1
|
Wang Q, Sun S, Sun G, Han B, Zhang S, Zheng X, Chen L. Histone modification inhibitors: An emerging frontier in thyroid Cancer therapy. Cell Signal 2025; 131:111703. [PMID: 40044017 DOI: 10.1016/j.cellsig.2025.111703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/13/2025] [Accepted: 02/25/2025] [Indexed: 04/15/2025]
Abstract
Thyroid cancer (TC) is the most common endocrine cancer and is a serious health concern due to its aggressiveness and high incidence. Histone modifications affect DNA accessibility and gene transcriptional activity by altering the structure of chromatin. Abnormal histone modifications may affect genome stability and disrupt gene expression patterns, leading to many diseases, including cancer. A growing body of research suggests that histone modifications and TC progression are inextricably linked. This article discusses the impact of aberrant histone modification patterns on TC. By targeting specific histone-modifying enzymes, it may be possible to regulate gene expression and inhibit the growth of TC. Finally, we summarize the relevant histone modification inhibitors to better understand the development stage of the use of these drugs to inhibit histone-modifying enzymes in cancer treatment.
Collapse
Affiliation(s)
- Qi Wang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Shu Sun
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Guojun Sun
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Bing Han
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Song Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Xiaowei Zheng
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
| | - Lu Chen
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Hangzhou 310014, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China.
| |
Collapse
|
2
|
Agudelo Garcia PA, Hoover ME, Zhang P, Nagarajan P, Freitas MA, Parthun MR. Identification of multiple roles for histone acetyltransferase 1 in replication-coupled chromatin assembly. Nucleic Acids Res 2017; 45:9319-9335. [PMID: 28666361 PMCID: PMC5766187 DOI: 10.1093/nar/gkx545] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/12/2017] [Indexed: 12/16/2022] Open
Abstract
Histone acetyltransferase 1 (Hat1) catalyzes the acetylation of newly synthesized histone H4 at lysines 5 and 12 that accompanies replication-coupled chromatin assembly. The acetylation of newly synthesized H4 occurs in the cytoplasm and the function of this acetylation is typically ascribed to roles in either histone nuclear import or deposition. Using cell lines from Hat1+/+ and Hat1−/− mouse embryos, we demonstrate that Hat1 is not required for either histone nuclear import or deposition. We employed quantitative proteomics to characterize Hat1-dependent changes in the composition of nascent chromatin structure. Among the proteins depleted from nascent chromatin isolated from Hat1−/− cells are several bromodomain-containing proteins, including Brg1, Baz1A and Brd3. Analysis of the binding specificity of their bromodomains suggests that Hat1-dependent acetylation of H4 is directly involved in their recruitment. Hat1−/− nascent chromatin is enriched for topoisomerase 2α and 2β. The enrichment of topoisomerase 2 is functionally relevant as Hat1−/− cells are hyper-sensitive to topoisomerase 2 inhibition suggesting that Hat1 is required for proper chromatin topology. In addition, our results indicate that Hat1 is transiently recruited to sites of chromatin assembly, dissociating prior to the maturation of chromatin structure.
Collapse
Affiliation(s)
- Paula A Agudelo Garcia
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Michael E Hoover
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Pei Zhang
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Prabakaran Nagarajan
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Michael A Freitas
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Mark R Parthun
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Li Y, Wang C, Cai W, Sengupta S, Zavortink M, Deng H, Girton J, Johansen J, Johansen KM. H2Av facilitates H3S10 phosphorylation but is not required for heat shock-induced chromatin decondensation or transcriptional elongation. Development 2017; 144:3232-3240. [PMID: 28807902 PMCID: PMC5612252 DOI: 10.1242/dev.151134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/19/2017] [Indexed: 01/30/2023]
Abstract
A model has been proposed in which JIL-1 kinase-mediated H3S10 and H2Av phosphorylation is required for transcriptional elongation and heat shock-induced chromatin decondensation. However, here we show that although H3S10 phosphorylation is indeed compromised in the H2Av null mutant, chromatin decondensation at heat shock loci is unaffected in the absence of JIL-1 as well as of H2Av and that there is no discernable decrease in the elongating form of RNA polymerase II in either mutant. Furthermore, mRNA for the major heat shock protein Hsp70 is transcribed at robust levels in both H2Av and JIL-1 null mutants. Using a different chromatin remodeling paradigm that is JIL-1 dependent, we provide evidence that ectopic tethering of JIL-1 and subsequent H3S10 phosphorylation recruits PARP-1 to the remodeling site independently of H2Av phosphorylation. These data strongly suggest that H2Av or H3S10 phosphorylation by JIL-1 is not required for chromatin decondensation or transcriptional elongation in Drosophila.
