events that led to the discovery of ISS-N1 and describe the impact of independent validations that raised the profile of ISS-N1 as one of the most potent antisense targets for the treatment of a genetic disease. Recent approval of nusinersen provides a much-needed boost for antisense technology that is just beginning to realize its potential. Beyond treating SMA, the ISS-N1 target offers myriad potentials for perfecting various aspects of the nucleic-acid-based technology for the amelioration of the countless number of pathological conditions.
Collapse
Affiliation(s)
- N N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - M D Howell
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - E J Androphy
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| |
Collapse
|
21
|
Sardone V, Zhou H, Muntoni F, Ferlini A, Falzarano MS. Antisense Oligonucleotide-Based Therapy for Neuromuscular Disease. Molecules 2017; 22:molecules22040563. [PMID: 28379182 PMCID: PMC6154734 DOI: 10.3390/molecules22040563] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/28/2017] [Accepted: 03/14/2017] [Indexed: 02/06/2023] Open
Abstract
Neuromuscular disorders such as Duchenne Muscular Dystrophy and Spinal Muscular Atrophy are neurodegenerative genetic diseases characterized primarily by muscle weakness and wasting. Until recently there were no effective therapies for these conditions, but antisense oligonucleotides, a new class of synthetic single stranded molecules of nucleic acids, have demonstrated promising experimental results and are at different stages of regulatory approval. The antisense oligonucleotides can modulate the protein expression via targeting hnRNAs or mRNAs and inducing interference with splicing, mRNA degradation, or arrest of translation, finally, resulting in rescue or reduction of the target protein expression. Different classes of antisense oligonucleotides are being tested in several clinical trials, and limitations of their clinical efficacy and toxicity have been reported for some of these compounds, while more encouraging results have supported the development of others. New generation antisense oligonucleotides are also being tested in preclinical models together with specific delivery systems that could allow some of the limitations of current antisense oligonucleotides to be overcome, to improve the cell penetration, to achieve more robust target engagement, and hopefully also be associated with acceptable toxicity. This review article describes the chemical properties and molecular mechanisms of action of the antisense oligonucleotides and the therapeutic implications these compounds have in neuromuscular diseases. Current strategies and carrier systems available for the oligonucleotides delivery will be also described to provide an overview on the past, present and future of these appealing molecules.
Collapse
Affiliation(s)
- Valentina Sardone
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Programme, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK.
| | - Haiyan Zhou
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Programme, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK.
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Programme, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK.
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London WC1N 3BG, UK.
| | - Alessandra Ferlini
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Programme, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK.
- UOL Medical Genetics, University of Ferrara, Ferrara 44121, Italy.
| | | |
Collapse
|
22
|
Tu WY, Simpson JE, Highley JR, Heath PR. Spinal muscular atrophy: Factors that modulate motor neurone vulnerability. Neurobiol Dis 2017; 102:11-20. [PMID: 28161391 DOI: 10.1016/j.nbd.2017.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/10/2017] [Accepted: 01/31/2017] [Indexed: 01/07/2023] Open
Abstract
Spinal muscular atrophy (SMA), a leading genetic cause of infant death, is a neurodegenerative disease characterised by the selective loss of particular groups of motor neurones in the anterior horn of the spinal cord with concomitant muscle weakness. To date, no effective treatment is available, however, there are ongoing clinical trials are in place which promise much for the future. However, there remains an ongoing problem in trying to link a single gene loss to motor neurone degeneration. Fortunately, given successful disease models that have been established and intensive studies on SMN functions in the past ten years, we are fast approaching the stage of identifying the underlying mechanisms of SMA pathogenesis Here we discuss potential disease modifying factors on motor neurone vulnerability, in the belief that these factors give insight into the pathological mechanisms of SMA and therefore possible therapeutic targets.
Collapse
Affiliation(s)
- Wen-Yo Tu
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Julie E Simpson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - J Robin Highley
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK.
| |
Collapse
|
23
|
Shabanpoor F, Hammond SM, Abendroth F, Hazell G, Wood MJA, Gait MJ. Identification of a Peptide for Systemic Brain Delivery of a Morpholino Oligonucleotide in Mouse Models of Spinal Muscular Atrophy. Nucleic Acid Ther 2017; 27:130-143. [PMID: 28118087 PMCID: PMC5467147 DOI: 10.1089/nat.2016.0652] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Splice-switching antisense oligonucleotides are emerging treatments for neuromuscular diseases, with several splice-switching oligonucleotides (SSOs) currently undergoing clinical trials such as for Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA). However, the development of systemically delivered antisense therapeutics has been hampered by poor tissue penetration and cellular uptake, including crossing of the blood–brain barrier (BBB) to reach targets in the central nervous system (CNS). For SMA application, we have investigated the ability of various BBB-crossing peptides for CNS delivery of a splice-switching phosphorodiamidate morpholino oligonucleotide (PMO) targeting survival motor neuron 2 (SMN2) exon 7 inclusion. We identified a branched derivative of the well-known ApoE (141–150) peptide, which as a PMO conjugate was capable of exon inclusion in the CNS following systemic administration, leading to an increase in the level of full-length SMN2 transcript. Treatment of newborn SMA mice with this peptide-PMO (P-PMO) conjugate resulted in a significant increase in the average lifespan and gains in weight, muscle strength, and righting reflexes. Systemic treatment of adult SMA mice with this newly identified P-PMO also resulted in small but significant increases in the levels of SMN2 pre-messenger RNA (mRNA) exon inclusion in the CNS and peripheral tissues. This work provides proof of principle for the ability to select new peptide paradigms to enhance CNS delivery and activity of a PMO SSO through use of a peptide-based delivery platform for the treatment of SMA potentially extending to other neuromuscular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Fazel Shabanpoor
- 1 Medical Research Council, Laboratory of Molecular Biology , Cambridge, United Kingdom
| | - Suzan M Hammond
- 2 Department of Physiology, Anatomy, and Genetics, University of Oxford , Oxford, United Kingdom
| | - Frank Abendroth
- 1 Medical Research Council, Laboratory of Molecular Biology , Cambridge, United Kingdom
| | - Gareth Hazell
- 2 Department of Physiology, Anatomy, and Genetics, University of Oxford , Oxford, United Kingdom
| | - Matthew J A Wood
- 2 Department of Physiology, Anatomy, and Genetics, University of Oxford , Oxford, United Kingdom
| | - Michael J Gait
- 1 Medical Research Council, Laboratory of Molecular Biology , Cambridge, United Kingdom
| |
Collapse
|
24
|
Nizzardo M, Rizzuti M. Intracerebroventricular Delivery in Mice for Motor Neuron Diseases. Methods Mol Biol 2017; 1565:229-239. [PMID: 28364247 DOI: 10.1007/978-1-4939-6817-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The use of antisense oligonucleotides to target specific mRNA sequences represents a promising therapeutic strategy for neurological disorders. Recent advances in antisense technology enclose the development of phosphorodiamidate morpholino oligomers (MO), which is one of the best candidates for molecular therapies due to MO's excellent pharmacological profile.Nevertheless, the route of administration of antisense compounds represents a critical issue in the neurological field. Particularly, as regards motor neuron diseases, intracerebroventricular (ICV) injection is undoubtedly the most efficient procedure to directly deliver therapeutic molecules in the central nervous system (CNS). Indeed, we recently demonstrated the outstanding efficacy of the MO antisense approach by its direct administration to CNS of the transgenic mouse models of Spinal Muscular Atrophy (SMA) and Amyotrophic Lateral Sclerosis (ALS).Here, we describe methods to perform the ICV delivery of MO in neonatal SMA mice and in adult ALS mice.
