1
|
Ku RY, Bansal A, Dutta DJ, Yamashita S, Peloquin J, Vu DN, Shen Y, Uchida T, Torii M, Hashimoto-Torii K. Evaluating chemical effects on human neural cells through calcium imaging and deep learning. iScience 2024; 27:111298. [PMID: 39634567 PMCID: PMC11616611 DOI: 10.1016/j.isci.2024.111298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/24/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024] Open
Abstract
New substances intended for human consumption must undergo extensive preclinical safety pharmacology testing prior to approval. These tests encompass the evaluation of effects on the central nervous system, which is highly sensitive to chemical substances. With the growing understanding of the species-specific characteristics of human neural cells and advancements in machine learning technology, the development of effective and efficient methods for the initial screening of chemical effects on human neural function using machine learning platforms is anticipated. In this study, we employed a deep learning model to analyze calcium dynamics in human-induced pluripotent stem cell-derived neural progenitor cells, which were exposed to various concentrations of four representative chemicals. We report that this approach offers a reliable and concise method for quantitatively classifying the effects of chemical exposures and predicting potential harm to human neural cells.
Collapse
Affiliation(s)
- Ray Yueh Ku
- Center for Neuroscience Research, Children’s Research Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - Ankush Bansal
- Center for Neuroscience Research, Children’s Research Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - Dipankar J. Dutta
- Center for Neuroscience Research, Children’s Research Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - Satoshi Yamashita
- Center for Neuroscience Research, Children’s Research Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - John Peloquin
- Center for Neuroscience Research, Children’s Research Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - Diana N. Vu
- Center for Neuroscience Research, Children’s Research Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - Yubing Shen
- Center for Neuroscience Research, Children’s Research Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - Tomoki Uchida
- Novel Business Development Department, Suntory Global Innovation Center Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Masaaki Torii
- Center for Neuroscience Research, Children’s Research Institute, Children’s National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children’s Research Institute, Children’s National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
2
|
Identification and Genetic Diversity of Amylase Producing Lactic Acid Bacteria from Brown Rice (Oryza nivara) Wakawondu Cultivar Based on 16S rRNA Gene. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This study identified the genetic diversity of amylase-producing lactic acid bacteria from brown rice (Oryza nivara) Wakawondu cultivar based on the 16S rRNA gene. The ten lactic acid bacteria strains were isolated from the fermented Wakawondu rice washing water; two isolates, SBM3D and SBM4A, displayed strong amylase activity. The two isolates had the same characteristics according to both morphological and biochemical examination. The effect of fermentation time on SBM3D bacterial isolates revealed that bacterial growth at 12 h with OD values and enzyme activity, respectively, of 0.856 and 175 mU/mL, was nearly identical to the growth at 27 h with OD values of 0.886 and 176 mU/mL consecutively. Meanwhile, the bacterial isolate of SBM4A showed a significant increase in growth at 15 h with an OD value of 0.552 and enzyme activity of 99 U/mL. The maximum growth was seen at 18 h with an OD value of 0.657 and enzyme activity of 126 mU/mL. Cladogram of an SBM3D isolate with Pediococcus pentosaceus strains SL001 CP039378.1 and SRCM102740 CP028269.1 forming a sister group clad. Pediococcus pentosaceus strains SRCM102739 CP028266.1 and SRCM102738 CP028264.1 form a sister group in the cladogram of the SBM4A isolate. SBM3D and SBM4A, which are amylase-producing Pediococcus pentosaceus, can be used in food, chemical, health, and other industries.
