1
|
Madkor HR, Abd El-Aziz MK, Abd El-Maksoud MS, Ibrahim IM, Ali FEM. Stem Cells Reprogramming in Diabetes Mellitus and Diabetic Complications: Recent Advances. Curr Diabetes Rev 2025; 21:21-37. [PMID: 38173073 DOI: 10.2174/0115733998275428231210055650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND The incidence of diabetes mellitus (DM) is dramatically increasing worldwide, and it is expected to affect 700 million cases by 2045. Diabetes influences health care economics, human quality of life, morbidity, and mortality, which were primarily seen extensively in developing countries. Uncontrolled DM, which results in consistent hyperglycemia, may lead to severe life-threatening complications such as nephropathy, retinopathy, neuropathy, and cardiovascular complications. METHODOLOGY In addition to traditional therapies with insulin and oral anti-diabetics, researchers have developed new approaches for treatment, including stem cell (SC) therapy, which exhibits promising outcomes. Besides its significant role in treating type one DM (T1DM) and type two DM (T2DM), it can also attenuate diabetic complications. Furthermore, the development of insulin- producing cells can be achieved by using the different types of SCs, such as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and multiple types of adult stem cells, such as pancreatic, hepatic, and mesenchymal stem cells (MSC). All these types have been extensively studied and proved their ability to develop insulin-producing cells, but every type has limitations. CONCLUSION This review aims to enlighten researchers about recent advances in stem cell research and their potential benefits in DM and diabetic complications.
Collapse
Affiliation(s)
- Hafez R Madkor
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| | | | | | - Islam M Ibrahim
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| |
Collapse
|
2
|
Mohammed MZ, Abdelrahman SA, El-Shal AS, Abdelrahman AA, Hamdy M, Sarhan WM. Efficacy of stem cells versus microvesicles in ameliorating chronic renal injury in rats (histological and biochemical study). Sci Rep 2024; 14:16589. [PMID: 39025899 PMCID: PMC11258134 DOI: 10.1038/s41598-024-66299-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024] Open
Abstract
Chronic exposure to heavy metals as aluminum chloride (AlCl3) could result in severe health hazards such as chronic renal injury. The present study aimed to evaluate the therapeutic potential of adipose tissue-derived stem cells (ASCs) in comparison to their microvesicles (MV) in AlCl3-induced chronic renal injury. Forty-eight adult male Wistar rats were divided into four groups: Control group, AlCl3-treated group, AlCl3/ASC-treated group, and AlCl3/MV-treated group. Biochemical studies included estimation of serum urea and creatinine levels, oxidative biomarkers assay, antioxidant biomarkers, serum cytokines (IL-1β, IL-8, IL-10, and IL-33), real time-PCR analysis of renal tissue MALT1, TNF-α, IL-6, and serum miR-150-5p expression levels. Histopathological studies included light and electron microscopes examination of renal tissue, Mallory trichrome stain for fibrosis, Periodic acid Schiff (PAS) stain for histochemical detection of carbohydrates, and immunohistochemical detection of Caspase-3 as apoptosis marker, IL-1B as a proinflammatory cytokine and CD40 as a marker of MVs. AlCl3 significantly deteriorated kidney function, enhanced renal MDA and TOS, and serum cytokines concentrations while decreased the antioxidant parameters (SOD, GSH, and TAC). Moreover, serum IL-10, TNF-α, miR-150-5p, and renal MALT1 expression values were significantly higher than other groups. Kidney sections showed marked histopathological damage in both renal cortex and medulla in addition to enhanced apoptosis and increased inflammatory cytokines immunoexpression than other groups. Both ASCs and MVs administration ameliorated the previous parameters levels with more improvement was detected in MVs-treated group. In conclusion: ASCs-derived MVs have a promising ameliorating effect on chronic kidney disease.
Collapse
Affiliation(s)
- Maha Z Mohammed
- Medical Histology & Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Shaimaa A Abdelrahman
- Medical Histology & Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Amal S El-Shal
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
- Medical Biochemistry and Molecular Biology Department, Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Abeer A Abdelrahman
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Marwa Hamdy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Walaa M Sarhan
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
3
|
Wu M, Shi Y, Zhao J, Kong M. Engineering unactivated platelets for targeted drug delivery. Biomater Sci 2024; 12:2244-2258. [PMID: 38482903 DOI: 10.1039/d4bm00029c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
As a vital component of blood, platelets play crucial roles in hemostasis and maintaining vascular integrity, and actively participate in inflammation and immune regulation. The unique biological properties of natural platelets have enabled their utilization as drug delivery vehicles. The advancement and integration of various techniques, including biological, chemical, and physicochemical methods, have enabled the preparation of engineered platelets. Platelets can serve as drug delivery platforms combined with immunotherapy and chemokine therapy to enhance their therapeutic impact. This review focuses on the recent advancements in the application of unactivated platelets for drug delivery. The construction strategies of engineered platelets are comprehensively summarized, encompassing internal loading, surface modification, and genetic engineering techniques. Engineered platelets hold vast potential for treating cardiovascular diseases, cancers, and infectious diseases. Furthermore, the challenges and potential considerations in creating engineered platelets with natural activity are discussed.
