1
|
Soh J, Lim ZX, Lim EH, Kennedy BK, Goh J. Ironing out exercise on immuno-oncological outcomes. J Immunother Cancer 2022; 10:jitc-2021-002976. [PMID: 36180069 PMCID: PMC9528609 DOI: 10.1136/jitc-2021-002976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 12/02/2022] Open
Abstract
Despite accumulating evidence that supports the beneficial effects of physical exercise in inhibiting cancer progression, whether exercise modulates its effects through systemic and cellular changes in iron metabolism and immune-tumor crosstalk is unknown. Cancer cells have greater metabolic requirements than normal cells, with their survival and proliferation depending largely on iron bioavailability. Although iron is an essential mineral for mitogenesis, it also participates in a form of iron-dependent programmed cell death termed ferroptosis. In this short hypothesis paper, we speculate that modulating iron bioavailability, transport and metabolism with regular exercise can have significant implications for tumor and stromal cells in the tumor microenvironment, by affecting multiple tumor-autonomous and stromal cell responses.
Collapse
Affiliation(s)
- Janjira Soh
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore.,Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | - Zi Xiang Lim
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore.,Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | - Elaine Hsuen Lim
- Division of Medical Oncology, National Cancer Centre Singapore (NCCS), Singapore
| | - Brian K Kennedy
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore.,Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology & Research (A*STAR), Singapore
| | - Jorming Goh
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore .,Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Division of Medical Oncology, National Cancer Centre Singapore (NCCS), Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| |
Collapse
|
2
|
Tran T, Mach J, Gemikonakli G, Wu H, Allore H, Howlett SE, Little CB, Hilmer SN. Diurnal effects of polypharmacy with high drug burden index on physical activities over 23 h differ with age and sex. Sci Rep 2022; 12:2168. [PMID: 35140291 PMCID: PMC8828819 DOI: 10.1038/s41598-022-06039-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/19/2022] [Indexed: 01/18/2023] Open
Abstract
Aging, polypharmacy (concurrent use of ≥ 5 medications), and functional impairment are global healthcare challenges. However, knowledge of the age/sex-specific effects of polypharmacy is limited, particularly on daily physical activities. Using continuous monitoring, we demonstrated how polypharmacy with high Drug Burden Index (DBI-cumulative anticholinergic/sedative exposure) affected behaviors over 23 h in male/female, young/old mice. For comparison, we also evaluated how different drug regimens (polypharmacy/monotherapy) influenced activities in young mice. We found that after 4 weeks of treatment, high DBI (HDBI) polypharmacy decreased exploration (reduced mean gait speed and climbing) during the habituation period, but increased it during other periods, particularly in old mice during the transition to inactivity. After HDBI polypharmacy, mean gait speed consistently decreased throughout the experiment. Some behavioral declines after HDBI were more marked in females than males, indicating treatment × sex interactions. Metoprolol and simvastatin monotherapies increased activities in young mice, compared to control/polypharmacy. These findings highlight that in mice, some polypharmacy-associated behavioral changes are greater in old age and females. The observed diurnal behavioral changes are analogous to drug-induced delirium and sundowning seen in older adults. Future mechanistic investigations are needed to further inform considerations of age, sex, and polypharmacy to optimize quality use of medicines.
Collapse
Affiliation(s)
- Trang Tran
- Laboratory of Ageing and Pharmacology, Kolling Institute, Faculty of Medicine and Health, Royal North Shore Hospital, University of Sydney, St Leonards, Sydney, NSW, 2065, Australia.
- Departments of Clinical Pharmacology and Aged Care, Royal North Shore Hospital, St Leonards, Sydney, NSW, 2065, Australia.
| | - John Mach
- Laboratory of Ageing and Pharmacology, Kolling Institute, Faculty of Medicine and Health, Royal North Shore Hospital, University of Sydney, St Leonards, Sydney, NSW, 2065, Australia
- Departments of Clinical Pharmacology and Aged Care, Royal North Shore Hospital, St Leonards, Sydney, NSW, 2065, Australia
| | - Gizem Gemikonakli
- Laboratory of Ageing and Pharmacology, Kolling Institute, Faculty of Medicine and Health, Royal North Shore Hospital, University of Sydney, St Leonards, Sydney, NSW, 2065, Australia
- Departments of Clinical Pharmacology and Aged Care, Royal North Shore Hospital, St Leonards, Sydney, NSW, 2065, Australia
| | - Harry Wu
- Laboratory of Ageing and Pharmacology, Kolling Institute, Faculty of Medicine and Health, Royal North Shore Hospital, University of Sydney, St Leonards, Sydney, NSW, 2065, Australia
- Departments of Clinical Pharmacology and Aged Care, Royal North Shore Hospital, St Leonards, Sydney, NSW, 2065, Australia
| | - Heather Allore
- Department of Internal Medicine, Yale University, New Haven, CT, 06510, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Susan E Howlett
- Department of Pharmacology and Medicine (Geriatric Medicine), Dalhousie University, Halifax, NS, B3H 2E1, Canada
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Royal North Shore Hospital, University of Sydney, St Leonards, Sydney, NSW, 2065, Australia
| | - Sarah N Hilmer
- Laboratory of Ageing and Pharmacology, Kolling Institute, Faculty of Medicine and Health, Royal North Shore Hospital, University of Sydney, St Leonards, Sydney, NSW, 2065, Australia
- Departments of Clinical Pharmacology and Aged Care, Royal North Shore Hospital, St Leonards, Sydney, NSW, 2065, Australia
| |
Collapse
|
3
|
Wang Q, Wang Y, West TM, Liu Y, Reddy GR, Barbagallo F, Xu B, Shi Q, Deng B, Wei W, Xiang YK. Carvedilol induces biased β1 adrenergic receptor-nitric oxide synthase 3-cyclic guanylyl monophosphate signalling to promote cardiac contractility. Cardiovasc Res 2021; 117:2237-2251. [PMID: 32956449 PMCID: PMC8502477 DOI: 10.1093/cvr/cvaa266] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/11/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
AIMS β-blockers are widely used in therapy for heart failure and hypertension. β-blockers are also known to evoke additional diversified pharmacological and physiological effects in patients. We aim to characterize the underlying molecular signalling and effects on cardiac inotropy induced by β-blockers in animal hearts. METHODS AND RESULTS Wild-type mice fed high-fat diet (HFD) were treated with carvedilol, metoprolol, or vehicle and echocardiogram analysis was performed. Heart tissues were used for biochemical and histological analyses. Cardiomyocytes were isolated from normal and HFD mice and rats for analysis of adrenergic signalling, calcium handling, contraction, and western blot. Biosensors were used to measure β-blocker-induced cyclic guanosine monophosphate (cGMP) signal and protein kinase A activity in myocytes. Acute stimulation of myocytes with carvedilol promotes β1 adrenergic receptor (β1AR)- and protein kinase G (PKG)-dependent inotropic cardiac contractility with minimal increases in calcium amplitude. Carvedilol acts as a biased ligand to promote β1AR coupling to a Gi-PI3K-Akt-nitric oxide synthase 3 (NOS3) cascade and induces robust β1AR-cGMP-PKG signal. Deletion of NOS3 selectively blocks carvedilol, but not isoproterenol-induced β1AR-dependent cGMP signal and inotropic contractility. Moreover, therapy with carvedilol restores inotropic contractility and sensitizes cardiac adrenergic reserves in diabetic mice with minimal impact in calcium signal, as well as reduced cell apoptosis and hypertrophy in diabetic hearts. CONCLUSION These observations present a novel β1AR-NOS3 signalling pathway to promote cardiac inotropy in the heart, indicating that this signalling paradigm may be targeted in therapy of heart diseases with reduced ejection fraction.