Collapse
Affiliation(s)
- M Nizzardo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, and Neurology Unit, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, 20122, Milan, Italy.
| | - M Rizzuti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, and Neurology Unit, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, 20122, Milan, Italy
| |
Collapse
|
25
|
Ottesen EW. ISS-N1 makes the First FDA-approved Drug for Spinal Muscular Atrophy. Transl Neurosci 2017; 8:1-6. [PMID: 28400976 PMCID: PMC5382937 DOI: 10.1515/tnsci-2017-0001] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 01/12/2017] [Indexed: 12/20/2022] Open
Abstract
Spinal muscular atrophy (SMA) is one of the leading genetic diseases of children and infants. SMA is caused by deletions or mutations of Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, cannot compensate for the loss of SMN1 due to predominant skipping of exon 7. While various regulatory elements that modulate SMN2 exon 7 splicing have been proposed, intronic splicing silencer N1 (ISS-N1) has emerged as the most promising target thus far for antisense oligonucleotide-mediated splicing correction in SMA. Upon procuring exclusive license from the University of Massachussets Medical School in 2010, Ionis Pharmaceuticals (formerly ISIS Pharamaceuticals) began clinical development of Spinraza™ (synonyms: Nusinersen, IONIS-SMNRX, ISIS-SMNRX), an antisense drug based on ISS-N1 target. Spinraza™ showed very promising results at all steps of the clinical development and was approved by US Food and Drug Administration (FDA) on December 23, 2016. Spinraza™ is the first FDA-approved treatment for SMA and the first antisense drug to restore expression of a fully functional protein via splicing correction. The success of Spinraza™ underscores the potential of intronic sequences as promising therapeutic targets and sets the stage for further improvement of antisense drugs based on advanced oligonucleotide chemistries and delivery protocols.
Collapse
Affiliation(s)
- Eric W. Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, United States of America
| |
Collapse
|
26
|
Szunyogova E, Zhou H, Maxwell GK, Powis RA, Francesco M, Gillingwater TH, Parson SH. Survival Motor Neuron (SMN) protein is required for normal mouse liver development. Sci Rep 2016; 6:34635. [PMID: 27698380 PMCID: PMC5048144 DOI: 10.1038/srep34635] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/12/2016] [Indexed: 01/15/2023] Open
Abstract
Spinal Muscular Atrophy (SMA) is caused by mutation or deletion of the survival motor neuron 1 (SMN1) gene. Decreased levels of, cell-ubiquitous, SMN protein is associated with a range of systemic pathologies reported in severe patients. Despite high levels of SMN protein in normal liver, there is no comprehensive study of liver pathology in SMA. We describe failed liver development in response to reduced SMN levels, in a mouse model of severe SMA. The SMA liver is dark red, small and has: iron deposition; immature sinusoids congested with blood; persistent erythropoietic elements and increased immature red blood cells; increased and persistent megakaryocytes which release high levels of platelets found as clot-like accumulations in the heart. Myelopoiesis in contrast, was unaffected. Further analysis revealed significant molecular changes in SMA liver, consistent with the morphological findings. Antisense treatment from birth with PMO25, increased lifespan and ameliorated all morphological defects in liver by postnatal day 21. Defects in the liver are evident at birth, prior to motor system pathology, and impair essential liver function in SMA. Liver is a key recipient of SMA therapies, and systemically delivered antisense treatment, completely rescued liver pathology. Liver therefore, represents an important therapeutic target in SMA.
Collapse
Affiliation(s)
- Eva Szunyogova
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Euan MacDonald Center for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Haiyan Zhou
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, London, United Kingdom
| | - Gillian K. Maxwell
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Rachael A. Powis
- Euan MacDonald Center for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
- Center for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Muntoni Francesco
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, London, United Kingdom
| | - Thomas H. Gillingwater
- Euan MacDonald Center for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
- Center for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Simon H. Parson
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Euan MacDonald Center for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
27
|
Bao B, Maruyama R, Yokota T. Targeting mRNA for the treatment of facioscapulohumeral muscular dystrophy. Intractable Rare Dis Res 2016; 5:168-76. [PMID: 27672539 PMCID: PMC4995414 DOI: 10.5582/irdr.2016.01056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an inherited autosomal dominant disorder characterized clinically by progressive muscle degeneration. Currently, no curative treatment for this disorder exists. FSHD patients are managed through physiotherapy to improve function and quality of life. Over the last two decades, FSHD has been better understood as a disease genetically characterized by a pathogenic contraction of a subset of macrosatellite repeats on chromosome 4. Specifically, several studies support an FSHD pathogenesis model involving the aberrant expression of the double homeobox protein 4 (DUX4) gene. Hence, potential therapies revolving around inhibition of DUX4 have been explored. One of the potential treatment options is the use of effective antisense oligonucleotides (AOs) to knockdown expression of the myopathic DUX4 gene and its downstream molecules including paired-like homeodomain transcription factor 1 (PITX1). Success in the suppression of PITX1 expression has already been demonstrated systemically in vivo in recent studies. In this article, we will review the pathogenesis of FSHD and the latest research involving the use of antisense knockdown therapy.
