1
|
Shen J, Wu W, Zhang X, Xie X, Shen W, Wang Q. Cancer-associated fibroblasts promote the malignant development of lung cancer through the FOXO1 protein/LIF signaling. Int J Biol Macromol 2024; 276:133987. [PMID: 39032875 DOI: 10.1016/j.ijbiomac.2024.133987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
This paper aims to investigate the current situation of cancer related fibroblasts promoting malignant development of cancer through FOXO1 protein/LIF signal, and explore the strategy of cancer treatment. Recent studies have shown that the expression of the protein forkhead box O1 (FOXO1) is increased in CAFsCAFs (Cancer-associated fibroblasts). This led researchers to investigate whether FOXO1 is involved in the role of CAFs in lung cancer. The results of the study revealed that FOXO1 is indeed upregulated in CAFs, and it positively regulates the transcription of another protein called LIF. Notably, LIF is also upregulated in both CAFs and lung cancer cells. These changes in protein expression were associated with the overexpression of FOXO1 in CAFs. Conversely, silencing FOXO1 in CAFs suppressed their effects on cancer cells and transplanted tumors. The study revealed that the downregulation of LIFR in cancer cells abolished the impact of CAFs overexpressing FOXO1 on cancer cell behavior. This suggests that the FOXO1/LIF signaling pathway is involved in mediating the malignant development of lung cancer induced by CAFs.
Collapse
Affiliation(s)
- Jiannan Shen
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Wei Wu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Xing Zhang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Xiaodong Xie
- CT Room, Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Wenrong Shen
- CT Room, Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Qianghu Wang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
2
|
Nie HY, Ge J, Liu KG, Yue Y, Li H, Lin HG, Yan HF, Zhang T, Sun HW, Yang JW, Zhou JL, Cui Y. The effects of microgravity on stem cells and the new insights it brings to tissue engineering and regenerative medicine. LIFE SCIENCES IN SPACE RESEARCH 2024; 41:1-17. [PMID: 38670635 DOI: 10.1016/j.lssr.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/13/2023] [Accepted: 01/06/2024] [Indexed: 04/28/2024]
Abstract
Conventional two-dimensional (2D) cell culture techniques may undergo modifications in the future, as life scientists have widely acknowledged the ability of three-dimensional (3D) in vitro culture systems to accurately simulate in vivo biology. In recent years, researchers have discovered that microgravity devices can address many challenges associated with 3D cell culture. Stem cells, being pluripotent cells, are regarded as a promising resource for regenerative medicine. Recent studies have demonstrated that 3D culture in microgravity devices can effectively guide stem cells towards differentiation and facilitate the formation of functional tissue, thereby exhibiting advantages within the field of tissue engineering and regenerative medicine. Furthermore, We delineate the impact of microgravity on the biological behavior of various types of stem cells, while elucidating the underlying mechanisms governing these alterations. These findings offer exciting prospects for diverse applications.
Collapse
Affiliation(s)
- Hong-Yun Nie
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jun Ge
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Kai-Ge Liu
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Yuan Yue
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hao Li
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China.
| | - Hai-Guan Lin
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hong-Feng Yan
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Tao Zhang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hong-Wei Sun
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jian-Wu Yang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jin-Lian Zhou
- Department of Pathology, Strategic Support Force Medical Center, Beijing 100101, China
| | - Yan Cui
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China.
| |
Collapse
|
3
|
Liu J, Leng F, Gao Y, He W, Wang J, Xian CJ, Ma H, Chen K. Protection of primary cilia is an effective countermeasure against the impairment of osteoblast function induced by simulated microgravity. J Cell Mol Med 2022; 27:36-51. [PMID: 36512344 PMCID: PMC9806295 DOI: 10.1111/jcmm.17628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
The molecular mechanism for the microgravity-induced decrease in bone formation remains unclear and there is a lack of effective specific preventative therapies. We recently reported that primary cilia of osteoblasts became shorter and even disappeared when the cells were exposed to random positioning machine (RPM)-simulated microgravity and that the microgravity-induced loss of osteogenic potential of osteoblasts could be attenuated when the resorption of primary cilia was prevented by treatment with 0.1 μM cytochalasin D. In the current study, it was further found that the loss of the osteogenic capacity of rat calvarial osteoblasts (ROBs) was associated with the inhibition of the BMP-2/Smad1/5/8 signalling pathway, of which most of the signalling proteins including BMP-2, BMPRII, Smad1/5/8 and p-Smad1/5/8 were found localized to primary cilia. Accompanying the resorption of primary cilia following the cells being exposed to simulated microgravity, the expression levels of these signalling proteins were reduced significantly. Furthermore, the expression of miRNA-129-3p, a microRNA previously reported to control cilium biogenesis, was found to be reduced quickly and changed in a similar tendency with the length of primary cilia. Moreover, overexpression of miRNA-129-3p in ROBs significantly attenuated microgravity-induced inhibition of BMP-2 signalling and loss of osteogenic differentiation and mineralization. These results indicated the important role of miRNA-129-3p in microgravity-induced resorption of primary cilia of osteoblasts and the potential of replenishing the miRNA-129-3p as an effective countermeasure against microgravity-induced loss of primary cilia and impairment of osteoblast function.
Collapse
Affiliation(s)
- Jing Liu
- Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support ForcePeople's Liberation Army of ChinaLanzhouChina
| | - Fei‐Fan Leng
- Department of Bioengineering, School of Life Science and EngineeringLanzhou University of TechnologyLanzhouChina
| | - Yu‐Hai Gao
- Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support ForcePeople's Liberation Army of ChinaLanzhouChina
| | - Wen‐Fang He
- Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support ForcePeople's Liberation Army of ChinaLanzhouChina
| | - Ju‐Fang Wang
- Gansu Key Laboratory of Space RadiobiologyInstitute of Modern Physics, Chinese Academy of SciencesLanzhouChina
| | - Cory J. Xian
- UniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Hui‐Ping Ma
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support ForcePeople's Liberation Army of ChinaLanzhouChina
| | - Ke‐Ming Chen
- Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support ForcePeople's Liberation Army of ChinaLanzhouChina
| |
Collapse
|
4
|
Basu A, Paul MK, Weiss S. The actin cytoskeleton: Morphological changes in pre- and fully developed lung cancer. BIOPHYSICS REVIEWS 2022; 3:041304. [PMID: 38505516 PMCID: PMC10903407 DOI: 10.1063/5.0096188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 12/09/2022] [Indexed: 03/21/2024]
Abstract
Actin, a primary component of the cell cytoskeleton can have multiple isoforms, each of which can have specific properties uniquely suited for their purpose. These monomers are then bound together to form polymeric filaments utilizing adenosine triphosphate hydrolysis as a source of energy. Proteins, such as Arp2/3, VASP, formin, profilin, and cofilin, serve important roles in the polymerization process. These filaments can further be linked to form stress fibers by proteins called actin-binding proteins, such as α-actinin, myosin, fascin, filamin, zyxin, and epsin. These stress fibers are responsible for mechanotransduction, maintaining cell shape, cell motility, and intracellular cargo transport. Cancer metastasis, specifically epithelial mesenchymal transition (EMT), which is one of the key steps of the process, is accompanied by the formation of thick stress fibers through the Rho-associated protein kinase, MAPK/ERK, and Wnt pathways. Recently, with the advent of "field cancerization," pre-malignant cells have also been demonstrated to possess stress fibers and related cytoskeletal features. Analytical methods ranging from western blot and RNA-sequencing to cryo-EM and fluorescent imaging have been employed to understand the structure and dynamics of actin and related proteins including polymerization/depolymerization. More recent methods involve quantifying properties of the actin cytoskeleton from fluorescent images and utilizing them to study biological processes, such as EMT. These image analysis approaches exploit the fact that filaments have a unique structure (curvilinear) compared to the noise or other artifacts to separate them. Line segments are extracted from these filament images that have assigned lengths and orientations. Coupling such methods with statistical analysis has resulted in development of a new reporter for EMT in lung cancer cells as well as their drug responses.