Collapse
MESH Headings
- Adrenergic alpha-1 Receptor Antagonists/pharmacology
- Animals
- Cardiotonic Agents/pharmacology
- Carvedilol/pharmacology
- Cells, Cultured
- Cyclic GMP/metabolism
- Cyclic GMP-Dependent Protein Kinases/metabolism
- Disease Models, Animal
- Heart Diseases/drug therapy
- Heart Diseases/enzymology
- Heart Diseases/physiopathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Myocardial Contraction/drug effects
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide Synthase Type III/metabolism
- Rats
- Receptors, Adrenergic, beta-1/drug effects
- Receptors, Adrenergic, beta-1/metabolism
- Second Messenger Systems
- Mice
Collapse
Affiliation(s)
- Qingtong Wang
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
- Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
- Department of Pharmacology, University of California at Davis, Davis, 95616 CA, USA
| | - Ying Wang
- Department of Pharmacology, University of California at Davis, Davis, 95616 CA, USA
| | - Toni M West
- Department of Pharmacology, University of California at Davis, Davis, 95616 CA, USA
| | - Yongming Liu
- Department of Pharmacology, University of California at Davis, Davis, 95616 CA, USA
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200000, China
| | - Gopireddy R Reddy
- Department of Pharmacology, University of California at Davis, Davis, 95616 CA, USA
| | - Federica Barbagallo
- Department of Pharmacology, University of California at Davis, Davis, 95616 CA, USA
| | - Bing Xu
- Department of Pharmacology, University of California at Davis, Davis, 95616 CA, USA
- VA Northern California Health Care System, Mather, CA 95655, USA
| | - Qian Shi
- Department of Pharmacology, University of California at Davis, Davis, 95616 CA, USA
| | - Bingqing Deng
- Department of Pharmacology, University of California at Davis, Davis, 95616 CA, USA
- Sun-Yet Sen Memorial Hospital, Sun-Yet Sen University, Guangzhou 510120, China
| | - Wei Wei
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
- Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, 95616 CA, USA
- VA Northern California Health Care System, Mather, CA 95655, USA
| |
Collapse
|
4
|
Dunkley JC, Irion CI, Yousefi K, Shehadeh SA, Lambert G, John-Williams K, Webster KA, Goldberger JJ, Shehadeh LA. Carvedilol and exercise combination therapy improves systolic but not diastolic function and reduces plasma osteopontin in Col4a3-/- Alport mice. Am J Physiol Heart Circ Physiol 2021; 320:H1862-H1872. [PMID: 33769915 PMCID: PMC8163658 DOI: 10.1152/ajpheart.00535.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/16/2021] [Accepted: 03/19/2021] [Indexed: 11/22/2022]
Abstract
There are currently no Food and Drug Administration-approved treatments for heart failure with preserved ejection fraction (HFpEF). Here we compared the effects of exercise with and without α/β-adrenergic blockade with carvedilol in Col4a3-/- Alport mice, a model of the phenogroup 3 subclass of HFpEF with underlying renal dysfunction. Alport mice were assigned to the following groups: no treatment control (n = 29), carvedilol (n = 11), voluntary exercise (n = 9), and combination carvedilol and exercise (n = 8). Cardiac function was assessed by echocardiography after 4-wk treatments. Running activity of Alport mice was similar to wild types at 1 mo of age but markedly reduced at 2 mo (1.3 ± 0.40 vs. 4.5 ± 1.02 km/day, P < 0.05). There was a nonsignificant trend for increased running activity at 2 mo by carvedilol in the combination treatment group. Combination treatments conferred increased body weight of Col4a3-/- mice (22.0 ± 1.18 vs. 17.8 ± 0.29 g in untreated mice, P < 0.01), suggesting improved physiology, and heart rates declined by similar increments in all carvedilol-treatment groups. The combination treatment improved systolic parameters; stroke volume (30.5 ± 1.99 vs. 17.8 ± 0.77 μL, P < 0.0001) as well as ejection fraction and global longitudinal strain compared with controls. Myocardial performance index was normalized by all interventions (P < 0.0001). Elevated osteopontin plasma levels in control Alport mice were significantly lowered only by combination treatment, and renal function of the Alport group assessed by urine albumin creatinine ratio was significantly improved by all treatments. The results support synergistic roles for exercise and carvedilol to augment cardiac systolic function of Alport mice with moderately improved renal functions but no change in diastole.NEW & NOTEWORTHY In an Alport mouse model of heart failure with preserved ejection fraction (HFpEF), exercise and carvedilol synergistically improved systolic function without affecting diastole. Carvedilol alone or in combination with exercise also improved kidney function. Molecular analyses indicate that the observed improvements in cardiorenal functions were mediated at least in part by effects on serum osteopontin and related inflammatory cytokine cascades. The work presents new potential therapeutic targets and approaches for HFpEF.
