1
|
Jolly JT, Blackburn JS. The PACT Network: PRL, ARL, CNNM, and TRPM Proteins in Magnesium Transport and Disease. Int J Mol Sci 2025; 26:1528. [PMID: 40003994 PMCID: PMC11855589 DOI: 10.3390/ijms26041528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Magnesium, the most abundant divalent metal within the cell, is essential for physiological function and critical in cellular signaling. To maintain cellular homeostasis, intracellular magnesium levels are tightly regulated, as dysregulation is linked to numerous diseases, including cancer, diabetes, cardiovascular disorders, and neurological conditions. Over the past two decades, extensive research on magnesium-regulating proteins has provided valuable insight into their pathogenic and therapeutic potential. This review explores an emerging mechanism of magnesium homeostasis involving proteins in the PRL (phosphatase of regenerating liver), ARL (ADP ribosylation factor-like GTPase family), CNNM (cyclin and cystathionine β-synthase domain magnesium transport mediator), and TRPM (transient receptor potential melastatin) families, collectively termed herein as the PACT network. While each PACT protein has been studied within its individual signaling and disease contexts, their interactions suggest a broader regulatory network with therapeutic potential. This review consolidates the current knowledge on the PACT proteins' structure, function, and interactions and identifies research gaps to encourage future investigation. As the field of magnesium homeostasis continues to advance, understanding PACT protein interactions offers new opportunities for basic research and therapeutic development targeting magnesium-related disorders.
Collapse
Affiliation(s)
- Jeffery T. Jolly
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
- Markey Comprehensive Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Jessica S. Blackburn
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
- Markey Comprehensive Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
2
|
Zhu X, Lin SQ, Xie J, Wang LH, Zhang LJ, Xu LL, Xu JG, Lv YB. Biomarkers of lymph node metastasis in colorectal cancer: update. Front Oncol 2024; 14:1409627. [PMID: 39328205 PMCID: PMC11424378 DOI: 10.3389/fonc.2024.1409627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the second leading cause of cancer-related deaths globally, trailing only behind lung cancer, and stands as the third most prevalent malignant tumor, following lung and breast cancers. The primary cause of mortality in colorectal cancer (CRC) stems from distant metastasis. Among the various routes of metastasis in CRC, lymph node metastasis predominates, serving as a pivotal factor in both prognostication and treatment decisions for patients. This intricate cascade of events involves multifaceted molecular mechanisms, highlighting the complexity underlying lymph node metastasis in CRC. The cytokines or proteins involved in lymph node metastasis may represent the most promising lymph node metastasis markers for clinical use. In this review, we aim to consolidate the current understanding of the mechanisms and pathophysiology underlying lymph node metastasis in colorectal cancer (CRC), drawing upon insights from the most recent literatures. We also provide an overview of the latest advancements in comprehending the molecular underpinnings of lymph node metastasis in CRC, along with the potential of innovative targeted therapies. These advancements hold promise for enhancing the prognosis of CRC patients by addressing the challenges posed by lymph node metastasis.
Collapse
Affiliation(s)
- Xiao Zhu
- Department of Colorectal Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Shui-Quan Lin
- Department of Colorectal Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Jun Xie
- Department of Colorectal Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Li-Hui Wang
- Department of Colorectal Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Li-Juan Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling-Ling Xu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian-Guang Xu
- Department of Gastroenterology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Yang-Bo Lv
- Department of Colorectal Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| |
Collapse
|
3
|
Sun S, Meng L, Xing X, Li N, Song Q, Qiao D, Qu L, Liu C, An G, Li Z, Shou C, Lian S. Anti-PRL-3 Monoclonal Antibody inhibits the Growth and Metastasis of colorectal adenocarcinoma. J Cancer 2023; 14:2585-2595. [PMID: 37670977 PMCID: PMC10475362 DOI: 10.7150/jca.81702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
Background: Colon cancer is the one of leading causes of cancer-related death. Chemotherapy, radiotherapy and immunotherapy will be the mainstream in inoperable advanced cancer in clinics. Precision treatment is still lack in colon cancer. Materials and Methods: We developed a series of mAbs targeting PRL-3 through different types of immunogens. The binding domains of mAbs were identified through the ELISA and Western blotting experiments. The antitumor activity of mAbs was verified by cell proliferation, migration and invasion experiments. Xenograft subcutaneous and metastatic models and patient derived Xenograft (PDX) model were established. Results: mAb 12G12 targeting 77-120AA exhibited inhibition in migration and invasion experiments. 12G12 inhibited the migration of multiple types of cancer cells, including colon cancer, gastric cancer, esophagus cancer, liver cancer, lung cancer and pancreatic cancer cells. 12G12 decreased the tumor growth and metastasis in Xenograft subcutaneous and metastatic tumor model, respectively. The antitumor activity of mAb 12G12 was also confirmed in PDX model of gastric cancer. PRL-3 interacted with Golgi protein TMED10. Knockdown of TMED10 expression attenuated the cell migration triggered by purified GST-PRL-3 protein. Conclusion: Our results confirmed the antitumor activity of mAb 12G12 in colorectal adenocarcinoma and provided a new potential targeted therapy of colon cancer.
Collapse
Affiliation(s)
- Shuning Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lin Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaofang Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Translational Research, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ningning Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Qian Song
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Dongbo Qiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Like Qu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Caiyun Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Guo An
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Laboratory Animal, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhongwu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chenchao Shou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Shenyi Lian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
4
|
Li CJ, Tsai HW, Chen YL, Wang CI, Lin YH, Chu PM, Chi HC, Huang YC, Chen CY. Cisplatin or Doxorubicin Reduces Cell Viability via the PTPIVA3-JAK2-STAT3 Cascade in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:123-138. [PMID: 36741246 PMCID: PMC9896975 DOI: 10.2147/jhc.s385238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/29/2022] [Indexed: 02/01/2023] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) accounts for 80% of all liver cancers and is the 2nd leading cause of cancer-related death in Taiwan. Various factors, including rapid cell growth, a high recurrence rate and drug resistance, make HCC difficult to cure. Moreover, the survival rate of advanced HCC patients treated with systemic chemotherapy remains unsatisfactory. Hence, the identification of novel molecular targets and the underlying mechanisms of chemoresistance in HCC and the development more effective therapeutic regimens are desperately needed. Methods An MTT assay was used to determine the cell viability after cisplatin or doxorubicin treatment. Western blotting, qRT‒PCR and immunohistochemistry were utilized to examine the protein tyrosine phosphatase IVA3 (PTP4A3) level and associated signaling pathways. ELISA was utilized to analyze the levels of the inflammatory cytokine IL-6 influenced by cisplatin, doxorubicin and PTP4A3 silencing. Results In this study, we found that PTP4A3 in the cisplatin/doxorubicin-resistant microarray was closely associated with the overall and recurrence-free survival rates of HCC patients. Cisplatin or doxorubicin significantly reduced cell viability and decreased PTP4A3 expression in hepatoma cells. IL-6 secretion increased with cisplatin or doxorubicin treatment and after PTP4A3 silencing. Furthermore, PTP4A3 was highly expressed in tumor tissues versus adjacent normal tissues from HCC patients. In addition, we evaluated the IL-6-associated signaling pathway involving STAT3 and JAK2, and the levels of p-STAT3, p-JAK2, STAT3 and JAK2 were obviously reduced with cisplatin or doxorubicin treatment in HCC cells using Western blotting and were also decreased after silencing PTP4A3. Collectively, we suggest that cisplatin or doxorubicin decreases HCC cell viability via downregulation of PTP4A3 expression through the IL-6R-JAK2-STAT3 cascade. Discussion Therefore, emerging evidence provides a deep understanding of the roles of PTP4A3 in HCC cisplatin/doxorubicin chemoresistance, which can be applied to develop early diagnosis strategies and reveal prognostic factors to establish novel targeted therapeutics to specifically treat HCC.