Collapse
|
3
|
Fujii K, Nakajo K, Egashira Y, Yamamoto Y, Kitada K, Taniguchi K, Kawai M, Tomiyama H, Kawakami K, Uchiyama K, Ono F. Gastrointestinal Neurons Expressing HCN4 Regulate Retrograde Peristalsis. Cell Rep 2021; 30:2879-2888.e3. [PMID: 32130893 DOI: 10.1016/j.celrep.2020.02.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/30/2019] [Accepted: 02/06/2020] [Indexed: 12/31/2022] Open
Abstract
Peristalsis is indispensable for physiological function of the gut. The enteric nervous system (ENS) plays an important role in regulating peristalsis. While the neural network regulating anterograde peristalsis, which migrates from the oral end to the anal end, is characterized to some extent, retrograde peristalsis remains unresolved with regards to its neural regulation. Using forward genetics in zebrafish, we reveal that a population of neurons expressing a hyperpolarization-activated nucleotide-gated channel HCN4 specifically regulates retrograde peristalsis. When HCN4 channels are blocked by an HCN channel inhibitor or morpholinos blocking the protein expression, retrograde peristalsis is specifically attenuated. Conversely, when HCN4(+) neurons expressing channelrhodopsin are activated by illumination, retrograde peristalsis is enhanced while anterograde peristalsis remains unchanged. We propose that HCN4(+) neurons in the ENS forward activating signals toward the oral end and simultaneously stimulate local circuits regulating the circular muscle.
Collapse
Affiliation(s)
- Kensuke Fujii
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Japan
| | - Koichi Nakajo
- Department of Physiology, Osaka Medical College, Takatsuki, Japan; Division of Integrative Physiology, Department of Physiology, Jichi Medical University, Shimotsuke, Japan
| | | | | | - Kazuya Kitada
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Japan
| | - Kohei Taniguchi
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Japan
| | - Masaru Kawai
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Japan
| | - Hideki Tomiyama
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Japan
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics and Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| | - Kazuhisa Uchiyama
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Japan
| | - Fumihito Ono
- Department of Physiology, Osaka Medical College, Takatsuki, Japan.
| |
Collapse
|
4
|
Davis R, Luchtenburg F, Richardson M, Schaaf M, Tudorache C, Slabbekoorn H. The importance of individual variation for the interpretation of behavioural studies: ethanol effects vary with basal activity level in zebrafish larvae. Psychopharmacology (Berl) 2021; 238:3155-3166. [PMID: 34510233 PMCID: PMC8605963 DOI: 10.1007/s00213-021-05932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 07/08/2021] [Indexed: 11/29/2022]
Abstract
Standardization and reduction of variation is key to behavioural screening of animal models in toxicological and pharmacological studies. However, individual variation in behavioural and physiological phenotypes remains in each laboratory population and can undermine the understanding of toxicological and pharmaceutical effects and their underlying mechanisms. Here, we used zebrafish (ABTL-strain) larvae to explore individual consistency in activity level and emergence time, across subsequent days of early development (6-8 dpf). We also explored the correlation between these two behavioural parameters. We found inter-individual consistency over time in activity level and emergence time, but we did not find a consistent correlation between these parameters. Subsequently, we investigated the impact of variation in activity level on the effect of a 1% ethanol treatment, suitable for our proof-of-concept case study about whether impact from pharmacological treatments might be affected by inter-individual variation in basal locomotion. The inter-individual consistency over time in activity level did not persist in this test. This was due to the velocity change from before to after exposure, which turned out to be a dynamic individual trait related to basal activity level: low-activity individuals raised their swimming velocity, while high-activity individuals slowed down, yielding diametrically opposite response patterns to ethanol exposure. We therefore argue that inter-individual consistency in basal activity level, already from 6 dpf, is an important factor to take into account and provides a practical measure to improve the power of statistical analyses and the scope for data interpretation from behavioural screening studies.