Collapse
Affiliation(s)
- Meng Wu
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, 266003, China.
| | - Yan Shi
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, 266003, China.
| | - Jiaxuan Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, 266003, China.
| | - Ming Kong
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, 266003, China.
| |
Collapse
|
4
|
Farid A, El-Alfy L, Madbouly N. Bone marrow-derived mesenchymal stem cells transplantation downregulates pancreatic NF-κB and pro-inflammatory cytokine profile in rats with type I and type II-induced diabetes: a comparison study. Biologia (Bratisl) 2023; 78:3165-3177. [DOI: 10.1007/s11756-023-01436-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/12/2023] [Indexed: 10/04/2024]
Abstract
AbstractDiabetes mellitus (DM) is a set of metabolic diseases defined by a persistently high blood sugar level. Mesenchymal stem cells (MSCs) are a novel potential therapeutic intervention in treatments of various diseases, which is also referred to as regenerative medicine. We aimed to compare the pro-inflammatory cytokines’ levels during bone marrow mesenchymal stem cells (BM-MSCs) transplantation in rats with induced type I (T1D) and type II diabetes (T2D). Thirty-five male Sprague dawley rats were divided into: Group I: the healthy control group, group II: untreated rats with streptozotocin (STZ)-induced T1D (65 mg/kg), group III: BM-MSCs treated rats with STZ-induced T1D, group IV: untreated rats with high-fat diet (HFD)/STZ-induced T2D (40 mg/kg), group V: BM-MSCs-treated rats with HFD/STZ-induced T2D. Biochemical, histopathological and immunohistochemical studies were applied. Our results showed that transplantation reduced hyperglycemia and increased insulin levels in both induced T1D and T2D. Also, reductions in the levels of inflammatory markers were noticed after transplantation that was coincided with nuclear factor-kappa B (NF-кB) immunohistochemical results; which showed negative or moderate cytoplasmic reactivity in treated groups III and V. These results indicated the ability of BM-MSCs transplantation to modulate the pro-inflammatory cytokine profile during treatment of both T1D and T2D.
Collapse
|
5
|
Hassan AK, El-Kalaawy AM, Abd El-Twab SM, Alblihed MA, Ahmed OM. Hesperetin and Capecitabine Abate 1,2 Dimethylhydrazine-Induced Colon Carcinogenesis in Wistar Rats via Suppressing Oxidative Stress and Enhancing Antioxidant, Anti-Inflammatory and Apoptotic Actions. Life (Basel) 2023; 13:984. [PMID: 37109513 PMCID: PMC10146346 DOI: 10.3390/life13040984] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Colon cancer is a major cause of cancer-related death, with significantly increasing rates of incidence worldwide. The current study was designed to evaluate the anti-carcinogenic effects of hesperetin (HES) alone and in combination with capecitabine (CAP) on 1,2 dimethylhydrazine (DMH)-induced colon carcinogenesis in Wistar rats. The rats were given DMH at 20 mg/kg body weight (b.w.)/week for 12 weeks and were orally treated with HES (25 mg/kg b.w.) and/or CAP (200 mg/kg b.w.) every other day for 8 weeks. The DMH-administered rats exhibited colon-mucosal hyperplastic polyps, the formation of new glandular units and cancerous epithelial cells. These histological changes were associated with the significant upregulation of colon Ki67 expression and the elevation of the tumor marker, carcinoembryonic antigen (CEA), in the sera. The treatment of the DMH-administered rats with HES and/or CAP prevented these histological cancerous changes concomitantly with the decrease in colon-Ki67 expression and serum-CEA levels. The results also indicated that the treatments with HES and/or CAP showed a significant reduction in the serum levels of lipid peroxides, an elevation in the serum levels of reduced glutathione, and the enhancement of the activities of colon-tissue superoxide dismutase, glutathione reductase and glutathione-S-transferase. Additionally, the results showed an increase in the mRNA expressions of the anti-inflammatory cytokine, IL-4, as well as the proapoptotic protein, p53, in the colon tissues of the DMH-administered rats treated with HES and/or CAP. The TGF-β1 decreased significantly in the DMH-administered rats and this effect was counteracted by the treatments with HES and/or CAP. Based on these findings, it can be suggested that both HES and CAP, singly or in combination, have the potential to exert chemopreventive effects against DMH-induced colon carcinogenesis via the suppression of oxidative stress, the stimulation of the antioxidant defense system, the attenuation of inflammatory effects, the reduction in cell proliferation and the enhancement of apoptosis.
Collapse
Affiliation(s)
- Asmaa K. Hassan
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Asmaa M. El-Kalaawy
- Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Sanaa M. Abd El-Twab
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mohamed A. Alblihed
- Department of Microbiology, College of Medicine, Taif University, Taif 21944, Saudi Arabia
| | - Osama M. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| |
Collapse
|
6
|
Chang CY, Tai JA, Sakaguchi Y, Nishikawa T, Hirayama Y, Yamashita K. Enhancement of polyethylene glycol-cell fusion efficiency by novel application of transient pressure using a jet injector. FEBS Open Bio 2023; 13:478-489. [PMID: 36651034 PMCID: PMC9989930 DOI: 10.1002/2211-5463.13557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/14/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Cell-cell fusion involves the fusion of somatic cells into a single hybrid cell. It is not only a physiological process but also an important cell engineering technology which can be applied to various fields, such as regenerative medicine, antibody engineering, genetic engineering, and cancer therapy. There are three major methods of cell fusion: electrical cell fusion, polyethylene glycol (PEG) cell fusion, and virus-mediated cell fusion. Although PEG cell fusion is the most economical approach and does not require expensive instrumentation, it has a poor fusion rate and induces a high rate of cell cytotoxicity. To improve the fusion rate of the PEG method, we combined it with the pyro-drive jet injector (PJI). PJI provides instant pressure instead of cell agitation to increase the probability of cell-to-cell contact and shorten the distance between cells in the process of cell fusion. Here, we report that this improved fusion method not only decreased cell cytotoxicity during the fusion process, but also increased fusion rate compared with the conventional PEG method. Furthermore, we tested the functionality of cells fused using the PJI-PEG method and found them to be comparable to those fused using the conventional PEG method in terms of their application for dendritic cell (DC)-tumor cell fusion vaccine production; in addition, the PJI-PEG method demonstrated excellent performance in hybridoma cell preparation. Taken together, our data indicate that this method improves cell fusion efficiency as compared to the PEG method and thus has the potential for use in various applications that require cell fusion technology.