Collapse
Affiliation(s)
- Chao-Jen Li
- Department of General & Gastroenterological Surgery, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Hung-Wen Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Li Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-I Wang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yang-Hsiang Lin
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Pei-Ming Chu
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung, Taiwan,Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hsiang-Cheng Chi
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Yi-Ching Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Yi Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan,Correspondence: Cheng-Yi Chen, Tel/Fax +886-6-2353535#5329, Email
| |
Collapse
|
5
|
Emerging Role of Plant-Based Dietary Components in Post-Translational Modifications Associated with Colorectal Cancer. Life (Basel) 2023; 13:life13020264. [PMID: 36836621 PMCID: PMC9962725 DOI: 10.3390/life13020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. Its main modifiable risk factors are diet, alcohol consumption, and smoking. Thus, the right approach through lifestyle changes may lead to its prevention. In fact, some natural dietary components have exhibited chemopreventive activity through modulation of cellular processes involved in CRC development. Although cancer is a multi-factorial process, the study of post-translational modifications (PTMs) of proteins associated with CRC has recently gained interest, as inappropriate modification is closely related to the activation of cell signalling pathways involved in carcinogenesis. Therefore, this review aimed to collect the main PTMs associated with CRC, analyse the relationship between different proteins that are susceptible to inappropriate PTMs, and review the available scientific literature on the role of plant-based dietary compounds in modulating CRC-associated PTMs. In summary, this review suggested that some plant-based dietary components such as phenols, flavonoids, lignans, terpenoids, and alkaloids may be able to correct the inappropriate PTMs associated with CRC and promote apoptosis in tumour cells.
Collapse
|
6
|
Chia PL, Ang KH, Thura M, Zeng Q. PRL3 as a therapeutic target for novel cancer immunotherapy in multiple cancer types. Theranostics 2023; 13:1876-1891. [PMID: 37064866 PMCID: PMC10091880 DOI: 10.7150/thno.79265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/20/2022] [Indexed: 04/18/2023] Open
Abstract
Phosphatase of Regenerating Liver-3 (PRL3) was discovered in 1998 and was subsequently found to be correlated with cancer progression and metastasis in 2001. Extensive research in the past two decades has produced significant findings on PRL3-mediated cancer signaling and functions, as well as its clinical relevance in diverse types of cancer. PRL3 has been established to play a role in many cancer-related functions, including but not limited to metastasis, proliferation, and angiogenesis. Importantly, the tumor-specific expression of PRL3 protein in multiple cancer types has made it an attractive therapeutic target. Much effort has been made in developing PRL3-targeted therapy with small chemical inhibitors against intracellular PRL3, and notably, the development of PRL3-zumab as a novel cancer immunotherapy against PRL3. In this review, we summarize the current understanding of the role of PRL3 in cancer-related cellular functions, its prognostic value, as well as perspectives on PRL3 as a target for unconventional immunotherapy in the clinic with PRL3-zumab.
Collapse
Affiliation(s)
- Pei Ling Chia
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore 138673; ; ;
| | - Koon Hwee Ang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore 138673; ; ;
| | - Min Thura
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore 138673; ; ;
| | - Qi Zeng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore 138673; ; ;
| |
Collapse
|
7
|
Protein Tyrosine Phosphatases: Mechanisms in Cancer. Int J Mol Sci 2021; 22:ijms222312865. [PMID: 34884670 PMCID: PMC8657787 DOI: 10.3390/ijms222312865] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Protein tyrosine kinases, especially receptor tyrosine kinases, have dominated the cancer therapeutics sphere as proteins that can be inhibited to selectively target cancer. However, protein tyrosine phosphatases (PTPs) are also an emerging target. Though historically known as negative regulators of the oncogenic tyrosine kinases, PTPs are now known to be both tumor-suppressive and oncogenic. This review will highlight key protein tyrosine phosphatases that have been thoroughly investigated in various cancers. Furthermore, the different mechanisms underlying pro-cancerous and anti-cancerous PTPs will also be explored.
Collapse
|
8
|
Xu L, Wang P, Zhang W, Li W, Liu T, Che X. Dual-Specificity Phosphatase 11 Is a Prognostic Biomarker of Intrahepatic Cholangiocarcinoma. Front Oncol 2021; 11:757498. [PMID: 34660327 PMCID: PMC8513537 DOI: 10.3389/fonc.2021.757498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022] Open
Abstract
Background Cholangiocarcinoma (CCA), including intrahepatic (iCCA), perihilar (pCCA), and distal (dCCA) CCA, is a highly aggressive malignancy originating from bile duct. The prognosis of CCA is very poor, and the biomarker study is unsatisfactory compared with other common cancers. Materials and methods In our study, we investigated the expression of dual-specificity phosphatase 11(DUSP11) in eight pairs of iCCAs, pCCAs, and dCCAs, and their corresponding tumor-adjacent tissues, as well as their tumor-adjacent tissues with qPCR. Moreover, we investigated the expression of DUSP11 in 174 cases of CCAs with immunohistochemistry, including 74 iCCAs, 64 pCCAs, and 36 dCCAs. We classified these patients into subsets with low and high expressions of DUSP11, and evaluated the correlations between the DUSP11 subsets and clinicopathological factors. With univariate and multivariate analyses, we assessed the correlation between DUSP11 and the overall survival (OS) rates in these CCA patients. Results In all the CCA subtypes, DUSP11 was elevated in CCAs compared with their paired adjacent tissues. In iCCA, pCCA, and dCCA, the percentages of DUSP11 high expression were 44.59%, 53.85%, and 55.56%, respectively. In iCCA, high DUSP11 expression was significantly associated with an advanced T stage and a poor prognosis. However, the prognostic value of DUSP11 in pCCA and dCCA was not significant. To decrease the statistical error caused by the small sample size of the dCCA cohort, we merged pCCA and dCCA into extracellular CCA (eCCA). In the 101 cases of eCCA, DUSP11 expression was also not significantly associated with the prognosis. Conclusions DUSP11 expression was associated with tumor infiltration and the OS rate in iCCA, but not in pCCA and dCCA. DUSP11 was an independent biomarker of iCCA indicating a poor prognosis. Our results suggested that a high expression of DUSP11 was a post-operational risk factor, and detecting DUSP11 could guide the individual treatment for patients with CCA.