Collapse
Affiliation(s)
- Raissa Davis
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | | | | | - Marcel Schaaf
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | | | - Hans Slabbekoorn
- Institute of Biology, Leiden University, Leiden, the Netherlands
| |
Collapse
|
5
|
Nelson JC, Witze E, Ma Z, Ciocco F, Frerotte A, Randlett O, Foskett JK, Granato M. Acute Regulation of Habituation Learning via Posttranslational Palmitoylation. Curr Biol 2020; 30:2729-2738.e4. [PMID: 32502414 PMCID: PMC8446937 DOI: 10.1016/j.cub.2020.05.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 01/06/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022]
Abstract
Habituation is an adaptive learning process that enables animals to adjust innate behaviors to changes in their environment. Despite its well-documented implications for a wide diversity of behaviors, the molecular and cellular basis of habituation learning is not well understood. Using whole-genome sequencing of zebrafish mutants isolated in an unbiased genetic screen, we identified the palmitoyltransferase Huntingtin interacting protein 14 (Hip14) as a critical regulator of habituation learning. We demonstrate that Hip14 regulates depression of sensory inputs onto an identified hindbrain neuron and provide evidence that Hip14 palmitoylates the Shaker-like K+ voltage-gated channel subunit (Kv1.1), thereby regulating Kv1.1 subcellular localization. Furthermore, we show that, like for Hip14, loss of Kv1.1 leads to habituation deficits and that Hip14 is dispensable in development and instead acts acutely to promote habituation. Combined, these results uncover a previously unappreciated role for acute posttranslational palmitoylation at defined circuit components to regulate learning.
Collapse
Affiliation(s)
- Jessica C Nelson
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Eric Witze
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Zhongming Ma
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Francesca Ciocco
- Department of Biology, Haverford College, 370 Lancaster Avenue, Haverford, PA 19041, USA
| | - Abigaile Frerotte
- Department of Biology, Haverford College, 370 Lancaster Avenue, Haverford, PA 19041, USA
| | - Owen Randlett
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon 69008, France
| | - J Kevin Foskett
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Roberts S, Seeger M, Jiang Y, Mishra A, Sigmund F, Stelzl A, Lauri A, Symvoulidis P, Rolbieski H, Preller M, Deán-Ben XL, Razansky D, Orschmann T, Desbordes SC, Vetschera P, Bach T, Ntziachristos V, Westmeyer GG. Calcium Sensor for Photoacoustic Imaging. J Am Chem Soc 2017; 140:2718-2721. [DOI: 10.1021/jacs.7b03064] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Matthias Preller
- CSSB,
22607 Hamburg and Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | | | | | | | | | | | - Thorsten Bach
- Department
Chemie, Technical University of Munich, 85747 Garching, Germany
| | | | | |
Collapse
|
7
|
Bartolini T, Mwaffo V, Butail S, Porfiri M. Effect of acute ethanol administration on zebrafish tail-beat motion. Alcohol 2015; 49:721-5. [PMID: 26314628 DOI: 10.1016/j.alcohol.2015.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 05/28/2015] [Accepted: 06/10/2015] [Indexed: 01/09/2023]
Abstract
Zebrafish is becoming a species of choice in neurobiological and behavioral studies of alcohol-related disorders. In these efforts, the activity of adult zebrafish is typically quantified using indirect activity measures that are either scored manually or identified automatically from the fish trajectory. The analysis of such activity measures has produced important insight into the effect of acute ethanol exposure on individual and social behavior of this vertebrate species. Here, we leverage a recently developed tracking algorithm that reconstructs fish body shape to investigate the effect of acute ethanol administration on zebrafish tail-beat motion in terms of amplitude and frequency. Our results demonstrate a significant effect of ethanol on the tail-beat amplitude as well as the tail-beat frequency, both of which were found to robustly decrease for high ethanol concentrations. Such a direct measurement of zebrafish motor functions is in agreement with evidence based on indirect activity measures, offering a complementary perspective in behavioral screening.
