1
|
Donaka R, Zheng H, Ackert-Bicknell CL, Karasik D. Early life lipid overload in Native American Myopathy is phenocopied by stac3 knockout in zebrafish. Gene 2025; 936:149123. [PMID: 39592070 DOI: 10.1016/j.gene.2024.149123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/05/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024]
Abstract
Understanding the early stages of human congenital myopathies is critical for proposing strategies for improving musculoskeletal muscle performance, such as restoring the functional integrity of the cytoskeleton. SH3 and cysteine-rich domain 3 (STAC3) are proteins involved in nutrient regulation and are an essential component of the excitation-contraction (EC) coupling machinery for Ca2+ releasing. A mutation in STAC3 causes debilitating Native American Myopathy (NAM) in humans, while loss of this gene in mice and zebrafish (ZF) results in premature death. Clinically, NAM patients demonstrated increased lipids in skeletal muscle, but it is unclear if neutral lipids are associated with altered muscle function in NAM. Using a CRISPR/Cas9 induced stac3-/- knockout (KO) zebrafish model, we determined that loss of stac3 leads to delayed larval hatching which corresponds with muscle weakness and decreased whole-body Ca2+ level during early skeletal development. Specifically, we observed defects in the cytoskeleton in F-actin and slow muscle fibers at 5 and 7 days post-fertilizations (dpf). Myogenesis regulators such as myoD and myf5, mstnb were significantly altered in stac3-/- larvae. These muscle alterations were associated with elevated neutral lipid levels starting at 5 dpf and persisting beyond 7 dpf. Larva lacking stac3 had reduced viability with no larva knockouts surviving past 11 dpf. This data suggests that our stac3-/- zebrafish serve as an alternative model to study the diminished muscle function seen in NAM patients. The data gathered from this new model over time supports a mechanistic view of lipotoxicity as a critical part of the pathology of NAM and the associated loss of function in muscle.
Collapse
Affiliation(s)
- Rajashekar Donaka
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel; Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado, Aurora, CO, USA
| | - Houfeng Zheng
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Cloud Town, Xihu District, 310024 Hangzhou, Zhejiang, China
| | - Cheryl L Ackert-Bicknell
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado, Aurora, CO, USA
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel; Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA 02131, USA.
| |
Collapse
|
2
|
Goli RC, Mahar K, Manohar PS, Chishi KG, Prabhu IG, Choudhary S, Rathi P, Chinnareddyvari CS, Haritha P, Metta M, Shetkar M, Kumar A, N D CP, Vidyasagar, Sukhija N, Kanaka KK. Insights from homozygous signatures of cervus nippon revealed genetic architecture for components of fitness. Mamm Genome 2024; 35:657-672. [PMID: 39191871 DOI: 10.1007/s00335-024-10064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
This study investigates the genomic landscape of Sika deer populations, emphasizing the detection and characterization of runs of homozygosity (ROH) and their contribution towards components of fitness. Using 85,001 high-confidence SNPs, the investigation into ROH distribution unveiled nuanced patterns of autozygosity across individuals especially in 2 out of the 8 farms, exhibiting elevated ROH levels and mean genome coverage under ROH segments. The prevalence of shorter ROH segments (0.5-4 Mb) suggests historical relatedness and potential selective pressures within these populations. Intriguingly, despite observed variations in ROH profiles, the overall genomic inbreeding coefficient (FROH) remained relatively low across all farms, indicating a discernible degree of genetic exchange and effective mitigation of inbreeding within the studied Sika deer populations. Consensus ROH (cROH) were found to harbor genes for important functions viz., EGFLAM gene which is involved in the vision function of the eye, SKP2 gene which regulates cell cycle, CAPSL involved in adipogenesis, SPEF2 which is essential for sperm flagellar assembly, DCLK3 involved in the heat stress. This first ever study on ROH in Sika deer, to shed light on the adaptive role of genes in these homozygous regions. The insights garnered from this study have broader implications in the management of genetic diversity in this vulnerable species.
Collapse
Affiliation(s)
- Rangasai Chandra Goli
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Karan Mahar
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Peela Sai Manohar
- ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Kiyevi G Chishi
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | | | - Sonu Choudhary
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Pallavi Rathi
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Chandana Sree Chinnareddyvari
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Pala Haritha
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Muralidhar Metta
- College of Veterinary Science, SVVU, Garividi, Andhra Pradesh, India
| | - Mahantesh Shetkar
- College of Veterinary Sciences and Animal Husbandry, DUVASU, Mathura, Uttar Pradesh, India
| | - Amit Kumar
- ICAR- Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| | - Chethan Patil N D
- Department of Agricultural Economics & Extension, Lovely Professional University, Punjab, India
| | - Vidyasagar
- Veterinary College, KVAFSU, Bidar, Karnataka, India
| | - Nidhi Sukhija
- CSB-Central Tasar Research and Training Institute, Ranchi, Jharkhand, India.
| | - K K Kanaka
- ICAR- Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| |
Collapse
|
3
|
Zhao J, Chen M, Luo Z, Cui P, Ren P, Wang Y. Strand-Specific RNA Sequencing Reveals Gene Expression Patterns in F1 Chick Breast Muscle and Liver after Hatching. Animals (Basel) 2024; 14:1335. [PMID: 38731340 PMCID: PMC11083249 DOI: 10.3390/ani14091335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Heterosis refers to the phenomenon where hybrids exhibit superior performance compared to the parental phenotypes and has been widely utilized in crossbreeding programs for animals and crops, yet the molecular mechanisms underlying this phenomenon remain enigmatic. A better understanding of the gene expression patterns in post-hatch chickens is very important for exploring the genetic basis underlying economically important traits in the crossbreeding of chickens. In this study, breast muscle and liver tissues (n = 36) from full-sib F1 birds and their parental pure lines were selected to identify gene expression patterns and differentially expressed genes (DEGs) at 28 days of age by strand-specific RNA sequencing (ssRNA-seq). This study indicates that additivity is the predominant gene expression pattern in the F1 chicken post-hatch breast muscle (80.6% genes with additivity) and liver (94.2% genes with additivity). In breast muscle, Gene Ontology (GO) enrichment analysis revealed that a total of 11 biological process (BP) terms closely associated with growth and development were annotated in the identified DEG sets and non-additive gene sets, including STAT5A, TGFB2, FGF1, IGF2, DMA, FGF16, FGF12, STAC3, GSK3A, and GRB2. Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation presented that a total of six growth- and development-related pathways were identified, involving key genes such as SLC27A4, GLUL, TGFB2, COX17, and GSK3A, including the PPAR signaling pathway, TGF-beta signaling pathway, and mTOR signaling pathway. Our results may provide a theoretical basis for crossbreeding in domestic animals.