Collapse
Affiliation(s)
- Lin Xu
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Peng Wang
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Zhang
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weiran Li
- Department of Oncology Rehabilitation, Shenzhen Luohu People's Hospital, Shenzhen, China
| | - Tao Liu
- Department of Oncology Rehabilitation, Shenzhen Luohu People's Hospital, Shenzhen, China
| | - Xu Che
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.,Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Pardella E, Pranzini E, Leo A, Taddei ML, Paoli P, Raugei G. Oncogenic Tyrosine Phosphatases: Novel Therapeutic Targets for Melanoma Treatment. Cancers (Basel) 2020; 12:E2799. [PMID: 33003469 PMCID: PMC7599540 DOI: 10.3390/cancers12102799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Despite a large number of therapeutic options available, malignant melanoma remains a highly fatal disease, especially in its metastatic forms. The oncogenic role of protein tyrosine phosphatases (PTPs) is becoming increasingly clear, paving the way for novel antitumor treatments based on their inhibition. In this review, we present the oncogenic PTPs contributing to melanoma progression and we provide, where available, a description of new inhibitory strategies designed against these enzymes and possibly useful in melanoma treatment. Considering the relevance of the immune infiltrate in supporting melanoma progression, we also focus on the role of PTPs in modulating immune cell activity, identifying interesting therapeutic options that may support the currently applied immunomodulating approaches. Collectively, this information highlights the value of going further in the development of new strategies targeting oncogenic PTPs to improve the efficacy of melanoma treatment.
Collapse
Affiliation(s)
- Elisa Pardella
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Erica Pranzini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Angela Leo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Giovanni Raugei
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| |
Collapse
|
10
|
Jin W. Regulation of Src Family Kinases during Colorectal Cancer Development and Its Clinical Implications. Cancers (Basel) 2020; 12:cancers12051339. [PMID: 32456226 PMCID: PMC7281431 DOI: 10.3390/cancers12051339] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/11/2022] Open
Abstract
Src family kinases (SFKs) are non-receptor kinases that play a critical role in the pathogenesis of colorectal cancer (CRC). The expression and activity of SFKs are upregulated in patients with CRC. Activation of SFKs promotes CRC cell proliferation, metastases to other organs and chemoresistance, as well as the formation of cancer stem cells (CSCs). The enhanced expression level of Src is associated with decreased survival in patients with CRC. Src-mediated regulation of CRC progression involves various membrane receptors, modulators, and suppressors, which regulate Src activation and its downstream targets through various mechanisms. This review provides an overview of the current understanding of the correlations between Src and CRC progression, with a special focus on cancer cell proliferation, invasion, metastasis and chemoresistance, and formation of CSCs. Additionally, this review discusses preclinical and clinical strategies to improve the therapeutic efficacy of drugs targeting Src for treating patients with CRC.
Collapse
Affiliation(s)
- Wook Jin
- Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon 406-840, Korea
| |
Collapse
|
11
|
Duciel L, Monraz Gomez LC, Kondratova M, Kuperstein I, Saule S. The Phosphatase PRL-3 Is Involved in Key Steps of Cancer Metastasis. J Mol Biol 2019; 431:3056-3067. [DOI: 10.1016/j.jmb.2019.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/24/2019] [Accepted: 06/06/2019] [Indexed: 12/17/2022]
|
12
|
Ruckert MT, de Andrade PV, Santos VS, Silveira VS. Protein tyrosine phosphatases: promising targets in pancreatic ductal adenocarcinoma. Cell Mol Life Sci 2019; 76:2571-2592. [PMID: 30982078 PMCID: PMC11105579 DOI: 10.1007/s00018-019-03095-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/25/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer. It is the fourth leading cause of cancer-related death and is associated with a very poor prognosis. KRAS driver mutations occur in approximately 95% of PDAC cases and cause the activation of several signaling pathways such as mitogen-activated protein kinase (MAPK) pathways. Regulation of these signaling pathways is orchestrated by feedback loops mediated by the balance between protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), leading to activation or inhibition of its downstream targets. The human PTPome comprises 125 members, and these proteins are classified into three distinct families according to their structure. Since PTP activity description, it has become clear that they have both inhibitory and stimulatory effects on cancer-associated signaling processes and that deregulation of PTP function is closely associated with tumorigenesis. Several PTPs have displayed either tumor suppressor or oncogenic characteristics during the development and progression of PDAC. In this sense, PTPs have been presented as promising candidates for the treatment of human pancreatic cancer, and many PTP inhibitors have been developed since these proteins were first associated with cancer. Nevertheless, some challenges persist regarding the development of effective and safe methods to target these molecules and deliver these drugs. In this review, we discuss the role of PTPs in tumorigenesis as tumor suppressor and oncogenic proteins. We have focused on the differential expression of these proteins in PDAC, as well as their clinical implications and possible targeting for pharmacological inhibition in cancer therapy.
Collapse
Affiliation(s)
- Mariana Tannús Ruckert
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil
| | - Pamela Viani de Andrade
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil
| | - Verena Silva Santos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil
| | - Vanessa Silva Silveira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
13
|
Protein Phosphatases-A Touchy Enemy in the Battle Against Glioblastomas: A Review. Cancers (Basel) 2019; 11:cancers11020241. [PMID: 30791455 PMCID: PMC6406705 DOI: 10.3390/cancers11020241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma (GBM) is the most common malignant tumor arising from brain parenchyma. Although many efforts have been made to develop therapies for GBM, the prognosis still remains poor, mainly because of the difficulty in total resection of the tumor mass from brain tissue and the resistance of the residual tumor against standard chemoradiotherapy. Therefore, novel adjuvant therapies are urgently needed. Recent genome-wide analyses of GBM cases have clarified molecular signaling mechanisms underlying GBM biology. However, results of clinical trials targeting phosphorylation-mediated signaling have been unsatisfactory to date. Protein phosphatases are enzymes that antagonize phosphorylation signaling by dephosphorylating phosphorylated signaling molecules. Recently, the critical roles of phosphatases in the regulation of oncogenic signaling in malignant tumor cells have been reported, and tumorigenic roles of deregulated phosphatases have been demonstrated in GBM. However, a detailed mechanism underlying phosphatase-mediated signaling transduction in the regulation of GBM has not been elucidated, and such information is necessary to apply phosphatases as a therapeutic target for GBM. This review highlights and summarizes the phosphatases that have crucial roles in the regulation of oncogenic signaling in GBM cells.
