1
|
Vanhunsel S, Bergmans S, Moons L. The Optic Nerve Crush Injury Paradigm in African Turquoise Killifish to Study Axonal Regeneration in an Aged Environment. Cold Spring Harb Protoc 2023; 2023:107828. [PMID: 36941064 DOI: 10.1101/pdb.prot107828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
In our graying world population, we are increasingly facing brain injuries and age-associated neurodegenerative diseases, which are often characterized by axonal pathology. Here, we propose the killifish visual/retinotectal system as a model for investigating central nervous system repair, more specifically axonal regeneration, in an aging context. We first describe an optic nerve crush (ONC) injury paradigm in killifish to induce and study both de- and regeneration of retinal ganglion cells (RGCs) and their axons. Subsequently, we summarize several methods for mapping different steps of the regenerative process-namely, axonal regrowth and synapse reformation-using retro- and anterograde tracing methods, (immuno)histochemistry, and morphometrical analyses.
Collapse
Affiliation(s)
- Sophie Vanhunsel
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Steven Bergmans
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
2
|
Yang D, Wang W, Yuan Z, Liang Y. Information-Rich Multi-Functional OCT for Adult Zebrafish Intra- and Extracranial Imaging. Bioengineering (Basel) 2023; 10:856. [PMID: 37508883 PMCID: PMC10375992 DOI: 10.3390/bioengineering10070856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The zebrafish serves as a valuable animal model for both intra- and extracranial research, particularly in relation to the brain and skull. To effectively investigate the development and regeneration of adult zebrafish, a versatile in vivo imaging technique capable of showing both intra- and extracranial conditions is essential. In this paper, we utilized a high-resolution multi-functional optical coherence tomography (OCT) to obtain rich intra- and extracranial imaging outcomes of adult zebrafish, encompassing pigmentation distribution, tissue-specific information, cranial vascular imaging, and the monitoring of traumatic brain injury (TBI). Notably, it is the first that the channels through the zebrafish cranial suture, which may have a crucial function in maintaining the patency of the cranial sutures, have been observed. Rich imaging results demonstrated that a high-resolution multi-functional OCT system can provide a wealth of novel and interpretable biological information for intra- and extracranial studies of adult zebrafish.
Collapse
Affiliation(s)
- Di Yang
- Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, China
| | - Weike Wang
- Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, China
| | - Zhuoqun Yuan
- Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, China
| | - Yanmei Liang
- Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, China
| |
Collapse
|
3
|
Aliper AT, Zaichikova AA, Damjanović I, Maximov PV, Kasparson AA, Gačić Z, Maximova EM. Updated functional segregation of retinal ganglion cell projections in the tectum of a cyprinid fish-further elaboration based on microelectrode recordings. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:773-792. [PMID: 30612338 DOI: 10.1007/s10695-018-0603-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Single-unit responses of retinal ganglion cells (GCs) were recorded extracellularly from their axonal terminals in the tectum opticum (TO) of the intact fish (goldfish, carp). The depths of retinal units consecutively recorded along the track of the microelectrode were measured. At the depth of around 50 μm, the responses of six types of direction-selective (DS) GCs were regularly recorded. Responses of two types of orientation-selective (OS) GCs and detectors of white and black spots occurred approximately 50 μm deeper. Responses of GCs with dark- and light-sustained activity were recorded deeper than all others, at about 200 μm. The receptive fields of consecutively recorded units overlap, so they analyze the same fragment of the visual scene, focused by eye optic on the photoreceptor raster. The responses of pairs of DS GCs (ON and OFF units that preferred same direction of stimulus movement) and OS GCs (detectors of vertical and horizontal lines) were often simultaneously recorded at one position of the microelectrode. (The paired recordings of certain units amounted about fourth part of all recordings.) This suggests that their axonal arborizations are located close to each other in the tectal retinorecipient layer. Electrophysiological method, thus, allows to indirectly clarify and make precise the morphology of the retino-tectal connections and to establish a morpho-physiological correspondence.
Collapse
Affiliation(s)
- Alexey T Aliper
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow, Russia, 127051
| | - Alisa A Zaichikova
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow, Russia, 127051
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Ilija Damjanović
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow, Russia, 127051
| | - Paul V Maximov
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow, Russia, 127051
| | - Anna A Kasparson
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow, Russia, 127051
| | - Zoran Gačić
- Institute for Multidisciplinary Research,, University of Belgrade, P.O. Box 33, Belgrade, 11000, Serbia.