Collapse
Affiliation(s)
- Jianfei Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (J.Z.); (M.C.); (Z.L.); (P.C.)
| | - Meiying Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (J.Z.); (M.C.); (Z.L.); (P.C.)
| | - Zhengwei Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (J.Z.); (M.C.); (Z.L.); (P.C.)
| | - Pengxin Cui
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (J.Z.); (M.C.); (Z.L.); (P.C.)
| | - Peng Ren
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (J.Z.); (M.C.); (Z.L.); (P.C.)
| | - Ye Wang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| |
Collapse
|
4
|
Sun Y, Wang Y, Li Y, Li H, Wang C, Zhang Q. Comparative transcriptome and proteome analyses of the longissimus dorsi muscle for explaining the difference between donkey meat and other meats. Anim Biotechnol 2023; 34:3085-3098. [PMID: 36271875 DOI: 10.1080/10495398.2022.2134883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Domestic donkeys (Equus asinus) have been maintained mainly for service purposes in the past. Nowadays, there is an increasing interest in donkey milk and meat production in several countries, including China. Donkey meat is highly consumed because of its nutritional value and unique flavor. However, genomic studies on donkey meat are limited. Therefore, in this study, we aimed to examine the molecular difference of longissimus dorsi muscles of donkey, cow, and goat. RNA sequencing and Proteome sequencing technology were used to analyze the transcriptome and proteome of the longissimus dorsi muscle of donkey, cow, and goat. A total of 1338 and 1780 differentially expressed genes (DEGs) were identified in donkey meat compared with that in cow and goat meat, respectively. Most of the DEGs were involved in biological processes, including small GTPase-mediated signal transduction, protein ubiquitination, protein glycosylation, and MAP kinase tyrosine/serine/threonine phosphatase activity. Additionally, 764 and 1024 differentially expressed proteins (DEPs) were identified in cow vs. donkey, and goat vs. donkey, respectively; these DEPs were mainly involved in metabolism. Genetic variation and regulatory factors can combine as a database to provide more valuable molecular information for further analysis.
Collapse
Affiliation(s)
- Yan Sun
- Shandong Provincial Key Laboratory of Animal Biotochnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Yonghui Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Yuhua Li
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Haijing Li
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotochnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
5
|
Navarro-Martínez A, Vicente-García C, Carvajal JJ. NMJ-related diseases beyond the congenital myasthenic syndromes. Front Cell Dev Biol 2023; 11:1216726. [PMID: 37601107 PMCID: PMC10436495 DOI: 10.3389/fcell.2023.1216726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Neuromuscular junctions (NMJs) are a special type of chemical synapse that transmits electrical stimuli from motor neurons (MNs) to their innervating skeletal muscle to induce a motor response. They are an ideal model for the study of synapses, given their manageable size and easy accessibility. Alterations in their morphology or function lead to neuromuscular disorders, such as the congenital myasthenic syndromes, which are caused by mutations in proteins located in the NMJ. In this review, we highlight novel potential candidate genes that may cause or modify NMJs-related pathologies in humans by exploring the phenotypes of hundreds of mouse models available in the literature. We also underscore the fact that NMJs may differ between species, muscles or even sexes. Hence the importance of choosing a good model organism for the study of NMJ-related diseases: only taking into account the specific features of the mammalian NMJ, experimental results would be efficiently translated to the clinic.
Collapse
Affiliation(s)
| | - Cristina Vicente-García
- Centro Andaluz de Biología del Desarrollo, CSIC-UPO-JA, Universidad Pablo de Olavide, Sevilla, Spain
| | | |
Collapse
|
6
|
Murayama T, Kurebayashi N, Numaga-Tomita T, Kobayashi T, Okazaki S, Yamashiro K, Nakada T, Mori S, Ishida R, Kagechika H, Yamada M, Sakurai T. A reconstituted depolarization-induced Ca2+ release platform for validation of skeletal muscle disease mutations and drug discovery. J Gen Physiol 2022; 154:213630. [PMID: 36318155 PMCID: PMC9629852 DOI: 10.1085/jgp.202213230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/06/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
In skeletal muscle excitation-contraction (E-C) coupling, depolarization of the plasma membrane triggers Ca2+ release from the sarcoplasmic reticulum (SR), referred to as depolarization-induced Ca2+ release (DICR). DICR occurs through the type 1 ryanodine receptor (RyR1), which physically interacts with the dihydropyridine receptor Cav1.1 subunit in specific machinery formed with additional essential components including β1a, Stac3 adaptor protein, and junctophilins. Exome sequencing has accelerated the discovery of many novel mutations in genes encoding DICR machinery in various skeletal muscle diseases. However, functional validation is time-consuming because it must be performed in a skeletal muscle environment. In this study, we established a platform of the reconstituted DICR in HEK293 cells. The essential components were effectively transduced into HEK293 cells expressing RyR1 using baculovirus vectors, and Ca2+ release was quantitatively measured with R-CEPIA1er, a fluorescent ER Ca2+ indicator, without contaminant of extracellular Ca2+ influx. In these cells, [K+]-dependent Ca2+ release was triggered by chemical depolarization with the aid of inward rectifying potassium channel, indicating a successful reconstitution of DICR. Using the platform, we evaluated several Cav1.1 mutations that are implicated in malignant hyperthermia and myopathy. We also tested several RyR1 inhibitors; whereas dantrolene and Cpd1 inhibited DICR, procaine had no effect. Furthermore, twitch potentiators such as perchlorate and thiocyanate shifted the voltage dependence of DICR to more negative potentials without affecting Ca2+-induced Ca2+ release. These results well reproduced the findings with the muscle fibers and the cultured myotubes. Since the procedure is simple and reproducible, the reconstituted DICR platform will be highly useful for the validation of mutations and drug discovery for skeletal muscle diseases.
Collapse
Affiliation(s)
- Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Nagomi Kurebayashi
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takuro Numaga-Tomita
- Department of Molecular Pharmacology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takuya Kobayashi
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Satoru Okazaki
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kyosuke Yamashiro
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tsutomu Nakada
- Department of Molecular Pharmacology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shuichi Mori
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryosuke Ishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mitsuhiko Yamada
- Department of Molecular Pharmacology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takashi Sakurai
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Zhang J, Wen H, Qi X, Zhang Y, Dong X, Zhang K, Zhang M, Li J, Li Y. Morphological and Molecular Responses of Lateolabrax maculatus Skeletal Muscle Cells to Different Temperatures. Int J Mol Sci 2022; 23:ijms23179812. [PMID: 36077203 PMCID: PMC9456278 DOI: 10.3390/ijms23179812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
Temperature strongly modulates muscle development and growth in ectothermic teleosts; however, the underlying mechanisms remain largely unknown. In this study, primary cultures of skeletal muscle cells of Lateolabrax maculatus were conducted and reared at different temperatures (21, 25, and 28 °C) in both the proliferation and differentiation stages. CCK-8, EdU, wound scratch and nuclear fusion index assays revealed that the proliferation, myogenic differentiation, and migration processes of skeletal muscle cells were significantly accelerated as the temperature raises. Based on the GO, GSEA, and WGCNA, higher temperature (28 °C) induced genes involved in HSF1 activation, DNA replication, and ECM organization processes at the proliferation stage, as well as HSF1 activation, calcium activity regulation, myogenic differentiation, and myoblast fusion, and sarcomere assembly processes at the differentiation stage. In contrast, lower temperature (21 °C) increased the expression levels of genes associated with DNA damage, DNA repair and apoptosis processes at the proliferation stage, and cytokine signaling and neutrophil degranulation processes at the differentiation stage. Additionally, we screened several hub genes regulating myogenesis processes. Our results could facilitate the understanding of the regulatory mechanism of temperature on fish skeletal muscle growth and further contribute to utilizing rational management strategies and promoting organism growth and development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yun Li
- Correspondence: ; Tel.: +86-0532-82-031-792
| |
Collapse
|
8
|
Tuluc P, Theiner T, Jacobo-Piqueras N, Geisler SM. Role of High Voltage-Gated Ca 2+ Channel Subunits in Pancreatic β-Cell Insulin Release. From Structure to Function. Cells 2021; 10:2004. [PMID: 34440773 PMCID: PMC8393260 DOI: 10.3390/cells10082004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
The pancreatic islets of Langerhans secrete several hormones critical for glucose homeostasis. The β-cells, the major cellular component of the pancreatic islets, secrete insulin, the only hormone capable of lowering the plasma glucose concentration. The counter-regulatory hormone glucagon is secreted by the α-cells while δ-cells secrete somatostatin that via paracrine mechanisms regulates the α- and β-cell activity. These three peptide hormones are packed into secretory granules that are released through exocytosis following a local increase in intracellular Ca2+ concentration. The high voltage-gated Ca2+ channels (HVCCs) occupy a central role in pancreatic hormone release both as a source of Ca2+ required for excitation-secretion coupling as well as a scaffold for the release machinery. HVCCs are multi-protein complexes composed of the main pore-forming transmembrane α1 and the auxiliary intracellular β, extracellular α2δ, and transmembrane γ subunits. Here, we review the current understanding regarding the role of all HVCC subunits expressed in pancreatic β-cell on electrical activity, excitation-secretion coupling, and β-cell mass. The evidence we review was obtained from many seminal studies employing pharmacological approaches as well as genetically modified mouse models. The significance for diabetes in humans is discussed in the context of genetic variations in the genes encoding for the HVCC subunits.