Collapse
MESH Headings
- Adrenergic beta-Antagonists/pharmacology
- Animals
- Autoantigens/genetics
- Biomarkers/blood
- Carvedilol/pharmacology
- Collagen Type IV/deficiency
- Collagen Type IV/genetics
- Combined Modality Therapy
- Diastole
- Disease Models, Animal
- Down-Regulation
- Exercise Therapy
- Heart Failure/blood
- Heart Failure/genetics
- Heart Failure/physiopathology
- Heart Failure/therapy
- Mice, 129 Strain
- Mice, Knockout
- Nephritis, Hereditary/blood
- Nephritis, Hereditary/genetics
- Nephritis, Hereditary/physiopathology
- Nephritis, Hereditary/therapy
- Osteopontin/blood
- Recovery of Function
- Systole
- Ventricular Dysfunction, Left/blood
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/therapy
- Ventricular Function, Left/drug effects
- Mice
Collapse
Affiliation(s)
- Julian C Dunkley
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
- Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Camila I Irion
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
- Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Keyvan Yousefi
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Serene A Shehadeh
- Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Guerline Lambert
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
- Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Krista John-Williams
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
- Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Keith A Webster
- Vascular Biology Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Jeffrey J Goldberger
- Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Lina A Shehadeh
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
- Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| |
Collapse
|
5
|
Liu B, Liu YJ. Carvedilol Promotes Retinal Ganglion Cell Survival Following Optic Nerve Injury via ASK1-p38 MAPK Pathway. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:695-704. [PMID: 31577210 DOI: 10.2174/1871527318666191002095456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/13/2019] [Accepted: 07/09/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Carvedilol, which is considered as a nonselective β-adrenoreceptor blocker, has many pleiotropic activities. It also causes great impact on neuroprotection because of its antioxidant ability, which suggested that carvedilol may be effective in protecting RGCs from increased oxidative stress. OBJECTIVE To examine the effects of carvedilol on preventing Retinal Ganglion Cell (RGC) death in a mouse model of Optic Nerve Injury (ONI). METHODS C57BL/6J mice were subjected to Optic Nerve Injury (ONI) model and treated with carvedilol or placebo. Histological and morphometric studies were performed; the RGC number, the amount of neurons in the ganglion cell layer and the thickness of the Inner Retinal Layer (IRL) was quantified. The average thickness of Ganglion Cell Complex (GCC) was determined by the Spectral- Domain OCT (SD-OCT) assay. Immunohistochemistry, western blot and quantitative real-time PCR analysis were also applied. RESULTS Daily treatment of carvedilol reduced RGC death following ONI, and in vivo retinal imaging revealed that carvedilol can effectively prevent retinal degeneration. The expression of chemokines important for micorglia recruitment was deceased with carvedilol ingestion and the accumulation of retinal microglia is reduced consequently. In addition, the ONI-induced expression of inducible nitric oxide synthase in the retina was inhibited with carvedilol treatment in the retina. We also discovered that carvedilol suppressed ONI-induced activation of Apoptosis Signal-regulating Kinase-1 (ASK1) and p38 Mitogen-Activated Protein Kinase (MAPK) pathway. CONCLUSION The results of this study indicate that carvedilol can stimulate neuroprotection and neuroregeneration, and may be useful for treatment of various neurodegenerative diseases.
Collapse
Affiliation(s)
- Bei Liu
- Department of Vitreoretina, Tianjin Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Yu-Jia Liu
- Department of Ophthalmology and Visual Science, Nagoya City University Graduate School of Medical Science, Nagoya, Japan
| |
Collapse
|
6
|
Vieira JS, Cunha TF, Paixão NA, Dourado PM, Carrascoza LS, Bacurau AVN, Brum PC. Exercise intolerance establishment in pulmonary hypertension: Preventive effect of aerobic exercise training. Life Sci 2020; 261:118298. [PMID: 32822717 DOI: 10.1016/j.lfs.2020.118298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 10/23/2022]
Abstract
AIMS 1) Characterize the progression of exercise intolerance in monocrotaline-induced pulmonary hypertension (PH) in mice and 2) evaluate the therapeutic effect of aerobic exercise training (AET) on counteracting skeletal and cardiac dysfunction in PH. MAIN METHODS Wild type C57BL6/J mice were studied in two different time points: 2 months and 4 months. Exercise tolerance was evaluated by graded treadmill exercise test. The AET was performed in the last month of treatment of 4 months' time point. Cardiac function was evaluated by echocardiography. Skeletal muscle cross-sectional area was assessed by immunofluorescence. The diameter of cardiomyocytes and pulmonary edema were quantified by staining with hematoxylin-eosin. The variables were compared among the groups by two-way ANOVA or non-paired Student's t-test. Significance level was set at p < 0.05. KEY FINDINGS After 2 months of MCT treatment, mice presented pulmonary edema, right cardiac dysfunction and left ventricle hypertrophy. After 4 months of MCT treatment, mice showed pulmonary edema, right and left cardiac dysfunction and remodeling associated with exercise intolerance and skeletal muscle atrophy. AET was able to reverse cardiac left ventricle dysfunction and remodeling, prevent exercise intolerance and skeletal muscle dysfunction. Thus, our data provide evidence of skeletal muscle abnormalities on advanced PH. AET was efficient in inducing an anti-cardiac remodeling effect besides preventing exercise intolerance. SIGNIFICANCE Our study provides a robust model of PH in mice, as well as highlights the importance of AET as a preventive strategy for exercise intolerance and, skeletal and cardiac muscle abnormalities in PH.
Collapse
Affiliation(s)
- J S Vieira
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - T F Cunha
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - N A Paixão
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - P M Dourado
- Heart Institute, Medical School, University of São Paulo, São Paulo, Brazil
| | - L S Carrascoza
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - A V N Bacurau
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - P C Brum
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
7
|
Boldt K, Rios JL, Joumaa V, Herzog W. Mechanical function of cardiac fibre bundles is partly protected by exercise in response to diet-induced obesity in rats. Appl Physiol Nutr Metab 2020; 46:46-54. [PMID: 32598858 DOI: 10.1139/apnm-2020-0275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Decrements in contractile function resulting from obesity are thought to be major reasons for the link between obesity and cardiovascular disease, while exercise has been shown to improve cardiac muscle contractile function. The purpose of this study was to evaluate cardiac contractile properties following obesity induction and the potential protective effect of exercise. Twelve-week-old rats (n = 30) were organized into either a chow diet or a high-fat, high-sucrose (HFHS) diet group. Following 12 weeks of obesity induction the HFHS group animals were stratified and grouped into sedentary (HFHS+Sed) and exercise (HFHS+Ex) groups for an additional 12 weeks. Following 24 weeks of diet intervention, with 12 weeks of aerobic exercise (25 m/min, 30 min/day, 5 days/week) for the HFHS+Ex group, skinned cardiac fibre bundle testing was used to evaluate cardiac contractile properties. Body fat and mass were significantly greater in the HFHS-fed animals compared with the chow controls (p < 0.043). Hearts from rats in the HFHS+Sed group had significantly greater mass (p < 0.03), significantly slower maximum shortening velocity (p = 0.001), and tended to have lower calcium sensitivity (p = 0.077) and a lower proportion of α-myosin heavy chain composition (p = 0.074) than the sedentary chow animals. However, 12 weeks of moderate aerobic exercise partially prevented these decrements in contractile properties. Novelty Cardiac muscle from animals exposed to an obesogenic diet for 24 weeks had impaired contractile properties compared with controls. Obesity-induced impairment of contractile properties of the heart were partially prevented by a 12-week aerobic exercise regime.