Collapse
|
14
|
Tanaka T, Kaida T, Yokoi K, Ishii S, Nishizawa N, Kawamata H, Katoh H, Sato T, Nakamura T, Watanabe M, Yamashita K. Critical relevance of genomic gains of PRL-3/EGFR/c-myc pathway genes in liver metastasis of colorectal cancer. Oncol Lett 2018; 17:1257-1266. [PMID: 30655893 DOI: 10.3892/ol.2018.9728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 10/26/2018] [Indexed: 12/22/2022] Open
Abstract
The PRL-3 gene is involved in the liver metastasis of colorectal cancer (CRC) and oncogene addiction to anticancer therapy. In the present study genomic gains in PRL-3 and its pathway genes, c-myc and EGFR, were investigated in order to determine their clinical relevance during metastatic formation in primary CRC and corresponding liver metastases. The genomic gain statuses of PRL-3, EGFR, and c-myc were investigated using quantitative polymerase chain reaction (qPCR) analysis in 35 samples of CRC and corresponding liver metastases. In the primary CRC specimens, genomic gains in PRL-3, c-myc, and EGFR were observed in 4, 4, and 13 cases, respectively. A genomic gain in one gene was observed in 18 cases, and these genomic gains were mutually exclusive. In the liver metastasis specimens, genomic gains were observed in 14, 8, and 13 cases, respectively. The copy numbers of PRL-3 and c-myc were significantly higher in the liver metastases than in the primary CRC specimens (P=0.03, P=0.009, respectively). A genomic gain in PRL-3 was the most frequent gain in the liver metastases (P=0.004) and was partially redundant with a c-myc genomic gain. EGFR genomic gains were consistent between the primary CRC and the liver metastases (P=0.0000008). In addition, a genomic gain in any of the 3 genes was observed in 23 cases (66%). Among the clinicopathological factors that were assessed, an EGFR genomic gain was significantly associated with tumour size in the primary CRC and the liver metastases (P=0.04). A c-myc genomic gain was also significantly associated with the v factor of the primary tumours in the liver metastases (P<0.01). In conclusion, the genomic copy numbers of PRL-3, c-myc and EGFR were frequently characterised by aberrations in genomic gain in liver metastases from CRC; thus, these gene statuses exhibit potential for the identification of patients who are likely to respond positively to anticancer therapies.
Collapse
Affiliation(s)
- Toshimichi Tanaka
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Takeshi Kaida
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Keigo Yokoi
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Satoru Ishii
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Nobuyuki Nishizawa
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Hiroshi Kawamata
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Hiroshi Katoh
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Takeo Sato
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Takatoshi Nakamura
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Masahiko Watanabe
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Keishi Yamashita
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan.,Division of Advanced Surgical Oncology, Department of Research and Development Centre for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| |
Collapse
|
15
|
Madigan JP, Hou F, Ye L, Hu J, Dong A, Tempel W, Yohe ME, Randazzo PA, Jenkins LMM, Gottesman MM, Tong Y. The tuberous sclerosis complex subunit TBC1D7 is stabilized by Akt phosphorylation-mediated 14-3-3 binding. J Biol Chem 2018; 293:16142-16159. [PMID: 30143532 DOI: 10.1074/jbc.ra118.003525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/13/2018] [Indexed: 01/19/2023] Open
Abstract
The tuberous sclerosis complex (TSC) is a negative regulator of mTOR complex 1, a signaling node promoting cellular growth in response to various nutrients and growth factors. However, several regulators in TSC signaling still await discovery and characterization. Using pulldown and MS approaches, here we identified the TSC complex member, TBC1 domain family member 7 (TBC1D7), as a binding partner for PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1), a negative regulator of Akt kinase signaling. Most TBC domain-containing proteins function as Rab GTPase-activating proteins (RabGAPs), but the crystal structure of TBC1D7 revealed that it lacks residues critical for RabGAP activity. Sequence analysis identified a putative site for both Akt-mediated phosphorylation and 14-3-3 binding at Ser-124, and we found that Akt phosphorylates TBC1D7 at Ser-124. However, this phosphorylation had no effect on the binding of TBC1D7 to TSC1, but stabilized TBC1D7. Moreover, 14-3-3 protein both bound and stabilized TBC1D7 in a growth factor-dependent manner, and a phospho-deficient substitution, S124A, prevented this interaction. The crystal structure of 14-3-3ζ in complex with a phospho-Ser-124 TBC1D7 peptide confirmed the direct interaction between 14-3-3 and TBC1D7. The sequence immediately upstream of Ser-124 aligned with a canonical β-TrCP degron, and we found that the E3 ubiquitin ligase β-TrCP2 ubiquitinates TBC1D7 and decreases its stability. Our findings reveal that Akt activity determines the phosphorylation status of TBC1D7 at the phospho-switch Ser-124, which governs binding to either 14-3-3 or β-TrCP2, resulting in increased or decreased stability of TBC1D7, respectively.
Collapse
Affiliation(s)
| | - Feng Hou
- the Structural Genomics Consortium and
| | - Linlei Ye
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5G 1L7, Canada, and
| | | | | | | | | | - Paul A Randazzo
- Laboratory of Cell and Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | - Yufeng Tong
- the Structural Genomics Consortium and .,the Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
16
|
Hardy S, Kostantin E, Hatzihristidis T, Zolotarov Y, Uetani N, Tremblay ML. Physiological and oncogenic roles of thePRLphosphatases. FEBS J 2018; 285:3886-3908. [DOI: 10.1111/febs.14503] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/30/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Serge Hardy
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
| | - Elie Kostantin
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Biochemistry McGill University Montréal Canada
| | - Teri Hatzihristidis
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Medicine Division of Experimental Medicine McGill University Montreal Canada
| | - Yevgen Zolotarov
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Biochemistry McGill University Montréal Canada
| | - Noriko Uetani
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
| | - Michel L. Tremblay
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Biochemistry McGill University Montréal Canada
- Department of Medicine Division of Experimental Medicine McGill University Montreal Canada
| |
Collapse
|
17
|
McQueeney KE, Salamoun JM, Burnett JC, Barabutis N, Pekic P, Lewandowski SL, Llaneza DC, Cornelison R, Bai Y, Zhang ZY, Catravas JD, Landen CN, Wipf P, Lazo JS, Sharlow ER. Targeting ovarian cancer and endothelium with an allosteric PTP4A3 phosphatase inhibitor. Oncotarget 2018; 9:8223-8240. [PMID: 29492190 PMCID: PMC5823565 DOI: 10.18632/oncotarget.23787] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/25/2017] [Indexed: 12/16/2022] Open
Abstract
Overexpression of protein tyrosine phosphatase PTP4A oncoproteins is common in many human cancers and is associated with poor patient prognosis and survival. We observed elevated levels of PTP4A3 phosphatase in 79% of human ovarian tumor samples, with significant overexpression in tumor endothelium and pericytes. Furthermore, PTP4A phosphatases appear to regulate several key malignant processes, such as invasion, migration, and angiogenesis, suggesting a pivotal regulatory role in cancer and endothelial signaling pathways. While phosphatases are attractive therapeutic targets, they have been poorly investigated because of a lack of potent and selective chemical probes. In this study, we disclose that a potent, selective, reversible, and noncompetitive PTP4A inhibitor, JMS-053, markedly enhanced microvascular barrier function after exposure of endothelial cells to vascular endothelial growth factor or lipopolysaccharide. JMS-053 also blocked the concomitant increase in RhoA activation and loss of Rac1. In human ovarian cancer cells, JMS-053 impeded migration, disrupted spheroid growth, and decreased RhoA activity. Importantly, JMS-053 displayed anticancer activity in a murine xenograft model of drug resistant human ovarian cancer. These data demonstrate that PTP4A phosphatases can be targeted in both endothelial and ovarian cancer cells, and confirm that RhoA signaling cascades are regulated by the PTP4A family.