Collapse
|
8
|
Guo N, Lin J, Peng X, Chen H, Zhang Y, Liu X, Li Q. Influences of acute ethanol exposure on locomotor activities of zebrafish larvae under different illumination. Alcohol 2015; 49:727-37. [PMID: 26384924 DOI: 10.1016/j.alcohol.2015.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 08/18/2015] [Accepted: 08/18/2015] [Indexed: 01/05/2023]
Abstract
Larval zebrafish present unique opportunities to study the behavioral responses of a model organism to environmental challenges during early developmental stages. The purpose of the current study was to investigate the locomotor activities of AB strain zebrafish larvae at 5 and 7 days post-fertilization (dpf) in response to light changes under the influence of ethanol, and to explore potential neurological mechanisms that are involved in ethanol intoxication. AB strain zebrafish larvae at both 5 and 7 dpf were treated with ethanol at 0% (control), 0.1%, 0.25%, 0.5%, 1%, and 2% (v/v%). The locomotor activities of the larvae during alternating light-dark challenges, as well as the locomotor responses immediately following the light transitions, were investigated. The levels of various neurotransmitters were also measured in selected ethanol-treated groups. The larvae at 5 and 7 dpf demonstrated similar patterns of locomotor responses to ethanol treatment. Ethanol treatment at 1% increased the swimming distances of the zebrafish larvae in the dark periods, but had no effect on the swimming distances in the light periods. In contrast, ethanol treatment at 2% increased the swimming distances in the light periods, but did not potentiate the swimming activity in the dark periods, compared to controls. Differences in the levels of neurotransmitters that are involved in norepinephrine, dopamine, and serotonin pathways were also observed in groups with different ethanol treatments. These results indicated the behavioral studies concerning the ethanol effects on locomotor activities of zebrafish larvae could be carried out as early as 5 dpf. The 1% and 2% ethanol-treated zebrafish larvae modeled ethanol effects at different intoxication states, and the differences in neurotransmitter levels suggested the involvement of various neurotransmitter pathways in different ethanol intoxication states.
Collapse
|
9
|
Legradi J, el Abdellaoui N, van Pomeren M, Legler J. Comparability of behavioural assays using zebrafish larvae to assess neurotoxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:16277-89. [PMID: 25399529 DOI: 10.1007/s11356-014-3805-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 11/02/2014] [Indexed: 05/25/2023]
Abstract
Testing of compounds for neurotoxicity has become increasingly important in recent years. It has been shown that neurological disorders like autism may be related to chemical exposures, which may play a crucial role in the progression of these diseases. Special attention has been be given to the substances causing developmental neurotoxicity as the developing nervous system is more vulnerable to impacts by chemicals than the adult nervous system. The zebrafish (Danio rerio) is a well-established model species in developmental biology and an emerging model in behavioural and neurological studies. Zebrafish larvae display numerous behavioural patterns highly similar to rodents and humans. Their physical characteristics make them well suited for automated high-throughput screening. In the last years, the number of behavioural studies conducted with zebrafish larvae has increased notably. The goal of this review is to provide an overview of behavioural assays commonly used to test substances for developmental neurotoxicity. Literature from 1995 to 2014 was reviewed and focussed on assays performed with zebrafish larvae younger than 7 days post fertilization (dpf). The behavioural tests were scrutinized, and parameters describing the different experimental setups were defined. In the next step, we investigated if differences in the experimental parameters alter the outcome of the test. In order to test the comparability of behavioural assays, we analysed several studies using ethanol, valproate and pentylenetetrazole as model substances. Based on our findings, we provide recommendations which could help improve future behavioural studies performed with zebrafish larvae.
Collapse
Affiliation(s)
- J Legradi
- Institute for Environmental Studies, VU University, Amsterdam, The Netherlands.
| | - N el Abdellaoui
- Institute for Environmental Studies, VU University, Amsterdam, The Netherlands
| | - M van Pomeren
- Institute for Environmental Studies, VU University, Amsterdam, The Netherlands
| | - J Legler
- Institute for Environmental Studies, VU University, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Behavioral, endocrine, and neuronal alterations in zebrafish (Danio rerio) following sub-chronic coadministration of fluoxetine and ketamine. Pharmacol Biochem Behav 2015; 139 Pt B:158-62. [PMID: 26303305 DOI: 10.1016/j.pbb.2015.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 07/22/2015] [Accepted: 08/17/2015] [Indexed: 11/22/2022]
Abstract
Most existing pharmacological treatments have focused on the "monoamine hypothesis" for targeted drug design for major depressive disorder (MDD). Many of these medications have a delayed onset-of-action and limited efficacy. Antidepressants with principal targets outside the monoamine system may offer the potential for more rapid activity with improved therapeutic benefit. Growing evidence suggests that the glutamatergic system is uniquely central to the neurobiology and treatment of MDD. Ketamine (Ketalar®) is a non-competitive glutamatergic antagonist classically used to induce sedation. However, preliminary clinical evidence has been promising with regard to its rapidly acting antidepressant profile. Zebrafish (Danio rerio) have emerged as a promising new animal model to screen the effects of numerous psychotropic compounds. This study aimed to determine if a sub-chronic low (sub-anesthetic) dose of ketamine could be used to augment the antidepressant effects of the widely used antidepressant fluoxetine (Prozac®) in adult zebrafish, employing an ethanol withdrawal model. Sub-chronic exposure to dosages of 100μg/L fluoxetine and 20mg/L of ketamine reduced anxiety/depression-like behaviors, leads to upregulation of serotonin synthesis and elevated whole-body cortisol levels. These results demonstrate the utility of zebrafish as a model for neuropharmacological research, and the possible efficacy of fluoxetine and ketamine coadministration.