Collapse
Affiliation(s)
| | | | - Shimon Weiss
- Author to whom correspondence should be addressed:
| |
Collapse
|
5
|
Zhang X, Xue T, Hu Z, Guo X, Li G, Wang Y, Zhang L, Xu L, Cao X, Zhang S, Shi F, Wang K. Bioinformatic analysis of the RNA expression patterns in microgravity-induced bone loss. Front Genet 2022; 13:985025. [PMID: 36425065 PMCID: PMC9681495 DOI: 10.3389/fgene.2022.985025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/24/2022] [Indexed: 08/27/2023] Open
Abstract
Researchers have linked microgravity in space to the significant imbalance between bone formation and bone resorption that induces persistent bone loss in load-bearing bones. However, the underlying molecular mechanisms are still unclear, which hinders the development of therapeutic measures. The aim of this study was to identify hub genes and explore novel molecular mechanisms underlying microgravity-induced bone loss using transcriptome datasets obtained from the GEO and SRA databases. In summary, comparative RNA expression pattern studies that differ in species (Homo or Mus), models (in vitro or in vivo), microgravity conditions (real microgravity or ground-based simulators) and microgravity duration showed that it is difficult to reach a consistent conclusion about the pathogenesis of microgravity-induced bone loss across these studies. Even so, we identified 11 hub genes and some miRNA-mRNA interactions mainly based on the GSE100930 dataset. Also, the expression of CCL2, ICAM1, IGF1, miR-101-3p and miR-451a markedly changed under clinorotation-microgravity condition. Remarkedly, ICAM1 and miR-451a were key mediators of the osteogenesis of hMSCs under clinorotation-microgravity condition. These findings provide novel insights into the molecular mechanisms of bone loss during microgravity and could indicate potential targets for further countermeasures against this condition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Fei Shi
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi’an, China
| | - Ke Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi’an, China
| |
Collapse
|
6
|
Man J, Graham T, Squires-Donelly G, Laslett AL. The effects of microgravity on bone structure and function. NPJ Microgravity 2022; 8:9. [PMID: 35383182 PMCID: PMC8983659 DOI: 10.1038/s41526-022-00194-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/04/2022] [Indexed: 12/22/2022] Open
Abstract
Humans are spending an increasing amount of time in space, where exposure to conditions of microgravity causes 1-2% bone loss per month in astronauts. Through data collected from astronauts, as well as animal and cellular experiments conducted in space, it is evident that microgravity induces skeletal deconditioning in weight-bearing bones. This review identifies contentions in current literature describing the effect of microgravity on non-weight-bearing bones, different bone compartments, as well as the skeletal recovery process in human and animal spaceflight data. Experiments in space are not readily available, and experimental designs are often limited due to logistical and technical reasons. This review introduces a plethora of on-ground research that elucidate the intricate process of bone loss, utilising technology that simulates microgravity. Observations from these studies are largely congruent to data obtained from spaceflight experiments, while offering more insights behind the molecular mechanisms leading to microgravity-induced bone loss. These insights are discussed herein, as well as how that knowledge has contributed to studies of current therapeutic agents. This review also points out discrepancies in existing data, highlighting knowledge gaps in our current understanding. Further dissection of the exact mechanisms of microgravity-induced bone loss will enable the development of more effective preventative and therapeutic measures to protect against bone loss, both in space and possibly on ground.
Collapse
Affiliation(s)
- Joey Man
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, Victoria, 3168, Australia.
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, 3800, Australia.
- Space Technology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, 3168, Australia.
| | - Taylor Graham
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, Victoria, 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, 3800, Australia
| | - Georgina Squires-Donelly
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, Victoria, 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, 3800, Australia
| | - Andrew L Laslett
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, Victoria, 3168, Australia.
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, 3800, Australia.
- Space Technology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, 3168, Australia.
| |
Collapse
|
7
|
Wubshet NH, Arreguin-Martinez E, Nail M, Annamalai H, Koerner R, Rousseva M, Tom T, Gillespie RB, Liu AP. Simulating microgravity using a random positioning machine for inducing cellular responses to mechanotransduction in human osteoblasts. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:114101. [PMID: 34852501 PMCID: PMC9643046 DOI: 10.1063/5.0056366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
The mechanotransduction pathways that mediate cellular responses to contact forces are better understood than those that mediate response to distance forces, especially the force of gravity. Removing or reducing gravity for significant periods of time involves either sending samples to space, inducing diamagnetic levitation with high magnetic fields, or continually reorienting samples for a period, all in a manner that supports cell culturing. Undesired secondary effects due to high magnetic fields or shear forces associated with fluid flow while reorienting must be considered in the design of ground-based devices. We have developed a lab-friendly and compact random positioning machine (RPM) that fits in a standard tissue culture incubator. Using a two-axis gimbal, it continually reorients samples in a manner that produces an equal likelihood that all possible orientations are visited. We contribute a new control algorithm by which the distribution of probabilities over all possible orientations is completely uniform. Rather than randomly varying gimbal axis speed and/or direction as in previous algorithms (which produces non-uniform probability distributions of orientation), we use inverse kinematics to follow a trajectory with a probability distribution of orientations that is uniform by construction. Over a time period of 6 h of operation using our RPM, the average gravity is within 0.001 23% of the gravity of Earth. Shear forces are minimized by limiting the angular speed of both gimbal motors to under 42 °/s. We demonstrate the utility of our RPM by investigating the effects of simulated microgravity on adherent human osteoblasts immediately after retrieving samples from our RPM. Cytoskeletal disruption and cell shape changes were observed relative to samples cultured in a 1 g environment. We also found that subjecting human osteoblasts in suspension to simulated microgravity resulted in less filamentous actin and lower cell stiffness.
Collapse
Affiliation(s)
- Nadab H. Wubshet
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | - Hariprasad Annamalai
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Robert Koerner
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Maria Rousseva
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Tristan Tom
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | - Allen P. Liu
- Author to whom correspondence should be addressed: . Current address: University of Michigan, 2350 Hayward Street, Ann Arbor, Michigan 48109, USA. Tel.: +1 734-764-7719
| |
Collapse
|
8
|
Huang X, Qu R, Peng Y, Yang Y, Fan T, Sun B, Khan AU, Wu S, Wei K, Xu C, Dai J, Ouyang J, Zhong S. Mechanical Sensing Element PDLIM5 Promotes Osteogenesis of Human Fibroblasts by Affecting the Activity of Microfilaments. Biomolecules 2021; 11:biom11050759. [PMID: 34069539 PMCID: PMC8161207 DOI: 10.3390/biom11050759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/23/2022] Open
Abstract
Human skin fibroblasts (HSFs) approximate the multidirectional differentiation potential of mesenchymal stem cells, so they are often used in differentiation, cell cultures, and injury repair. They are an important seed source in the field of bone tissue engineering. However, there are a few studies describing the mechanism of osteogenic differentiation of HSFs. Here, osteogenic induction medium was used to induce fibroblasts to differentiate into osteoblasts, and the role of the mechanical sensitive element PDLIM5 in microfilament-mediated osteogenic differentiation of human fibroblasts was evaluated. The depolymerization of microfilaments inhibited the expression of osteogenesis-related proteins and alkaline phosphatase activity of HSFs, while the polymerization of microfilaments enhanced the osteogenic differentiation of HSFs. The evaluation of potential protein molecules affecting changes in microfilaments showed that during the osteogenic differentiation of HSFs, the expression of PDLIM5 increased with increasing induction time, and decreased under the state of microfilament depolymerization. Lentivirus-mediated PDLIM5 knockdown by shRNA weakened the osteogenic differentiation ability of HSFs and inhibited the expression and morphological changes of microfilament protein. The inhibitory effect of knocking down PDLIM5 on HSF osteogenic differentiation was reversed by a microfilament stabilizer. Taken together, these data suggest that PDLIM5 can mediate the osteogenic differentiation of fibroblasts by affecting the formation and polymerization of microfilaments.
Collapse
Affiliation(s)
- Xiaolan Huang
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
| | - Yan Peng
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
| | - Yuchao Yang
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
| | - Tingyu Fan
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
| | - Bing Sun
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
| | - Asmat Ullah Khan
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
| | - Shutong Wu
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
| | - Kuanhai Wei
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
| | - Chujiang Xu
- Department of Orthopedics, TCM-Integrated Hospital, Southern Medical University, Guangzhou 510000, China;
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
- Correspondence: (J.D.); (J.O.); (S.Z.); Tel.: +86-(20)-6164-8842 (J.D.); +86-(20)-6164-8199 (J.O.); +86-(20)-6164-8200 (S.Z.)