Collapse
Affiliation(s)
- Kelley E. McQueeney
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | | | - James C. Burnett
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nektarios Barabutis
- Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Paula Pekic
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | | | - Danielle C. Llaneza
- Department of Obstetrics and Gynecology, University of Virginia, Charlottesville, VA, USA
| | - Robert Cornelison
- Department of Obstetrics and Gynecology, University of Virginia, Charlottesville, VA, USA
| | - Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - John D. Catravas
- Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Charles N. Landen
- Department of Obstetrics and Gynecology, University of Virginia, Charlottesville, VA, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - John S. Lazo
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
18
|
Small molecule targeting of PTPs in cancer. Int J Biochem Cell Biol 2017; 96:171-181. [PMID: 28943273 DOI: 10.1016/j.biocel.2017.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 01/28/2023]
Abstract
Protein tyrosine phosphatases (PTPs) undeniably have a central role in the development and progression of human cancers. Historically, however, PTPs have not been viewed as privileged drug targets, and progress on identifying potent, selective, and cell-active small molecule PTP inhibitors has suffered accordingly. This situation is rapidly changing, however, due to biochemical advances in the study of PTPs and recent small molecule screening campaigns, which have identified potent and mechanistically diverse lead structures. These compounds are facilitating the exploration of the fundamental cellular processes controlled by PTPs in cancers, and could form the inflection point for new therapeutic paradigms for the treatment of a range of cancers. Herein, we review recent advances in the discovery and biological annotation of cancer-relevant small molecule PTP inhibitors.
Collapse
|
19
|
Regulatory mechanisms of phosphatase of regenerating liver (PRL)-3. Biochem Soc Trans 2017; 44:1305-1312. [PMID: 27911713 PMCID: PMC5095905 DOI: 10.1042/bst20160146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/04/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022]
Abstract
The phosphatase of regenerating liver (PRL)-3 is overexpressed in many human cancer types and tumor metastases when compared with healthy tissues. Different pathways and mechanisms have been suggested to modulate PRL-3 expression levels and activity, giving some valuable insights but still leaving an incomplete picture. Investigating these mechanisms could provide new targets for therapeutic drug development. Here, we present an updated overview and summarize recent findings concerning the different PRL-3 expression regulatory mechanisms and posttranslational modifications suggested to modulate the activity, localization, or stability of this phosphatase.
Collapse
|
20
|
Bollu LR, Mazumdar A, Savage MI, Brown PH. Molecular Pathways: Targeting Protein Tyrosine Phosphatases in Cancer. Clin Cancer Res 2017; 23:2136-2142. [PMID: 28087641 DOI: 10.1158/1078-0432.ccr-16-0934] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 12/17/2022]
Abstract
The aberrant activation of oncogenic signaling pathways is a universal phenomenon in cancer and drives tumorigenesis and malignant transformation. This abnormal activation of signaling pathways in cancer is due to the altered expression of protein kinases and phosphatases. In response to extracellular signals, protein kinases activate downstream signaling pathways through a series of protein phosphorylation events, ultimately producing a signal response. Protein tyrosine phosphatases (PTP) are a family of enzymes that hydrolytically remove phosphate groups from proteins. Initially, PTPs were shown to act as tumor suppressor genes by terminating signal responses through the dephosphorylation of oncogenic kinases. More recently, it has become clear that several PTPs overexpressed in human cancers do not suppress tumor growth; instead, they positively regulate signaling pathways and promote tumor development and progression. In this review, we discuss both types of PTPs: those that have tumor suppressor activities as well as those that act as oncogenes. We also discuss the potential of PTP inhibitors for cancer therapy. Clin Cancer Res; 23(9); 2136-42. ©2017 AACR.
Collapse
Affiliation(s)
- Lakshmi Reddy Bollu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Abhijit Mazumdar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michelle I Savage
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Powel H Brown
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
21
|
Abdollahi P, Vandsemb EN, Hjort MA, Misund K, Holien T, Sponaas AM, Rø TB, Slørdahl TS, Børset M. Src Family Kinases Are Regulated in Multiple Myeloma Cells by Phosphatase of Regenerating Liver-3. Mol Cancer Res 2016; 15:69-77. [DOI: 10.1158/1541-7786.mcr-16-0212] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 11/16/2022]
|
22
|
Thura M, Al-Aidaroos AQO, Yong WP, Kono K, Gupta A, Lin YB, Mimura K, Thiery JP, Goh BC, Tan P, Soo R, Hong CW, Wang L, Lin SJ, Chen E, Rha SY, Chung HC, Li J, Nandi S, Yuen HF, Zhang SD, Guan YK, So J, Zeng Q. PRL3-zumab, a first-in-class humanized antibody for cancer therapy. JCI Insight 2016; 1:e87607. [PMID: 27699276 DOI: 10.1172/jci.insight.87607] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Novel, tumor-specific drugs are urgently needed for a breakthrough in cancer therapy. Herein, we generated a first-in-class humanized antibody (PRL3-zumab) against PRL-3, an intracellular tumor-associated phosphatase upregulated in multiple human cancers, for unconventional cancer immunotherapies. We focused on gastric cancer (GC), wherein elevated PRL-3 mRNA levels significantly correlated with shortened overall survival of GC patients. PRL-3 protein was overexpressed in 85% of fresh-frozen clinical gastric tumor samples examined but not in patient-matched normal gastric tissues. Using human GC cell lines, we demonstrated that PRL3-zumab specifically blocked PRL-3+, but not PRL-3-, orthotopic gastric tumors. In this setting, PRL3-zumab had better therapeutic efficacy as a monotherapy, rather than simultaneous combination with 5-fluorouracil or 5-fluorouracil alone. PRL3-zumab could also prevent PRL-3+ tumor recurrence. Mechanistically, we found that intracellular PRL-3 antigens could be externalized to become "extracellular oncotargets" that serve as bait for PRL3-zumab binding to potentially bridge and recruit immunocytes into tumor microenvironments for killing effects on cancer cells. In summary, our results document a comprehensive cancer therapeutic approach to specific antibody-targeted therapy against the PRL-3 oncotarget as a case study for developing antibodies against other intracellular targets in drug discovery.