Collapse
|
11
|
Lacoste AMB, Schoppik D, Robson DN, Haesemeyer M, Portugues R, Li JM, Randlett O, Wee CL, Engert F, Schier AF. A convergent and essential interneuron pathway for Mauthner-cell-mediated escapes. Curr Biol 2015; 25:1526-34. [PMID: 25959971 DOI: 10.1016/j.cub.2015.04.025] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 03/09/2015] [Accepted: 04/14/2015] [Indexed: 12/20/2022]
Abstract
The Mauthner cell (M-cell) is a command-like neuron in teleost fish whose firing in response to aversive stimuli is correlated with short-latency escapes [1-3]. M-cells have been proposed as evolutionary ancestors of startle response neurons of the mammalian reticular formation [4], and studies of this circuit have uncovered important principles in neurobiology that generalize to more complex vertebrate models [3]. The main excitatory input was thought to originate from multisensory afferents synapsing directly onto the M-cell dendrites [3]. Here, we describe an additional, convergent pathway that is essential for the M-cell-mediated startle behavior in larval zebrafish. It is composed of excitatory interneurons called spiral fiber neurons, which project to the M-cell axon hillock. By in vivo calcium imaging, we found that spiral fiber neurons are active in response to aversive stimuli capable of eliciting escapes. Like M-cell ablations, bilateral ablations of spiral fiber neurons largely eliminate short-latency escapes. Unilateral spiral fiber neuron ablations shift the directionality of escapes and indicate that spiral fiber neurons excite the M-cell in a lateralized manner. Their optogenetic activation increases the probability of short-latency escapes, supporting the notion that spiral fiber neurons help activate M-cell-mediated startle behavior. These results reveal that spiral fiber neurons are essential for the function of the M-cell in response to sensory cues and suggest that convergent excitatory inputs that differ in their input location and timing ensure reliable activation of the M-cell, a feedforward excitatory motif that may extend to other neural circuits.
Collapse
Affiliation(s)
- Alix M B Lacoste
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - David Schoppik
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Drew N Robson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Martin Haesemeyer
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ruben Portugues
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jennifer M Li
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Owen Randlett
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Caroline L Wee
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; FAS Center for Systems Biology, Harvard University, MA 02138, USA.
| |
Collapse
|
12
|
Daikoku E, Saito M, Ono F. Zebrafish mutants of the neuromuscular junction: swimming in the gene pool. J Physiol Sci 2015; 65:217-21. [PMID: 25782439 PMCID: PMC4408355 DOI: 10.1007/s12576-015-0372-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 02/28/2015] [Indexed: 01/07/2023]
Abstract
This review provides an overview of zebrafish mutants with dysfunctional acetylcholine receptors or related proteins at the neuromuscular junction (NMJ). The NMJ, which has served as the classical model of the chemical synapse, uses acetylcholine as the neurotransmitter, and mutations of proteins involved in the signaling cascade lead to a variety of behavioral phenotypes. Mutants isolated after random chemical mutagenesis screening are summarized, and advances in the field resulting from these mutants are discussed.