Collapse
Affiliation(s)
- Petronel Tuluc
- Centre for Molecular Biosciences, Department of Pharmacology and Toxicology, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (T.T.); (N.J.-P.); (S.M.G.)
| | | | | | | |
Collapse
|
9
|
Rufenach B, Van Petegem F. Structure and function of STAC proteins: Calcium channel modulators and critical components of muscle excitation-contraction coupling. J Biol Chem 2021; 297:100874. [PMID: 34129875 PMCID: PMC8258685 DOI: 10.1016/j.jbc.2021.100874] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 12/26/2022] Open
Abstract
In skeletal muscle tissue, an intriguing mechanical coupling exists between two ion channels from different membranes: the L-type voltage-gated calcium channel (CaV1.1), located in the plasma membrane, and ryanodine receptor 1 (RyR1) located in the sarcoplasmic reticulum membrane. Excitable cells rely on Cavs to initiate Ca2+ entry in response to action potentials. RyRs can amplify this signal by releasing Ca2+ from internal stores. Although this process can be mediated through Ca2+ as a messenger, an overwhelming amount of evidence suggests that RyR1 has recruited CaV1.1 directly as its voltage sensor. The exact mechanisms that underlie this coupling have been enigmatic, but a recent wave of reports have illuminated the coupling protein STAC3 as a critical player. Without STAC3, the mechanical coupling between Cav1.1 and RyR1 is lost, and muscles fail to contract. Various sequence variants of this protein have been linked to congenital myopathy. Other STAC isoforms are expressed in the brain and may serve as regulators of L-type CaVs. Despite the short length of STACs, several points of contacts have been proposed between them and CaVs. However, it is currently unclear whether STAC3 also forms direct interactions with RyR1, and whether this modulates RyR1 function. In this review, we discuss the 3D architecture of STAC proteins, the biochemical evidence for their interactions, the relevance of these connections for functional modulation, and their involvement in myopathy.
Collapse
Affiliation(s)
- Britany Rufenach
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
10
|
Testicular STAC3 regulates Leydig cell steroidogenesis through potentiating mitochondrial membrane potential and StAR processing. Cell Tissue Res 2021; 384:195-209. [PMID: 33409656 PMCID: PMC8016781 DOI: 10.1007/s00441-020-03312-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 09/24/2020] [Indexed: 12/11/2022]
Abstract
SH3 and cysteine-rich protein 3 (STAC3), a small adapter protein originally identified as a core component of excitation–contraction coupling machinery, regulates the voltage-induced Ca2+ release in skeletal muscle. However, the possibility of additional, as yet unknown, non-muscle effects of STAC3 cannot be ruled out. Herein, we provide the evidence for the expression and functional involvement of STAC3 in spermatogenesis. STAC3 expression was localized in the testicular interstitium of rodent and human testes. By using the cytotoxic drug ethylene dimethane sulfonate (EDS), STAC3 expression was observed to be decreased sharply in rat testis after selective withdrawal of Leydig cells (LCs), and reappeared immediately after LCs repopulation, indicating that testicular expression of STAC3 mainly stems from LCs. From a functional standpoint, in vivo lentiviral vector–mediated suppression of STAC3 resulted in a significant decrease in testosterone production, and thereafter caused impairment of male fertility by inducing oligozoospermia and asthenospermia. The indispensible involvement of STAC3 in testicular steroidogenesis was validated using the in vivo knockdown model with isolated primary LCs as well as in vitro experiments with primary LCs. By generating the TM3Stac3−/− cells, we further revealed that STAC3 depletion attenuated mitochondrial membrane potential and StAR processing in db-cAMP-stimulated LCs. Thus, the inhibitory effect of STAC3 deficiency on testicular steroidogenesis may be ascribed to a disturbed mitochondrial homeostasis. Collectively, the present results strongly suggest that STAC3 may function as a novel regulator linking mitochondrial homeostasis and testicular steroidogenesis in LCs. Our data underscore an unexpected reproductive facet of this muscle-derived factor.
Collapse
|
11
|
Ravenscroft G, Clayton JS, Faiz F, Sivadorai P, Milnes D, Cincotta R, Moon P, Kamien B, Edwards M, Delatycki M, Lamont PJ, Chan SH, Colley A, Ma A, Collins F, Hennington L, Zhao T, McGillivray G, Ghedia S, Chao K, O'Donnell-Luria A, Laing NG, Davis MR. Neurogenetic fetal akinesia and arthrogryposis: genetics, expanding genotype-phenotypes and functional genomics. J Med Genet 2020; 58:609-618. [PMID: 33060286 DOI: 10.1136/jmedgenet-2020-106901] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/16/2020] [Accepted: 07/05/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Fetal akinesia and arthrogryposis are clinically and genetically heterogeneous and have traditionally been refractive to genetic diagnosis. The widespread availability of affordable genome-wide sequencing has facilitated accurate genetic diagnosis and gene discovery in these conditions. METHODS We performed next generation sequencing (NGS) in 190 probands with a diagnosis of arthrogryposis multiplex congenita, distal arthrogryposis, fetal akinesia deformation sequence or multiple pterygium syndrome. This sequencing was a combination of bespoke neurogenetic disease gene panels and whole exome sequencing. Only class 4 and 5 variants were reported, except for two cases where the identified variants of unknown significance (VUS) are most likely to be causative for the observed phenotype. Co-segregation studies and confirmation of variants identified by NGS were performed where possible. Functional genomics was performed as required. RESULTS Of the 190 probands, 81 received an accurate genetic diagnosis. All except two of these cases harboured class 4 and/or 5 variants based on the American College of Medical Genetics and Genomics guidelines. We identified phenotypic expansions associated with CACNA1S, CHRNB1, GMPPB and STAC3. We describe a total of 50 novel variants, including a novel missense variant in the recently identified gene for arthrogryposis with brain malformations-SMPD4. CONCLUSIONS Comprehensive gene panels give a diagnosis for a substantial proportion (42%) of fetal akinesia and arthrogryposis cases, even in an unselected cohort. Recently identified genes account for a relatively large proportion, 32%, of the diagnoses. Diagnostic-research collaboration was critical to the diagnosis and variant interpretation in many cases, facilitated genotype-phenotype expansions and reclassified VUS through functional genomics.