Collapse
Affiliation(s)
- Bo Bao
- Department of Medical Genetics, School of Human Development, Faculty of Medicine and Dentistry, University of Alberta, Edmonton AB, Canada
| | - Rika Maruyama
- Department of Medical Genetics, School of Human Development, Faculty of Medicine and Dentistry, University of Alberta, Edmonton AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, School of Human Development, Faculty of Medicine and Dentistry, University of Alberta, Edmonton AB, Canada
- Muscular Dystrophy Canada Research Chair, University of Alberta, Edmonton AB, Canada
- Address correspondence to: Dr. Toshifumi Yokota; Department of Medical Genetics, School of Human Development, Faculty of Medicine and Dentistry, University of Alberta, Edmonton AB, Canada T6G 2H7. E-mail:
| |
Collapse
|
28
|
Osman EY, Washington CW, Kaifer KA, Mazzasette C, Patitucci TN, Florea KM, Simon ME, Ko CP, Ebert AD, Lorson CL. Optimization of Morpholino Antisense Oligonucleotides Targeting the Intronic Repressor Element1 in Spinal Muscular Atrophy. Mol Ther 2016; 24:1592-601. [PMID: 27401142 DOI: 10.1038/mt.2016.145] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/04/2016] [Indexed: 12/13/2022] Open
Abstract
Loss of Survival Motor Neuron-1 (SMN1) causes Spinal Muscular Atrophy, a devastating neurodegenerative disease. SMN2 is a nearly identical copy gene; however SMN2 cannot prevent disease development in the absence of SMN1 since the majority of SMN2-derived transcripts are alternatively spliced, encoding a truncated, unstable protein lacking exon 7. Nevertheless, SMN2 retains the ability to produce low levels of functional protein. Previously we have described a splice-switching Morpholino antisense oligonucleotide (ASO) sequence that targets a potent intronic repressor, Element1 (E1), located upstream of SMN2 exon 7. In this study, we have assessed a novel panel of Morpholino ASOs with the goal of optimizing E1 ASO activity. Screening for efficacy in the SMNΔ7 mouse model, a single ASO variant was more active in vivo compared with the original E1(MO)-ASO. Sequence variant eleven (E1(MOv11)) consistently showed greater efficacy by increasing the lifespan of severe Spinal Muscular Atrophy mice after a single intracerebroventricular injection in the central nervous system, exhibited a strong dose-response across an order of magnitude, and demonstrated excellent target engagement by partially reversing the pathogenic SMN2 splicing event. We conclude that Morpholino modified ASOs are effective in modifying SMN2 splicing and have the potential for future Spinal Muscular Atrophy clinical applications.
Collapse
Affiliation(s)
- Erkan Y Osman
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Charles W Washington
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Kevin A Kaifer
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA.,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Chiara Mazzasette
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Teresa N Patitucci
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kyra M Florea
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA.,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Madeline E Simon
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA.,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Chien-Ping Ko
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Allison D Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christian L Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA.,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
29
|
Woll MG, Qi H, Turpoff A, Zhang N, Zhang X, Chen G, Li C, Huang S, Yang T, Moon YC, Lee CS, Choi S, Almstead NG, Naryshkin NA, Dakka A, Narasimhan J, Gabbeta V, Welch E, Zhao X, Risher N, Sheedy J, Weetall M, Karp GM. Discovery and Optimization of Small Molecule Splicing Modifiers of Survival Motor Neuron 2 as a Treatment for Spinal Muscular Atrophy. J Med Chem 2016; 59:6070-85. [DOI: 10.1021/acs.jmedchem.6b00460] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Matthew G. Woll
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, New Jersey 07080, United States
| | - Hongyan Qi
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, New Jersey 07080, United States
| | - Anthony Turpoff
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, New Jersey 07080, United States
| | - Nanjing Zhang
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, New Jersey 07080, United States
| | - Xiaoyan Zhang
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, New Jersey 07080, United States
| | - Guangming Chen
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, New Jersey 07080, United States
| | - Chunshi Li
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, New Jersey 07080, United States
| | - Song Huang
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, New Jersey 07080, United States
| | - Tianle Yang
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, New Jersey 07080, United States
| | - Young-Choon Moon
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, New Jersey 07080, United States
| | - Chang-Sun Lee
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, New Jersey 07080, United States
| | - Soongyu Choi
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, New Jersey 07080, United States
| | - Neil G. Almstead
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, New Jersey 07080, United States
| | - Nikolai A. Naryshkin
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, New Jersey 07080, United States
| | - Amal Dakka
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, New Jersey 07080, United States
| | - Jana Narasimhan
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, New Jersey 07080, United States
| | - Vijayalakshmi Gabbeta
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, New Jersey 07080, United States
| | - Ellen Welch
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, New Jersey 07080, United States
| | - Xin Zhao
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, New Jersey 07080, United States
| | - Nicole Risher
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, New Jersey 07080, United States
| | - Josephine Sheedy
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, New Jersey 07080, United States
| | - Marla Weetall
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, New Jersey 07080, United States
| | - Gary M. Karp
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, New Jersey 07080, United States
| |
Collapse
|
30
|
Catapano F, Zaharieva I, Scoto M, Marrosu E, Morgan J, Muntoni F, Zhou H. Altered Levels of MicroRNA-9, -206, and -132 in Spinal Muscular Atrophy and Their Response to Antisense Oligonucleotide Therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e331. [PMID: 27377135 PMCID: PMC5014531 DOI: 10.1038/mtna.2016.47] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/25/2016] [Indexed: 12/12/2022]
Abstract
The identification of noninvasive biomarkers to monitor the disease progression in spinal muscular atrophy (SMA) is becoming increasingly important. MicroRNAs (miRNAs) regulate gene expression and are implicated in the pathogenesis of neuromuscular diseases, including motor neuron degeneration. In this study, we selectively characterized the expression of miR-9, miR-206, and miR-132 in spinal cord, skeletal muscle, and serum from SMA transgenic mice, and in serum from SMA patients. A systematic analysis of miRNA expression was conducted in SMA mice with different disease severities (severe type I-like and mild type III-like) at different disease stages (pre-, mid-, and late-symptomatic stages), and in morpholino antisense oligonucleotide-treated mice. There was differential expression of all three miRNAs in spinal cord, skeletal muscle and serum samples in SMA mice. Serum miRNAs were altered prior to the changes in spinal cord and skeletal muscle at the presymptomatic stage. The altered miR-132 levels in spinal cord, muscle, and serum transiently reversed to normal level after a single-dose morpholino antisense oligomer PMO25 treatment in SMA mice. We also confirmed a significant alteration of miR-9 and miR-132 level in serum samples from SMA patients. Our study indicates the potential of developing miRNAs as noninvasive biomarkers in SMA.