Collapse
Affiliation(s)
- Min Thura
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | | | - Wei Peng Yong
- Department of Haematology-Oncology, National University Cancer Institute, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Koji Kono
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Division of General Surgery (Upper Gastrointestinal Surgery), National University Hospital, Singapore
| | - Abhishek Gupta
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - You Bin Lin
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Kousaku Mimura
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jean Paul Thiery
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Boon Cher Goh
- Department of Haematology-Oncology, National University Cancer Institute, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Patrick Tan
- Genome Institute of Singapore, A*STAR, Singapore
| | - Ross Soo
- Department of Haematology-Oncology, National University Cancer Institute, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Elya Chen
- Division of General Surgery (Upper Gastrointestinal Surgery), National University Hospital, Singapore
| | - Sun Young Rha
- Department of Internal Medicine, Yonsei Cancer Research Institute, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyun Cheol Chung
- Department of Internal Medicine, Yonsei Cancer Research Institute, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Jie Li
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Sayantani Nandi
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Hiu Fung Yuen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shu-Dong Zhang
- Northern Ireland Centre for Stratified Medicine, Ulster University, C-TRIC, Londonderry, United Kingdom
| | - Yeoh Khay Guan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jimmy So
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Division of Surgical Oncology (Upper Gastrointestinal Surgery), National University Cancer Institute, Singapore
| | - Qi Zeng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| |
Collapse
|
23
|
Qin ZS, He SG. Influence of phosphatase of regenerating liver 3 on cell migration, invasion and expression of RhoC in SGC7901 cells. Shijie Huaren Xiaohua Zazhi 2016; 24:1797-1805. [DOI: 10.11569/wcjd.v24.i12.1797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore whether phosphatase of regenerating liver 3 (PRL-3) and RhoC belong to the same signal pathway in the mechanism of SGC7901 cell migration and invasion by observing the influence of PRL-3 on cell migration, invasion and the expression of RhoC in SGC7901 cells.
METHODS: Human gastric cancer SGC7901 cells were cultured in vitro and treated with different concentrations of PRL-3Ab (1:600, 1:400 and 1:200), then the migration distance of SGC7901 cells was assessed at different time points (0, 12, 24, 48 h) by wound healing assay, and the migration and invasion of SGC7901 cells were examined by Transwell assay at 48 h. The expression of RhoC mRNA and protein was detected by real-time PCR and ELISA.
RESULTS: Compared with the control group, the migration distance of SGC7901 cells at 12, 24 and 48 h decreased with the increase in PRL-3Ab concentration. At 48 h, the migration and invasion of SGC7901 cells and the expression of RhoC mRNA and protein in SGC7901 cells treated with different concentrations of PRL-3Ab (1:600, 1:400 and 1:200) were significantly lower than those in the control group (migration: 365.0 ± 5.0, 165.3 ± 5.0, 90.3 ± 5.5 vs 512.3 ± 4.9; invasion: 321.3 ± 6.1, 179.0 ± 6.1, 75.7 ± 4.0 vs 545.3 ± 5.0; expression of RhoC mRNA: 0.910 ± 0.022, 0.742 ± 0.018, 0.539 ± 0.015 vs 1.000 ± 0.000; expression of RhoC protein: 1130.77 g/mL ± 15.32 g/mL, 981.52 g/mL ± 14.44 g/mL, 893.03 g/mL ± 11.10 g/mL vs 1212.42 g/mL ± 18.37 g/mL; P < 0.01 for all).
CONCLUSION: PRL-3 can promote SGC7901 cell migration and invasion and raise the expression of RhoC, which suggests that PRL-3 and RhoC may belong to the same signal pathway in the mechanism of SGC7901 cell migration and invasion.
Collapse
|
24
|
den Hollander P, Rawls K, Tsimelzon A, Shepherd J, Mazumdar A, Hill J, Fuqua SAW, Chang JC, Osborne CK, Hilsenbeck SG, Mills GB, Brown PH. Phosphatase PTP4A3 Promotes Triple-Negative Breast Cancer Growth and Predicts Poor Patient Survival. Cancer Res 2016; 76:1942-53. [PMID: 26921331 PMCID: PMC4873402 DOI: 10.1158/0008-5472.can-14-0673] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 10/15/2015] [Indexed: 12/21/2022]
Abstract
Triple-negative breast cancer (TNBC) has the worst prognosis of all breast cancers, and women diagnosed with TNBC currently lack targeted treatment options. To identify novel targets for TNBC, we evaluated phosphatase expression in breast tumors and characterized their contributions to in vitro and in vivo growth of TNBC. Using Affymetrix microarray analysis of 102 breast cancers, we identified 146 phosphatases that were significantly differentially expressed in TNBC compared with estrogen receptor (ER)-positive tumors. Of these, 19 phosphatases were upregulated (0.66-fold; FDR = 0.05) in TNBC compared with ER-positive breast cancers. We knocked down 17 overexpressed phosphatases in four triple-negative and four ER-positive breast cancer lines using specific siRNAs and found that depletion of six of these phosphatases significantly reduced growth and anchorage-independent growth of TNBC cells to a greater extent than ER-positive cell lines. Further analysis of the phosphatase PTP4A3 (also known as PRL-3) demonstrated its requirement for G1-S cell-cycle progression in all breast cancer cells, but PTP4A3 regulated apoptosis selectively in TNBC cells. In addition, PTP4A3 inhibition reduced the growth of TNBC tumors in vivo Moreover, in silico analysis revealed the PTP4A3 gene to be amplified in 29% of basal-like breast cancers, and high expression of PTP4A3 could serve as an independent prognostic indicator for worse overall survival. Collectively, these studies define the importance of phosphatase overexpression in TNBC and lay the foundation for the development of new targeted therapies directed against phosphatases or their respective signaling pathways for TNBC patients. Cancer Res; 76(7); 1942-53. ©2016 AACR.