Collapse
Affiliation(s)
- Gina Ravenscroft
- Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia .,Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Joshua S Clayton
- Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia.,Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Fathimath Faiz
- PathWest Diagnostic Genomics, Nedlands, Western Australia, Australia
| | - Padma Sivadorai
- PathWest Diagnostic Genomics, Nedlands, Western Australia, Australia
| | - Di Milnes
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Rob Cincotta
- Maternal and Fetal Medicine, Mater Mothers' Hospital, Brisbane, Queensland, Australia
| | - Phillip Moon
- Department of Obstetrics, Redland Hospital, Cleveland, Queensland, Australia
| | - Ben Kamien
- Genetic Services WA, Women and Newborn Heath Service, Subiaco, Western Australia, Australia.,Hunter Genetics, Hunter New England Health, New Lambton, New South Wales, Australia
| | - Matthew Edwards
- Hunter Genetics, Hunter New England Health, New Lambton, New South Wales, Australia
| | - Martin Delatycki
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Phillipa J Lamont
- Neurology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Sophelia Hs Chan
- Paediatric Neurology Division, Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong
| | - Alison Colley
- Clinical Genetics Services SWSLHD, Liverpool Hospital, Liverpool, New South Wales, Australia
| | - Alan Ma
- Department of Clinical Genetics, Children's Hospital Westmead, Sydney, New South Wales, Australia
| | - Felicity Collins
- Clinical Genetics Department, Western Sydney Genetics Program, Children's Hospitalat Westmead, Westmead, New South Wales, Australia
| | - Lucinda Hennington
- Mercy Health, Mercy Hospital for Women, Heidelberg, Victoria, Australia.,Austin Health, Melbourne, Victoria, Australia.,Alfred Health, Melbourne, Victoria, Australia
| | - Teresa Zhao
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - George McGillivray
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Sondhya Ghedia
- Department of Clinical Genetics, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Katherine Chao
- Center for Mendelian Genomics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Anne O'Donnell-Luria
- Center for Mendelian Genomics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Nigel G Laing
- Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia.,Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, Western Australia, Australia.,PathWest Diagnostic Genomics, Nedlands, Western Australia, Australia
| | - Mark R Davis
- PathWest Diagnostic Genomics, Nedlands, Western Australia, Australia
| |
Collapse
|
12
|
Yin H, Zhao J, Han S, Cui C, Wang Y, Li D, Zhu Q. Molecular characterization, tissue distribution, and functional analysis of the STAC3 gene in chicken. 3 Biotech 2020; 10:171. [PMID: 32206505 DOI: 10.1007/s13205-020-2161-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/02/2020] [Indexed: 11/29/2022] Open
Abstract
The Src homology 3 and cysteine-rich domain 3 gene (STAC3) encodes a protein containing both a cysteine-rich domain and two Src (sarcoma) homology 3 domains (SH3). STAC3 is specifically expressed in skeletal muscle and plays an important role in skeletal muscle development, but the explicit sequence and function of chicken SATC3 remain unknown. In the current study, we found the full-length chicken STAC3 cDNA to be 1383 bp long, with a 1092 bp open reading frame that harbors one cysteine-rich C1 domain and two SH3 domains. Tissue distribution analysis reveals chicken STAC3 mRNA only in skeletal muscle among 12 chicken tissues examined by reverse transcription PCR. Both cholecystokinin octapeptide analysis and a 5-ethynyl-2'-deoxyuridine assay suggest that neither STAC3 overexpression nor knockdown has any effect on the proliferation of chicken skeletal muscle satellite cells. However, STAC3 knockdown significantly increases the mRNA expression of MyoG, MyoD, Mb, and MyHC, and the protein abundance of MyHC and MyoG, whereas the opposite result is found in STAC3 overexpressed cells. We conclude that the STAC3 gene is expressed specifically in skeletal muscle and is a negative regulator of skeletal muscle satellite cell differentiation in chicken.
Collapse
Affiliation(s)
- Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 Sichuan People's Republic of China
| | - Jing Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 Sichuan People's Republic of China
| | - Shunshun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 Sichuan People's Republic of China
| | - Can Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 Sichuan People's Republic of China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 Sichuan People's Republic of China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 Sichuan People's Republic of China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 Sichuan People's Republic of China
| |
Collapse
|
13
|
Shishmarev D. Excitation-contraction coupling in skeletal muscle: recent progress and unanswered questions. Biophys Rev 2020; 12:143-153. [PMID: 31950344 DOI: 10.1007/s12551-020-00610-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Excitation-contraction coupling (ECC) is a physiological process that links excitation of muscles by the nervous system to their mechanical contraction. In skeletal muscle, ECC is initiated with an action potential, generated by the somatic nervous system, which causes a depolarisation of the muscle fibre membrane (sarcolemma). This leads to a rapid change in the transmembrane potential, which is detected by the voltage-gated Ca2+ channel dihydropyridine receptor (DHPR) embedded in the sarcolemma. DHPR transmits the contractile signal to another Ca2+ channel, ryanodine receptor (RyR1), embedded in the membrane of the sarcoplasmic reticulum (SR), which releases a large amount of Ca2+ ions from the SR that initiate muscle contraction. Despite the fundamental role of ECC in skeletal muscle function of all vertebrate species, the molecular mechanism underpinning the communication between the two key proteins involved in the process (DHPR and RyR1) is still largely unknown. The goal of this work is to review the recent progress in our understanding of ECC in skeletal muscle from the point of view of the structure and interactions of proteins involved in the process, and to highlight the unanswered questions in the field.
Collapse
Affiliation(s)
- Dmitry Shishmarev
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
14
|
Zaharieva IT, Sarkozy A, Munot P, Manzur A, O'Grady G, Rendu J, Malfatti E, Amthor H, Servais L, Urtizberea JA, Neto OA, Zanoteli E, Donkervoort S, Taylor J, Dixon J, Poke G, Foley AR, Holmes C, Williams G, Holder M, Yum S, Medne L, Quijano-Roy S, Romero NB, Fauré J, Feng L, Bastaki L, Davis MR, Phadke R, Sewry CA, Bönnemann CG, Jungbluth H, Bachmann C, Treves S, Muntoni F. STAC3 variants cause a congenital myopathy with distinctive dysmorphic features and malignant hyperthermia susceptibility. Hum Mutat 2018; 39:1980-1994. [PMID: 30168660 DOI: 10.1002/humu.23635] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/27/2018] [Accepted: 08/28/2018] [Indexed: 12/14/2022]
Abstract
SH3 and cysteine-rich domain-containing protein 3 (STAC3) is an essential component of the skeletal muscle excitation-contraction coupling (ECC) machinery, though its role and function are not yet completely understood. Here, we report 18 patients carrying a homozygous p.(Trp284Ser) STAC3 variant in addition to a patient compound heterozygous for the p.(Trp284Ser) and a novel splice site change (c.997-1G > T). Clinical severity ranged from prenatal onset with severe features at birth, to a milder and slowly progressive congenital myopathy phenotype. A malignant hyperthermia (MH)-like reaction had occurred in several patients. The functional analysis demonstrated impaired ECC. In particular, KCl-induced membrane depolarization resulted in significantly reduced sarcoplasmic reticulum Ca2+ release. Co-immunoprecipitation of STAC3 with CaV 1.1 in patients and control muscle samples showed that the protein interaction between STAC3 and CaV 1.1 was not significantly affected by the STAC3 variants. This study demonstrates that STAC3 gene analysis should be included in the diagnostic work up of patients of any ethnicity presenting with congenital myopathy, in particular if a history of MH-like episodes is reported. While the precise pathomechanism remains to be elucidated, our functional characterization of STAC3 variants revealed that defective ECC is not a result of CaV 1.1 sarcolemma mislocalization or impaired STAC3-CaV 1.1 interaction.