Collapse
Affiliation(s)
- Yeran Li
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Chao Wang
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Weili Cai
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Saheli Sengupta
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Michael Zavortink
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Huai Deng
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Jack Girton
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Jørgen Johansen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Kristen M Johansen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
4
|
Sengupta S, Rath U, Yao C, Zavortink M, Wang C, Girton J, Johansen KM, Johansen J. Digitor/dASCIZ Has Multiple Roles in Drosophila Development. PLoS One 2016; 11:e0166829. [PMID: 27861562 PMCID: PMC5115829 DOI: 10.1371/journal.pone.0166829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/05/2016] [Indexed: 12/02/2022] Open
Abstract
In this study we provide evidence that the spindle matrix protein Skeletor in Drosophila interacts with the human ASCIZ (also known as ATMIN and ZNF822) ortholog, Digitor/dASCIZ. This interaction was first detected in a yeast two-hybrid screen and subsequently confirmed by pull-down assays. We also confirm a previously documented function of Digitor/dASCIZ as a regulator of Dynein light chain/Cut up expression. Using transgenic expression of a mCitrine-labeled Digitor construct, we show that Digitor/dASCIZ is a nuclear protein that is localized to interband and developmental puff chromosomal regions during interphase but redistributes to the spindle region during mitosis. Its mitotic localization and physical interaction with Skeletor suggest the possibility that Digitor/dASCIZ plays a direct role in mitotic progression as a member of the spindle matrix complex. Furthermore, we have characterized a P-element insertion that is likely to be a true null Digitor/dASCIZ allele resulting in complete pupal lethality when homozygous, indicating that Digitor/dASCIZ is an essential gene. Phenotypic analysis of the mutant provided evidence that Digitor/dASCIZ plays critical roles in regulation of metamorphosis and organogenesis as well as in the DNA damage response. In the Digitor/dASCIZ null mutant larvae there was greatly elevated levels of γH2Av, indicating accumulation of DNA double-strand breaks. Furthermore, reduced levels of Digitor/dASCIZ decreased the resistance to paraquat-induced oxidative stress resulting in increased mortality in a stress test paradigm. We show that an early developmental consequence of the absence of Digitor/dASCIZ is reduced third instar larval brain size although overall larval development appeared otherwise normal at this stage. While Digitor/dASCIZ mutant larvae initiate pupation, all mutant pupae failed to eclose and exhibited various defects in metamorphosis such as impaired differentiation, incomplete disc eversion, and faulty apoptosis. Altogether we provide evidence that Digitor/dASCIZ is a nuclear protein that performs multiple roles in Drosophila larval and pupal development.
Collapse
Affiliation(s)
- Saheli Sengupta
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Uttama Rath
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Changfu Yao
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Michael Zavortink
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Chao Wang
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Jack Girton
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Kristen M. Johansen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail: (JJ); (KMJ)
| | - Jørgen Johansen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail: (JJ); (KMJ)
| |
Collapse
|
5
|
Srivastava R, Ahn SH. Modifications of RNA polymerase II CTD: Connections to the histone code and cellular function. Biotechnol Adv 2015; 33:856-72. [PMID: 26241863 DOI: 10.1016/j.biotechadv.2015.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/08/2015] [Accepted: 07/28/2015] [Indexed: 12/24/2022]
Abstract
At the onset of transcription, many protein machineries interpret the cellular signals that regulate gene expression. These complex signals are mostly transmitted to the indispensable primary proteins involved in transcription, RNA polymerase II (RNAPII) and histones. RNAPII and histones are so well coordinated in this cellular function that each cellular signal is precisely allocated to specific machinery depending on the stage of transcription. The carboxy-terminal domain (CTD) of RNAPII in eukaryotes undergoes extensive posttranslational modification, called the 'CTD code', that is indispensable for coupling transcription with many cellular processes, including mRNA processing. The posttranslational modification of histones, known as the 'histone code', is also critical for gene transcription through the reversible and dynamic remodeling of chromatin structure. Notably, the histone code is closely linked with the CTD code, and their combinatorial effects enable the delicate regulation of gene transcription. This review elucidates recent findings regarding the CTD modifications of RNAPII and their coordination with the histone code, providing integrative pathways for the fine-tuned regulation of gene expression and cellular function.
Collapse
Affiliation(s)
- Rakesh Srivastava
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Seong Hoon Ahn
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, Republic of Korea.
| |
Collapse
|
6
|
Cai W, Wang C, Li Y, Yao C, Shen L, Liu S, Bao X, Schnable PS, Girton J, Johansen J, Johansen KM. Genome-wide analysis of regulation of gene expression and H3K9me2 distribution by JIL-1 kinase mediated histone H3S10 phosphorylation in Drosophila. Nucleic Acids Res 2014; 42:5456-67. [PMID: 24598257 PMCID: PMC4027157 DOI: 10.1093/nar/gku173] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In this study we have determined the genome-wide relationship of JIL-1 kinase mediated H3S10 phosphorylation with gene expression and the distribution of the epigenetic H3K9me2 mark. We show in wild-type salivary gland cells that the H3S10ph mark is predominantly enriched at active genes whereas the H3K9me2 mark is largely associated with inactive genes. Comparison of global transcription profiles in salivary glands from wild-type and JIL-1 null mutant larvae revealed that the expression levels of 1539 genes changed at least 2-fold in the mutant and that a substantial number (49%) of these genes were upregulated whereas 51% were downregulated. Furthermore, the results showed that downregulation of genes in the mutant was correlated with higher levels or acquisition of the H3K9me2 mark whereas upregulation of a gene was correlated with loss of or diminished H3K9 dimethylation. These results are compatible with a model where gene expression levels are modulated by the levels of the H3K9me2 mark independent of the state of the H3S10ph mark, which is not required for either transcription or gene activation to occur. Rather, H3S10 phosphorylation functions to indirectly maintain active transcription by counteracting H3K9 dimethylation and gene silencing.