- , Belgrade, Serbia.
| | - Elena M Maximova
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow, Russia, 127051
| |
Collapse
|
4
|
Damjanović I, Maximov PV, Aliper AT, Zaichikova AA, Gačić Z, Maximova EM. Putative targets of direction-selective retinal ganglion cells in the tectum opticum of cyprinid fish. Brain Res 2019; 1708:20-26. [PMID: 30527677 DOI: 10.1016/j.brainres.2018.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/24/2018] [Accepted: 12/04/2018] [Indexed: 11/28/2022]
Abstract
Responses of direction selective (DS) units of retinal and tectal origin were recorded extracellularly from the tectum opticum (TO) of immobilized fish. The data were collected from three cyprinid species - goldfish, carp and roach. Responses of the retinal DS ganglion cells (GCs) were recorded from their axon terminals in the superficial layers of TO. According to their preferred directions DS GCs, characterized by small receptive fields (3-8°), can be divided in three distinct groups, each group containing ON and OFF subtypes approximately in equal quantity. Conversely, direction-selective tectal neurons (DS TNs), recorded at two different tectal levels deeper than the zone of retinal DS afferents, are characterized by large receptive fields (up to 60°) and are indifferent to any sign of contrast i.e. can be considered as ON-OFF type units. Fish DS TNs unlike the retinal DS GCs, select four preferred directions. Three types of tectal DS units prefer practically the same directions as those already selected on the retinal level - caudo-rostral, dorso-ventral and ventro-dorsal. The fact that three preferred directions of DS GCs and DS TNs coincide allows us to assume that three types of DS GCs are input neurons for corresponding types of DS TNs. The fourth group of DS TNs has the emergent rostro-caudal preference not explicitly present in any of the DS GC inputs. These units are recorded in deep TO layers exclusively. Receptive fields of these DS neurons could be entirely formed on the tectal level. Possible interrelations between retinal and tectal DS units are discussed.
Collapse
Affiliation(s)
- Ilija Damjanović
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation
| | - Pavel V Maximov
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexey T Aliper
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation
| | - Alisa A Zaichikova
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation; Lomonosov Moscow State University, Moscow, Russian Federation
| | - Zoran Gačić
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia.
| | - Elena M Maximova
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
5
|
Miller GW, Chandrasekaran V, Yaghoobi B, Lein PJ. Opportunities and challenges for using the zebrafish to study neuronal connectivity as an endpoint of developmental neurotoxicity. Neurotoxicology 2018; 67:102-111. [PMID: 29704525 PMCID: PMC6177215 DOI: 10.1016/j.neuro.2018.04.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/28/2023]
Abstract
Chemical exposures have been implicated as environmental risk factors that interact with genetic susceptibilities to influence individual risk for complex neurodevelopmental disorders, including autism spectrum disorder, schizophrenia, attention deficit hyperactivity disorder and intellectual disabilities. Altered patterns of neuronal connectivity represent a convergent mechanism of pathogenesis for these and other neurodevelopmental disorders, and growing evidence suggests that chemicals can interfere with specific signaling pathways that regulate the development of neuronal connections. There is, therefore, a growing interest in developing screening platforms to identify chemicals that alter neuronal connectivity. Cell-cell, cell-matrix interactions and systemic influences are known to be important in defining neuronal connectivity in the developing brain, thus, a systems-based model offers significant advantages over cell-based models for screening chemicals for effects on neuronal connectivity. The embryonic zebrafish represents a vertebrate model amenable to higher throughput chemical screening that has proven useful in characterizing conserved mechanisms of neurodevelopment. Moreover, the zebrafish is readily amenable to gene editing to integrate genetic susceptibilities. Although use of the zebrafish model in toxicity testing has increased in recent years, the diverse tools available for imaging structural differences in the developing zebrafish brain have not been widely applied to studies of the influence of gene by environment interactions on neuronal connectivity in the developing zebrafish brain. Here, we discuss tools available for imaging of neuronal connectivity in the developing zebrafish, review what has been published in this regard, and suggest a path forward for applying this information to developmental neurotoxicity testing.