Collapse
Affiliation(s)
- Irina T Zaharieva
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Anna Sarkozy
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,Great Ormond Street Hospital, London, UK
| | - Pinki Munot
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,Great Ormond Street Hospital, London, UK
| | - Adnan Manzur
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,Great Ormond Street Hospital, London, UK
| | - Gina O'Grady
- Institute of Neuroscience and Muscle Research, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Paediatrics and Child Health Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - John Rendu
- UFR de Médecine, Centre Hospitalier Universitaire Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
| | - Eduardo Malfatti
- Neuromuscular Morphology Unit and Neuromuscular Pathology Reference Center Paris-Est, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France
| | - Helge Amthor
- UFR des sciences de la santé, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France.,Service de Pédiatrie, Centre Hospitalier Universitaire Raymond Poincaré, Garches, France
| | | | - J Andoni Urtizberea
- Centre de Compétence Neuromusculaire, FILNEMUS, Hôpital Marin, Hendaye, France
| | - Osorio Abath Neto
- Departamento de Neurologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil.,Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institutes of Health, Bethesda, Maryland, USA
| | - Edmar Zanoteli
- Departamento de Neurologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institutes of Health, Bethesda, Maryland, USA
| | - Juliet Taylor
- Genetic Health Service New Zealand, Auckland, New Zealand
| | - Joanne Dixon
- Genetic Health Service New Zealand, Christchurch, New Zealand
| | - Gemma Poke
- Genetic Health Service New Zealand, Wellington, New Zealand
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - Muriel Holder
- Department of Clinical Genetics, Guy's Hospital, London, UK
| | - Sabrina Yum
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Livija Medne
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Susana Quijano-Roy
- Service de Pédiatrie, Centre Hospitalier Universitaire Raymond Poincaré, Garches, France.,Centre de Référence Neuromusculaire GNMH, FILNEMUS, Université de Versailles, Versailles, France
| | - Norma B Romero
- Neuromuscular Morphology Unit and Neuromuscular Pathology Reference Center Paris-Est, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France
| | - Julien Fauré
- UFR de Médecine, Centre Hospitalier Universitaire Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
| | - Lucy Feng
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Laila Bastaki
- Kuwait Medical Genetics Centre, Maternity Hospital, Kuwait City, Kuwait
| | - Mark R Davis
- Department of Diagnostic Genomics, Pathwest Laboratory Medicine, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Rahul Phadke
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,Great Ormond Street Hospital, London, UK
| | - Caroline A Sewry
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,Wolfson Centre for Inherited Neuromuscular Diseases, RJAH Orthopaedic Hospital, Oswestry, UK
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institutes of Health, Bethesda, Maryland, USA
| | - Heinz Jungbluth
- Randall Division for Cell and Molecular Biophysics, Muscle Signaling Section, King's College London, London, UK.,Department of Basic and Clinical Neuroscience, IoPPN, King's College London, London, UK.,Department of Anesthesia and Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Christoph Bachmann
- Department of Anesthesia and Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Susan Treves
- Department of Anesthesia and Biomedicine, University Hospital Basel, Basel, Switzerland.,Department of Life Sciences, University of Ferrara, Ferrara, Italy
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,Great Ormond Street Hospital, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| |
Collapse
|
15
|
Stac Proteins Suppress Ca 2+-Dependent Inactivation of Neuronal l-type Ca 2+ Channels. J Neurosci 2018; 38:9215-9227. [PMID: 30201773 DOI: 10.1523/jneurosci.0695-18.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/30/2018] [Accepted: 09/01/2018] [Indexed: 01/28/2023] Open
Abstract
Stac protein (named for its SH3- and cysteine-rich domains) was first identified in brain 20 years ago and is currently known to have three isoforms. Stac2, Stac1, and Stac3 transcripts are found at high, modest, and very low levels, respectively, in the cerebellum and forebrain, but their neuronal functions have been little investigated. Here, we tested the effects of Stac proteins on neuronal, high-voltage-activated Ca2+ channels. Overexpression of the three Stac isoforms eliminated Ca2+-dependent inactivation (CDI) of l-type current in rat neonatal hippocampal neurons (sex unknown), but not CDI of non-l-type current. Using heterologous expression in tsA201 cells (together with β and α2-δ1 auxiliary subunits), we found that CDI for CaV1.2 and CaV1.3 (the predominant, neuronal l-type Ca2+ channels) was suppressed by all three Stac isoforms, whereas CDI for the P/Q channel, CaV2.1, was not. For CaV1.2, the inhibition of CDI by the Stac proteins appeared to involve their direct interaction with the channel's C terminus. Within the Stac proteins, a weakly conserved segment containing ∼100 residues and linking the structurally conserved PKC C1 and SH3_1 domains was sufficient to fully suppress CDI. The presence of CDI for l-type current in control neonatal neurons raised the possibility that endogenous Stac levels are low in these neurons and Western blotting indicated that the expression of Stac2 was substantially increased in adult forebrain and cerebellum compared with neonate. Together, our results indicate that one likely function of neuronal Stac proteins is to tune Ca2+ entry via neuronal l-type channels.SIGNIFICANCE STATEMENT Stac protein, first identified 20 years ago in brain, has recently been found to be essential for proper trafficking and function of the skeletal muscle l-type Ca2+ channel and is the site of mutations causing a severe, inherited human myopathy. In neurons, however, functions for Stac protein have remained unexplored. Here, we report that one likely function of neuronal Stac proteins is tuning Ca2+ entry via l-type, but not that via non-l-type, Ca2+ channels. Moreover, there is a large postnatal increase in protein levels of the major neuronal isoform (Stac2) in forebrain and cerebellum, which could provide developmental regulation of l-type channel Ca2+ signaling in these brain regions.
Collapse
|
16
|
Hsu IU, Linsley JW, Varineau JE, Shafer OT, Kuwada JY. Dstac is required for normal circadian activity rhythms in Drosophila. Chronobiol Int 2018; 35:1016-1026. [PMID: 29621409 DOI: 10.1080/07420528.2018.1454937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The genetic, molecular and neuronal mechanism underlying circadian activity rhythms is well characterized in the brain of Drosophila. The small ventrolateral neurons (s-LNVs) and pigment dispersing factor (PDF) expressed by them are especially important for regulating circadian locomotion. Here we describe a novel gene, Dstac, which is similar to the stac genes found in vertebrates that encode adaptor proteins, which bind and regulate L-type voltage-gated Ca2+ channels (CaChs). We show that Dstac is coexpressed with PDF by the s-LNVs and regulates circadian activity. Furthermore, the L-type CaCh, Dmca1D, appears to be expressed by the s-LNVs. Since vertebrate Stac3 regulates an L-type CaCh we hypothesize that Dstac regulates Dmca1D in s-LNVs and circadian activity.