Collapse
Affiliation(s)
- Kevin Boldt
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada.,Human Performance Laboratory, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Jaqueline Lourdes Rios
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada.,Human Performance Laboratory, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Venus Joumaa
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada.,Human Performance Laboratory, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Walter Herzog
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada.,Human Performance Laboratory, University of Calgary, Calgary, AB T2N 1N4, Canada.,Biomechanics Laboratory, School of Sports, Federal University of Santa Catarina, SC 88040-900, Brazil
| |
Collapse
|
8
|
Irigenin treatment alleviates doxorubicin (DOX)-induced cardiotoxicity by suppressing apoptosis, inflammation and oxidative stress via the increase of miR-425. Biomed Pharmacother 2020; 125:109784. [PMID: 32092815 DOI: 10.1016/j.biopha.2019.109784] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/27/2019] [Accepted: 12/08/2019] [Indexed: 01/22/2023] Open
|
9
|
Redox-Active Drug, MnTE-2-PyP 5+, Prevents and Treats Cardiac Arrhythmias Preserving Heart Contractile Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4850697. [PMID: 32273944 PMCID: PMC7115175 DOI: 10.1155/2020/4850697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 01/11/2020] [Indexed: 01/06/2023]
Abstract
Background Cardiomyopathies remain among the leading causes of death worldwide, despite all efforts and important advances in the development of cardiovascular therapeutics, demonstrating the need for new solutions. Herein, we describe the effects of the redox-active therapeutic Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin, AEOL10113, BMX-010 (MnTE-2-PyP5+), on rat heart as an entry to new strategies to circumvent cardiomyopathies. Methods Wistar rats weighing 250-300 g were used in both in vitro and in vivo experiments, to analyze intracellular Ca2+ dynamics, L-type Ca2+ currents, Ca2+ spark frequency, intracellular reactive oxygen species (ROS) levels, and cardiomyocyte and cardiac contractility, in control and MnTE-2-PyP5+-treated cells, hearts, or animals. Cells and hearts were treated with 20 μM MnTE-2-PyP5+ and animals with 1 mg/kg, i.p. daily. Additionally, we performed electrocardiographic and echocardiographic analysis. Results Using isolated rat cardiomyocytes, we observed that MnTE-2-PyP5+ reduced intracellular Ca2+ transient amplitude, without altering cell contractility. Whereas MnTE-2-PyP5+ did not alter basal ROS levels, it was efficient in modulating cardiomyocyte redox state under stress conditions; MnTE-2-PyP5+ reduced Ca2+ spark frequency and increased sarcoplasmic reticulum (SR) Ca2+ load. Accordingly, analysis of isolated perfused rat hearts showed that MnTE-2-PyP5+ preserves cardiac function, increases SR Ca2+ load, and reduces arrhythmia index, indicating an antiarrhythmic effect. In vivo experiments showed that MnTE-2-PyP5+ treatment increased Ca2+ transient, preserved cardiac ejection fraction, and reduced arrhythmia index and duration. MnTE-2-PyP5+ was effective both to prevent and to treat cardiac arrhythmias. Conclusion MnTE-2-PyP5+ prevents and treats cardiac arrhythmias in rats. In contrast to most antiarrhythmic drugs, MnTE-2-PyP5+ preserves cardiac contractile function, arising, thus, as a prospective therapeutic for improvement of cardiac arrhythmia treatment.
Collapse
|
10
|
Asoom LIA, Al-Hariri MT. Cardiac Inotropic Effect of Long-Term Administration of Oral Thymoquinone. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:8575136. [PMID: 31341501 PMCID: PMC6614965 DOI: 10.1155/2019/8575136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/13/2019] [Accepted: 05/30/2019] [Indexed: 01/19/2023]
Abstract
BACK GROUND Long-term administration of Nigella sativa showed cardiac hypertrophic and positive inotropic effects. Thymoquinone (TQ) is an active ingredient in Nigella sativa. Therefore, we aimed to test the cardiac effects of long-term TQ administration. MATERIALS AND METHODS Twenty adult Wistar rats weighing (150-250 g) were divided into two groups: control and TQ. A TQ-olive oil solution was administered orally to the TQ group (dose 10 mg/kg) for two months. An equivalent volume of olive oil was given to the control group. Langendorff isolated hearts were studied. Peak tension, time to peak tension, half relaxation time, and myocardial flow rate were determined. Heart and left ventricle weights and ratios were recorded. RESULTS The TQ group exhibited significantly higher peak tension than the control group. There were no significant differences between the two groups in time to peak tension, half relaxation time, and myocardial flow rate. Likewise, there were no signs of cardiac hypertrophy. CONCLUSIONS Long-term administration of oral TQ induced a positive inotropic effect in the form of an increase in peak tension. TQ administration did not result in cardiac hypertrophy or an increased cardiac metabolic demand at the studied dose. TQ may be a promising inotropic agent.
Collapse
Affiliation(s)
- Lubna Ibrahim Al Asoom
- Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 2114, Dammam 31541, Saudi Arabia
| | - Mohammad Taha Al-Hariri
- Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 2114, Dammam 31541, Saudi Arabia
| |
Collapse
|
11
|
Cardiac adaptation to exercise training in health and disease. Pflugers Arch 2019; 472:155-168. [PMID: 31016384 DOI: 10.1007/s00424-019-02266-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 02/08/2023]
Abstract
The heart is the primary pump that circulates blood through the entire cardiovascular system, serving many important functions in the body. Exercise training provides favorable anatomical and physiological changes that reduce the risk of heart disease and failure. Compared with pathological cardiac hypertrophy, exercise-induced physiological cardiac hypertrophy leads to an improvement in heart function. Exercise-induced cardiac remodeling is associated with gene regulatory mechanisms and cellular signaling pathways underlying cellular, molecular, and metabolic adaptations. Exercise training also promotes mitochondrial biogenesis and oxidative capacity leading to a decrease in cardiovascular disease. In this review, we summarized the exercise-induced adaptation in cardiac structure and function to understand cellular and molecular signaling pathways and mechanisms in preclinical and clinical trials.