Collapse
Affiliation(s)
- Weili Cai
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Chao Wang
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Yeran Li
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Changfu Yao
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Lu Shen
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Sanzhen Liu
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - Xiaomin Bao
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Patrick S Schnable
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA Data2Bio LLC, Ames, IA 50011, USA
| | - Jack Girton
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Jørgen Johansen
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Kristen M Johansen
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
7
|
Histone H3S10 phosphorylation by the JIL-1 kinase in pericentric heterochromatin and on the fourth chromosome creates a composite H3S10phK9me2 epigenetic mark. Chromosoma 2014; 123:273-80. [PMID: 24429699 DOI: 10.1007/s00412-014-0450-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/31/2013] [Accepted: 01/03/2014] [Indexed: 10/25/2022]
Abstract
The JIL-1 kinase mainly localizes to euchromatic interband regions of polytene chromosomes and is the kinase responsible for histone H3S10 phosphorylation at interphase in Drosophila. However, recent findings raised the possibility that the binding of some H3S10ph antibodies may be occluded by the H3K9me2 mark obscuring some H3S10 phosphorylation sites. Therefore, we have characterized an antibody to the epigenetic H3S10phK9me2 double mark as well as three commercially available H3S10ph antibodies. The results showed that for some H3S10ph antibodies their labeling indeed can be occluded by the concomitant presence of the H3K9me2 mark. Furthermore, we demonstrate that the double H3S10phK9me2 mark is present in pericentric heterochromatin as well as on the fourth chromosome of wild-type polytene chromosomes but not in preparations from JIL-1 or Su(var)3-9 null larvae. Su(var)3-9 is a methyltransferase mediating H3K9 dimethylation. Furthermore, the H3S10phK9me2 labeling overlapped with that of the non-occluded H3S10ph antibodies as well as with H3K9me2 antibody labeling. Interestingly, when a Lac-I-Su(var)3-9 transgene is overexpressed, it upregulates H3K9me2 dimethylation on the chromosome arms creating extensive ectopic H3S10phK9me2 marks suggesting that the H3K9 dimethylation occurred at euchromatic H3S10ph sites. This is further supported by the finding that under these conditions euchromatic H3S10ph labeling by the occluded antibodies was abolished. Thus, our findings indicate a novel role for the JIL-1 kinase in epigenetic regulation of heterochromatin in the context of the chromocenter and fourth chromosome by creating a composite H3S10phK9me2 mark together with the Su(var)3-9 methyltransferase.
Collapse
|
8
|
Li Y, Cai W, Wang C, Yao C, Bao X, Deng H, Girton J, Johansen J, Johansen KM. Domain requirements of the JIL-1 tandem kinase for histone H3 serine 10 phosphorylation and chromatin remodeling in vivo. J Biol Chem 2013; 288:19441-9. [PMID: 23723094 DOI: 10.1074/jbc.m113.464271] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The JIL-1 kinase localizes to Drosophila polytene chromosome interbands and phosphorylates histone H3 at interphase, counteracting histone H3 lysine 9 dimethylation and gene silencing. JIL-1 can be divided into four main domains, including an NH2-terminal domain, two separate kinase domains, and a COOH-terminal domain. In this study, we characterize the domain requirements of the JIL-1 kinase for histone H3 serine 10 (H3S10) phosphorylation and chromatin remodeling in vivo. We show that a JIL-1 construct without the NH2-terminal domain is without H3S10 phosphorylation activity despite the fact that it localizes properly to polytene interband regions and that it contains both kinase domains. JIL-1 is a double kinase, and we demonstrate that both kinase domains of JIL-1 are required to be catalytically active for H3S10 phosphorylation to occur. Furthermore, we provide evidence that JIL-1 is phosphorylated at serine 424 and that this phosphorylation is necessary for JIL-1 H3S10 phosphorylation activity. Thus, these data are compatible with a model where the NH2-terminal domain of JIL-1 is required for chromatin complex interactions that position the kinase domain(s) for catalytic activity in the context of the state of higher order nucleosome packaging and chromatin structure and where catalytic H3S10 phosphorylation activity mediated by the first kinase domain is dependent on autophosphorylation of serine 424 by the second kinase domain. Furthermore, using a lacO repeat tethering system to target mutated JIL-1 constructs with or without catalytic activity, we show that the epigenetic H3S10 phosphorylation mark itself functions as a causative regulator of chromatin structure independently of any structural contributions from the JIL-1 protein.
Collapse
Affiliation(s)
- Yeran Li
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | | | | | | | |
Collapse
|