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
- Correspondence: (J.D.); (J.O.); (S.Z.); Tel.: +86-(20)-6164-8842 (J.D.); +86-(20)-6164-8199 (J.O.); +86-(20)-6164-8200 (S.Z.)
| | - Shizhen Zhong
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
- Correspondence: (J.D.); (J.O.); (S.Z.); Tel.: +86-(20)-6164-8842 (J.D.); +86-(20)-6164-8199 (J.O.); +86-(20)-6164-8200 (S.Z.)
| |
Collapse
|
9
|
Zhao XH, Peng XL, Gong HL, Wei DX. Osteogenic differentiation system based on biopolymer nanoparticles for stem cells in simulated microgravity. Biomed Mater 2021; 16. [PMID: 33631731 DOI: 10.1088/1748-605x/abe9d1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
An efficient long-term intracellular growth factor release system in simulated microgravity for osteogenic differentiation was prepared based on polylactic acid (PLA) and polyhydroxyalkanoate (PHA) nanoparticles for loading of bone morphogenetic protein 2 (BMP2) and bone morphogenetic protein 7 (BMP7) (defined as sB2-PLA-NP and sB7-PHA-NP), respectively, associated with osteogenic differentiation of human adipose derived stem cells (hADSCs). On account of soybean lecithin (SL) as biosurfactants, sB2-PLA-NPs and sB7-PHA-NPs had a high encapsulation efficiency (>80%) of BMPs and uniform small size (<100 nm), and showed different slow-release to provide BMP2 in early stage and BMP7 in late stages of osteogenic differentiation within 20 days, due to degradation rate of PLA and PHA in cells. After uptake into hADSCs, by comparison with single sB2-PLA-NP or sB7-PHA-NP, the Mixture NPs, compound of sB2-PLA-NP and sB7-PHA-NP with a mass ratio of 1:1, can well-promote ALP activity, expression of OPN and upregulated related osteo-genes. Directed osteo-differentiation of Mixture NPs was similar to result of sustained free-BMP2 and BMP7-supplying (sFree-B2&B7) in simulated microgravity, which demonstrated the reliability and stability of Mixture NPs as a long-term osteogenic differentiation system in space medicine and biology in future.
Collapse
Affiliation(s)
- Xiao-Hong Zhao
- Northwest University, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of life sciences and medicine, Xi'an, Shaanxi, 710069, CHINA
| | - Xue-Liang Peng
- Northwest University, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of life sciences and medicine, Xi'an, Shaanxi, 710069, CHINA
| | - Hai-Lun Gong
- Northwest University, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of life sciences and medicine, Xi'an, Shaanxi, 710069, CHINA
| | - Dai-Xu Wei
- Northwest University, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of life sciences and medicine, Xi'an, Shaanxi, 710069, CHINA
| |
Collapse
|
10
|
Thompson M, Woods K, Newberg J, Oxford JT, Uzer G. Low-intensity vibration restores nuclear YAP levels and acute YAP nuclear shuttling in mesenchymal stem cells subjected to simulated microgravity. NPJ Microgravity 2020; 6:35. [PMID: 33298964 PMCID: PMC7708987 DOI: 10.1038/s41526-020-00125-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/08/2020] [Indexed: 12/18/2022] Open
Abstract
Reducing the musculoskeletal deterioration that astronauts experience in microgravity requires countermeasures that can improve the effectiveness of otherwise rigorous and time-expensive exercise regimens in space. The ability of low-intensity vibrations (LIV) to activate force-responsive signaling pathways in cells suggests LIV as a potential countermeasure to improve cell responsiveness to subsequent mechanical challenge. Mechanoresponse of mesenchymal stem cells (MSC), which maintain bone-making osteoblasts, is in part controlled by the "mechanotransducer" protein YAP (Yes-associated protein), which is shuttled into the nucleus in response to cyto-mechanical forces. Here, using YAP nuclear shuttling as a measurement outcome, we tested the effect of 72 h of clinostat-induced simulated microgravity (SMG) and daily LIV application (LIVDT) on the YAP nuclear entry driven by either acute LIV (LIVAT) or Lysophosphohaditic acid (LPA), applied after the 72 h period. We hypothesized that SMG-induced impairment of acute YAP nuclear entry would be alleviated by the daily application of LIVDT. Results showed that while both acute LIVAT and LPA treatments increased nuclear YAP entry by 50 and 87% over the basal levels in SMG-treated MSCs, nuclear YAP levels of all SMG groups were significantly lower than non-SMG controls. LIVDT, applied in parallel to SMG, restored the SMG-driven decrease in basal nuclear YAP to control levels as well as increased the LPA-induced but not LIVAT-induced YAP nuclear entry over SMG only, counterparts. These cell-level observations suggest that daily LIV treatments are a feasible countermeasure for restoring basal nuclear YAP levels and increasing the YAP nuclear shuttling in MSCs under SMG.
Collapse
Affiliation(s)
- Matthew Thompson
- Mechanical and Biomedical Engineering, Boise State University, Boise, ID, USA
| | - Kali Woods
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, USA
| | - Joshua Newberg
- Mechanical and Biomedical Engineering, Boise State University, Boise, ID, USA
| | - Julia Thom Oxford
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, USA
| | - Gunes Uzer
- Mechanical and Biomedical Engineering, Boise State University, Boise, ID, USA.
| |
Collapse
|
11
|
Migliorini E, Guevara-Garcia A, Albiges-Rizo C, Picart C. Learning from BMPs and their biophysical extracellular matrix microenvironment for biomaterial design. Bone 2020; 141:115540. [PMID: 32730925 PMCID: PMC7614069 DOI: 10.1016/j.bone.2020.115540] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 01/19/2023]
Abstract
It is nowadays well-accepted that the extracellular matrix (ECM) is not a simple reservoir for growth factors but is an organization center of their biological activity. In this review, we focus on the ability of the ECM to regulate the biological activity of BMPs. In particular, we survey the role of the ECM components, notably the glycosaminoglycans and fibrillary ECM proteins, which can be promoters or repressors of the biological activities mediated by the BMPs. We examine how a process called mechano-transduction induced by the ECM can affect BMP signaling, including BMP internalization by the cells. We also focus on the spatio-temporal regulation of the BMPs, including their release from the ECM, which enables to modulate their spatial localization as well as their local concentration. We highlight how biomaterials can recapitulate some aspects of the BMPs/ECM interactions and help to answer fundamental questions to reveal previously unknown molecular mechanisms. Finally, the design of new biomaterials inspired by the ECM to better present BMPs is discussed, and their use for a more efficient bone regeneration in vivo is also highlighted.
Collapse
Affiliation(s)
- Elisa Migliorini
- CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016 Grenoble, France; CEA, Institute of Interdisciplinary Research of Grenoble (IRIG), Biomimetism and Regenerative Medicine Lab, ERL 5000, Université Grenoble-Alpes (UGA)/CEA/CNRS, Grenoble France.
| | - Amaris Guevara-Garcia
- CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016 Grenoble, France; CEA, Institute of Interdisciplinary Research of Grenoble (IRIG), Biomimetism and Regenerative Medicine Lab, ERL 5000, Université Grenoble-Alpes (UGA)/CEA/CNRS, Grenoble France; Université Grenoble Alpes, Institut for Advances Biosciences, Institute Albert Bonniot, INSERM U1209, CNRS 5309, La Tronche, France
| | - Corinne Albiges-Rizo
- Université Grenoble Alpes, Institut for Advances Biosciences, Institute Albert Bonniot, INSERM U1209, CNRS 5309, La Tronche, France
| | - Catherine Picart
- CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016 Grenoble, France; CEA, Institute of Interdisciplinary Research of Grenoble (IRIG), Biomimetism and Regenerative Medicine Lab, ERL 5000, Université Grenoble-Alpes (UGA)/CEA/CNRS, Grenoble France.