Collapse
Affiliation(s)
- Petra den Hollander
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kathryn Rawls
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anna Tsimelzon
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Jonathan Shepherd
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Abhijit Mazumdar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jamal Hill
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Suzanne A W Fuqua
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Jenny C Chang
- Methodist Cancer Center, The Methodist Hospital Research Institute, Houston, Texas
| | - C Kent Osborne
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Susan G Hilsenbeck
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Powel H Brown
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
25
|
Zhan H, Ma J, Ruan F, Bedaiwy MA, Peng B, Wu R, Lin J. Elevated phosphatase of regenerating liver 3 (PRL-3) promotes cytoskeleton reorganization, cell migration and invasion in endometrial stromal cells from endometrioma. Hum Reprod 2016; 31:723-33. [PMID: 26874360 DOI: 10.1093/humrep/dew015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 01/14/2016] [Indexed: 01/14/2023] Open
Abstract
STUDY QUESTION Is phosphatase of regenerating liver-3 (PRL-3) associated with increased motility of endometriotic cells from endometrioma? SUMMARY ANSWER Elevated PRL-3 promotes cytoskeleton reorganization, cell migration and invasion of endometrial stromal cells (ESCs) from endometrioma. WHAT IS KNOWN ALREADY Overexpression of PRL-3 is associated with cancer cell migration, invasion and metastatic phenotype. STUDY DESIGN, SIZE, DURATION Primary human ESCs were isolated from eutopic endometrium of women without endometriosis (EuCo, n = 10), with histologically proven endometrioma (EuEM, n = 19) and from the cyst wall of ovarian endometriosis (OvEM, n = 26). PARTICIPANTS/MATERIALS, SETTING, METHODS The expression of PRL-3 in ESCs derived from EuCo, EuEM and OvEM at different phases of menstrual cycle were compared. The protein and mRNA levels of PRL-3 were examined by western blot and RT-qPCR, respectively. ESCs from OvEM were transfected with/without short hairpin RNA (shRNA) or small interfering RNA (siRNA). Additionally, a plasmid-mediated delivery system was used to achieve PRL-3 overexpression in ESCs from EuEM. The cellular distribution of F-actin and α-tubulin were examined by immunocytochemistry. Cell motility was evaluated by a transwell migration/invasion assay. MAIN RESULTS AND THE ROLE OF CHANCE The protein and mRNA levels of PRL-3 are significantly elevated in ESCs from OvEM compared with EuCo and EuEM. The expression of PRL-3 was not altered between proliferative phase and secretory phase in ESCs from all groups. Knockdown of PRL-3 significantly modified the distribution of F-actin and α-tubulin cytoskeleton, inhibited cell migration and invasion. Endogenous inhibition of PRL-3 attenuated the expression of Ras homolog gene family members A and C (RhoA, RhoC), Rho-associated coiled-coil-containing protein kinase 1 (ROCK1) and matrix metalloproteinase (MMP) 9, but not MMP2 in ESCs from OvEM. Additionally, overexpression of PRL-3 in ESCs from EuEM up-regulates cell migration and invasion, and increases the expression of RhoA, RhoC, ROCK1 and MMP9. LIMITATIONS, REASONS FOR CAUTION Lack of in vivo animal studies is the major limitation of our report. Our results should be further confirmed in a larger cohort of patients and extended to include eutopic and ectopic endometrium from patients with peritoneal endometriosis at different stages of the disease. WIDER IMPLICATIONS OF THE FINDINGS Our study describes that elevated expression of PRL-3 contributes to the cell motility of ESCs from endometrioma. The results emphasize the importance of metastatic-related factor PRL-3 in the pathogenesis of endometrioma. STUDY FUNDING/COMPETING INTEREST This work was supported by National Natural Science Foundation of China (No. 81170546) and Zhejiang Medicine Science and Technology Projects (No. Y13H040003). The authors declare no conflict of interest.
Collapse
Affiliation(s)
- Hong Zhan
- Department of Gynecology and Obstetrics, Women's Hospital, Zhejiang University Medical College, Hangzhou 310006, P.R. China
| | - Junyan Ma
- Department of Gynecology and Obstetrics, Women's Hospital, Zhejiang University Medical College, Hangzhou 310006, P.R. China
| | - Fei Ruan
- Department of Gynecology and Obstetrics, Women's Hospital, Zhejiang University Medical College, Hangzhou 310006, P.R. China
| | - Mohamed A Bedaiwy
- Department of Obstetrics & Gynaecology, Child & Family Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Bo Peng
- Department of Obstetrics & Gynaecology, Child & Family Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Ruijin Wu
- Department of Gynecology and Obstetrics, Women's Hospital, Zhejiang University Medical College, Hangzhou 310006, P.R. China
| | - Jun Lin
- Department of Gynecology and Obstetrics, Women's Hospital, Zhejiang University Medical College, Hangzhou 310006, P.R. China
| |
Collapse
|
26
|
Zhang C, Tian W, Meng L, Qu L, Shou C. PRL-3 promotes gastric cancer migration and invasion through a NF-κB-HIF-1α-miR-210 axis. J Mol Med (Berl) 2015; 94:401-15. [PMID: 26548949 DOI: 10.1007/s00109-015-1350-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 09/22/2015] [Accepted: 09/28/2015] [Indexed: 12/20/2022]
Abstract
UNLABELLED Phosphatase of regenerating liver-3 (PRL-3) has been implicated in controlling cancer cell invasiveness. Deregulated expression of PRL-3 is involved in cancer progression and predicts poor overall survival. Recent studies have revealed critical roles for microRNAs in various cellular processes, including tumorigenic development. In this study, we aimed to explore the linkage between PRL-3 and microRNAs in gastric cancer. We found that PRL-3 transcript levels were positively correlated with miR-210 levels in gastric cancer tissues. In gastric cancer cells, PRL-3 upregulated miR-210 expression in a HIF-1α-dependent fashion under normoxia and hypoxia. In addition, PRL-3 activated NF-κB signaling and promoted HIF-1α expression through modulating phosphorylation of p65. NF-κB signaling, HIF-1α, and miR-210 partially contributed to PRL-3-induced migration and invasion. Furthermore, the levels of PRL-3, HIF-1α, and miR-210 transcripts inversely affected the overall survival of gastric cancer patients. Our work identified the existence of a PRL-3-NF-κB-HIF-1α-miR-210 axis, thus providing new insight into the role of PRL-3 in promoting gastric cancer invasiveness. KEY MESSAGE PRL-3 regulates microRNA in gastric cancer. PRL-3 elevates hsa-miR-210 by upregulating HIF-1α. PRL-3 activates a NF-κB-HIF-1α-miR-210 axis by enhancing the phosphorylation of p65. PRL-3 promotes cell migration and invasion via the NF-κB-HIF-1α-miR-210 axis. High levels of PRL-3 and miR-210 are related with poor OS in gastric cancer.
Collapse
Affiliation(s)
- Cheng Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Wei Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Lin Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Like Qu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Chengchao Shou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Beijing, 100142, China.
| |
Collapse
|
27
|
Wang Y, Wang X, Ferrone CR, Schwab JH, Ferrone S. Intracellular antigens as targets for antibody based immunotherapy of malignant diseases. Mol Oncol 2015; 9:1982-93. [PMID: 26597109 DOI: 10.1016/j.molonc.2015.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 12/13/2022] Open
Abstract
This review discusses the potential use of intracellular tumor antigens as targets of antibody-based immunotherapy for the treatment of solid tumors. In addition, it describes the characteristics of the intracellular tumor antigens targeted with antibodies which have been described in the literature and have been identified in the authors' laboratory. Finally, the mechanism underlying the trafficking of the intracellular tumor antigens to the plasma membrane of tumor cells are reviewed.