Collapse
Affiliation(s)
- I-Uen Hsu
- a Department of Molecular, Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI , USA
| | - Jeremy W Linsley
- b Cell and Molecular Biology Program , University of Michigan , Ann Arbor , MI , USA
| | - Jade E Varineau
- a Department of Molecular, Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI , USA
| | - Orie T Shafer
- a Department of Molecular, Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI , USA
| | - John Y Kuwada
- a Department of Molecular, Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI , USA.,b Cell and Molecular Biology Program , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
17
|
STAC2 negatively regulates osteoclast formation by targeting the RANK signaling complex. Cell Death Differ 2018; 25:1364-1374. [PMID: 29348675 DOI: 10.1038/s41418-017-0048-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 11/08/2022] Open
Abstract
The receptor activator of nuclear factor-κB (RANK) protein activates various protein kinase signaling cascades, including those involving NF-κB, mitogen-activated protein kinase (MAPK), and Bruton tyrosine kinase (Btk)/tyrosine-protein kinase Tec. However, the mechanism underlying the negative regulation of RANK by downstream signaling molecules remains unclear. Here, we report that Src homology 3 domain and cysteine-rich domain-containing protein 2 (STAC2) is a novel RANK ligand-inducible protein that negatively regulates RANK-mediated osteoclast formation. STAC2 physically interacts with RANK and inhibits the formation of the RANK signaling complex, which contains Grb-2-associated binder 2 (Gab2) and phospholipase Cγ2 (PLCγ2), thus leading to the suppression of RANK-mediated NF-κB and MAPK activation. Furthermore, STAC2 overexpression limits Btk/Tec-mediated PLCγ2 phosphorylation via the interaction between STAC2 and Btk/Tec. Taken together, our results reveal a novel mechanism whereby RANK signaling is restricted by its physical interaction with STAC2.
Collapse
|
18
|
Structural insights into binding of STAC proteins to voltage-gated calcium channels. Proc Natl Acad Sci U S A 2017; 114:E9520-E9528. [PMID: 29078335 PMCID: PMC5692558 DOI: 10.1073/pnas.1708852114] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Excitation-contraction (EC) coupling in skeletal muscle requires functional and mechanical coupling between L-type voltage-gated calcium channels (CaV1.1) and the ryanodine receptor (RyR1). Recently, STAC3 was identified as an essential protein for EC coupling and is part of a group of three proteins that can bind and modulate L-type voltage-gated calcium channels. Here, we report crystal structures of tandem-SH3 domains of different STAC isoforms up to 1.2-Å resolution. These form a rigid interaction through a conserved interdomain interface. We identify the linker connecting transmembrane repeats II and III in two different CaV isoforms as a binding site for the SH3 domains and report a crystal structure of the complex with the STAC2 isoform. The interaction site includes the location for a disease variant in STAC3 that has been linked to Native American myopathy (NAM). Introducing the mutation does not cause misfolding of the SH3 domains, but abolishes the interaction. Disruption of the interaction via mutations in the II-III loop perturbs skeletal muscle EC coupling, but preserves the ability of STAC3 to slow down inactivation of CaV1.2.
Collapse
|
19
|
Telegrafi A, Webb BD, Robbins SM, Speck-Martins CE, FitzPatrick D, Fleming L, Redett R, Dufke A, Houge G, van Harssel JJT, Verloes A, Robles A, Manoli I, Engle EC, Jabs EW, Valle D, Carey J, Hoover-Fong JE, Sobreira NLM. Identification of STAC3 variants in non-Native American families with overlapping features of Carey-Fineman-Ziter syndrome and Moebius syndrome. Am J Med Genet A 2017; 173:2763-2771. [PMID: 28777491 DOI: 10.1002/ajmg.a.38375] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/26/2017] [Accepted: 07/01/2017] [Indexed: 11/07/2022]
Abstract
Horstick et al. (2013) previously reported a homozygous p.Trp284Ser variant in STAC3 as the cause of Native American myopathy (NAM) in 5 Lumbee Native American families with congenital hypotonia and weakness, cleft palate, short stature, ptosis, kyphoscoliosis, talipes deformities, and susceptibility to malignant hyperthermia (MH). Here we present two non-Native American families, who were found to have STAC3 pathogenic variants. The first proband and her affected older sister are from a consanguineous Qatari family with a suspected clinical diagnosis of Carey-Fineman-Ziter syndrome (CFZS) based on features of hypotonia, myopathic facies with generalized weakness, ptosis, normal extraocular movements, cleft palate, growth delay, and kyphoscoliosis. We identified the homozygous c.851G>C;p.Trp284Ser variant in STAC3 in both sisters. The second proband and his affected sister are from a non-consanguineous, Puerto Rican family who was evaluated for a possible diagnosis of Moebius syndrome (MBS). His features included facial and generalized weakness, minimal limitation of horizontal gaze, cleft palate, and hypotonia, and he has a history of MH. The siblings were identified to be compound heterozygous for STAC3 variants c.851G>C;p.Trp284Ser and c.763_766delCTCT;p.Leu255IlefsX58. Given the phenotypic overlap of individuals with CFZS, MBS, and NAM, we screened STAC3 in 12 individuals diagnosed with CFZS and in 50 individuals diagnosed with MBS or a congenital facial weakness disorder. We did not identify any rare coding variants in STAC3. NAM should be considered in patients presenting with facial and generalized weakness, normal or mildly abnormal extraocular movement, hypotonia, cleft palate, and scoliosis, particularly if there is a history of MH.
Collapse
Affiliation(s)
| | - Bryn D Webb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sarah M Robbins
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - David FitzPatrick
- Human Genetics Unit, Medical and Developmental Genetics, University of Edinburgh Western General Hospital, Edinburgh, United Kingdom
| | - Leah Fleming
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Richard Redett
- Department of Plastic & Reconstructive Surgery, Johns Hopkins Hospital University School of Medicine, Baltimore, Maryland
| | - Andreas Dufke
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Rare Disease Center, University of Tübingen, Tübingen, Germany
| | - Gunnar Houge
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Jeske J T van Harssel
- Department of Clinical Genetics, University Medical Center, University of Utrecht, Utrecht, The Netherlands
| | - Alain Verloes
- Department of Genetics-Hospital Robert DEBRE, Paris, France
| | - Angela Robles
- Dr. Angela Robles Pediatrics Private Practice, San Sebastian, Puerto Rico
| | - Irini Manoli
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Elizabeth C Engle
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.,Howard Hughes Medical Institution, Chevy Chase, Maryland
| | | | - Ethylin W Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - David Valle
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John Carey
- Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Julie E Hoover-Fong
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Greenberg Center for Skeletal Dysplasias, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nara L M Sobreira
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
20
|
Zalk R, Marks AR. Ca 2+ Release Channels Join the 'Resolution Revolution'. Trends Biochem Sci 2017; 42:543-555. [PMID: 28499500 PMCID: PMC5875148 DOI: 10.1016/j.tibs.2017.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/02/2017] [Accepted: 04/13/2017] [Indexed: 01/22/2023]
Abstract
Ryanodine receptors (RyRs) are calcium release channels expressed in the sarcoendoplasmic reticula of many cell types including cardiac and skeletal muscle cells. In recent years Ca2+ leak through RyRs has been implicated as a major contributor to the development of diseases including heart failure, muscle myopathies, Alzheimer's disease, and diabetes, making it an important therapeutic target. Recent mammalian RyR1 cryoelectron microscopy (cryo-EM) structures of multiple functional states have clarified longstanding questions including the architecture of the transmembrane (TM) pore and cytoplasmic domains, the location and architecture of the channel gate, ligand-binding sites, and the gating mechanism. As we advance toward complete models of RyRs this new information enables the determination of domain-domain interfaces and the location and structural effects of disease-causing RyR mutations.