| |
Collapse
|
12
|
Avitabile E, Fusco L, Minardi S, Orecchioni M, Zavan B, Yilmazer A, Rauner M, Pippia P, Tasciotti E, Delogu LG. Bioinspired Scaffold Action Under the Extreme Physiological Conditions of Simulated Space Flights: Osteogenesis Enhancing Under Microgravity. Front Bioeng Biotechnol 2020; 8:722. [PMID: 32733868 PMCID: PMC7362936 DOI: 10.3389/fbioe.2020.00722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/08/2020] [Indexed: 12/24/2022] Open
Abstract
Prolonged exposure to microgravity (MG) during long-duration space flights is known to induce severe dysregulation of osteoblast functions connected to a significant bone loss, similar to the condition induced by osteoporosis. Hence, we here present MG as a promising model to challenge the effectiveness of new scaffolds designed for bone regeneration in counteracting bone loss. To this end, we carried out an integrative study aimed to evaluate, in the extreme condition of Random Positioning Machine-simulated MG, the osteoinductive potential of nanocrystalline magnesium-doped hydroxyapatite/type I collagen composite scaffold (MHA/Coll), that we previously demonstrated to be an excellent tool for bone tissue engineering. Initially, to test the osteoinductive properties of our bioinspired-scaffold, MHA/Coll structure was fully characterized under MG condition and compared to its static counterpart. Human bone marrow-derived mesenchymal stem cells were used to investigate the scaffold biocompatibility and ability to promote osteogenic differentiation after long-duration exposure to MG (up to 21 days). The results demonstrate that the nanostructure of MHA/Coll scaffold can alleviate MG-induced osteoblast dysfunction, promoting cell differentiation along the osteogenic lineage, with a consequent reduction in the expression of the surface markers CD29, CD44, and CD90. Moreover, these findings were corroborated by the ability of MHA/Coll to induce the expression of genes linked to osteogenesis, including alkaline phosphatase and osteocalcin. This study confirmed MHA/Coll capabilities in promoting osteogenesis even in extreme long-term condition of MG, suggesting MG as an effective challenging model to apply in future studies to validate the ability of advanced scaffolds to counteract bone loss, facilitating their application in translational Regenerative Medicine and Tissue Engineering.
Collapse
Affiliation(s)
| | - Laura Fusco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy.,Fondazione Istituto di Ricerca pediatrica Cittá della Speranza, Padua, Italy.,Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Silvia Minardi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Marco Orecchioni
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Barbara Zavan
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
| | - Acelya Yilmazer
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey.,Stem Cell Institute, Ankara University, Ankara, Turkey
| | - Martina Rauner
- Department of Medicine III, Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Proto Pippia
- Department of Physiological, Biochemical and Cellular Science, University of Sassari, Sassari, Italy
| | - Ennio Tasciotti
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Lucia Gemma Delogu
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy.,Fondazione Istituto di Ricerca pediatrica Cittá della Speranza, Padua, Italy.,Department of Biomedical Science, University of Padua, Padua, Italy
| |
Collapse
|
13
|
Coulombe JC, Senwar B, Ferguson VL. Spaceflight-Induced Bone Tissue Changes that Affect Bone Quality and Increase Fracture Risk. Curr Osteoporos Rep 2020; 18:1-12. [PMID: 31897866 DOI: 10.1007/s11914-019-00540-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE OF REVIEW Bone mineral density and systemic factors are used to assess skeletal health in astronauts. Yet, even in a general population, these measures fail to accurately predict when any individual will fracture. This review considers how long-duration human spaceflight requires evaluation of additional bone structural and material quality measures that contribute to microgravity-induced skeletal fragility. RECENT FINDINGS In both humans and small animal models following spaceflight, bone mass is compromised via reduced bone formation and elevated resorption levels. Concurrently, bone structural quality (e.g., trabecular microarchitecture) is diminished and the quality of bone material is reduced via impaired tissue mineralization, maturation, and maintenance (e.g., mediated by osteocytes). Bone structural and material quality are both affected by microgravity and may, together, jeopardize astronaut operational readiness and lead to increased fracture risk upon return to gravitational loading. Future studies need to directly evaluate how bone quality combines with diminished bone mass to influence bone strength and toughness (e.g., resistance to fracture). Bone quality assessment promises to identify novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jennifer C Coulombe
- Department of Mechanical Engineering, University of Colorado, UCB 427, Boulder, CO, 80309, USA
- BioFrontiers Institute, University of Colorado, UCB 596, Boulder, CO, 80309, USA
- BioServe Space Technologies, University of Colorado, UCB 429, Boulder, CO, 80309, USA
| | - Bhavya Senwar
- Department of Mechanical Engineering, University of Colorado, UCB 427, Boulder, CO, 80309, USA
- BioFrontiers Institute, University of Colorado, UCB 596, Boulder, CO, 80309, USA
- BioServe Space Technologies, University of Colorado, UCB 429, Boulder, CO, 80309, USA
| | - Virginia L Ferguson
- Department of Mechanical Engineering, University of Colorado, UCB 427, Boulder, CO, 80309, USA.
- BioFrontiers Institute, University of Colorado, UCB 596, Boulder, CO, 80309, USA.
- BioServe Space Technologies, University of Colorado, UCB 429, Boulder, CO, 80309, USA.
| |
Collapse
|
14
|
Jiang C, Guo D, Li Z, Lei S, Shi J, Shao D. Clinostat Rotation Affects Metabolite Transportation and Increases Organic Acid Production by Aspergillus carbonarius, as Revealed by Differential Metabolomic Analysis. Appl Environ Microbiol 2019; 85:e01023-19. [PMID: 31300399 PMCID: PMC6715838 DOI: 10.1128/aem.01023-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
Contamination by fungi may pose a threat to the long-term operation of the International Space Station because fungi produce organic acids that corrode equipment and mycotoxins that harm human health. Microgravity is an unavoidable and special condition in the space station. However, the influence of microgravity on fungal metabolism has not been well studied. Clinostat rotation is widely used to simulate the microgravity condition in studies carried out on Earth. Here, we used metabolomics differential analysis to study the influence of clinostat rotation on the accumulation of organic acids and related biosynthetic pathways in ochratoxin A (OTA)-producing Aspergillus carbonarius As a result, clinostat rotation did not affect fungal cell growth or colony appearance but significantly increased the accumulation of organic acids, particularly isocitric acid, citric acid, and oxalic acid, and OTA both inside cells and in the medium, as well as resulted in a much higher level of accumulation of some products inside than outside cells, indicating that the transport of these metabolites from the cell to the medium was inhibited. This finding corresponded to the change in the fatty acid composition of cell membranes and the reduced thickness of the cell walls and cell membranes. Amino acid and energy metabolic pathways, particularly the tricarboxylic acid cycle, were influenced the most during clinostat rotation compared to the effects of normal gravity on these pathways.IMPORTANCE Fungi are ubiquitous in nature and have the ability to corrode various materials by producing metabolites. Research on how the space station environment, especially microgravity, affects fungal metabolism is helpful to understand the role of fungi in the space station. This work provides insights into the mechanisms involved in the metabolism of the corrosive fungus Aspergillus carbonarius under simulated microgravity conditions. Our findings have significance not only for preventing material corrosion but also for ensuring food safety, especially in the space environment.
Collapse
Affiliation(s)
- Chunmei Jiang
- Key Laboratory for Space Bioscience & Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Dan Guo
- Key Laboratory for Space Bioscience & Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Zhenzhu Li
- Key Laboratory for Space Bioscience & Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Shuzhen Lei
- Key Laboratory for Space Bioscience & Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Junling Shi
- Key Laboratory for Space Bioscience & Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience & Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
15
|
Chatziravdeli V, Katsaras GN, Lambrou GI. Gene Expression in Osteoblasts and Osteoclasts Under Microgravity Conditions: A Systematic Review. Curr Genomics 2019; 20:184-198. [PMID: 31929726 PMCID: PMC6935951 DOI: 10.2174/1389202920666190422142053] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 12/28/2022] Open
Abstract
Background Microgravity (μG) negatively influences bone metabolism by affecting normal osteoblast and osteoclast function. μG effects on bone metabolism has been an extensive field of study in recent years, due to the challenges presented by space flight. Methods We systematically reviewed research data from genomic studies performed in real or simulat-ed μG, on osteoblast and osteoclast cells. Our search yielded 50 studies, of which 39 concerned cells of the osteoblast family and 11 osteoclast precursors. Results Osteoblastic cells under μG show a decreased differentiation phenotype, proved by diminished expression levels of Alkaline Phosphatase (ALP) and Osteocalcin (OCN) but no apoptosis. Receptor Activator of NF-κB Ligand (RANKL)/ Osteoprotegerine (OPG) ratio is elevated in favor of RANKL in a time-dependent manner, and further RANKL production is caused by upregulation of Interleukin-6 (IL-6) and the inflammation pathway. Extracellular signals and changes in the gravitational environment are perceived by mechanosensitive proteins of the cytoskeleton and converted to intracellular signals through the Mitogen Activated Protein Kinase pathway (MAPK). This is followed by changes in the ex-pression of nuclear transcription factors of the Activator Protein-1 (AP-1) family and in turn of the NF-κB, thus affecting osteoblast differentiation, cell cycle, proliferation and maturation. Pre-osteoclastic cells show increased expression of the marker proteins such as Tryptophan Regulated Attenuation Protein (TRAP), cathepsin K, Matrix Metalloproteinase-9 (MMP-9) under μG conditions and become sensitized to RANKL. Conclusion Suppressing the expression of fusion genes such as syncytine-A which acts independently of RANKL, could be possible future therapeutic targets for microgravity side effects.