Collapse
Affiliation(s)
- Francesco Catapano
- Dubowitz Neuromuscular Centre and Developmental Neuroscience Programme, Institute of Child Health, University College London, London, UK
| | - Irina Zaharieva
- Dubowitz Neuromuscular Centre and Developmental Neuroscience Programme, Institute of Child Health, University College London, London, UK
| | - Mariacristina Scoto
- Dubowitz Neuromuscular Centre and Developmental Neuroscience Programme, Institute of Child Health, University College London, London, UK
| | - Elena Marrosu
- Dubowitz Neuromuscular Centre and Developmental Neuroscience Programme, Institute of Child Health, University College London, London, UK
| | - Jennifer Morgan
- Dubowitz Neuromuscular Centre and Developmental Neuroscience Programme, Institute of Child Health, University College London, London, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre and Developmental Neuroscience Programme, Institute of Child Health, University College London, London, UK
| | - Haiyan Zhou
- Dubowitz Neuromuscular Centre and Developmental Neuroscience Programme, Institute of Child Health, University College London, London, UK
| |
Collapse
|
31
|
Havens MA, Hastings ML. Splice-switching antisense oligonucleotides as therapeutic drugs. Nucleic Acids Res 2016; 44:6549-63. [PMID: 27288447 PMCID: PMC5001604 DOI: 10.1093/nar/gkw533] [Citation(s) in RCA: 351] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/02/2016] [Indexed: 01/09/2023] Open
Abstract
Splice-switching oligonucleotides (SSOs) are short, synthetic, antisense, modified nucleic acids that base-pair with a pre-mRNA and disrupt the normal splicing repertoire of the transcript by blocking the RNA–RNA base-pairing or protein–RNA binding interactions that occur between components of the splicing machinery and the pre-mRNA. Splicing of pre-mRNA is required for the proper expression of the vast majority of protein-coding genes, and thus, targeting the process offers a means to manipulate protein production from a gene. Splicing modulation is particularly valuable in cases of disease caused by mutations that lead to disruption of normal splicing or when interfering with the normal splicing process of a gene transcript may be therapeutic. SSOs offer an effective and specific way to target and alter splicing in a therapeutic manner. Here, we discuss the different approaches used to target and alter pre-mRNA splicing with SSOs. We detail the modifications to the nucleic acids that make them promising therapeutics and discuss the challenges to creating effective SSO drugs. We highlight the development of SSOs designed to treat Duchenne muscular dystrophy and spinal muscular atrophy, which are currently being tested in clinical trials.
Collapse
Affiliation(s)
- Mallory A Havens
- Department of Biology, Lewis University, Romeoville, IL 60446, USA
| | - Michelle L Hastings
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| |
Collapse
|
32
|
Sintusek P, Catapano F, Angkathunkayul N, Marrosu E, Parson SH, Morgan JE, Muntoni F, Zhou H. Histopathological Defects in Intestine in Severe Spinal Muscular Atrophy Mice Are Improved by Systemic Antisense Oligonucleotide Treatment. PLoS One 2016; 11:e0155032. [PMID: 27163330 PMCID: PMC4862622 DOI: 10.1371/journal.pone.0155032] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/22/2016] [Indexed: 12/28/2022] Open
Abstract
Gastrointestinal (GI) defects, including gastroesophageal reflux, constipation and delayed gastric emptying, are common in patients with spinal muscular atrophy (SMA). Similar GI dysmotility has been identified in mouse models with survival of motor neuron (SMN) protein deficiency. We previously described vascular defects in skeletal muscle and spinal cord of SMA mice and we hypothesized that similar defects could be involved in the GI pathology observed in these mice. We therefore investigated the gross anatomical structure, enteric vasculature and neurons in the small intestine in a severe mouse model of SMA. We also assessed the therapeutic response of GI histopathology to systemic administration of morpholino antisense oligonucleotide (AON) designed to increase SMN protein expression. Significant anatomical and histopathological abnormalities, with striking reduction of vascular density, overabundance of enteric neurons and increased macrophage infiltration, were detected in the small intestine in SMA mice. After systemic AON treatment in neonatal mice, all the abnormalities observed were significantly restored to near-normal levels. We conclude that the observed GI histopathological phenotypes and functional defects observed in these SMA mice are strongly linked to SMN deficiency which can be rescued by systemic administration of AON. This study on the histopathological changes in the gastrointestinal system in severe SMA mice provides further indication of the complex role that SMN plays in multiple tissues and suggests that at least in SMA mice restoration of SMN production in peripheral tissues is essential for optimal outcome.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Disease Models, Animal
- Gene Expression
- Genetic Therapy/methods
- Heterozygote
- Homozygote
- Humans
- Injections, Subcutaneous
- Intestine, Small/blood supply
- Intestine, Small/drug effects
- Intestine, Small/innervation
- Intestine, Small/pathology
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Mice
- Mice, Transgenic
- Morpholinos/administration & dosage
- Motor Neurons/drug effects
- Motor Neurons/metabolism
- Motor Neurons/pathology
- Muscular Atrophy, Spinal/genetics
- Muscular Atrophy, Spinal/metabolism
- Muscular Atrophy, Spinal/pathology
- Muscular Atrophy, Spinal/therapy
- Oligonucleotides, Antisense/administration & dosage
- Phenotype
- Spinal Cord/blood supply
- Spinal Cord/drug effects
- Spinal Cord/pathology
- Survival of Motor Neuron 1 Protein/agonists
- Survival of Motor Neuron 1 Protein/genetics
- Survival of Motor Neuron 1 Protein/metabolism
Collapse
Affiliation(s)
- Palittiya Sintusek
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, London, United Kingdom
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Francesco Catapano
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, London, United Kingdom
| | - Napat Angkathunkayul
- Department of Pathology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Elena Marrosu
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, London, United Kingdom
| | - Simon H. Parson
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Euan MacDonald Center for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Jennifer E. Morgan
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, London, United Kingdom
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, London, United Kingdom
- * E-mail: (HZ); (FM)
| | - Haiyan Zhou
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, London, United Kingdom
- * E-mail: (HZ); (FM)
| |
Collapse
|
33
|
Butchbach MER, Lumpkin CJ, Harris AW, Saieva L, Edwards JD, Workman E, Simard LR, Pellizzoni L, Burghes AHM. Protective effects of butyrate-based compounds on a mouse model for spinal muscular atrophy. Exp Neurol 2016; 279:13-26. [PMID: 26892876 PMCID: PMC4834225 DOI: 10.1016/j.expneurol.2016.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/11/2016] [Accepted: 02/13/2016] [Indexed: 11/17/2022]
Abstract
Proximal spinal muscular atrophy (SMA) is a childhood-onset degenerative disease resulting from the selective loss of motor neurons in the spinal cord. SMA is caused by the loss of SMN1 (survival motor neuron 1) but retention of SMN2. The number of copies of SMN2 modifies disease severity in SMA patients as well as in mouse models, making SMN2 a target for therapeutics development. Sodium butyrate (BA) and its analog (4PBA) have been shown to increase SMN2 expression in SMA cultured cells. In this study, we examined the effects of BA, 4PBA as well as two BA prodrugs-glyceryl tributyrate (BA3G) and VX563-on the phenotype of SMNΔ7 SMA mice. Treatment with 4PBA, BA3G and VX563 but not BA beginning at PND04 significantly improved the lifespan and delayed disease end stage, with administration of VX563 also improving the growth rate of these mice. 4PBA and VX563 improved the motor phenotype of SMNΔ7 SMA mice and prevented spinal motor neuron loss. Interestingly, neither 4PBA nor VX563 had an effect on SMN expression in the spinal cords of treated SMNΔ7 SMA mice; however, they inhibited histone deacetylase (HDAC) activity and restored the normal phosphorylation states of Akt and glycogen synthase kinase 3β, both of which are altered by SMN deficiency in vivo. These observations show that BA-based compounds with favorable pharmacokinetics ameliorate SMA pathology possibly by modulating HDAC and Akt signaling.