Collapse
|
12
|
Qin R, Murakoshi N, Xu D, Tajiri K, Feng D, Stujanna EN, Yonebayashi S, Nakagawa Y, Shimano H, Nogami A, Koike A, Aonuma K, Ieda M. Exercise training reduces ventricular arrhythmias through restoring calcium handling and sympathetic tone in myocardial infarction mice. Physiol Rep 2019; 7:e13972. [PMID: 30806037 PMCID: PMC6389758 DOI: 10.14814/phy2.13972] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 12/21/2022] Open
Abstract
Exercise can improve morbidity and mortality in heart failure patients; however, the underlying mechanisms remain to be fully investigated. Thus, we investigated the effects of exercise on cardiac function and ventricular arrhythmias in myocardial infarction (MI) induced heart failure mice. Wild-type male mice underwent sham-operation or permanent left coronary artery ligation to induce MI. MI mice were divided into a sedentary (MI-Sed) and two intervention groups: MI-Ex (underwent 6-week treadmill exercise training) and MI-βb (oral bisoprolol treatment (1 mg/kg/d) without exercise). Cardiac function and structure were assessed by echocardiography and histology. Exercise capacity and cardiopulmonary function was accepted as oxygen consumption at peak exercise (peak VO2 ). Autonomic nervous system function and the incidence of spontaneous ventricular arrhythmia were evaluated via telemetry recording. mRNA and protein expressions in the left ventricle (LV) were investigated by real-time PCR and Western blotting. There were no differences in survival rate, MI size, cardiac function and structure, while exercise training improved peak VO2 . Compared with MI-Sed, MI-Ex, and MI-βb showed decreased sympathetic tone and lower incidence of spontaneous ventricular arrhythmia. By Western blot, the hyperphosphorylation of CaMKII and RyR2 were restored by exercise and β-blocker treatment. Furthermore, elevated expression of miR-1 and decreased expression of its target protein PP2A were recovered by exercise and β-blocker treatment. Continuous intensive exercise training can suppress ventricular arrhythmias in subacute to chronic phase of MI through restoring autonomic imbalance and impaired calcium handling, similarly to that for β-blockers.
Collapse
Affiliation(s)
- Rujie Qin
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Nobuyuki Murakoshi
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - DongZhu Xu
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Kazuko Tajiri
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Duo Feng
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Endin N. Stujanna
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Saori Yonebayashi
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Yoshimi Nakagawa
- Department of Internal Medicine (Endocrinology and Metabolism)Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism)Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Akihiko Nogami
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Akira Koike
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
- Medical ScienceFaculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Kazutaka Aonuma
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Masaki Ieda
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| |
Collapse
|
13
|
Zhang QL, Yang JJ, Zhang HS. Carvedilol (CAR) combined with carnosic acid (CAA) attenuates doxorubicin-induced cardiotoxicity by suppressing excessive oxidative stress, inflammation, apoptosis and autophagy. Biomed Pharmacother 2018; 109:71-83. [PMID: 30396094 DOI: 10.1016/j.biopha.2018.07.037] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 07/07/2018] [Accepted: 07/07/2018] [Indexed: 01/10/2023] Open
Abstract
Doxorubicin (DOX) is a wide spectrum antitumor drug. However, its clinical application is limited due to the cardiotoxicity. Carvedilol (CAR) is a β-blocker used to treat high blood pressure and heart failure. Accordingly, supplementation with natural antioxidants or plant extracts exerts protective effects against various injury in vivo. Carnosic acid (CAA), the principal constituent of rosemary, has various biological activities, including antioxidant, antitumor, and anti-inflammatory. Here, heart injury mouse model was established using DOX (20 mg/kg) in vivo. And cardiac muscle cell line of H9C2 was subjected to 0.5 μM of DOX for 24 h in vitro. Then, the protective effects of CAA and CAR alone, or the two in combination on DOX-induced cardiotoxicity in vivo and in vitro were explored. The results indicated that both CAA and CAR, when used alone, were moderately effective in attenuating DOX-induced cardiotoxicity. The combination of two drugs functioned synergistically to ameliorate cardiac injury caused by DOX, as evidenced by the significantly reduced collagen accumulation and improved dysfunction of heart. CAA and CAR exhibited stronger anti-oxidative role in DOX-treated mice partly by augmenting the expression and activities of the anti-oxidative enzymes. In addition, inflammatory response was significantly suppressed by the two in combination, proved by the decreased pro-inflammatory cytokines (COX2, TNF-α, IL-6, IL-1β and IL-18), which was associated with the inactivation of nuclear factor κB (NF-κB). Furthermore, DOX-stirred apoptosis and autophagy were dramatically attenuated by the co-treatments of CAA and CAR through down-regulating cleaved Caspase-3 and LC3B signaling pathways. The effects of CAA and CAR combination against cardiotoxicity were observed in H9C2 cells with DOX stimulation. Our findings above suggested that the use of CAR and CAA in combination could be expected to have synergistic efficacy and significant potential against cardiotoxicity induced by DOX.
Collapse
Affiliation(s)
- Qiu-Lan Zhang
- Department of Cardiology, Jining Second People's Hospital, Jining 272000, China
| | - Jing-Jie Yang
- Department of Emergency, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Hong-Sheng Zhang
- Department of Cardiology, Affiliated Hospital of Jining Medical University, 272000, China.
| |
Collapse
|
14
|
Bernardo BC, Ooi JYY, Weeks KL, Patterson NL, McMullen JR. Understanding Key Mechanisms of Exercise-Induced Cardiac Protection to Mitigate Disease: Current Knowledge and Emerging Concepts. Physiol Rev 2018; 98:419-475. [PMID: 29351515 DOI: 10.1152/physrev.00043.2016] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The benefits of exercise on the heart are well recognized, and clinical studies have demonstrated that exercise is an intervention that can improve cardiac function in heart failure patients. This has led to significant research into understanding the key mechanisms responsible for exercise-induced cardiac protection. Here, we summarize molecular mechanisms that regulate exercise-induced cardiac myocyte growth and proliferation. We discuss in detail the effects of exercise on other cardiac cells, organelles, and systems that have received less or little attention and require further investigation. This includes cardiac excitation and contraction, mitochondrial adaptations, cellular stress responses to promote survival (heat shock response, ubiquitin-proteasome system, autophagy-lysosomal system, endoplasmic reticulum unfolded protein response, DNA damage response), extracellular matrix, inflammatory response, and organ-to-organ crosstalk. We summarize therapeutic strategies targeting known regulators of exercise-induced protection and the challenges translating findings from bench to bedside. We conclude that technological advancements that allow for in-depth profiling of the genome, transcriptome, proteome and metabolome, combined with animal and human studies, provide new opportunities for comprehensively defining the signaling and regulatory aspects of cell/organelle functions that underpin the protective properties of exercise. This is likely to lead to the identification of novel biomarkers and therapeutic targets for heart disease.