Collapse
Affiliation(s)
- Vasiliki Chatziravdeli
- 18 Orthopedic Department, Shoulder Surgery Unit, General Hospital " Asklepieio", Vassileos Pavlou Av. 1, 16673, Voula, Athens, Greece; 2Graduate Program "Metabolic Bones Diseases", National and Kapodistrian University of Athens, Medical School, Mikras Asias 75, 11527, Goudi, Athens, Greece; 3Neonatal Intensive Care Unit, General Hospital of Nikaia "Aghios Panteleimon", Andrea Petrou Mantouvalou Str. 3, 18454, Nikaia, Piraeus, Greece; 4Laboratory for the Research of Musculoskeletal Disorders, Medical School, National and Kapodistrian University of Athens, Nikis 2, 14561, Kifissia, Athens, Greece; 5First Department of Pediatrics, University of Athens, Choremeio Research Laboratory, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi, Athens, Greece
| | - George N Katsaras
- 18 Orthopedic Department, Shoulder Surgery Unit, General Hospital " Asklepieio", Vassileos Pavlou Av. 1, 16673, Voula, Athens, Greece; 2Graduate Program "Metabolic Bones Diseases", National and Kapodistrian University of Athens, Medical School, Mikras Asias 75, 11527, Goudi, Athens, Greece; 3Neonatal Intensive Care Unit, General Hospital of Nikaia "Aghios Panteleimon", Andrea Petrou Mantouvalou Str. 3, 18454, Nikaia, Piraeus, Greece; 4Laboratory for the Research of Musculoskeletal Disorders, Medical School, National and Kapodistrian University of Athens, Nikis 2, 14561, Kifissia, Athens, Greece; 5First Department of Pediatrics, University of Athens, Choremeio Research Laboratory, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi, Athens, Greece
| | - George I Lambrou
- 18 Orthopedic Department, Shoulder Surgery Unit, General Hospital " Asklepieio", Vassileos Pavlou Av. 1, 16673, Voula, Athens, Greece; 2Graduate Program "Metabolic Bones Diseases", National and Kapodistrian University of Athens, Medical School, Mikras Asias 75, 11527, Goudi, Athens, Greece; 3Neonatal Intensive Care Unit, General Hospital of Nikaia "Aghios Panteleimon", Andrea Petrou Mantouvalou Str. 3, 18454, Nikaia, Piraeus, Greece; 4Laboratory for the Research of Musculoskeletal Disorders, Medical School, National and Kapodistrian University of Athens, Nikis 2, 14561, Kifissia, Athens, Greece; 5First Department of Pediatrics, University of Athens, Choremeio Research Laboratory, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi, Athens, Greece
| |
Collapse
|
16
|
Touchstone H, Bryd R, Loisate S, Thompson M, Kim S, Puranam K, Senthilnathan AN, Pu X, Beard R, Rubin J, Alwood J, Oxford JT, Uzer G. Recovery of stem cell proliferation by low intensity vibration under simulated microgravity requires LINC complex. NPJ Microgravity 2019; 5:11. [PMID: 31123701 PMCID: PMC6520402 DOI: 10.1038/s41526-019-0072-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/20/2019] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSC) rely on their ability to integrate physical and spatial signals at load bearing sites to replace and renew musculoskeletal tissues. Designed to mimic unloading experienced during spaceflight, preclinical unloading and simulated microgravity models show that alteration of gravitational loading limits proliferative activity of stem cells. Emerging evidence indicates that this loss of proliferation may be linked to loss of cellular cytoskeleton and contractility. Low intensity vibration (LIV) is an exercise mimetic that promotes proliferation and differentiation of MSCs by enhancing cell structure. Here, we asked whether application of LIV could restore the reduced proliferative capacity seen in MSCs that are subjected to simulated microgravity. We found that simulated microgravity (sMG) decreased cell proliferation and simultaneously compromised cell structure. These changes included increased nuclear height, disorganized apical F-actin structure, reduced expression, and protein levels of nuclear lamina elements LaminA/C LaminB1 as well as linker of nucleoskeleton and cytoskeleton (LINC) complex elements Sun-2 and Nesprin-2. Application of LIV restored cell proliferation and nuclear proteins LaminA/C and Sun-2. An intact LINC function was required for LIV effect; disabling LINC functionality via co-depletion of Sun-1, and Sun-2 prevented rescue of cell proliferation by LIV. Our findings show that sMG alters nuclear structure and leads to decreased cell proliferation, but does not diminish LINC complex mediated mechanosensitivity, suggesting LIV as a potential candidate to combat sMG-induced proliferation loss.
Collapse
Affiliation(s)
- H. Touchstone
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID 83725 USA
| | - R. Bryd
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID 83725 USA
| | - S. Loisate
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID 83725 USA
| | - M. Thompson
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID 83725 USA
| | - S. Kim
- Department of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
| | - K. Puranam
- Department of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
| | - A. N. Senthilnathan
- Department of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
| | - X. Pu
- Biomolecular Research Center, Boise State University, Boise, ID 83725 USA
| | - R. Beard
- Biomolecular Research Center, Boise State University, Boise, ID 83725 USA
| | - J. Rubin
- Department of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
| | - J. Alwood
- Space Biosciences Division, NASA-Ames Research Center, Mountain View, CA 94035 USA
| | - J. T. Oxford
- Biomolecular Research Center, Boise State University, Boise, ID 83725 USA
| | - G. Uzer
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID 83725 USA
| |
Collapse
|
17
|
Xu H, Wu F, Zhang H, Yang C, Li K, Wang H, Yang H, Liu Y, Ding B, Tan Y, Yuan M, Li Y, Dai Z. Actin cytoskeleton mediates BMP2-Smad signaling via calponin 1 in preosteoblast under simulated microgravity. Biochimie 2017; 138:184-193. [PMID: 28457943 DOI: 10.1016/j.biochi.2017.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/26/2017] [Indexed: 12/11/2022]
Abstract
Microgravity influences the activity of osteoblast, induces actin microfilament disruption and leads to bone loss during spaceflight. Mechanical stress such as gravity, regulates cell function, response and differentiation through dynamic cytoskeleton changes, but the mechanotransduction mechanism remains to be fully elucidated. Previous, we demonstrated actin microfilament mediated osteoblast Cbfa1 responsiveness to BMP2 under simulated microgravity (SMG). Here, we explored a potential molecular and its detailed mechanism of actin cytoskeleton functioning on BMP2-Smad signaling in MC3T3-E1 under SMG. Results showed that the actin microfilament-disrupting agent, cytochalasin B (CB), reduced BMP2-induced activation, translocation of Smad1/5/8 and Runx2 expression. SMG also inhibited BMP2-Smad signaling, which was rescued by actin cytoskeleton stabilizing agent, Jasplakinolide (JAS). Furthermore, we found that siRNA mediated knockdown of calponin 1 (CNN1), an actin binding protein, markedly promoted BMP2-Smad signaling and abolished both inhibition of CB, SMG on BMP2-Smad signaling and the rescue action of JAS. Overexpression of CNN1 inhibited the p-Smad induced by BMP2. Bidirectional Co-IP experiments demonstrated CNN1 could interacted with Smad or p-Smad protein. Furthermore, CB or SMG decreased the phosphorylated CNN1 and increased its interaction with Smad or p-Smad. Combined with the phosphorylation of CNN1 inhibites its actin binding activity, these results indicate that actin cytoskeleton depolymerization inhibites BMP2 signaling via blocking of Smad by dephosphorylated CNN1 in osteoblast cells. Thus, we provide new important insights into the mechanism of mechanotransduction under SMG condition, which probably contribute to bone formation decrease induced by SMG.