Collapse
Affiliation(s)
- Matthew E R Butchbach
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Center for Pediatric Research, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA; Department of Biological Sciences, University of Delaware, Newark, DE, USA.
| | - Casey J Lumpkin
- Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Ashlee W Harris
- Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Luciano Saieva
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Jonathan D Edwards
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Eileen Workman
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Louise R Simard
- Department of Biochemistry and Medical Genetics, University of Manitoba Faculty of Health Sciences, Winnipeg, Manitoba, Canada
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Arthur H M Burghes
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
34
|
Simone C, Ramirez A, Bucchia M, Rinchetti P, Rideout H, Papadimitriou D, Re DB, Corti S. Is spinal muscular atrophy a disease of the motor neurons only: pathogenesis and therapeutic implications? Cell Mol Life Sci 2016; 73:1003-20. [PMID: 26681261 PMCID: PMC4756905 DOI: 10.1007/s00018-015-2106-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 01/16/2023]
Abstract
Spinal muscular atrophy (SMA) is a genetic neurological disease that causes infant mortality; no effective therapies are currently available. SMA is due to homozygous mutations and/or deletions in the survival motor neuron 1 gene and subsequent reduction of the SMN protein, leading to the death of motor neurons. However, there is increasing evidence that in addition to motor neurons, other cell types are contributing to SMA pathology. In this review, we will discuss the involvement of non-motor neuronal cells, located both inside and outside the central nervous system, in disease onset and progression. Even if SMN restoration in motor neurons is needed, it has been shown that optimal phenotypic amelioration in animal models of SMA requires a more widespread SMN correction. It has been demonstrated that non-motor neuronal cells are also involved in disease pathogenesis and could have important therapeutic implications. For these reasons it will be crucial to take this evidence into account for the clinical translation of the novel therapeutic approaches.
Collapse
Affiliation(s)
- Chiara Simone
- Neuroscience Section, Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Agnese Ramirez
- Neuroscience Section, Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Monica Bucchia
- Neuroscience Section, Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Paola Rinchetti
- Neuroscience Section, Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Hardy Rideout
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens (BRFAA), Soranou Efesiou 4, 115 27, Athens, Greece
| | - Dimitra Papadimitriou
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens (BRFAA), Soranou Efesiou 4, 115 27, Athens, Greece
| | - Diane B Re
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
| | - Stefania Corti
- Neuroscience Section, Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
35
|
Nizzardo M, Simone C, Rizzo F, Ulzi G, Ramirez A, Rizzuti M, Bordoni A, Bucchia M, Gatti S, Bresolin N, Comi GP, Corti S. Morpholino-mediated SOD1 reduction ameliorates an amyotrophic lateral sclerosis disease phenotype. Sci Rep 2016; 6:21301. [PMID: 26878886 PMCID: PMC4754711 DOI: 10.1038/srep21301] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/21/2016] [Indexed: 01/07/2023] Open
Abstract
Neurotoxicity due to the accumulation of mutant proteins is thought to drive pathogenesis in neurodegenerative diseases. Mutations in superoxide dismutase 1 (SOD1) are linked to familial amyotrophic lateral sclerosis (fALS); these mutations result in progressive motor neuron death through one or more acquired toxicities. Interestingly, SOD1 is not only responsible for fALS but may also play a significant role in sporadic ALS; therefore, SOD1 represents a promising therapeutic target. Here, we report slowed disease progression, improved neuromuscular function, and increased survival in an in vivo ALS model following therapeutic delivery of morpholino oligonucleotides (MOs) designed to reduce the synthesis of human SOD1. Neuropathological analysis demonstrated increased motor neuron and axon numbers and a remarkable reduction in astrogliosis and microgliosis. To test this strategy in a human model, we treated human fALS induced pluripotent stem cell (iPSC)-derived motor neurons with MOs; these cells exhibited increased survival and reduced expression of apoptotic markers. Our data demonstrated the efficacy of MO-mediated therapy in mouse and human ALS models, setting the stage for human clinical trials.
Collapse
Affiliation(s)
- M. Nizzardo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - C. Simone
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - F. Rizzo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - G. Ulzi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - A. Ramirez
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - M. Rizzuti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - A. Bordoni
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - M. Bucchia
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - S. Gatti
- Centro di Ricerche Chirurgiche Precliniche, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico; Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milano, Italy
| | - N. Bresolin
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - G. P. Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - S. Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
36
|
Effect of combined systemic and local morpholino treatment on the spinal muscular atrophy Δ7 mouse model phenotype. Clin Ther 2016; 36:340-56.e5. [PMID: 24636820 DOI: 10.1016/j.clinthera.2014.02.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/22/2014] [Accepted: 02/07/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a fatal motor neuron disease of childhood that is caused by mutations in the SMN1 gene. Currently, no effective treatment is available. One possible therapeutic approach is the use of antisense oligos (ASOs) to redirect the splicing of the paralogous gene SMN2, thus increasing functional SMN protein production. Various ASOs with different chemical properties are suitable for these applications, including a morpholino oligomer (MO) variant with a particularly excellent safety and efficacy profile. OBJECTIVE We investigated a 25-nt MO sequence targeting the negative intronic splicing silencer (ISS-N1) 10 to 34 region. METHODS We administered a 25-nt MO sequence against the ISS-N1 region of SMN2 (HSMN2Ex7D[-10-34]) in the SMAΔ7 mouse model and evaluated the effect and neuropathologic phenotype. We tested different concentrations (from 2 to 24 nM) and delivery protocols (intracerebroventricular injection, systemic injection, or both). We evaluated the treatment efficacy regarding SMN levels, survival, neuromuscular phenotype, and neuropathologic features. RESULTS We found that a 25-nt MO sequence against the ISS-N1 region of SMN2 (HSMN2Ex7D[-10-34]) exhibited superior efficacy in transgenic SMAΔ7 mice compared with previously described sequences. In our experiments, the combination of local and systemic administration of MO (bare or conjugated to octaguanidine) was the most effective approach for increasing full-length SMN expression, leading to robust improvement in neuropathologic features and survival. Moreover, we found that several small nuclear RNAs were deregulated in SMA mice and that their levels were restored by MO treatment. CONCLUSION These results indicate that MO-mediated SMA therapy is efficacious and can result in phenotypic rescue, providing important insights for further development of ASO-based therapeutic strategies in SMA patients.