Collapse
Affiliation(s)
- Chin Yang Chang
- Department of Device Application for Molecular Therapeutics, Graduate School of Medicine, Osaka University, Japan
| | - Jiayu A Tai
- Department of Device Application for Molecular Therapeutics, Graduate School of Medicine, Osaka University, Japan
| | - Yuko Sakaguchi
- Medical Device Division, Industry Business Unit, Safety Strategic Business Unit, Daicel Co., Osaka, Japan
| | - Tomoyuki Nishikawa
- Department of Device Application for Molecular Therapeutics, Graduate School of Medicine, Osaka University, Japan
| | - Yayoi Hirayama
- Medical Device Division, Industry Business Unit, Safety Strategic Business Unit, Daicel Co., Osaka, Japan
| | - Kunihiko Yamashita
- Department of Device Application for Molecular Therapeutics, Graduate School of Medicine, Osaka University, Japan.,Medical Device Division, Industry Business Unit, Safety Strategic Business Unit, Daicel Co., Osaka, Japan.,Medical Device Development, Medical Device Division, Industry Business Unit, Safety Strategic Business Unit, Daicel Co., Osaka, Japan
| |
Collapse
|
7
|
Sayed HM, Awaad AS, Abdel Rahman FEZS, Al-Dossari M, Abd El-Gawaad NS, Ahmed OM. Combinatory Effect and Modes of Action of Chrysin and Bone Marrow-Derived Mesenchymal Stem Cells on Streptozotocin/Nicotinamide-Induced Diabetic Rats. Pharmaceuticals (Basel) 2022; 16:34. [PMID: 36678531 PMCID: PMC9863970 DOI: 10.3390/ph16010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/25/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
The purpose of this study was to see how chrysin and/or bone marrow-derived mesenchymal stem cells (BM-MSCs) affected streptozotocin (STZ)/nicotinamide (NA)-induced diabetic rats as an animal model of type 2 diabetes mellitus (T2DM). Male Wistar rats were given a single intraperitoneal (i.p.) injection of 60 mg STZ/kg bodyweight (bw) 15 min after an i.p. injection of NA (120 mg/kg bw) to induce T2DM. The diabetic rats were given chrysin orally at a dose of 100 mg/kg bw every other day, BM-MSCs intravenously at a dose of 1 × 106 cells/rat/week, and their combination for 30 days after diabetes induction. The rats in the diabetic group displayed impaired oral glucose tolerance and a decrease in liver glycogen content and in serum insulin, C-peptide, and IL-13 levels. They also had significantly upregulated activities in terms of liver glucose-6-phosphatase and glycogen phosphorylase and elevated levels of serum free fatty acids, IL-1β, and TNF-α. In addition, the diabetic rats exhibited a significant elevation in the adipose tissue resistin protein expression level and a significant decrease in the expression of adiponectin, insulin receptor-beta subunit, insulin receptor substrate-1, and insulin receptor substrate-2, which were associated with a decrease in the size of the pancreatic islets and in the number of β-cells and insulin granules in the islets. The treatment of diabetic rats with chrysin and/or BM-MSCs significantly improved the previously deteriorated alterations, with chrysin combined with BM-MSCs being the most effective. Based on these findings, it can be concluded that combining chrysin with BM-MSCs produced greater additive therapeutic value than using them separately in NA/STZ-induced T2DM rats.
Collapse
Affiliation(s)
- Hesham M. Sayed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni Suef 62521, Egypt
| | - Ashraf S. Awaad
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef 62521, Egypt
| | | | - M. Al-Dossari
- Department of Physics, Faculty of Science, King Khalid University, Abha 62529, Saudi Arabia
| | - N. S. Abd El-Gawaad
- Department of Physics, Faculty of Science, King Khalid University, Abha 62529, Saudi Arabia
| | - Osama M. Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni Suef 62521, Egypt
| |
Collapse
|
8
|
Kim S, Kim K. Lipid-mediated ex vivo cell surface engineering for augmented cellular functionalities. BIOMATERIALS ADVANCES 2022; 140:213059. [PMID: 35961186 DOI: 10.1016/j.bioadv.2022.213059] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/23/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Once administrated, intercellular adhesion to recognize and/or arrest target cells is essential for specific treatments, especially for cancer or tumor. However, immune cells administrated into the tumor-microenvironment could lose their intrinsic functionalities such as target recognition ability, resulting in an ineffective cancer immunotherapy. Various manipulation techniques for decorating functional moieties onto cell surface and enhancing target recognition have been developed. A hydrophobic interaction-mediated ex-vivo cell surface engineering using lipid-based biomaterials could be a state-of-the-art engineering technique that could achieve high-efficiency cell surface modification by a single method without disturbance of intrinsic characteristics of cells. In this regard, this review provides design principles for the development of lipid-based biomaterials with a linear structure of lipid, polyethylene glycol, and functional group, strategies for the synthesis process, and their practical applications in biomedical engineering. Especially, we provide new insights into the development of a novel surface coating techniques for natural killer (NK) cells with engineering decoration of cancer targeting moieties on their cell surfaces. Among immune cells, NK cells are interesting cell population for substituting T cells because of their excellent safety and independent anticancer efficacy. Thus, optimal strategies to select cancer-type-specific targeting moieties and present them onto the surface of immune cells (especially, NK cells) using lipid-based biomaterials could provide additional tools to capture cancer cells for developing novel immune cell therapy products. Enhanced anticancer efficacies by surface-engineered NK cells have been demonstrated both in vitro and in vivo. Therefore, it could be speculated that recent progresses in cell surface modification technology via lipid-based biomaterials could strengthen immune surveillance and immune synapses for utilization in a next-generation cancer immunotherapy, beyond currently available genetic engineering tool such as chimeric antigen receptor-mediated immune cell modulation.