Collapse
Affiliation(s)
- Ran Zalk
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Wu Center for Molecular Cardiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
21
|
Bannister RA. Bridging the myoplasmic gap II: more recent advances in skeletal muscle excitation-contraction coupling. ACTA ACUST UNITED AC 2016; 219:175-82. [PMID: 26792328 DOI: 10.1242/jeb.124123] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In skeletal muscle, excitation-contraction (EC) coupling relies on the transmission of an intermolecular signal from the voltage-sensing regions of the L-type Ca(2+) channel (Ca(V)1.1) in the plasma membrane to the channel pore of the type 1 ryanodine receptor (RyR1) nearly 10 nm away in the membrane of the sarcoplasmic reticulum (SR). Even though the roles of Ca(V)1.1 and RyR1 as voltage sensor and SR Ca(2+) release channel, respectively, have been established for nearly 25 years, the mechanism underlying communication between these two channels remains undefined. In the course of this article, I will review current viewpoints on this topic with particular emphasis on recent studies.
Collapse
Affiliation(s)
- Roger A Bannister
- Department of Medicine-Cardiology Division, University of Colorado Denver-Anschutz Medical Campus, 12700 East 19th Avenue, Room 8006, B-139, Aurora, CO 80045, USA
| |
Collapse
|
22
|
Treves S, Jungbluth H, Voermans N, Muntoni F, Zorzato F. Ca 2+ handling abnormalities in early-onset muscle diseases: Novel concepts and perspectives. Semin Cell Dev Biol 2016; 64:201-212. [PMID: 27427513 DOI: 10.1016/j.semcdb.2016.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/14/2016] [Indexed: 12/17/2022]
Abstract
The physiological process by which Ca2+ is released from the sarcoplasmic reticulum is called excitation-contraction coupling; it is initiated by an action potential which travels deep into the muscle fiber where it is sensed by the dihydropyridine receptor, a voltage sensing L-type Ca2+channel localized on the transverse tubules. Voltage-induced conformational changes in the dihydropyridine receptor activate the ryanodine receptor Ca2+ release channel of the sarcoplasmic reticulum. The released Ca2+ binds to troponin C, enabling contractile thick-thin filament interactions. The Ca2+ is subsequently transported back into the sarcoplasmic reticulum by specialized Ca2+ pumps (SERCA), preparing the muscle for a new cycle of contraction. Although other proteins are involved in excitation-contraction coupling, the mechanism described above emphasizes the unique role played by the two Ca2+ channels (the dihydropyridine receptor and the ryanodine receptor), the SERCA Ca2+ pumps and the exquisite spatial organization of the membrane compartments endowed with the proteins responsible for this mechanism to function rapidly and efficiently. Research over the past two decades has uncovered the fine details of excitation-contraction coupling under normal conditions while advances in genomics have helped to identify mutations in novel genes in patients with neuromuscular disorders. While it is now clear that many patients with congenital muscle diseases carry mutations in genes encoding proteins directly involved in Ca2+ homeostasis, it has become apparent that mutations are also present in genes encoding for proteins not thought to be directly involved in Ca2+ regulation. Ongoing research in the field now focuses on understanding the functional effect of individual mutations, as well as understanding the role of proteins not specifically located in the sarcoplasmic reticulum which nevertheless are involved in Ca2+ regulation or excitation-contraction coupling. The principal challenge for the future is the identification of drug targets that can be pharmacologically manipulated by small molecules, with the ultimate aim to improve muscle function and quality of life of patients with congenital muscle disorders. The aim of this review is to give an overview of the most recent findings concerning Ca2+ dysregulation and its impact on muscle function in patients with congenital muscle disorders due to mutations in proteins involved in excitation-contraction coupling and more broadly on Ca2+ homeostasis.
Collapse
Affiliation(s)
- Susan Treves
- Departments of Biomedicine and Anesthesia, Basel University Hospital, 4031 Basel, Switzerland; Department of Life Sciences, General Pathology Section, University of Ferrara, 44100 Ferrara, Italy.
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children's Hospital, St. Thomas' Hospital, London, United Kingdom; Randall Division for Cell and Molecular Biophysics, Muscle Signalling Section, King's College, London, United Kingdom; Department of Basic and Clinical Neuroscience, IoPPN, King's College, London, United Kingdom
| | - Nicol Voermans
- Department of Neurology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, United Kingdom
| | - Francesco Zorzato
- Departments of Biomedicine and Anesthesia, Basel University Hospital, 4031 Basel, Switzerland; Department of Life Sciences, General Pathology Section, University of Ferrara, 44100 Ferrara, Italy
| |
Collapse
|
23
|
Cong X, Doering J, Grange RW, Jiang H. Defective excitation-contraction coupling is partially responsible for impaired contractility in hindlimb muscles of Stac3 knockout mice. Sci Rep 2016; 6:26194. [PMID: 27184118 PMCID: PMC4868984 DOI: 10.1038/srep26194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/28/2016] [Indexed: 01/13/2023] Open
Abstract
The Stac3 gene is exclusively expressed in skeletal muscle, and Stac3 knockout is perinatal lethal in mice. Previous data from Stac3-deleted diaphragms indicated that Stac3-deleted skeletal muscle could not contract because of defective excitation-contraction (EC) coupling. In this study, we determined the contractility of Stac3-deleted hindlimb muscle. In response to frequent electrostimulation, Stac3-deleted hindlimb muscle contracted but the maximal tension generated was only 20% of that in control (wild type or heterozygous) muscle (P < 0.05). In response to high [K(+)], caffeine, and 4-chloro-m-cresol (4-CMC), the maximal tensions generated in Stac3-deleted muscle were 29% (P < 0.05), 58% (P = 0.08), and 55% (P < 0.05) of those in control muscle, respectively. In response to 4-CMC or caffeine, over 90% of myotubes formed from control myoblasts contracted, but only 60% of myotubes formed from Stac3-deleted myoblasts contracted (P = 0.05). However, in response to 4-CMC or caffeine, similar increases in intracellular calcium concentration were observed in Stac3-deleted and control myotubes. Gene expression and histological analyses revealed that Stac3-deleted hindlimb muscle contained more slow type-like fibers than control muscle. These data together confirm a critical role of STAC3 in EC coupling but also suggest that STAC3 may have additional functions in skeletal muscle, at least in the hindlimb muscle.