Collapse
|
37
|
|
38
|
Mechanistic principles of antisense targets for the treatment of spinal muscular atrophy. Future Med Chem 2015; 7:1793-808. [PMID: 26381381 DOI: 10.4155/fmc.15.101] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a major neurodegenerative disorder of children and infants. SMA is primarily caused by low levels of SMN protein owing to deletions or mutations of the SMN1 gene. SMN2, a nearly identical copy of SMN1, fails to compensate for the loss of the production of the functional SMN protein due to predominant skipping of exon 7. Several compounds, including antisense oligonucleotides (ASOs) that elevate SMN protein from SMN2 hold the promise for treatment. An ASO-based drug currently under Phase III clinical trial employs intronic splicing silencer N1 (ISS-N1) as its target. Cumulative studies on ISS-N1 reveal a wealth of information with significance to the overall therapeutic development for SMA. Here, the authors summarize the mechanistic principles behind various antisense targets currently available for SMA therapy.
Collapse
|
39
|
McClorey G, Wood MJ. An overview of the clinical application of antisense oligonucleotides for RNA-targeting therapies. Curr Opin Pharmacol 2015; 24:52-8. [PMID: 26277332 DOI: 10.1016/j.coph.2015.07.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/16/2015] [Accepted: 07/27/2015] [Indexed: 01/16/2023]
Abstract
Despite the discovery more than two decades ago that antisense oligonucleotides (ASOs) could be used to modulate protein expression, there have been only two antisense drugs approved for clinical use till date. Despite this low success rate, the antisense field is undergoing resurgence due to the development of more potent and nuclease resistant chemistries, as well as nanoparticle delivery systems that enhance delivery to target tissues. In this review, we introduce the predominant therapeutic strategies in the antisense field whilst highlighting recent clinical findings that demonstrate the significant potential of these approaches for development of novel therapies in several diseases.
Collapse
Affiliation(s)
- Graham McClorey
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, OX1 3QX Oxford, UK
| | - Matthew J Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, OX1 3QX Oxford, UK.
| |
Collapse
|
40
|
Farooq F, MacKenzie AE. Current and emerging treatment options for spinal muscular atrophy. Degener Neurol Neuromuscul Dis 2015; 5:75-81. [PMID: 32669914 PMCID: PMC7337203 DOI: 10.2147/dnnd.s48420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/23/2015] [Indexed: 11/23/2022] Open
Abstract
Spinal muscular atrophy is one of the most common inherited neuromuscular conditions; our understanding of the genetic pathology and translational research coming from this insight has made significant progress over the past decade. This short review provides the background of the disease along with the bench to bedside progress of some promising treatment options to develop better understanding of the present state of the disease.
Collapse
Affiliation(s)
- Faraz Farooq
- Science Education Division, Emirates College for Advanced Education, Abu Dhabi, United Arab Emirates.,Children's Hospital of Eastern Ontario (CHEO) Research Institute, Ottawa, ON, Canada
| | - Alex E MacKenzie
- Children's Hospital of Eastern Ontario (CHEO) Research Institute, Ottawa, ON, Canada.,University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
41
|
Faravelli I, Nizzardo M, Comi GP, Corti S. Spinal muscular atrophy--recent therapeutic advances for an old challenge. Nat Rev Neurol 2015; 11:351-9. [PMID: 25986506 DOI: 10.1038/nrneurol.2015.77] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the past decade, improved understanding of spinal muscular atrophy (SMA) aetiopathogenesis has brought us to a historical turning point: we are at the verge of development of disease-modifying treatments for this hitherto incurable disease. The increasingly precise delineation of molecular targets within the survival of motor neuron (SMN) gene locus has led to the development of promising therapeutic strategies. These novel avenues in treatment for SMA include gene therapy, molecular therapy with antisense oligonucleotides, and small molecules that aim to increase expression of SMN protein. Stem cell studies of SMA have provided an in vitro model for SMA, and stem cell transplantation could be used as a complementary strategy with a potential to treat the symptomatic phases of the disease. Here, we provide an overview of established data and novel insights into SMA pathogenesis, including discussion of the crucial function of the SMN protein. Preclinical evidence and recent advances from ongoing clinical trials are thoroughly reviewed. The final remarks are dedicated to future clinical perspectives in this rapidly evolving field, with a broad discussion on the comparison between the outlined therapeutic approaches and the remaining open questions.
Collapse
Affiliation(s)
- Irene Faravelli
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation, Neurology Unit, IRCCS Foundation Ca'Granda Ospedale Maggiore Policlinico, University of Milan, via Francesco Sforza 35, 20122 Milan, Italy
| | - Monica Nizzardo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation, Neurology Unit, IRCCS Foundation Ca'Granda Ospedale Maggiore Policlinico, University of Milan, via Francesco Sforza 35, 20122 Milan, Italy
| | - Giacomo P Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation, Neurology Unit, IRCCS Foundation Ca'Granda Ospedale Maggiore Policlinico, University of Milan, via Francesco Sforza 35, 20122 Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation, Neurology Unit, IRCCS Foundation Ca'Granda Ospedale Maggiore Policlinico, University of Milan, via Francesco Sforza 35, 20122 Milan, Italy
| |
Collapse
|
42
|
Cherry JJ, Kobayashi DT, Lynes MM, Naryshkin NN, Tiziano FD, Zaworski PG, Rubin LL, Jarecki J. Assays for the identification and prioritization of drug candidates for spinal muscular atrophy. Assay Drug Dev Technol 2015; 12:315-41. [PMID: 25147906 DOI: 10.1089/adt.2014.587] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive genetic disorder resulting in degeneration of α-motor neurons of the anterior horn and proximal muscle weakness. It is the leading cause of genetic mortality in children younger than 2 years. It affects ∼1 in 11,000 live births. In 95% of cases, SMA is caused by homozygous deletion of the SMN1 gene. In addition, all patients possess at least one copy of an almost identical gene called SMN2. A single point mutation in exon 7 of the SMN2 gene results in the production of low levels of full-length survival of motor neuron (SMN) protein at amounts insufficient to compensate for the loss of the SMN1 gene. Although no drug treatments are available for SMA, a number of drug discovery and development programs are ongoing, with several currently in clinical trials. This review describes the assays used to identify candidate drugs for SMA that modulate SMN2 gene expression by various means. Specifically, it discusses the use of high-throughput screening to identify candidate molecules from primary screens, as well as the technical aspects of a number of widely used secondary assays to assess SMN messenger ribonucleic acid (mRNA) and protein expression, localization, and function. Finally, it describes the process of iterative drug optimization utilized during preclinical SMA drug development to identify clinical candidates for testing in human clinical trials.