Collapse
Affiliation(s)
- Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Azizi Z, Abbaszadeh R, Sahebnasagh R, Norouzy A, Motevaseli E, Maedler K. Bone marrow mesenchymal stromal cells for diabetes therapy: touch, fuse, and fix? Stem Cell Res Ther 2022; 13:348. [PMID: 35883121 PMCID: PMC9327419 DOI: 10.1186/s13287-022-03028-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/04/2022] [Indexed: 12/26/2022] Open
Abstract
Bone marrow mesenchymal stromal cells (BM-MSCs) have anti-inflammatory and pro-survival properties. Naturally, they do not express human leukocyte antigen class II surface antigens and have immunosuppressive capabilities. Together with their relatively easy accessibility and expansion, they are an attractive tool for organ support in transplantation and regenerative therapy. Autologous BM-MSC transplantation alone or together with transplanted islets improves β-cell function, graft survival, and glycemic control in diabetes. Albeit MSCs’ capacity to transdifferentiate into β-cell is limited, their protective effects are mediated mainly by paracrine mechanisms through BM-MSCs circulating through the body. Direct cell–cell contact and spontaneous fusion of BM-MSCs with injured cells, although at a very low rate, are further mechanisms of their supportive effect and for tissue regeneration. Diabetes is a disease of long-term chronic inflammation and cell therapy requires stable, highly functional cells. Several tools and protocols have been developed by mimicking natural fusion events to induce and accelerate fusion in vitro to promote β-cell-specific gene expression in fused cells. BM-MSC-islet fusion before transplantation may be a strategy for long-term islet survival and improved function. This review discusses the cell-protective and anti-inflammatory characteristics of BM-MSCs to boost highly functional insulin-producing cells in vitro and in vivo, and the efficacy of their fusion with β-cells as a path to promote β-cell regeneration.
Collapse
Affiliation(s)
- Zahra Azizi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 88, Italia St, Keshavarz Blvd., Tehran, Iran.
| | - Roya Abbaszadeh
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Roxana Sahebnasagh
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 88, Italia St, Keshavarz Blvd., Tehran, Iran
| | - Amir Norouzy
- Department of Energy & Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 88, Italia St, Keshavarz Blvd., Tehran, Iran
| | - Kathrin Maedler
- Islet Biology Laboratory, Centre for Biomolecular Interactions Bremen, University of Bremen,, Leobener Straße 5, NW2, 28359, Bremen, Germany.
| |
Collapse
|
10
|
Montanucci P, Pescara T, Greco A, Leonardi G, Marini L, Basta G, Calafiore R. Co-microencapsulation of human umbilical cord-derived mesenchymal stem and pancreatic islet-derived insulin producing cells in experimental type 1 diabetes. Diabetes Metab Res Rev 2021; 37:e3372. [PMID: 32562342 DOI: 10.1002/dmrr.3372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Post-partum umbilical cord Wharton Jelly-derived adult mesenchymal stem cells (hUCMS) hold anti-inflammatory and immunosuppressive properties. Human pancreatic islet-derived progenitor cells (hIDC) may de-differentiate, and subsequently re-differentiate into insulin producing cells. The two cell types share common molecules that facilitate their synergistic interaction and possibly crosstalk, likely useful for the cell therapy of type 1 diabetes (T1D). MATERIALS AND METHODS Upon microencapsulation in sodium alginate (AG), hUCMS and hIDC were able to form cell co-aggregates that looked well integrated and viable. We then grafted microencapsulated hUCMS/hIDC co-aggregates into non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice, and observed an acquired ability of cells to produce and store hormones. Finally, we transplanted these biohybrid constructs into NOD mice with recent onset, spontaneous overt diabetes, observing a decline of blood glucose levels. RESULTS In vitro, we have shown that hUCMS inhibited proliferation of allogeneic polymorphonuclear blood cells from patients with T1D, while promoting expansion of FoxP3+ Tregs. Reversal of hyperglycemia in diabetic NODs seems to suggest that hUCMS and hIDC, upon co-microencapsulation, anatomically and functionally synergized to accomplish two goals: maintain tracer insulin output by hIDC, while exploting the immunoregulatory properties of hUCMS. CONCLUSION We have gathered preliminary evidence that the two adult stem cell types within AG microcapsules, may synergistically promote tracer insulin production, while "freezing" the autoimmune disease process, and help reversal of the recent onset hyperglycemia in a spontaneous, autoimmune rodent model of diabetes, the NOD mouse, with no need for pharmacologic immunosuppression.