Collapse
Affiliation(s)
- Hongjie Xu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Feng Wu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Hongyu Zhang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Chao Yang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Kai Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Hailong Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Honghui Yang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yue Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Bai Ding
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yingjun Tan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Ming Yuan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.
| | - Zhongquan Dai
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.
| |
Collapse
|
18
|
Alioscha-Perez M, Benadiba C, Goossens K, Kasas S, Dietler G, Willaert R, Sahli H. A Robust Actin Filaments Image Analysis Framework. PLoS Comput Biol 2016; 12:e1005063. [PMID: 27551746 PMCID: PMC4995035 DOI: 10.1371/journal.pcbi.1005063] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 07/15/2016] [Indexed: 11/18/2022] Open
Abstract
The cytoskeleton is a highly dynamical protein network that plays a central role in numerous cellular physiological processes, and is traditionally divided into three components according to its chemical composition, i.e. actin, tubulin and intermediate filament cytoskeletons. Understanding the cytoskeleton dynamics is of prime importance to unveil mechanisms involved in cell adaptation to any stress type. Fluorescence imaging of cytoskeleton structures allows analyzing the impact of mechanical stimulation in the cytoskeleton, but it also imposes additional challenges in the image processing stage, such as the presence of imaging-related artifacts and heavy blurring introduced by (high-throughput) automated scans. However, although there exists a considerable number of image-based analytical tools to address the image processing and analysis, most of them are unfit to cope with the aforementioned challenges. Filamentous structures in images can be considered as a piecewise composition of quasi-straight segments (at least in some finer or coarser scale). Based on this observation, we propose a three-steps actin filaments extraction methodology: (i) first the input image is decomposed into a ‘cartoon’ part corresponding to the filament structures in the image, and a noise/texture part, (ii) on the ‘cartoon’ image, we apply a multi-scale line detector coupled with a (iii) quasi-straight filaments merging algorithm for fiber extraction. The proposed robust actin filaments image analysis framework allows extracting individual filaments in the presence of noise, artifacts and heavy blurring. Moreover, it provides numerous parameters such as filaments orientation, position and length, useful for further analysis. Cell image decomposition is relatively under-exploited in biological images processing, and our study shows the benefits it provides when addressing such tasks. Experimental validation was conducted using publicly available datasets, and in osteoblasts grown in two different conditions: static (control) and fluid shear stress. The proposed methodology exhibited higher sensitivity values and similar accuracy compared to state-of-the-art methods. We propose a novel actin filaments cytoskeleton analysis framework that allows extracting quasi-straight individual fibers in a robust manner, and provides their respective position, orientation, and length as output. The proposed framework is defined as a three-steps processing sequence, that can explicitly cope with high-throughput imaging related issues, such as noise/artifacts presence and heavy blurring, and can similarly process artifacts-free and well-focused images.
Collapse
Affiliation(s)
- Mitchel Alioscha-Perez
- Electronics and Informatics Dept (ETRO), AVSP Lab, Vrije Universiteit Brussel, Brussels, Belgium
- VUB-EPFL International Joint Research Group (IJRG) NanoBiotechnology and NanoMedicine (NANO), Brussels, Belgium
- * E-mail: (MAP); (HS)
| | - Carine Benadiba
- VUB-EPFL International Joint Research Group (IJRG) NanoBiotechnology and NanoMedicine (NANO), Brussels, Belgium
- Laboratoire de Physique de la Matière Vivante (LPMV), EPFL, Cubotron, Lausanne, Switzerland
| | - Katty Goossens
- VUB-EPFL International Joint Research Group (IJRG) NanoBiotechnology and NanoMedicine (NANO), Brussels, Belgium
- Department of Bioengineering Sciences (DBIT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Sandor Kasas
- VUB-EPFL International Joint Research Group (IJRG) NanoBiotechnology and NanoMedicine (NANO), Brussels, Belgium
- Laboratoire de Physique de la Matière Vivante (LPMV), EPFL, Cubotron, Lausanne, Switzerland
| | - Giovanni Dietler
- VUB-EPFL International Joint Research Group (IJRG) NanoBiotechnology and NanoMedicine (NANO), Brussels, Belgium
- Laboratoire de Physique de la Matière Vivante (LPMV), EPFL, Cubotron, Lausanne, Switzerland
| | - Ronnie Willaert
- VUB-EPFL International Joint Research Group (IJRG) NanoBiotechnology and NanoMedicine (NANO), Brussels, Belgium
- Department of Bioengineering Sciences (DBIT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Hichem Sahli
- Electronics and Informatics Dept (ETRO), AVSP Lab, Vrije Universiteit Brussel, Brussels, Belgium
- VUB-EPFL International Joint Research Group (IJRG) NanoBiotechnology and NanoMedicine (NANO), Brussels, Belgium
- Interuniversity Microelectronics Centre (IMEC), Heverlee, Belgium
- * E-mail: (MAP); (HS)
| |
Collapse
|
19
|
Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells via depolymerizing F-actin to impede TAZ nuclear translocation. Sci Rep 2016; 6:30322. [PMID: 27444891 PMCID: PMC4957213 DOI: 10.1038/srep30322] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/04/2016] [Indexed: 01/12/2023] Open
Abstract
Microgravity induces observed bone loss in space flight, and reduced osteogenesis of bone mesenchymal stem cells (BMSCs) partly contributes to this phenomenon. Abnormal regulation or functioning of the actin cytoskeleton induced by microgravity may cause the inhibited osteogenesis of BMSCs, but the underlying mechanism remains obscure. In this study, we demonstrated that actin cytoskeletal changes regulate nuclear aggregation of the transcriptional coactivator with PDZ-binding motif (TAZ), which is indispensable for osteogenesis of bone mesenchymal stem cells (BMSCs). Moreover, we utilized a clinostat to model simulated microgravity (SMG) and demonstrated that SMG obviously depolymerized F-actin and hindered TAZ nuclear translocation. Interestingly, stabilizing the actin cytoskeleton induced by Jasplakinolide (Jasp) significantly rescued TAZ nuclear translocation and recovered the osteogenic differentiation of BMSCs in SMG, independently of large tumor suppressor 1(LATS1, an upstream kinase of TAZ). Furthermore, lysophosphatidic acid (LPA) also significantly recovered the osteogenic differentiation of BMSCs in SMG through the F-actin-TAZ pathway. Taken together, we propose that the depolymerized actin cytoskeleton inhibits osteogenic differentiation of BMSCs through impeding nuclear aggregation of TAZ, which provides a novel connection between F-actin cytoskeleton and osteogenesis of BMSCs and has important implications in bone loss caused by microgravity.
Collapse
|
20
|
Grimm D, Grosse J, Wehland M, Mann V, Reseland JE, Sundaresan A, Corydon TJ. The impact of microgravity on bone in humans. Bone 2016; 87:44-56. [PMID: 27032715 DOI: 10.1016/j.bone.2015.12.057] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/17/2015] [Accepted: 12/18/2015] [Indexed: 12/22/2022]
Abstract
Experiencing real weightlessness in space is a dream for many of us who are interested in space research. Although space traveling fascinates us, it can cause both short-term and long-term health problems. Microgravity is the most important influence on the human organism in space. The human body undergoes dramatic changes during a long-term spaceflight. In this review, we will mainly focus on changes in calcium, sodium and bone metabolism of space travelers. Moreover, we report on the current knowledge on the mechanisms of bone loss in space, available models to simulate the effects of microgravity on bone on Earth as well as the combined effects of microgravity and cosmic radiation on bone. The available countermeasures applied in space will also be evaluated.