Collapse
Affiliation(s)
- Galen W. Miller
- Department of Molecular Biosciences, University of California, Davis, Davis, CA 95616, USA
| | - Vidya Chandrasekaran
- Department of Biology, Saint Mary’s College of California, Moraga, CA 94575, USA
| | - Bianca Yaghoobi
- Department of Molecular Biosciences, University of California, Davis, Davis, CA 95616, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
6
|
Imaging Neuronal Activity in the Optic Tectum of Late Stage Larval Zebrafish. J Dev Biol 2018; 6:jdb6010006. [PMID: 29615555 PMCID: PMC5875565 DOI: 10.3390/jdb6010006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/01/2018] [Accepted: 03/06/2018] [Indexed: 12/03/2022] Open
Abstract
The zebrafish is an established model to study the development and function of visual neuronal circuits in vivo, largely due to their optical accessibility at embryonic and larval stages. In the past decade multiple experimental paradigms have been developed to study visually-driven behaviours, particularly those regulated by the optic tectum, the main visual centre in lower vertebrates. With few exceptions these techniques are limited to young larvae (7–9 days post-fertilisation, dpf). However, many forms of visually-driven behaviour, such as shoaling, emerge at later developmental stages. Consequently, there is a need for an experimental paradigm to image the visual system in zebrafish larvae beyond 9 dpf. Here, we show that using NBT:GCaMP3 line allows for imaging neuronal activity in the optic tectum in late stage larvae until at least 21 dpf. Utilising this line, we have characterised the receptive field properties of tectal neurons of the 2–3 weeks old fish in the cell bodies and the neuropil. The NBT:GCaMP3 line provides a complementary approach and additional opportunities to study neuronal activity in late stage zebrafish larvae.
Collapse
|
7
|
Weiss L, Offner T, Hassenklöver T, Manzini I. Dye Electroporation and Imaging of Calcium Signaling in Xenopus Nervous System. Methods Mol Biol 2018; 1865:217-231. [PMID: 30151769 DOI: 10.1007/978-1-4939-8784-9_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Electroporation is an efficient method of transferring charged macromolecules into living cells in order to study their morphology, function, and connectivity within neuronal networks. Labeling cells with fluorophore-coupled macromolecules can be used to trace projections of whole neuronal ensembles, as well as the fine morphology of single cells. Here, we present a protocol to visualize pre- and postsynaptic components of a sensory relay synapse in the brain, using the olfactory system of Xenopus laevis tadpoles as a model. We apply bulk electroporation to trace projections of receptor neurons from the nose to the brain, and single cell electroporation to visualize the morphology of their synaptic target cells, the mitral-tufted cells. Labeling the receptor neurons with a calcium-sensitive dye allows us to record stimulus-induced presynaptic input to the dendrites of the postsynaptic cells via functional calcium imaging.
Collapse
Affiliation(s)
- Lukas Weiss
- Department of Animal Physiology and Molecular Biomedicine, Institute of Animal Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Thomas Offner
- Department of Animal Physiology and Molecular Biomedicine, Institute of Animal Physiology, Justus-Liebig-University Giessen, Giessen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany
| | - Thomas Hassenklöver
- Department of Animal Physiology and Molecular Biomedicine, Institute of Animal Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Ivan Manzini
- Department of Animal Physiology and Molecular Biomedicine, Institute of Animal Physiology, Justus-Liebig-University Giessen, Giessen, Germany. .,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
8
|
Damjanović I. Direction-selective units in goldfish retina and tectum opticum - review and new aspects. J Integr Neurosci 2016; 14:1530002. [PMID: 26729019 DOI: 10.1142/s0219635215300024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
The output units of fish retina, i.e., the retinal ganglion cells (detectors), send highly processed information to the primary visual centers of the brain, settled in the midbrain formation tectum opticum (TO). Axons of different fish motion detectors terminate in different tectal levels. In the superficial layer of TO, axons of direction-selective ganglion cells (DS GCs) are terminated. Single unit responses of the DS GCs were recorded in intact fish from their axon terminals in TO. Goldfish DS GCs projecting to TO were shown to comprise six physiological types according to their selectivity to sign of stimulus contrast (ON and OFF units) and their preferred directions: three directions separated by 120[Formula: see text]. These units, characterized by relatively small receptive fields and remarkable spatial resolution should be classified as local motion detectors. In addition to the retinal DS GCs, other kinds of DS units were extracellularly recorded in the superficial and deep sublaminae of tectum. Some features of their responses suggested that they originated from tectal neurons (TNs). Contrary to DS GCs which are characterized by small RFs and use separate ON and OFF channels, DS TNs have extra-large RFs and ON-OFF type responses. DS TNs were shown to select four preferred directions. Three of them are compatible with those already selected on the retinal level. Complementary to them, the fourth DS TN type with rostro-caudal preference (lacking in the retina) has been revealed. Possible functional interrelations between DS GCs and DS TNs are discussed.