Collapse
Affiliation(s)
- Pia Montanucci
- Section of Internal Medicine and Endocrine and Metabolic Sciences (MISEM), Laboratory for Endocrine Cell Transplants and Biohybrid Organs, Department of Medicine, School of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Teresa Pescara
- Section of Internal Medicine and Endocrine and Metabolic Sciences (MISEM), Laboratory for Endocrine Cell Transplants and Biohybrid Organs, Department of Medicine, School of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Alessia Greco
- Section of Internal Medicine and Endocrine and Metabolic Sciences (MISEM), Laboratory for Endocrine Cell Transplants and Biohybrid Organs, Department of Medicine, School of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giulia Leonardi
- Section of Internal Medicine and Endocrine and Metabolic Sciences (MISEM), Laboratory for Endocrine Cell Transplants and Biohybrid Organs, Department of Medicine, School of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Luigi Marini
- Section of Internal Medicine and Endocrine and Metabolic Sciences (MISEM), Department of Medicine, School of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giuseppe Basta
- Section of Internal Medicine and Endocrine and Metabolic Sciences (MISEM), Laboratory for Endocrine Cell Transplants and Biohybrid Organs, Department of Medicine, School of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Riccardo Calafiore
- Section of Internal Medicine and Endocrine and Metabolic Sciences (MISEM), Laboratory for Endocrine Cell Transplants and Biohybrid Organs, Department of Medicine, School of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
11
|
Teramura Y, Ekdahl KN, Fromell K, Nilsson B, Ishihara K. Potential of Cell Surface Engineering with Biocompatible Polymers for Biomedical Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12088-12106. [PMID: 32927948 DOI: 10.1021/acs.langmuir.0c01678] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The regulation of the cellular surface with biomaterials can contribute to the progress of biomedical applications. In particular, the cell surface is exposed to immunological surveillance and reactions in transplantation therapy, and modulation of cell surface properties might improve transplantation outcomes. The transplantation of therapeutic cells, tissue, and organs is an effective and fundamental treatment and has contributed to saving lives and improving quality of life. Because of shortages, donor cells, tissues, and organs are carefully transplanted with the goal of retaining activity and viability. However, some issues remain to be resolved in terms of reducing side effects, improving graft survival, managing innate and adaptive immune responses, and improving transplant storage and procedures. Given that the transplantation process involves multiple steps and is technically complicated, an engineering approach together with medical approaches to resolving these issues could enhance success. In particular, cell surface engineering with biocompatible polymers looks promising for improving transplantation therapy and has potential for other biomedical applications. Here we review the significance of polymer-based surface modification of cells and organs for biomedical applications, focusing on the following three topics: Cell protection: cellular protection through local immune regulation using cell surface modification with biocompatible polymers. This protection could extend to preventing attack by the host immune system, freeing recipients from taking immunosuppressive drugs, and avoiding a second transplantation. Cell attachment: cell manipulation, which is an important technique for delivery of therapeutic cells and their alignment for recellularization of decellularized tissues and organs in regenerative therapy. Cell fusion: fusion of different cells, which can lead to the formation of new functional cells that could be useful for generating, e.g., immunologically competent or metabolically active cells.
Collapse
Affiliation(s)
- Yuji Teramura
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
| | - Kristina Nilsson Ekdahl
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
- Linnaeus Center of Biomaterials Chemistry, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Karin Fromell
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
| | - Kazuhiko Ishihara
- Department of Material Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
12
|
Yoshihara A, Watanabe S, Goel I, Ishihara K, Ekdahl KN, Nilsson B, Teramura Y. Promotion of cell membrane fusion by cell-cell attachment through cell surface modification with functional peptide-PEG-lipids. Biomaterials 2020; 253:120113. [PMID: 32438114 DOI: 10.1016/j.biomaterials.2020.120113] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022]
Abstract
Cell fusion is a fundamental event in various biological processes and has been applied to a number of biotechnologies. However, cell fusion efficiency is still low and strongly depends on cell lines and skills, though some improvements have been made. Our hypothesis is that two distinct cell membranes need to be brought together for cell membrane fusion, which is important for mimicking cell fusion in vitro. Here, we aimed to improve the homogeneous and heterogeneous cell fusion efficiency using a cell-cell attachment technique. We modified cellular membranes with two distinctive poly(ethylene glycol)-lipids (PEG-lipids) carrying oligopeptide, three repeated units of the EIAALEK and KIAALKE sequences (fuE3 and fuK3, respectively), which induce cell-cell attachment. The ratio and area of cell-cell attachment can be controlled through surface modification with fuE3-and fuK3-PEG-lipids by changing the number of each incorporated peptide. By combining this technique with the PEG-induced method, the cell fusion efficiency was significantly improved for homogeneous and heterogeneous cell fusion compared to conventional PEG-induced methods. For homogeneous CCRF-CEM cell fusion, the efficiency increased up to 64% from the 8.4% with the PEG-induced method. In addition, for heterogeneous cell fusion of myeloma cells and splenocytes, the efficiency increased up to 18% from almost zero. Thus, cell membrane fusion could be promoted effectively between closely contacted cell membranes induced by the cell-cell attachment technique.
Collapse
Affiliation(s)
- Akifumi Yoshihara
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Sayumi Watanabe
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Isha Goel
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazuhiko Ishihara
- Department of Material Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kristina N Ekdahl
- Linnaeus Center of Biomaterials Chemistry, Linnaeus University, SE-391 82, Kalmar, Sweden; Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds Väg 20, SE-751 85, Uppsala, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds Väg 20, SE-751 85, Uppsala, Sweden
| | - Yuji Teramura
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds Väg 20, SE-751 85, Uppsala, Sweden.
| |
Collapse
|
13
|
Ishida N, Ishiyama K, Saeki Y, Tanaka Y, Ohdan H. Cotransplantation of preactivated mesenchymal stem cells improves intraportal engraftment of islets by inhibiting liver natural killer cells in mice. Am J Transplant 2019; 19:2732-2745. [PMID: 30859713 DOI: 10.1111/ajt.15347] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 02/10/2019] [Accepted: 03/03/2019] [Indexed: 01/25/2023]
Abstract
The activation of natural killer (NK) cells in the liver inhibits engraftment of intraportally transplanted islets. We attempted to modulate the activity of NK cells by cotransplanting mesenchymal stem cells (MSCs) with islets in mice. We first investigated the ability of MSCs to secrete prostaglandin E2 , a predominant inhibitor of NK cell function, in various combinations of inflammatory cytokines. Notably, we found that prostaglandin E2 production was partially delayed in MSCs activated by inflammatory cytokines in vitro, whereas liver NK cells were activated early after islet transplant in vivo. Accordingly, preactivated MSCs, but not naive MSCs, substantially suppressed the expression of activation markers in liver NK cells after cotransplant with islets. Similarly, cotransplant with preactivated MSCs, but not naive MSCs, markedly improved the survival of islet grafts. These results highlight MSC cotransplant as an effective and clinically feasible method for enhancing engraftment efficiency.