Collapse
Affiliation(s)
- Daniela Grimm
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.
| | - Jirka Grosse
- Department of Nuclear Medicine Germany, University of Regensburg, D-93042 Regensburg, Germany
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, D-39120 Magdeburg, Germany
| | - Vivek Mann
- Department of Biology, Texas Southern University, 3100 Cleburne, Houston, TX 77004, USA
| | - Janne Elin Reseland
- Department of Biomaterials, Faculty of Dentistry, University of Oslo, N-0317 Oslo, Norway
| | - Alamelu Sundaresan
- Department of Biology, Texas Southern University, 3100 Cleburne, Houston, TX 77004, USA
| | | |
Collapse
|
21
|
Zhao T, Tang X, Umeshappa CS, Ma H, Gao H, Deng Y, Freywald A, Xiang J. Simulated Microgravity Promotes Cell Apoptosis Through Suppressing Uev1A/TICAM/TRAF/NF-κB-Regulated Anti-Apoptosis and p53/PCNA- and ATM/ATR-Chk1/2-Controlled DNA-Damage Response Pathways. J Cell Biochem 2016; 117:2138-48. [PMID: 26887372 DOI: 10.1002/jcb.25520] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/12/2016] [Indexed: 11/11/2022]
Abstract
Microgravity has been known to induce cell death. However, its underlying mechanism is less studied. In this study, BL6-10 melanoma cells were cultured in flasks under simulated microgravity (SMG). We examined cell apoptosis, and assessed expression of genes associated with apoptosis and genes regulating apoptosis in cells under SMG. We demonstrate that SMG induces cell morphological changes and microtubule alterations by confocal microscopy, and enhances apoptosis by flow cytometry, which was associated with up- and down-regulation of pro-apoptotic and anti-apoptotic genes, respectively. Moreover, up- and down-regulation of pro-apoptotic (Caspases 3, 7, 8) and anti-apoptotic (Bcl2 and Bnip3) molecules was confirmed by Western blotting analysis. Western blot analysis also indicates that SMG causes inhibition of an apoptosis suppressor, pNF-κB-p65, which is complemented by the predominant localization of NF-κB-p65 in the cytoplasm. SMG also reduces expression of molecules regulating the NF-κB pathway including Uev1A, TICAM, TRAF2, and TRAF6. Interestingly, 10 DNA repair genes are down-regulated in cells exposed to SMG, among which down-regulation of Parp, Ercc8, Rad23, Rad51, and Ku70 was confirmed by Western blotting analysis. In addition, we demonstrate a significant inhibition of molecules involved in the DNA-damage response, such as p53, PCNA, ATM/ATR, and Chk1/2. Taken together, our work reveals that SMG promotes the apoptotic response through a combined modulation of the Uev1A/TICAM/TRAF/NF-κB-regulated apoptosis and the p53/PCNA- and ATM/ATR-Chk1/2-controlled DNA-damage response pathways. Thus, our investigation provides novel information, which may help us to determine the cause of negative alterations in human physiology occurring at spaceflight environment. J. Cell. Biochem. 117: 2138-2148, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tuo Zhao
- Aerospace Institute of Medical Engineering and Biotechnology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Xin Tang
- Aerospace Institute of Medical Engineering and Biotechnology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | | | - Hong Ma
- Aerospace Institute of Medical Engineering and Biotechnology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Haijun Gao
- Aerospace Institute of Medical Engineering and Biotechnology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Yulin Deng
- Aerospace Institute of Medical Engineering and Biotechnology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Andrew Freywald
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jim Xiang
- Aerospace Institute of Medical Engineering and Biotechnology, School of Life Sciences, Beijing Institute of Technology, Beijing, China.,Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
22
|
Zhang Y, Lu T, Wong M, Wang X, Stodieck L, Karouia F, Story M, Wu H. Transient gene and microRNA expression profile changes of confluent human fibroblast cells in spaceflight. FASEB J 2016; 30:2211-24. [PMID: 26917741 DOI: 10.1096/fj.201500121] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/10/2016] [Indexed: 12/31/2022]
Abstract
Microgravity, or an altered gravity environment different from the 1 g of the Earth, has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies that have been conducted in space or by using simulated microgravity on the ground have focused on the growth or differentiation of these cells. It has not been specifically addressed whether nonproliferating cultured cells will sense the presence of microgravity in space. In an experiment conducted onboard the International Space Station, confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 d, respectively, to investigate changes in gene and microRNA (miRNA) expression profiles in these cells. Results of the experiment showed that on d 3, both the flown and ground cells were still proliferating slowly, as measured by the percentage of Ki-67(+) cells. Gene and miRNA expression data indicated activation of NF-κB and other growth-related pathways that involve hepatocyte growth factor and VEGF as well as the down-regulation of the Let-7 miRNA family. On d 14, when the cells were mostly nonproliferating, the gene and miRNA expression profile of the flight sample was indistinguishable from that of the ground sample. Comparison of gene and miRNA expressions in the d 3 samples, with respect to d 14, revealed that most of the changes observed on d 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeletal changes via immunohistochemistry staining of the cells with antibodies for α-tubulin and fibronectin showed no difference between the flown and ground samples. Taken together, our study suggests that in true nondividing human fibroblast cells in culture, microgravity experienced in space has little effect on gene and miRNA expression profiles.-Zhang, Y., Lu, T., Wong, M., Wang, X., Stodieck, L., Karouia, F., Story, M., Wu, H. Transient gene and microRNA expression profile changes of confluent human fibroblast cells in spaceflight.
Collapse
Affiliation(s)
- Ye Zhang
- Johnson Space Center, National Aeronautics and Space Administration (NASA), Houston, Texas, USA; Wyle Laboratories, Houston, Texas, USA; Kennedy Space Center, NASA, Cape Canaveral, Florida, USA
| | - Tao Lu
- Johnson Space Center, National Aeronautics and Space Administration (NASA), Houston, Texas, USA; University of Houston Clear Lake, Houston, Texas, USA
| | - Michael Wong
- Johnson Space Center, National Aeronautics and Space Administration (NASA), Houston, Texas, USA
| | - Xiaoyu Wang
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Fathi Karouia
- Ames Research Center, NASA, Moffett Field, California, USA; and University of California San Francisco, San Francisco, California, USA
| | - Michael Story
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Honglu Wu
- Johnson Space Center, National Aeronautics and Space Administration (NASA), Houston, Texas, USA;
| |
Collapse
|
23
|
Chen Z, Luo Q, Lin C, Song G. Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells through down regulating the transcriptional co-activator TAZ. Biochem Biophys Res Commun 2015; 468:21-6. [PMID: 26549225 DOI: 10.1016/j.bbrc.2015.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 01/02/2023]
Abstract
Microgravity induces observed bone loss in space flight or simulated experiments, while the mechanism underlying it is still obscure. Here, we utilized a clinostat to model simulated microgravity (SMG) and found that SMG obviously inhibited osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs). We detected that SMG dramatically inhibited the expression of the transcriptional coactivator with PDZ-binding motif (TAZ), which acts as a vital regulator of osteogenesis. Interestingly, we found that lysophosphatidic acid (LPA) could activate TAZ and retain osteogenic differentiation of BMSCs under SMG. Our data further demonstrated that depletion of TAZ by siRNA blocked the LPA-induced increase in osteogenic differentiation of BMSCs under SMG. Moreover, Y27632 (the Rock inhibitor) abrogated the activation of TAZ and the increased osteogenic differentiation induced by LPA. Taken together, we propose that microgravity inhibits osteogenic differentiation of BMSCs due to decreased TAZ expression and that LPA can efficiently reverse the reduced osteogenic differentiation via the Rock-TAZ pathway.
Collapse
Affiliation(s)
- Zhe Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Chuanchuan Lin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
24
|
Expression of thymosin beta-4 in human periodontal ligament cells and mouse periodontal tissue and its role in osteoblastic/cementoblastic differentiation. Differentiation 2015; 90:16-26. [DOI: 10.1016/j.diff.2015.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 06/30/2015] [Accepted: 08/30/2015] [Indexed: 11/21/2022]
|
25
|
Yan M, Wang Y, Yang M, Liu Y, Qu B, Ye Z, Liang W, Sun X, Luo Z. The effects and mechanisms of clinorotation on proliferation and differentiation in bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 2015; 460:327-32. [PMID: 25804637 DOI: 10.1016/j.bbrc.2015.03.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 03/07/2015] [Indexed: 02/02/2023]
Abstract
Data from human and rodent studies have demonstrated that microgravity induces observed bone loss in real spaceflight or simulated experiments. The decrease of bone formation and block of maturation may play important roles in bone loss induced by microgravity. The aim of this study was to investigate the changes of proliferation and differentiation in bone marrow mesenchymal stem cells (BMSCs) induced by simulated microgravity and the mechanisms underlying it. We report here that clinorotation, a simulated model of microgravity, decreased proliferation and differentiation in BMSCs after exposure to 48 h simulated microgravity. The inhibited proliferation are related with blocking the cell cycle in G2/M and enhancing the apoptosis. While alterations of the osteoblast differentiation due to the decreased SATB2 expression induced by simulated microgravity in BMSCs.