Collapse
|
43
|
Abstract
Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder pathologically characterized by the degeneration of motor neurons in the spinal cord and muscle atrophy. Motor neuron loss often results in severe muscle weakness causing affected infants to die before reaching 2 years of age. Patients with milder forms of SMA exhibit slowly progressive muscle weakness over many years. SMA is caused by the loss of SMN1 and the retention of at least 1 copy of a highly homologous SMN2. An alternative splicing event in the pre-mRNA arising from SMN2 results in the production of low levels of functional SMN protein. To date, there are no effective treatments available to treat patients with SMA. However, over the last 2 decades, the development of SMA mouse models and the identification of therapeutic targets have resulted in a promising drug pipeline for SMA. Here, we highlight some of the therapeutic strategies that have been developed to activate SMN2 expression, modulate splicing of the SMN2 pre-mRNA, or replace SMN1 by gene therapy. After 2 decades of translational research, we now stand within reach of a treatment for SMA.
Collapse
Affiliation(s)
- Constantin d’Ydewalle
- Department of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe St., Baltimore, MD 21205 USA
| | - Charlotte J. Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe St., Baltimore, MD 21205 USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe St., Baltimore, MD 21205 USA
| |
Collapse
|
44
|
Abstract
Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality. The disease originates from low levels of SMN protein due to deletion and/or mutations of SMN1 coupled with the inability of SMN2 to compensate for the loss of SMN1. While SMN1 and SMN2 are nearly identical, SMN2 predominantly generates a truncated protein (SMNΔ7) due to skipping of exon 7, the last coding exon. Several avenues for SMA therapy are being explored, including means to enhance SMN2 transcription, correct SMN2 exon 7 splicing, stabilize SMN/SMNΔ7 protein, manipulate SMN-regulated pathways and SMN1 gene delivery by viral vectors. This review focuses on the aspects of target discovery, validations and outcome measures for a promising therapy of SMA.
Collapse
|
45
|
Yoshida M, Kitaoka S, Egawa N, Yamane M, Ikeda R, Tsukita K, Amano N, Watanabe A, Morimoto M, Takahashi J, Hosoi H, Nakahata T, Inoue H, Saito MK. Modeling the early phenotype at the neuromuscular junction of spinal muscular atrophy using patient-derived iPSCs. Stem Cell Reports 2015; 4:561-8. [PMID: 25801509 PMCID: PMC4400613 DOI: 10.1016/j.stemcr.2015.02.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 02/12/2015] [Accepted: 02/12/2015] [Indexed: 12/30/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by mutations of the survival of motor neuron 1 (SMN1) gene. In the pathogenesis of SMA, pathological changes of the neuromuscular junction (NMJ) precede the motor neuronal loss. Therefore, it is critical to evaluate the NMJ formed by SMA patients' motor neurons (MNs), and to identify drugs that can restore the normal condition. We generated NMJ-like structures using MNs derived from SMA patient-specific induced pluripotent stem cells (iPSCs), and found that the clustering of the acetylcholine receptor (AChR) is significantly impaired. Valproic acid and antisense oligonucleotide treatment ameliorated the AChR clustering defects, leading to an increase in the level of full-length SMN transcripts. Thus, the current in vitro model of AChR clustering using SMA patient-derived iPSCs is useful to dissect the pathophysiological mechanisms underlying the development of SMA, and to evaluate the efficacy of new therapeutic approaches.
Collapse
Affiliation(s)
- Michiko Yoshida
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Shiho Kitaoka
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Naohiro Egawa
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Mayu Yamane
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Ryunosuke Ikeda
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Kayoko Tsukita
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Naoki Amano
- Department of Reprogramming Science, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Akira Watanabe
- Department of Reprogramming Science, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Masafumi Morimoto
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Hajime Hosoi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tatsutoshi Nakahata
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Haruhisa Inoue
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Megumu K Saito
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
46
|
Iascone DM, Henderson CE, Lee JC. Spinal muscular atrophy: from tissue specificity to therapeutic strategies. F1000PRIME REPORTS 2015; 7:04. [PMID: 25705387 PMCID: PMC4311279 DOI: 10.12703/p7-04] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spinal muscular atrophy (SMA) is the most frequent genetic cause of death in infants and toddlers. All cases of spinal muscular atrophy result from reductions in levels of the survival motor neuron (SMN) protein, and so SMN upregulation is a focus of many preclinical and clinical studies. We examine four issues that may be important in planning for therapeutic success. First, neuromuscular phenotypes in the SMNΔ7 mouse model closely match those in human patients but peripheral disease manifestations differ, suggesting that endpoints other than mouse lifespan may be more useful in predicting clinical outcome. Second, SMN plays important roles in multiple central and peripheral cell types, not just motor neurons, and it remains unclear which of these cell types need to be targeted therapeutically. Third, should SMN-restoration therapy not be effective in all patients, blocking molecular changes downstream of SMN reduction may confer significant benefit, making it important to evaluate therapeutic targets other than SMN. Lastly, for patients whose disease progression is slowed, but who retain significant motor dysfunction, additional approaches used to enhance regeneration of the neuromuscular system may be of value.
Collapse
Affiliation(s)
- Daniel M Iascone
- Department of Rehabilitation and Regenerative Medicine, Center for Motor Neuron Biology and Disease, Columbia University Medical Center 630 West 168th Street, New York, NY 10032 USA ; Department of Neuroscience, Columbia Translational Neuroscience Initiative, Columbia University Medical Center 630 West 168th Street, New York, NY 10032 USA
| | - Christopher E Henderson
- Department of Rehabilitation and Regenerative Medicine, Center for Motor Neuron Biology and Disease, Columbia University Medical Center 630 West 168th Street, New York, NY 10032 USA ; Department of Neuroscience, Columbia Translational Neuroscience Initiative, Columbia University Medical Center 630 West 168th Street, New York, NY 10032 USA
| | - Justin C Lee
- Department of Rehabilitation and Regenerative Medicine, Center for Motor Neuron Biology and Disease, Columbia University Medical Center 630 West 168th Street, New York, NY 10032 USA ; Department of Neuroscience, Columbia Translational Neuroscience Initiative, Columbia University Medical Center 630 West 168th Street, New York, NY 10032 USA
| |
Collapse
|
47
|
Rigo F, Seth PP, Bennett CF. Antisense oligonucleotide-based therapies for diseases caused by pre-mRNA processing defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:303-52. [PMID: 25201110 DOI: 10.1007/978-1-4939-1221-6_9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Before a messenger RNA (mRNA) is translated into a protein in the cytoplasm, its pre-mRNA precursor is extensively processed through capping, splicing and polyadenylation in the nucleus. Defects in the processing of pre-mRNAs due to mutations in RNA sequences often cause disease. Traditional small molecules or protein-based therapeutics are not well suited for correcting processing defects by targeting RNA. However, antisense oligonucleotides (ASOs) designed to bind RNA by Watson-Crick base pairing can target most RNA transcripts and have emerged as the ideal therapeutic agents for diseases that are caused by pre-mRNA processing defects. Here we review the diverse ASO-based mechanisms that can be exploited to modulate the expression of RNA. We also discuss how advancements in medicinal chemistry and a deeper understanding of the pharmacokinetic and toxicological properties of ASOs have enabled their use as therapeutic agents. We end by describing how ASOs have been used successfully to treat various pre-mRNA processing diseases in animal models.