Collapse
Affiliation(s)
- Nobuki Ishida
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kohei Ishiyama
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Surgery, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Yoshihiro Saeki
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuka Tanaka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
14
|
Stuhr-Hansen N, Vagianou CD, Blixt O. Clustering of Giant Unilamellar Vesicles Promoted by Covalent and Noncovalent Bonding of Functional Groups at Membrane-Embedded Peptides. Bioconjug Chem 2019; 30:2156-2164. [DOI: 10.1021/acs.bioconjchem.9b00394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Nicolai Stuhr-Hansen
- Department of Chemistry, Chemical Biology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Charikleia-Despoina Vagianou
- Department of Chemistry, Chemical Biology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Ola Blixt
- Department of Chemistry, Chemical Biology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
15
|
Gan J, Wang Y, Zhou X. Stem cell transplantation for the treatment of patients with type 1 diabetes mellitus: A meta-analysis. Exp Ther Med 2018; 16:4479-4492. [PMID: 30542397 PMCID: PMC6257425 DOI: 10.3892/etm.2018.6769] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/31/2018] [Indexed: 12/28/2022] Open
Abstract
The efficacy of stem cell (SC) transplantation in patients with type 1 diabetes mellitus (T1DM) has remained to be fully elucidated. In the present study, a systematic review and meta-analysis was performed to determine the clinical outcomes. Electronic databases, including PubMed, MEDLINE, WanFang and the Cochrane Library were screened for relevant studies published until January 13, 2018. The references of retrieved papers, systematic reviews and trial registries were manually screened for additional papers. Two authors were involved in screening the titles in order to select eligible studies, extract data and assess the risk of bias. Studies were pooled using a random-effects model as well as the Begg's funnel plot and subgroup analysis was performed using Stata 14.0 software. A total of 47 studies were retrieved for detailed evaluation, of which 22 met the inclusion criteria. No substantial publication bias was identified. The meta-analysis revealed that SC therapy increased C-peptide levels when compared with placebo treatment in randomized-controlled trials [RCT; standardized mean difference (SMD), 0.93; 95% confidence interval (CI) 0.23-1.63] and self-controlled trials (SMD, 0.66; 95% CI, -0.22 to 1.54). An analysis demonstrated that SC therapy was more efficient at reducing the glycated hemoglobin level compared with the control group in RCTs (SMD, 0.56; 95% CI; 0.06-1.06; and SMD, 1.63; 95% CI, 0.92-2.34, respectively). The graphs demonstrated that SC transplantation resulted in a reduction of insulin requirement. Furthermore, subgroup analyses revealed that patient age, medical history and the SC injection dose may be sources of the heterogeneity observed. The greatest benefit of SC transplantation was seen in patients aged ≥18 years or a medical history of <3 months. In addition, the SC injection dose of ≥107 IU/kg/day was more effective than <107 IU/kg/day when the cellular composition included mesenchymal SCs and hematopoietic SCs. In conclusion, SC therapy represents an efficient option for patients with T1DM. This systematic review was registered at the International prospective register of systematic reviews (no. 42018093930).
Collapse
Affiliation(s)
- Jiadi Gan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Department of Clinical Medicine, The First Clinical Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yingjin Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Department of Clinical Medicine, The Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaodong Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
16
|
Li C, Ke Q, Yao C, Yao C, Mi Y, Wu M, Ge L. Comparison of Bipolar and Unipolar Pulses in Cell Electrofusion: Simulation and Experimental Research. IEEE TRANSACTIONS ON BIO-MEDICAL ENGINEERING 2018; 66:1353-1360. [PMID: 30281431 DOI: 10.1109/tbme.2018.2872909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Unipolar pulses have been used in cell electrofusion over the last decades. However, the problem of high mortality with unipolar pulses has not been solved effectively. The cell fusion rate is restricted by cell mortality. By using the advantages of bipolar pulses which cause less cell damage, this paper attempts to use bipolar pulses to increase the cell fusion rate. METHODS the transmembrane voltage and pore density of cells subjected to unipolar/bipolar pulses were simulated in COMSOL software. In an experiment, two 40 μs unipolar and two 20-20 μs bipolar pulses with electric fields of 2, 2.5, and 3 kV/cm were applied to SP2/0 murine myeloma cells. To determine the cell fusion rate and cell mortality, cells were stained with Hoechst 33342 and propidium iodide. RESULTS the simulation in this paper showed that a high transmembrane voltage and a high pores density were concentrated only at the contact area of cells when bipolar pulses were used. The results of the cell staining experiment verified the simulation analysis. When bipolar pulses were applied, the cell mortality was significantly reduced. In addition, the cell fusion rate with bipolar pulses was almost two times higher than that with unipolar pulses. CONCLUSION for cell electrofusion, compared with unipolar pulses, bipolar pulses can not only reduce the cell mortality remarkably but also improve the cell fusion rate obviously. SIGNIFICANCE this paper introduces a novel way to increase the fusion rate of cells.