Collapse
Affiliation(s)
- Bianca C Bernardo
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Jenny Y Y Ooi
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Kate L Weeks
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Natalie L Patterson
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| |
Collapse
|
15
|
Rodrigues AC, Natali AJ, Cunha DNQD, Costa AJLD, Moura AGD, Araújo Carneiro-Júnior M, Félix LB, Brum PC, Prímola-Gomes TN. Moderate Continuous Aerobic Exercise Training Improves Cardiomyocyte Contractility in Β1 Adrenergic Receptor Knockout Mice. Arq Bras Cardiol 2018; 110:256-262. [PMID: 29466489 PMCID: PMC5898776 DOI: 10.5935/abc.20180025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 09/22/2017] [Indexed: 12/14/2022] Open
Abstract
Background The lack of cardiac β1-adrenergic receptors
(β1-AR) negatively affects the regulation of both
cardiac inotropy and lusitropy, leading, in the long term, to heart failure
(HF). Moderate-intensity aerobic exercise (MCAE) is recommended as an
adjunctive therapy for patients with HF. Objective We tested the effects of MCAE on the contractile properties of left
ventricular (LV) myocytes from β1 adrenergic receptor
knockout (β1ARKO) mice. Methods Four- to five-month-old male wild type (WT) and β1ARKO mice
were divided into groups: WT control (WTc) and trained (WTt); and
β1ARKO control (β1ARKOc) and trained
(β1ARKOt). Animals from trained groups were submitted
to a MCAE regimen (60 min/day; 60% of maximal speed, 5 days/week) on a
treadmill, for 8 weeks. P ≤ 0.05 was considered significant in all
comparisons. Results The β1ARKO and exercised mice exhibited a higher (p <
0.05) running capacity than WT and sedentary ones, respectively. The
β1ARKO mice showed higher body (BW), heart (HW) and
left ventricle (LVW) weights, as well as the HW/BW and LVW/BW than WT mice.
However, the MCAE did not affect these parameters. Left ventricular myocytes
from β1ARKO mice showed increased (p < 0.05) amplitude
and velocities of contraction and relaxation than those from WT. In
addition, MCAE increased (p < 0.05) amplitude and velocities of
contraction and relaxation in β1ARKO mice. Conclusion MCAE improves myocyte contractility in the left ventricle of
β1ARKO mice. This is evidence to support the
therapeutic value of this type of exercise training in the treatment of
heart diseases involving β1-AR desensitization or
reduction.
Collapse
|
16
|
Alves JP, Nunes RB, Ferreira DDC, Stefani GP, Jaenisch RB, Lago PD. High-intensity resistance training alone or combined with aerobic training improves strength, heart function and collagen in rats with heart failure. Am J Transl Res 2017; 9:5432-5441. [PMID: 29312495 PMCID: PMC5752893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/20/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Resistance training (RT) has been associated with positive responses in patients with cardiovascular disease, and when it is combined with continuous aerobic training (CAT), favorable adaptations appear to be even more pronounced. However, the effects of high-intensity RT alone or in combined with CAT in the case of heart failure (HF) is not completely elucidated. METHODS 28 male Wistar rats with HF (90 days old) were allocated to 4 groups: high-intensity RT (RT, n=7), CAT (CAT, n=7), RT and CAT (RT+CAT, n=7) and sedentary (Sed, n=7). Trained animals were subjected to a RT protocol in an adapted squat apparatus for rats (4 bouts, 6-8 reps, 90 s interval, 3×/week, 75% to 85% of one maximum repetition (1RM) for 8 weeks). The animals subjected to CAT performed it 3×/week during 50 min/session at 16 m/min. The animals of the combined exercise regimen performed both the RT and CAT exercise protocols. RESULTS The left ventricular end-diastolic pressure (LVEDP), collagen volume fraction and right ventricular hypertrophy were lower in RT, CAT and RT+CAT groups when compared to Sed group (P<0.05) for all outcomes. Regarding the inflammatory profile, only the CAT group showed greater IL-10 concentrations. CONCLUSION We concluded that RT combined with CAT was able to improve the strength in animals with HF, which was associated to improvement in ventricular structure and function.
Collapse
Affiliation(s)
- Jadson Pereira Alves
- Universidade Federal de Ciências da Saúde de Porto Alegre, Graduate Program in Health SciencesPorto Alegre, Brazil
| | - Ramiro Barcos Nunes
- Universidade Federal de Ciências da Saúde de Porto Alegre, Graduate Program in Health SciencesPorto Alegre, Brazil
| | - Daniele da Cunha Ferreira
- Universidade Federal de Ciências da Saúde de Porto Alegre, Graduate Program in Health SciencesPorto Alegre, Brazil
| | - Giuseppe Potrick Stefani
- Universidade Federal de Ciências da Saúde de Porto Alegre, Graduate Program in Health SciencesPorto Alegre, Brazil
| | - Rodrigo Boemo Jaenisch
- Universidade Federal de Ciências da Saúde de Porto Alegre, Graduate Program in Health SciencesPorto Alegre, Brazil
| | - Pedro Dal Lago
- Universidade Federal de Ciências da Saúde de Porto Alegre, Graduate Program in Health SciencesPorto Alegre, Brazil
| |
Collapse
|
17
|
Vega RB, Konhilas JP, Kelly DP, Leinwand LA. Molecular Mechanisms Underlying Cardiac Adaptation to Exercise. Cell Metab 2017; 25:1012-1026. [PMID: 28467921 PMCID: PMC5512429 DOI: 10.1016/j.cmet.2017.04.025] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 02/06/2023]
Abstract
Exercise elicits coordinated multi-organ responses including skeletal muscle, vasculature, heart, and lung. In the short term, the output of the heart increases to meet the demand of strenuous exercise. Long-term exercise instigates remodeling of the heart including growth and adaptive molecular and cellular re-programming. Signaling pathways such as the insulin-like growth factor 1/PI3K/Akt pathway mediate many of these responses. Exercise-induced, or physiologic, cardiac growth contrasts with growth elicited by pathological stimuli such as hypertension. Comparing the molecular and cellular underpinnings of physiologic and pathologic cardiac growth has unveiled phenotype-specific signaling pathways and transcriptional regulatory programs. Studies suggest that exercise pathways likely antagonize pathological pathways, and exercise training is often recommended for patients with chronic stable heart failure or following myocardial infarction. Herein, we summarize the current understanding of the structural and functional cardiac responses to exercise as well as signaling pathways and downstream effector molecules responsible for these adaptations.