Collapse
Affiliation(s)
- Yangyang Wang
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Xinhui Wang
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Cristina R Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Joseph H Schwab
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States; Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States.
| |
Collapse
|
28
|
Leung WH, Vong QP, Lin W, Bouck D, Wendt S, Sullivan E, Li Y, Bari R, Chen T, Leung W. PRL-3 mediates the protein maturation of ULBP2 by regulating the tyrosine phosphorylation of HSP60. THE JOURNAL OF IMMUNOLOGY 2015; 194:2930-41. [PMID: 25687758 DOI: 10.4049/jimmunol.1400817] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Many malignant cells release the NKG2D ligand ULBP2 from their cell surface to evade immunosurveillance by NK cells and CD8 T cells. Although the shedding mechanism remains unclear, various inhibitors of matrix metalloproteinases have been shown to efficiently block the release of soluble ULBP2. The clinical use of these inhibitors, however, is limited because of adverse side effects. Using high-throughput screening technique, we identified a specific inhibitor of phosphatase of regenerating liver 3 (PRL-3) that could reduce the level of soluble ULBP2 in the culture supernatant of various cancer cell lines. Inhibition or gene knockdown of PRL-3 did not reduce ULBP2 shedding, but rather suppressed posttranslational maturation of ULBP2, resulting in intracellular retention of immature ULBP2. We then found that ULBP2 was constitutively associated with heat shock protein HSP60. Complete maturation of ULBP2 required tyrosine phosphorylation of HSP60 which was mediated by PRL-3.
Collapse
Affiliation(s)
- Wai-Hang Leung
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Queenie P Vong
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - David Bouck
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Susanne Wendt
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Erin Sullivan
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Ying Li
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Rafijul Bari
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Wing Leung
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105; Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103
| |
Collapse
|
29
|
Benton G, Arnaoutova I, George J, Kleinman HK, Koblinski J. Matrigel: from discovery and ECM mimicry to assays and models for cancer research. Adv Drug Deliv Rev 2014; 79-80:3-18. [PMID: 24997339 DOI: 10.1016/j.addr.2014.06.005] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 01/06/2023]
Abstract
The basement membrane is an important extracellular matrix that is found in all epithelial and endothelial tissues. It maintains tissue integrity, serves as a barrier to cells and to molecules, separates different tissue types, transduces mechanical signals, and has many biological functions that help to maintain tissue specificity. A well-defined soluble basement membrane extract, termed BME/Matrigel, prepared from an epithelial tumor is similar in content to authentic basement membrane, and forms a hydrogel at 24-37°C. It is used in vitro as a substrate for 3D cell culture, in suspension for spheroid culture, and for various assays, such as angiogenesis, invasion, and dormancy. In vivo, BME/Matrigel is used for angiogenesis assays and to promote xenograft and patient-derived biopsy take and growth. Studies have shown that both the stiffness of the BME/Matrigel and its components (i.e. chemical signals) are responsible for its activity with so many different cell types. BME/Matrigel has widespread use in assays and in models that improve our understanding of tumor biology and help define therapeutic approaches.
Collapse
|
30
|
Jeong KW, Kang DI, Lee E, Shin A, Jin B, Park YG, Lee CK, Kim EH, Jeon YH, Kim EE, Kim Y. Structure and backbone dynamics of vanadate-bound PRL-3: comparison of 15N nuclear magnetic resonance relaxation profiles of free and vanadate-bound PRL-3. Biochemistry 2014; 53:4814-25. [PMID: 24983822 DOI: 10.1021/bi5003844] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Phosphatases of regenerating liver (PRLs) constitute a novel class of small, prenylated phosphatases with oncogenic activity. PRL-3 is particularly important in cancer metastasis and represents a potential therapeutic target. The flexibility of the WPD loop as well as the P-loop of protein tyrosine phosphatases is closely related to their catalytic activity. Using nuclear magnetic resonance spectroscopy, we studied the structure of vanadate-bound PRL-3, which was generated by addition of sodium orthovanadate to PRL-3. The WPD loop of free PRL-3 extended outside of the active site, forming an open conformation, whereas that of vanadate-bound PRL-3 was directed into the active site by a large movement, resulting in a closed conformation. We suggest that vanadate binding induced structural changes in the WPD loop, P-loop, helices α4-α6, and the polybasic region. Compared to free PRL-3, vanadate-bound PRL-3 has a longer α4 helix, where the catalytic R110 residue coordinates with vanadate in the active site. In addition, the hydrophobic cavity formed by helices α4-α6 with a depth of 14-15 Å can accommodate a farnesyl chain at the truncated prenylation motif of PRL-3, i.e., from R169 to M173. Conformational exchange data suggested that the WPD loop moves between open and closed conformations with a closing rate constant k(close) of 7 s(-1). This intrinsic loop flexibility of PRL-3 may be related to their catalytic rate and may play a role in substrate recognition.
Collapse
Affiliation(s)
- Ki-Woong Jeong
- Department of Bioscience and Biotechnology and BioMolecular Informatics Center, Konkuk University , Seoul 143-701, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sharlow ER, Wipf P, McQueeney KE, Bakan A, Lazo JS. Investigational inhibitors of PTP4A3 phosphatase as antineoplastic agents. Expert Opin Investig Drugs 2014; 23:661-73. [DOI: 10.1517/13543784.2014.892579] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Zimmerman MW, McQueeney KE, Isenberg JS, Pitt BR, Wasserloos KA, Homanics GE, Lazo JS. Protein-tyrosine phosphatase 4A3 (PTP4A3) promotes vascular endothelial growth factor signaling and enables endothelial cell motility. J Biol Chem 2014; 289:5904-13. [PMID: 24403062 DOI: 10.1074/jbc.m113.480038] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein-tyrosine phosphatase 4A3 (PTP4A3) is highly expressed in multiple human cancers and is hypothesized to have a critical, albeit poorly defined, role in the formation of experimental tumors in mice. PTP4A3 is broadly expressed in many tissues so the cellular basis of its etiological contributions to carcinogenesis may involve both tumor and stromal cells. In particular, PTP4A3 is expressed in the tumor vasculature and has been proposed to be a direct target of vascular endothelial growth factor (VEGF) signaling in endothelial cells. We now provide the first in vivo experimental evidence that PTP4A3 participates in VEGF signaling and contributes to the process of pathological angiogenesis. Colon tumor tissue isolated from Ptp4a3-null mice revealed reduced tumor microvessel density compared with wild type controls. Additionally, vascular cells derived from Ptp4a3-null tissues exhibited decreased invasiveness in an ex vivo wound healing assay. When primary endothelial cells were isolated and cultured in vitro, Ptp4a3-null cells displayed greatly reduced migration compared with wild type cells. Exposure to VEGF led to an increase in Src phosphorylation in wild type endothelial cells, a response that was completely ablated in Ptp4a3-null cells. In loss-of-function studies, reduced VEGF-mediated migration was also observed when human endothelial cells were treated with a small molecule inhibitor of PTP4A3. VEGF-mediated in vivo vascular permeability was significantly attenuated in PTP4A3-deficient mice. These findings strongly support a role for PTP4A3 as an important contributor to endothelial cell function and as a multimodal target for cancer therapy and mitigating VEGF-regulated angiogenesis.
Collapse
Affiliation(s)
- Mark W Zimmerman
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | | | | | | | | | | | | |
Collapse
|