Collapse
|
17
|
Yang KC, Yanai G, Yang SY, Canning P, Satou Y, Kawagoe M, Sumi S. Low-adhesive ethylene vinyl alcohol-based packaging to xenogeneic islet encapsulation for type 1 diabetes treatment. Biotechnol Bioeng 2018; 115:2341-2355. [PMID: 29777589 DOI: 10.1002/bit.26730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/17/2018] [Accepted: 05/16/2018] [Indexed: 01/16/2023]
Abstract
Transplantation of encapsulated porcine islets is proposed to treat type 1 diabetes. However, the envelopment of fibrous tissue and the infiltration of immune cells impair islet function and eventually cause implant failure. It is known that hemodialysis using an ethylene vinyl alcohol (EVOH) membrane results in minor tissue responses. Therefore, we hypothesized that using a low-adhesive EVOH membrane for encapsulation may prevent host cell accumulation and fibrous capsule formation. In this study, rat islets suspended in chitosan gel were encapsulated in bags made from highly porous EVOH membranes, and their in vitro insulin secretion function as well as in vivo performance was evaluated. The results showed that the EVOH bag did not affect islet survival or glucose-stimulated insulin secretion. Whereas naked islets were dysfunctional after 7 days of culture in vitro, islets within the EVOH bag produced insulin continuously for 30 days. Streptozotocin-induced diabetic mice were given islets-chitosan gel-EVOH implants intraperitoneally (650-800 islets equivalent) and exhibited lower blood glucose levels and regained body weight during a 4-week observation period. The transplanted mice had higher levels of serum insulin and C-peptide, with an improved blood glucose disappearance rate. Retrieved implants had minor tissue adhesion, and histology showed a limited number of mononuclear cells and fibroblasts surrounding the implants. No invasion of host cells into the EVOH bags was noticed, and the encapsulated islets were intact and positive for insulin-glucagon immunostaining. In conclusion, an EVOH bag can protect encapsulated islets, limit fibrous capsule formation, and extend graft function.
Collapse
Affiliation(s)
- Kai-Chiang Yang
- Laboratory of Organ and Tissue Reconstruction, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Goichi Yanai
- Laboratory of Organ and Tissue Reconstruction, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Sin-Yu Yang
- Laboratory of Organ and Tissue Reconstruction, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Priyadarshini Canning
- Laboratory of Organ and Tissue Reconstruction, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yoshio Satou
- Molding Component Business Department, Kuraray Co., Ltd, Tokyo, Japan
| | - Masako Kawagoe
- Molding Component Business Department, Kuraray Co., Ltd, Tokyo, Japan
| | - Shoichiro Sumi
- Laboratory of Organ and Tissue Reconstruction, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
18
|
Bahadori A, Moreno-Pescador G, Oddershede LB, Bendix PM. Remotely controlled fusion of selected vesicles and living cells: a key issue review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:032602. [PMID: 29369822 DOI: 10.1088/1361-6633/aa9966] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Remote control over fusion of single cells and vesicles has a great potential in biological and chemical research allowing both transfer of genetic material between cells and transfer of molecular content between vesicles. Membrane fusion is a critical process in biology that facilitates molecular transport and mixing of cellular cytoplasms with potential formation of hybrid cells. Cells precisely regulate internal membrane fusions with the aid of specialized fusion complexes that physically provide the energy necessary for mediating fusion. Physical factors like membrane curvature, tension and temperature, affect biological membrane fusion by lowering the associated energy barrier. This has inspired the development of physical approaches to harness the fusion process at a single cell level by using remotely controlled electromagnetic fields to trigger membrane fusion. Here, we critically review various approaches, based on lasers or electric pulses, to control fusion between individual cells or between individual lipid vesicles and discuss their potential and limitations for present and future applications within biochemistry, biology and soft matter.
Collapse
Affiliation(s)
- Azra Bahadori
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | | | | | | |
Collapse
|
19
|
Azizi Z, Lange C, Paroni F, Ardestani A, Meyer A, Wu Y, Zander AR, Westenfelder C, Maedler K. β-MSCs: successful fusion of MSCs with β-cells results in a β-cell like phenotype. Oncotarget 2018; 7:48963-48977. [PMID: 27374092 PMCID: PMC5226484 DOI: 10.18632/oncotarget.10214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 04/19/2016] [Indexed: 12/22/2022] Open
Abstract
Bone marrow mesenchymal stromal cells (MSC) have anti-inflammatory, anti-apoptotic and immunosuppressive properties and are a potent source for cell therapy. Cell fusion has been proposed for rapid generation of functional new reprogrammed cells. In this study, we aimed to establish a fusion protocol of bone marrow−derived human MSCs with the rat beta-cell line (INS-1E) as well as human isolated pancreatic islets in order to generate insulin producing beta-MSCs as a cell-based treatment for diabetes. Human eGFP+ puromycin+ MSCs were co-cultured with either stably mCherry-expressing rat INS-1E cells or human dispersed islet cells and treated with phytohemagglutinin (PHA-P) and polyethylene glycol (PEG) to induce fusion. MSCs and fused cells were selected by puromycin treatment. With an improved fusion protocol, 29.8 ± 2.9% of all MSCs were β-MSC heterokaryons based on double positivity for mCherry and eGFP. After fusion and puromycin selection, human NKX6.1 and insulin as well as rat Neurod1, Nkx2.2, MafA, Pdx1 and Ins1 mRNA were highly elevated in fused human MSC/INS-1E cells, compared to the mixed control population. Such induction of beta-cell markers was confirmed in fused human MSC/human dispersed islet cells, which showed elevated NEUROD1, NKX2.2, MAFA, PDX1 and insulin mRNA compared to the mixed control. Fused cells had higher insulin content and improved insulin secretion compared to the mixed control and insulin positive beta-MSCs also expressed nuclear PDX1. We established a protocol for fusion of human MSCs and beta cells, which resulted in a beta cell like phenotype. This could be a novel tool for cell-based therapies of diabetes.