Collapse
Affiliation(s)
- Rick B Vega
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - John P Konhilas
- Department of Physiology, Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85724, USA
| | - Daniel P Kelly
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - Leslie A Leinwand
- Molecular, Cellular and Developmental Biology, BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
18
|
Rodrigues B, Feriani DJ, Gambassi BB, Irigoyen MC, Angelis KD, Hélio José Júnior C. Exercise training on cardiovascular diseases: Role of animal models in the elucidation of the mechanisms. MOTRIZ: REVISTA DE EDUCACAO FISICA 2017. [DOI: 10.1590/s1980-6574201700si0005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
19
|
Akt/mTOR pathway contributes to skeletal muscle anti-atrophic effect of aerobic exercise training in heart failure mice. Int J Cardiol 2016; 214:137-47. [PMID: 27060274 DOI: 10.1016/j.ijcard.2016.03.071] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 03/05/2016] [Accepted: 03/19/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Exercise intolerance is one of the main clinical symptoms of heart failure (HF) and is associated with skeletal muscle wasting due to an imbalance between proteolysis and protein synthesis. In this study, we tested whether aerobic exercise training (AET) would counteract skeletal muscle atrophy by activating IGF-I/Akt/mTOR pathway in HF mice. METHODS Sympathetic hyperactivity induced HF mice were assigned into 8-week moderate intensity AET. Untrained wild type and HF mice were used as control. Soleus cross sectional area was evaluated by histochemistry and motor performance by rotarod. 26S proteasome activity was assessed by fluorimetric assay, and components of IGF-I/Akt/mTOR pathway or myostatin pathway by qRT-PCR or immunoblotting. A different subset of mice was used to evaluate the relative contribution of mTOR inhibition (rapamycin) or activation (leucine) on AET-induced changes in muscle mass regulation. RESULTS AET prevented exercise intolerance and impaired motor performance in HF mice. These effects were associated with attenuation of soleus atrophy. Rapamycin treatment precluded AET effects on soleus mass in HF mice suggesting the involvement of IGF signaling pathway in this response. In fact, AET increased IGF-I Ea and IGF-I Pan mRNA levels, while it reduced myostatin and Smad2 mRNA levels in HF mice. At protein levels, AET prevented reduced expression levels of IGF-I, pAkt (at basal state), as well as, p4E-BP1 and pP70(S6K) (leucine-stimulated state) in HF mice. Additionally, AET prevented 26S proteasome hyperactivity in HF mice. CONCLUSIONS Taken together, our data provide evidence for AET-induced activation of IGF-I/Akt/mTOR signaling pathway counteracting HF-induced muscle wasting.
Collapse
|
20
|
Aerobic Exercise and Pharmacological Therapies for Skeletal Myopathy in Heart Failure: Similarities and Differences. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4374671. [PMID: 26904163 PMCID: PMC4745416 DOI: 10.1155/2016/4374671] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/29/2015] [Indexed: 12/20/2022]
Abstract
Skeletal myopathy has been identified as a major comorbidity of heart failure (HF) affecting up to 20% of ambulatory patients leading to shortness of breath, early fatigue, and exercise intolerance. Neurohumoral blockade, through the inhibition of renin angiotensin aldosterone system (RAS) and β-adrenergic receptor blockade (β-blockers), is a mandatory pharmacological therapy of HF since it reduces symptoms, mortality, and sudden death. However, the effect of these drugs on skeletal myopathy needs to be clarified, since exercise intolerance remains in HF patients optimized with β-blockers and inhibitors of RAS. Aerobic exercise training (AET) is efficient in counteracting skeletal myopathy and in improving functional capacity and quality of life. Indeed, AET has beneficial effects on failing heart itself despite being of less magnitude compared with neurohumoral blockade. In this way, AET should be implemented in the care standards, together with pharmacological therapies. Since both neurohumoral inhibition and AET have a direct and/or indirect impact on skeletal muscle, this review aims to provide an overview of the isolated effects of these therapeutic approaches in counteracting skeletal myopathy in HF. The similarities and dissimilarities of neurohumoral inhibition and AET therapies are also discussed to identify potential advantageous effects of these combined therapies for treating HF.
Collapse
|
21
|
Impact of leucine supplementation on exercise training induced anti-cardiac remodeling effect in heart failure mice. Nutrients 2015; 7:3751-66. [PMID: 25988767 PMCID: PMC4446777 DOI: 10.3390/nu7053751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/13/2015] [Accepted: 05/05/2015] [Indexed: 11/17/2022] Open
Abstract
Leucine supplementation potentiates the effects of aerobic exercise training (AET) on skeletal muscle; however, its potential effects associated with AET on cardiac muscle have not been clarified yet. We tested whether leucine supplementation would potentiate the anti-cardiac remodeling effect of AET in a genetic model of sympathetic hyperactivity-induced heart failure in mice (α2A/α2CARKO). Mice were assigned to five groups: wild type mice treated with placebo and sedentary (WT, n = 11), α2A/α2CARKO treated with placebo and sedentary (KO, n = 9), α2A/α2CARKO treated with leucine and sedentary (KOL, n = 11), α2A/α2CARKO treated with placebo and AET (KOT, n = 12) or α2A/α2CARKO treated with leucine and AET (KOLT, n = 12). AET consisted of four weeks on a treadmill with 60 min sessions (six days/week, 60% of maximal speed) and administration by gavage of leucine (1.35 g/kg/day) or placebo (distilled water). The AET significantly improved exercise capacity, fractional shortening and re-established cardiomyocytes' diameter and collagen fraction in KOT. Additionally, AET significantly prevented the proteasome hyperactivity, increased misfolded proteins and HSP27 expression. Isolated leucine supplementation displayed no effect on cardiac function and structure (KOL), however, when associated with AET (KOLT), it increased exercise tolerance to a higher degree than isolated AET (KOT) despite no additional effects on AET induced anti-cardiac remodeling. Our results provide evidence for the modest impact of leucine supplementation on cardiac structure and function in exercised heart failure mice. Leucine supplementation potentiated AET effects on exercise tolerance, which might be related to its recognized impact on skeletal muscle.