Collapse
Affiliation(s)
- Xiaofei Cong
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Jonathan Doering
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Robert W Grange
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Honglin Jiang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
24
|
Cong X, Doering J, Mazala DAG, Chin ER, Grange RW, Jiang H. The SH3 and cysteine-rich domain 3 (Stac3) gene is important to growth, fiber composition, and calcium release from the sarcoplasmic reticulum in postnatal skeletal muscle. Skelet Muscle 2016; 6:17. [PMID: 27073615 PMCID: PMC4828897 DOI: 10.1186/s13395-016-0088-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/30/2016] [Indexed: 12/25/2022] Open
Abstract
Background The SH3 and cysteine-rich domain 3 (Stac3) gene is specifically expressed in the skeletal muscle. Stac3 knockout mice die perinatally. In this study, we determined the potential role of Stac3 in postnatal skeletal muscle growth, fiber composition, and contraction by generating conditional Stac3 knockout mice. Methods We disrupted the Stac3 gene in 4-week-old male mice using the Flp-FRT and tamoxifen-inducible Cre-loxP systems. Results RT-qPCR and western blotting analyses of the limb muscles of target mice indicated that nearly all Stac3 mRNA and more than 70 % of STAC3 protein were deleted 4 weeks after tamoxifen injection. Postnatal Stac3 deletion inhibited body and limb muscle mass gains. Histological staining and gene expression analyses revealed that postnatal Stac3 deletion decreased the size of myofibers and increased the percentage of myofibers containing centralized nuclei, with no effect on the total myofiber number. Grip strength and grip time tests indicated that postnatal Stac3 deletion decreased limb muscle strength in mice. Muscle contractile tests revealed that postnatal Stac3 deletion reduced electrostimulation-induced but not the ryanodine receptor agonist caffeine-induced maximal force output in the limb muscles. Calcium imaging analysis of single flexor digitorum brevis myofibers indicated that postnatal Stac3 deletion reduced electrostimulation- but not caffeine-induced calcium release from the sarcoplasmic reticulum. Conclusions This study demonstrates that STAC3 is important to myofiber hypertrophy, myofiber-type composition, contraction, and excitation-induced calcium release from the sarcoplasmic reticulum in the postnatal skeletal muscle. Electronic supplementary material The online version of this article (doi:10.1186/s13395-016-0088-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaofei Cong
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA USA
| | - Jonathan Doering
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA USA
| | - Davi A G Mazala
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD USA
| | - Eva R Chin
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD USA
| | - Robert W Grange
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA USA
| | - Honglin Jiang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA USA
| |
Collapse
|
25
|
Ravenscroft G, Laing NG, Bönnemann CG. Pathophysiological concepts in the congenital myopathies: blurring the boundaries, sharpening the focus. ACTA ACUST UNITED AC 2014; 138:246-68. [PMID: 25552303 DOI: 10.1093/brain/awu368] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The congenital myopathies are a diverse group of genetic skeletal muscle diseases, which typically present at birth or in early infancy. There are multiple modes of inheritance and degrees of severity (ranging from foetal akinesia, through lethality in the newborn period to milder early and later onset cases). Classically, the congenital myopathies are defined by skeletal muscle dysfunction and a non-dystrophic muscle biopsy with the presence of one or more characteristic histological features. However, mutations in multiple different genes can cause the same pathology and mutations in the same gene can cause multiple different pathologies. This is becoming ever more apparent now that, with the increasing use of next generation sequencing, a genetic diagnosis is achieved for a greater number of patients. Thus, considerable genetic and pathological overlap is emerging, blurring the classically established boundaries. At the same time, some of the pathophysiological concepts underlying the congenital myopathies are moving into sharper focus. Here we explore whether our emerging understanding of disease pathogenesis and underlying pathophysiological mechanisms, rather than a strictly gene-centric approach, will provide grounds for a different and perhaps complementary grouping of the congenital myopathies, that at the same time could help instil the development of shared potential therapeutic approaches. Stemming from recent advances in the congenital myopathy field, five key pathophysiology themes have emerged: defects in (i) sarcolemmal and intracellular membrane remodelling and excitation-contraction coupling; (ii) mitochondrial distribution and function; (iii) myofibrillar force generation; (iv) atrophy; and (v) autophagy. Based on numerous emerging lines of evidence from recent studies in cell lines and patient tissues, mouse models and zebrafish highlighting these unifying pathophysiological themes, here we review the congenital myopathies in relation to these emerging pathophysiological concepts, highlighting both areas of overlap between established entities, as well as areas of distinction within single gene disorders.
Collapse
Affiliation(s)
- Gianina Ravenscroft
- 1 Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia
| | - Nigel G Laing
- 1 Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia
| | - Carsten G Bönnemann
- 2 National Institute of Neurological Disorders and Stroke/NIH, Porter Neuroscience Research Centre, Bethesda, MD, USA
| |
Collapse
|
26
|
Zhang Y, Cong X, Wang A, Jiang H. Identification of the STAC3 gene as a skeletal muscle-specifically expressed gene and a novel regulator of satellite cell differentiation in cattle1. J Anim Sci 2014; 92:3284-90. [DOI: 10.2527/jas.2014-7656] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Y. Zhang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg 24061-0306
| | - X. Cong
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg 24061-0306
| | - A. Wang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg 24061-0306
| | - H. Jiang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg 24061-0306
| |
Collapse
|
27
|
Ge X, Zhang Y, Park S, Cong X, Gerrard DE, Jiang H. Stac3 inhibits myoblast differentiation into myotubes. PLoS One 2014; 9:e95926. [PMID: 24788338 PMCID: PMC4005754 DOI: 10.1371/journal.pone.0095926] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/01/2014] [Indexed: 12/19/2022] Open
Abstract
The functionally undefined Stac3 gene, predicted to encode a SH3 domain- and C1 domain-containing protein, was recently found to be specifically expressed in skeletal muscle and essential to normal skeletal muscle development and contraction. In this study we determined the potential role of Stac3 in myoblast proliferation and differentiation, two important steps of muscle development. Neither siRNA-mediated Stac3 knockdown nor plasmid-mediated Stac3 overexpression affected the proliferation of C2C12 myoblasts. Stac3 knockdown promoted the differentiation of C2C12 myoblasts into myotubes as evidenced by increased fusion index, increased number of nuclei per myotube, and increased mRNA and protein expression of myogenic markers including myogenin and myosin heavy chain. In contrast, Stac3 overexpression inhibited the differentiation of C2C12 myoblasts into myotubes as evidenced by decreased fusion index, decreased number of nuclei per myotube, and decreased mRNA and protein expression of myogenic markers. Compared to wild-type myoblasts, myoblasts from Stac3 knockout mouse embryos showed accelerated differentiation into myotubes in culture as evidenced by increased fusion index, increased number of nuclei per myotube, and increased mRNA expression of myogenic markers. Collectively, these data suggest an inhibitory role of endogenous Stac3 in myoblast differentiation. Myogenesis is a tightly controlled program; myofibers formed from prematurely differentiated myoblasts are dysfunctional. Thus, Stac3 may play a role in preventing precocious myoblast differentiation during skeletal muscle development.
Collapse
Affiliation(s)
- Xiaomei Ge
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Yafei Zhang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Sungwon Park
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Xiaofei Cong
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - David E. Gerrard
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Honglin Jiang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
28
|
Rebbeck RT, Karunasekara Y, Board PG, Beard NA, Casarotto MG, Dulhunty AF. Skeletal muscle excitation–contraction coupling: Who are the dancing partners? Int J Biochem Cell Biol 2014; 48:28-38. [DOI: 10.1016/j.biocel.2013.12.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/29/2013] [Accepted: 12/04/2013] [Indexed: 01/15/2023]
|
29
|
Skeletal muscle-specific T-tubule protein STAC3 mediates voltage-induced Ca2+ release and contractility. Proc Natl Acad Sci U S A 2013; 110:11881-6. [PMID: 23818578 DOI: 10.1073/pnas.1310571110] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Excitation-contraction (EC) coupling comprises events in muscle that convert electrical signals to Ca(2+) transients, which then trigger contraction of the sarcomere. Defects in these processes cause a spectrum of muscle diseases. We report that STAC3, a skeletal muscle-specific protein that localizes to T tubules, is essential for coupling membrane depolarization to Ca(2+) release from the sarcoplasmic reticulum (SR). Consequently, homozygous deletion of src homology 3 and cysteine rich domain 3 (Stac3) in mice results in complete paralysis and perinatal lethality with a range of musculoskeletal defects that reflect a blockade of EC coupling. Muscle contractility and Ca(2+) release from the SR of cultured myotubes from Stac3 mutant mice could be restored by application of 4-chloro-m-cresol, a ryanodine receptor agonist, indicating that the sarcomeres, SR Ca(2+) store, and ryanodine receptors are functional in Stac3 mutant skeletal muscle. These findings reveal a previously uncharacterized, but required, component of the EC coupling machinery of skeletal muscle and introduce a candidate for consideration in myopathic disorders.
Collapse
|