Collapse
Affiliation(s)
- Ming Yan
- Department of Orthopaedic Surgery, XiJing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Yongchun Wang
- Department of Aerospace Biodynamics, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Min Yang
- Department of Orthopaedic Surgery, XiJing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Yanwu Liu
- Department of Orthopaedic Surgery, XiJing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Bo Qu
- Chengdu Military General Hospital, Chengdu, 610083, China
| | - Zhengxu Ye
- Department of Orthopaedic Surgery, XiJing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Wei Liang
- Department of Orthopaedic Surgery, XiJing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiqing Sun
- Department of Aerospace Biodynamics, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Zhuojing Luo
- Department of Orthopaedic Surgery, XiJing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
26
|
Dai Z, Guo F, Wu F, Xu H, Yang C, Li J, Liang P, Zhang H, Qu L, Tan Y, Wan Y, Li Y. Integrin αvβ3 mediates the synergetic regulation of core-binding factor α1 transcriptional activity by gravity and insulin-like growth factor-1 through phosphoinositide 3-kinase signaling. Bone 2014; 69:126-32. [PMID: 25263523 DOI: 10.1016/j.bone.2014.09.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/16/2014] [Accepted: 09/19/2014] [Indexed: 10/24/2022]
Abstract
Mechanical stimulation and biological factors coordinately regulate bone development and regeneration; however, the underlying mechanisms are poorly understood. Microgravity induces bone loss, which may be partly related to the development of resistance to local cytokines, including insulin-like growth factor 1 (IGF-1). Here, we report the involvement of integrin αvβ3 in microgravity-associated bone loss. An established OSE-3T3 cell model was stably transfected with a 6OSE2 (Osteoblast-Specific Element 2)-luciferase reporter and cultured under simulated microgravity (SMG) and hypergravity (HG) conditions in the presence or absence of IGF-1, the disintegrin echistatin, the phosphoinositide 3-kinase (PI3K) inhibitor LY294002, or combinations of these agents. Activity of core-binding factor α1 (Cbfa1), an essential transcription factor for osteoblastic differentiation and osteogenesis, was reflected by luciferase activity. Different gravity conditions affected the induction of IGF-1 and subsequent effects on Cbfa1 transcription activity. SMG and HG influenced the expression and activity of integrin αvβ3 and phosphorylation level of p85. LY294002 inhibited the effects of HG or IGF-1 on Cbfa1 activity, indicating that HG and IGF-1 could increase Cbfa1 activity via PI3K signaling. Inhibition of integrin αvβ3 by echistatin attenuated the induction of IGF-1 and thus its effect on Cbfa1 activity under normal and HG conditions. Co-immunoprecipitation demonstrated that integrin β3 interacted with insulin receptor substrate 1, and that this interaction was decreased under SMG and increased under HG conditions. These results suggest that integrin αvβ3 mediates the synergetic regulation of Cbfa1 transcription activity by gravity and IGF-1 via PI3K signaling.
Collapse
Affiliation(s)
- Zhongquan Dai
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China.
| | - Feima Guo
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China.
| | - Feng Wu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China.
| | - Hongjie Xu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China.
| | - Chao Yang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China.
| | - Jinqiao Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China.
| | - Peilong Liang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China.
| | - Hongyu Zhang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China.
| | - Lina Qu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China.
| | - Yingjun Tan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China.
| | - Yumin Wan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China.
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China.
| |
Collapse
|
27
|
Ozcivici E, Zhang W, Donahue LR, Judex S. Quantitative trait loci that modulate trabecular bone's risk of failure during unloading and reloading. Bone 2014; 64:25-32. [PMID: 24698783 DOI: 10.1016/j.bone.2014.03.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 02/01/2014] [Accepted: 03/22/2014] [Indexed: 01/23/2023]
Abstract
Genetic makeup of an individual is a strong determinant of the morphologic and mechanical properties of bone. Here, in an effort to identify quantitative trait loci (QTLs) for changes in the simulated mechanical parameters of trabecular bone during altered mechanical demand, we subjected 352 second generation female adult (16 weeks old) BALBxC3H mice to 3 weeks of hindlimb unloading followed by 3 weeks of reambulation. Longitudinal in vivo microcomputed tomography (μCT) scans tracked trabecular changes in the distal femur. Tomographies were directly translated into finite element (FE) models and subjected to a uniaxial compression test. Apparent trabecular stiffness and components of the Von Mises (VM) stress distributions were computed for the distal metaphysis and associated with QTLs. At baseline, five QTLs explained 20% of the variation in trabecular peak stresses across the mouse population. During unloading, three QTLs accounted for 14% of the variability in peak stresses. During reambulation, one QTL accounted for 5% of the variability in peak stresses. QTLs were also identified for mechanically induced changes in stiffness, median stress values and skewness of stress distributions. There was little overlap between QTLs identified for baseline and QTLs for longitudinal changes in mechanical properties, suggesting that distinct genes may be responsible for the mechanical response of trabecular bone. Unloading related QTLs were also different from reambulation related QTLs. Further, QTLs identified here for mechanical properties differed from previously identified QTLs for trabecular morphology, perhaps revealing novel gene targets for reducing fracture risk in individuals exposed to unloading and for maximizing the recovery of trabecular bone's mechanical properties during reambulation.
Collapse
Affiliation(s)
- Engin Ozcivici
- Department of Mechanical Engineering, Izmir Institute of Technology, Urla, Izmir 35430, Turkey.
| | | | | | - Stefan Judex
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
28
|
Arfat Y, Xiao WZ, Iftikhar S, Zhao F, Li DJ, Sun YL, Zhang G, Shang P, Qian AR. Physiological effects of microgravity on bone cells. Calcif Tissue Int 2014; 94:569-79. [PMID: 24687524 DOI: 10.1007/s00223-014-9851-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/12/2014] [Indexed: 01/07/2023]
Abstract
Life on Earth developed under the influence of normal gravity (1g). With evidence from previous studies, scientists have suggested that normal physiological processes, such as the functional integrity of muscles and bone mass, can be affected by microgravity during spaceflight. During the life span, bone not only develops as a structure designed specifically for mechanical tasks but also adapts for efficiency. The lack of weight-bearing forces makes microgravity an ideal physical stimulus to evaluate bone cell responses. One of the most serious problems induced by long-term weightlessness is bone mineral loss. Results from in vitro studies that entailed the use of bone cells in spaceflights showed modification in cell attachment structures and cytoskeletal reorganization, which may be involved in bone loss. Humans exposed to microgravity conditions experience various physiological changes, including loss of bone mass, muscle deterioration, and immunodeficiency. In vitro models can be used to extract valuable information about changes in mechanical stress to ultimately identify the different pathways of mechanotransduction in bone cells. Despite many in vivo and in vitro studies under both real microgravity and simulated conditions, the mechanism of bone loss is still not well defined. The objective of this review is to summarize the recent research on bone cells under microgravity conditions based on advances in the field.
Collapse
Affiliation(s)
- Yasir Arfat
- Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Faculty of Life Sciences, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an, 710072, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Grimm D, Wehland M, Pietsch J, Aleshcheva G, Wise P, van Loon J, Ulbrich C, Magnusson NE, Infanger M, Bauer J. Growing tissues in real and simulated microgravity: new methods for tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:555-66. [PMID: 24597549 DOI: 10.1089/ten.teb.2013.0704] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Tissue engineering in simulated (s-) and real microgravity (r-μg) is currently a topic in Space medicine contributing to biomedical sciences and their applications on Earth. The principal aim of this review is to highlight the advances and accomplishments in the field of tissue engineering that could be achieved by culturing cells in Space or by devices created to simulate microgravity on Earth. Understanding the biology of three-dimensional (3D) multicellular structures is very important for a more complete appreciation of in vivo tissue function and advancing in vitro tissue engineering efforts. Various cells exposed to r-μg in Space or to s-μg created by a random positioning machine, a 2D-clinostat, or a rotating wall vessel bioreactor grew in the form of 3D tissues. Hence, these methods represent a new strategy for tissue engineering of a variety of tissues, such as regenerated cartilage, artificial vessel constructs, and other organ tissues as well as multicellular cancer spheroids. These aggregates are used to study molecular mechanisms involved in angiogenesis, cancer development, and biology and for pharmacological testing of, for example, chemotherapeutic drugs or inhibitors of neoangiogenesis. Moreover, they are useful for studying multicellular responses in toxicology and radiation biology, or for performing coculture experiments. The future will show whether these tissue-engineered constructs can be used for medical transplantations. Unveiling the mechanisms of microgravity-dependent molecular and cellular changes is an up-to-date requirement for improving Space medicine and developing new treatment strategies that can be translated to in vivo models while reducing the use of laboratory animals.
Collapse
Affiliation(s)
- Daniela Grimm
- 1 Institute of Biomedicine, Pharmacology, Aarhus University , Aarhus, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|