Collapse
Affiliation(s)
- Ilija Damjanović
- 1 Institute for Information Transmission Problems Russian Academy of Sciences Bolshoi Karetny 19, 127994 Moscow, Russia
| |
Collapse
|
9
|
Hollmann V, Lucks V, Kurtz R, Engelmann J. Adaptation-induced modification of motion selectivity tuning in visual tectal neurons of adult zebrafish. J Neurophysiol 2015; 114:2893-902. [PMID: 26378206 DOI: 10.1152/jn.00568.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/15/2015] [Indexed: 11/22/2022] Open
Abstract
In the developing brain, training-induced emergence of direction selectivity and plasticity of orientation tuning appear to be widespread phenomena. These are found in the visual pathway across different classes of vertebrates. Moreover, short-term plasticity of orientation tuning in the adult brain has been demonstrated in several species of mammals. However, it is unclear whether neuronal orientation and direction selectivity in nonmammalian species remains modifiable through short-term plasticity in the fully developed brain. To address this question, we analyzed motion tuning of neurons in the optic tectum of adult zebrafish by calcium imaging. In total, orientation and direction selectivity was enhanced by adaptation, responses of previously orientation-selective neurons were sharpened, and even adaptation-induced emergence of selectivity in previously nonselective neurons was observed in some cases. The different observed effects are mainly based on the relative distance between the previously preferred and the adaptation direction. In those neurons in which a shift of the preferred orientation or direction was induced by adaptation, repulsive shifts (i.e., away from the adapter) were more prevalent than attractive shifts. A further novel finding for visually induced adaptation that emerged from our study was that repulsive and attractive shifts can occur within one brain area, even with uniform stimuli. The type of shift being induced also depends on the difference between the adapting and the initially preferred stimulus direction. Our data indicate that, even within the fully developed optic tectum, short-term plasticity might have an important role in adjusting neuronal tuning functions to current stimulus conditions.
Collapse
Affiliation(s)
- Vanessa Hollmann
- Active Sensing and Center of Excellence Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany; and
| | - Valerie Lucks
- Active Sensing and Center of Excellence Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany; and
| | - Rafael Kurtz
- Department of Neurobiology, Bielefeld University, Bielefeld, Germany
| | - Jacob Engelmann
- Active Sensing and Center of Excellence Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany; and
| |
Collapse
|
10
|
Zou SQ, Tian C, Du ST, Hu B. Retrograde labeling of retinal ganglion cells in adult zebrafish with fluorescent dyes. J Vis Exp 2014. [PMID: 24837333 DOI: 10.3791/50987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
As retrograde labeling retinal ganglion cells (RGCs) can isolate RGCs somata from dying sites, it has become the gold standard for counting RGCs in RGCs survival and regeneration experiments. Many studies have been performed in mammalian animals to research RGCs survival after optic nerve injury. However, retrograde labeling of RGCs in adult zebrafish has not yet been reported, though some alternative methods can count cell numbers in retinal ganglion cell layers (RGCL). Considering the small size of the adult zebrafish skull and the high risk of death after drilling on the skull, we open the skull with the help of acid-etching and seal the hole with a light curing bond, which could significantly improve the survival rate. After absorbing the dyes for 5 days, almost all the RGCs are labeled. As this method does not need to transect the optic nerve, it is irreplaceable in the research of RGCs survival after optic nerve crush in adult zebrafish. Here, we introduce this method step by step and provide representative results.
Collapse
Affiliation(s)
- Su-Qi Zou
- Laboratory of Neurodevelopement and Repair, University of Science and Technology of China
| | - Chen Tian
- Laboratory of Neurodevelopement and Repair, University of Science and Technology of China
| | - Su-Tie Du
- Laboratory of Neurodevelopement and Repair, University of Science and Technology of China
| | - Bing Hu
- Laboratory of Neurodevelopement and Repair, University of Science and Technology of China;
| |
Collapse
|