Collapse
Affiliation(s)
- Eriko Daikoku
- Department of Physiology, Osaka Medical College, Takatsuki, 569-8686 Japan
| | - Masahisa Saito
- Department of Physiology, Osaka Medical College, Takatsuki, 569-8686 Japan
| | - Fumihito Ono
- Department of Physiology, Osaka Medical College, Takatsuki, 569-8686 Japan
- Laboratory of Molecular Physiology, NIAAA, NIH, Bethesda, MD 20892 USA
| |
Collapse
|
13
|
Abstract
Fetal Alcohol Spectrum Disorders (FASD) describes a wide range of phenotypic defects affecting facial and neurological development associated with ethanol teratogenicity. It affects approximately 1 in 100 children born in the United States each year. Genetic predisposition along with timing and dosage of ethanol exposure are critical in understanding the prevalence and variability of FASD. The zebrafish attributes of external fertilization, genetic tractability, and high fecundity make it a powerful tool for FASD studies. However, a lack of consensus of ethanol treatment paradigms has limited the interpretation of these various studies. Here we address this concern by examining ethanol tissue concentrations across timing and genetic background. We utilize headspace gas chromatography to determine ethanol concentration in the AB, fli1:EGFP, and Tu backgrounds. In addition, we treated these embryos with ethanol over two different developmental time windows, 6-24 h post fertilization (hpf) and 24-48 hpf. Our analysis demonstrates that embryos rapidly equilibrate to a sub-media level of ethanol. Embryos then maintain this level of ethanol for the duration of exposure. The ethanol tissue concentration level is independent of genetic background, but is timing-dependent. Embryos exposed from 6 to 24 hpf were 2.7-4.2-fold lower than media levels, while embryos were 5.7-6.2-fold lower at 48 hpf. This suggests that embryos strengthen one or more barriers to ethanol as they develop. In addition, both the embryo and, to a lesser extent, the chorion, surrounding the embryo are barriers to ethanol. Overall, this work will help tighten ethanol treatment regimens and strengthen zebrafish as a model of FASD.
Collapse
Affiliation(s)
- C Ben Lovely
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78713, USA; Waggoner Center for Alcohol & Addiction Research, University of Texas at Austin, Austin, TX 78713, USA.
| | - Regina D Nobles
- Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Johann K Eberhart
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78713, USA; Waggoner Center for Alcohol & Addiction Research, University of Texas at Austin, Austin, TX 78713, USA
| |
Collapse
|
14
|
Yeh CM, Glöck M, Ryu S. An optimized whole-body cortisol quantification method for assessing stress levels in larval zebrafish. PLoS One 2013; 8:e79406. [PMID: 24223943 PMCID: PMC3815139 DOI: 10.1371/journal.pone.0079406] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/30/2013] [Indexed: 11/19/2022] Open
Abstract
Glucocorticoids serve important regulatory functions for many physiological processes and are critical mediators of the stress response. The stress response is a set of bodily processes aimed at counteracting a state of threatened homeostasis. Proper stress response is critical for the survival of an animal, however prolonged or abnormal stress response can be detrimental and is implicated in a number of human diseases such as depression and metabolic diseases. To dissect the underlying mechanism of this complex and important response, the zebrafish, Danio rerio offer important advantages such as ease of genetic manipulations and high-throughput behavioral analyses. However, there is a paucity of suitable methods to measure stress level in larval zebrafish. Therefore, an efficient low-cost method to monitor stress hormone levels will greatly facilitate stress research in zebrafish larvae. In this study, we optimized sample collection as well as cortisol extraction methods and developed a home-made ELISA protocol for measuring whole-body cortisol level in zebrafish larvae. Further, using our customized protocols, we characterized the response of larval zebrafish to a variety of stressors. This assay, developed for efficient cortisol quantification, will be useful for systematic and large-scale stress analyses in larval zebrafish.
Collapse
Affiliation(s)
- Chen-Min Yeh
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Mario Glöck
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Soojin Ryu
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research, Heidelberg, Germany
- * E-mail:
| |
Collapse
|