Collapse
|
22
|
Alves JP, Nunes RB, Stefani GP, Dal Lago P. Resistance training improves hemodynamic function, collagen deposition and inflammatory profiles: experimental model of heart failure. PLoS One 2014; 9:e110317. [PMID: 25340545 PMCID: PMC4207701 DOI: 10.1371/journal.pone.0110317] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 09/21/2014] [Indexed: 11/30/2022] Open
Abstract
The role of resistance training on collagen deposition, the inflammatory profile and muscle weakness in heart failure remains unclear. Therefore, this study evaluated the influence of a resistance training program on hemodynamic function, maximum strength gain, collagen deposition and inflammatory profile in chronic heart failure rats. Thirty-two male Wistar rats submitted to myocardial infarction by coronary artery ligation or sham surgery were assigned into four groups: sedentary sham (S-Sham, n = 8); trained sham (T-Sham, n = 8); sedentary chronic heart failure (S-CHF, n = 8) and trained chronic heart failure (T-CHF, n = 8). The maximum strength capacity was evaluated by the one maximum repetition test. Trained groups were submitted to an 8-week resistance training program (4 days/week, 4 sets of 10-12 repetitions/session, at 65% to 75% of one maximum repetition). After 8 weeks of the resistance training program, the T-CHF group showed lower left ventricular end diastolic pressure (P<0.001), higher left ventricular systolic pressure (P<0.05), higher systolic blood pressure (P<0.05), an improvement in the maximal positive derivative of ventricular pressure (P<0.05) and maximal negative derivative of ventricular pressure (P<0.05) when compared to the S-CHF group; no differences were observed when compared to Sham groups. In addition, resistance training was able to reduce myocardial hypertrophy (P<0.05), left ventricular total collagen volume fraction (P<0.01), IL-6 (P<0.05), and TNF-α/IL-10 ratio (P<0.05), as well as increasing IL-10 (P<0.05) in chronic heart failure rats when compared to the S-CHF group. Eight weeks of resistance training promotes an improvement of cardiac function, strength gain, collagen deposition and inflammatory profile in chronic heart failure rats.
Collapse
Affiliation(s)
- Jadson P. Alves
- Laboratory of Physiology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Ramiro B. Nunes
- Laboratory of Physiology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Giuseppe P. Stefani
- Laboratory of Physiology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Pedro Dal Lago
- Laboratory of Physiology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
- Department of Physical Therapy, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
23
|
Voltarelli VA, Bechara LRG, Bacurau AVN, Mattos KC, Dourado PMM, Bueno CR, Casarini DE, Negrao CE, Brum PC. Lack of β2 -adrenoceptors aggravates heart failure-induced skeletal muscle myopathy in mice. J Cell Mol Med 2014; 18:1087-97. [PMID: 24629015 PMCID: PMC4508148 DOI: 10.1111/jcmm.12253] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 01/20/2014] [Indexed: 12/17/2022] Open
Abstract
Skeletal myopathy is a hallmark of heart failure (HF) and has been associated with a poor prognosis. HF and other chronic degenerative diseases share a common feature of a stressed system: sympathetic hyperactivity. Although beneficial acutely, chronic sympathetic hyperactivity is one of the main triggers of skeletal myopathy in HF. Considering that β2 -adrenoceptors mediate the activity of sympathetic nervous system in skeletal muscle, we presently evaluated the contribution of β2 -adrenoceptors for the morphofunctional alterations in skeletal muscle and also for exercise intolerance induced by HF. Male WT and β2 -adrenoceptor knockout mice on a FVB genetic background (β2 KO) were submitted to myocardial infarction (MI) or SHAM surgery. Ninety days after MI both WT and β2 KO mice presented to cardiac dysfunction and remodelling accompanied by significantly increased norepinephrine and epinephrine plasma levels, exercise intolerance, changes towards more glycolytic fibres and vascular rarefaction in plantaris muscle. However, β2 KO MI mice displayed more pronounced exercise intolerance and skeletal myopathy when compared to WT MI mice. Skeletal muscle atrophy of infarcted β2 KO mice was paralleled by reduced levels of phosphorylated Akt at Ser 473 while increased levels of proteins related with the ubiquitin--proteasome system, and increased 26S proteasome activity. Taken together, our results suggest that lack of β2 -adrenoceptors worsen and/or anticipate the skeletal myopathy observed in HF.
Collapse
Affiliation(s)
- Vanessa A Voltarelli
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Brum PC, Bacurau AV, Cunha TF, Bechara LRG, Moreira JBN. Skeletal myopathy in heart failure: effects of aerobic exercise training. Exp Physiol 2013; 99:616-20. [PMID: 24273305 DOI: 10.1113/expphysiol.2013.076844] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Reduced aerobic capacity, as measured by maximal oxygen uptake, is a hallmark in cardiovascular diseases and strongly predicts poor prognosis and higher mortality rates in heart failure patients. While exercise capacity is poorly correlated with cardiac function in this population, skeletal muscle abnormalities present a striking association with maximal oxygen uptake. This fact draws substantial attention to the clinical relevance of targeting skeletal myopathy in heart failure. Considering that skeletal muscle is highly responsive to aerobic exercise training, we addressed the benefits of aerobic exercise training to combat skeletal myopathy in heart failure, focusing on the mechanisms by which aerobic exercise training counteracts skeletal muscle atrophy.
Collapse
Affiliation(s)
- P C Brum
- * Escola de Educacão Física e Esporte, Universidade de São Paulo, Av. Professor Mello Moraes, 65 - São Paulo, SP 05508-900, Brazil.
| | | | | | | | | |
Collapse
|
25
|
Campos JC, Gomes KMS, Ferreira JCB. Impact of exercise training on redox signaling in cardiovascular diseases. Food Chem Toxicol 2013; 62:107-19. [PMID: 23978413 DOI: 10.1016/j.fct.2013.08.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/05/2013] [Accepted: 08/18/2013] [Indexed: 02/07/2023]
Abstract
Reactive oxygen and nitrogen species regulate a wide array of signaling pathways that governs cardiovascular physiology. However, oxidant stress resulting from disrupted redox signaling has an adverse impact on the pathogenesis and progression of cardiovascular diseases. In this review, we address how redox signaling and oxidant stress affect the pathophysiology of cardiovascular diseases such as ischemia-reperfusion injury, hypertension and heart failure. We also summarize the benefits of exercise training in tackling the hyperactivation of cellular oxidases and mitochondrial dysfunction seen in cardiovascular diseases.
Collapse
Affiliation(s)
- Juliane C Campos
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | |
Collapse
|