Collapse
Affiliation(s)
- Frank Rigo
- Isis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, USA,
| | | | | |
Collapse
|
48
|
Wang D, Gao G. State-of-the-art human gene therapy: part II. Gene therapy strategies and clinical applications. DISCOVERY MEDICINE 2014; 18:151-161. [PMID: 25227756 PMCID: PMC4440458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In Part I of this Review (Wang and Gao, 2014), we introduced recent advances in gene delivery technologies and explained how they have powered some of the current human gene therapy applications. In Part II, we expand the discussion on gene therapy applications, focusing on some of the most exciting clinical uses. To help readers to grasp the essence and to better organize the diverse applications, we categorize them under four gene therapy strategies: (1) gene replacement therapy for monogenic diseases, (2) gene addition for complex disorders and infectious diseases, (3) gene expression alteration targeting RNA, and (4) gene editing to introduce targeted changes in host genome. Human gene therapy started with the simple idea that replacing a faulty gene with a functional copy can cure a disease. It has been a long and bumpy road to finally translate this seemingly straightforward concept into reality. As many disease mechanisms unraveled, gene therapists have employed a gene addition strategy backed by a deep knowledge of what goes wrong in diseases and how to harness host cellular machinery to battle against diseases. Breakthroughs in other biotechnologies, such as RNA interference and genome editing by chimeric nucleases, have the potential to be integrated into gene therapy. Although clinical trials utilizing these new technologies are currently sparse, these innovations are expected to greatly broaden the scope of gene therapy in the near future.
Collapse
Affiliation(s)
- Dan Wang
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiology Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
49
|
Gadoth N, Oksenberg A. Sleep and sleep disorders in rare hereditary diseases: a reminder for the pediatrician, pediatric and adult neurologist, general practitioner, and sleep specialist. Front Neurol 2014; 5:133. [PMID: 25101051 PMCID: PMC4101612 DOI: 10.3389/fneur.2014.00133] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/03/2014] [Indexed: 12/11/2022] Open
Abstract
Although sleep abnormalities in general and sleep-related breathing disorders (SBD) in particular are quite common in healthy children; their presence is notably under-recognized. Impaired sleep is a frequent problem in subjects with inborn errors of metabolism as well as in a variety of genetic disorders; however, they are commonly either missed or underestimated. Moreover, the complex clinical presentation and the frequently life-threatening symptoms are so overwhelming that sleep and its quality may be easily dismissed. Even centers, which specialize in rare genetic-metabolic disorders, are expected to see only few patients with a particular syndrome, a fact that significantly contributes to the under-diagnosis and treatment of impaired sleep in this particular population. Many of those patients suffer from reduced life quality associated with a variable degree of cognitive impairment, which may be worsened by poor sleep and abnormal ventilation during sleep, abnormalities which can be alleviated by proper treatment. Even when such problems are detected, there is a paucity of publications on sleep and breathing characteristics of such patients that the treating physician can refer to. In the present paper, we provide an overview of sleep and breathing characteristics in a number of rare genetic–metabolic disorders with the hope that it will serve as a reminder for the medical professional to look for possible impaired sleep and SBD in their patients and when present to apply the appropriate evaluation and treatment options.
Collapse
Affiliation(s)
- Natan Gadoth
- Sleep Disorders Unit, Loewenstein Rehabilitation Center , Raanana , Israel ; Department of Neurology, Mayanei Hayeshua Medical Center , Bnei Barak , Israel ; Sackler Faculty of Medicine, Tel-Aviv University , Tel-Aviv , Israel
| | - Arie Oksenberg
- Sleep Disorders Unit, Loewenstein Rehabilitation Center , Raanana , Israel
| |
Collapse
|
50
|
Sun X, Marque LO, Cordner Z, Pruitt JL, Bhat M, Li PP, Kannan G, Ladenheim EE, Moran TH, Margolis RL, Rudnicki DD. Phosphorodiamidate morpholino oligomers suppress mutant huntingtin expression and attenuate neurotoxicity. Hum Mol Genet 2014; 23:6302-17. [PMID: 25035419 DOI: 10.1093/hmg/ddu349] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the huntingtin (HTT) gene. Disease pathogenesis derives, at least in part, from the long polyglutamine tract encoded by mutant HTT. Therefore, considerable effort has been dedicated to the development of therapeutic strategies that significantly reduce the expression of the mutant HTT protein. Antisense oligonucleotides (ASOs) targeted to the CAG repeat region of HTT transcripts have been of particular interest due to their potential capacity to discriminate between normal and mutant HTT transcripts. Here, we focus on phosphorodiamidate morpholino oligomers (PMOs), ASOs that are especially stable, highly soluble and non-toxic. We designed three PMOs to selectively target expanded CAG repeat tracts (CTG22, CTG25 and CTG28), and two PMOs to selectively target sequences flanking the HTT CAG repeat (HTTex1a and HTTex1b). In HD patient-derived fibroblasts with expanded alleles containing 44, 77 or 109 CAG repeats, HTTex1a and HTTex1b were effective in suppressing the expression of mutant and non-mutant transcripts. CTGn PMOs also suppressed HTT expression, with the extent of suppression and the specificity for mutant transcripts dependent on the length of the targeted CAG repeat and on the CTG repeat length and concentration of the PMO. PMO CTG25 reduced HTT-induced cytotoxicity in vitro and suppressed mutant HTT expression in vivo in the N171-82Q transgenic mouse model. Finally, CTG28 reduced mutant HTT expression and improved the phenotype of Hdh(Q7/Q150) knock-in HD mice. These data demonstrate the potential of PMOs as an approach to suppressing the expression of mutant HTT.
Collapse
Affiliation(s)
- Xin Sun
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences
| | - Leonard O Marque
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences
| | - Zachary Cordner
- Behavioral Neuroscience Laboratory, Department of Psychiatry and Behavioral Sciences
| | - Jennifer L Pruitt
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences
| | - Manik Bhat
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences
| | - Pan P Li
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences
| | - Geetha Kannan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences
| | - Ellen E Ladenheim
- Behavioral Neuroscience Laboratory, Department of Psychiatry and Behavioral Sciences
| | - Timothy H Moran
- Behavioral Neuroscience Laboratory, Department of Psychiatry and Behavioral Sciences
| | - Russell L Margolis
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Department of Neurology, and Program of Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Dobrila D Rudnicki
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Program of Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|