Collapse
Affiliation(s)
- Zahra Azizi
- Centre for Biomolecular Interactions, University of Bremen, Bremen, Germany.,Department of Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Lange
- Department of Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Federico Paroni
- Centre for Biomolecular Interactions, University of Bremen, Bremen, Germany
| | - Amin Ardestani
- Centre for Biomolecular Interactions, University of Bremen, Bremen, Germany
| | - Anke Meyer
- Centre for Biomolecular Interactions, University of Bremen, Bremen, Germany
| | - Yonghua Wu
- Centre for Biomolecular Interactions, University of Bremen, Bremen, Germany.,Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Axel R Zander
- Department of Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christof Westenfelder
- Departments of Medicine and Physiology, University of Utah and George E Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Kathrin Maedler
- Centre for Biomolecular Interactions, University of Bremen, Bremen, Germany.,German Center for Diabetes Research (DZD) project partner, University of Bremen, Bremen, Germany
| |
Collapse
|
20
|
Perrier DL, Rems L, Boukany PE. Lipid vesicles in pulsed electric fields: Fundamental principles of the membrane response and its biomedical applications. Adv Colloid Interface Sci 2017; 249:248-271. [PMID: 28499600 DOI: 10.1016/j.cis.2017.04.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 01/04/2023]
Abstract
The present review focuses on the effects of pulsed electric fields on lipid vesicles ranging from giant unilamellar vesicles (GUVs) to small unilamellar vesicles (SUVs), from both fundamental and applicative perspectives. Lipid vesicles are the most popular model membrane systems for studying biophysical and biological processes in living cells. Furthermore, as vesicles are made from biocompatible and biodegradable materials, they provide a strategy to create safe and functionalized drug delivery systems in health-care applications. Exposure of lipid vesicles to pulsed electric fields is a common physical method to transiently increase the permeability of the lipid membrane. This method, termed electroporation, has shown many advantages for delivering exogenous molecules including drugs and genetic material into vesicles and living cells. In addition, electroporation can be applied to induce fusion between vesicles and/or cells. First, we discuss in detail how research on cell-size GUVs as model cell systems has provided novel insight into the basic mechanisms of cell electroporation and associated phenomena. Afterwards, we continue with a thorough overview how electroporation and electrofusion have been used as versatile methods to manipulate vesicles of all sizes in different biomedical applications. We conclude by summarizing the open questions in the field of electroporation and possible future directions for vesicles in the biomedical field.
Collapse
|
21
|
Intrapancreatic Parenchymal Injection of Cells as a Useful Tool for Allowing a Small Number of Proliferative Cells to Grow In Vivo. Int J Mol Sci 2017; 18:ijms18081678. [PMID: 28767080 PMCID: PMC5578068 DOI: 10.3390/ijms18081678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 11/25/2022] Open
Abstract
In vivo inoculation of cells such as tumor cells and induced pluripotent stem (iPS)/embryonic stem (ES) cells into immunocompromised mice has been considered as a powerful technique to evaluate their potential to proliferate or differentiate into various cell types originating from three germ cell layers. Subcutaneous grafting and grafting under the kidney capsule have been widely used for this purpose, but there are some demerits such as the requirement of a large number of tumor cells for inoculation and frequent failure of tumorigenesis. Therefore, grafting into other sites has been explored, including intratesticular or intramuscular grafting as well as grafting into the cochleae, liver, or salivary glands. In this study, we found that intrapancreatic parenchymal injection of cells is useful for allowing a small number of cells (~15 × 103 cells or ~30 cell clumps μL−1·site−1) to proliferate and sometimes differentiate into various types of cells. It requires only surgical exposure of the pancreas over the dorsal skin and subsequent injection of cells towards the pancreatic parenchyma under dissecting microscope-based observation using a mouthpiece-controlled glass micropipette. We now name this technology “intrapancreatic parenchymal cell transplantation (IPPCT)”, which will be useful, especially when only a small number of cells or colonies are available.
Collapse
|
22
|
Shehata AS, Al-Ghonemy NM, Ahmed SM, Mohamed SR. Effect of mesenchymal stem cells on induced skeletal muscle chemodenervation atrophy in adult male albino rats. Int J Biochem Cell Biol 2017; 85:135-148. [PMID: 28232107 DOI: 10.1016/j.biocel.2017.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/25/2017] [Accepted: 01/29/2017] [Indexed: 12/11/2022]
Abstract
The present research was conducted to evaluate the effect of bone marrow derived mesenchymal stem cells (BM-MSCs) as a potential therapeutic tool for improvement of skeletal muscle recovery after induced chemodenervation atrophy by repeated local injection of botulinum toxin-A in the right tibialis anterior muscle of adult male albino rats. Forty five adult Wistar male albino rats were classified into control and experimental groups. Experimental group was further subdivided into 3 equal subgroups; induced atrophy, BM-MSCs treated and recovery groups. Biochemical analysis of serum LDH, CK and Real-time PCR for Bcl-2, caspase 3 and caspase 9 was measured. Skeletal muscle sections were stained with H and E, Mallory trichrome, and Immunohistochemical reaction for Bax and CD34. Improvement in the skeletal muscle histological structure was noticed in BM-MSCs treated group, however, in the recovery group, some sections showed apparent transverse striations and others still affected. Immunohistochemical reaction of Bax protein showed strong positive immunoreaction in the cytoplasm of muscle fibers in the induced atrophy group. BM-MSCs treated group showed weak positive reaction while the recovery group showed moderate reaction in the cytoplasm of muscle fibers. Immunohistochemical reaction for CD34 revealed occasional positive CD34 stained cells in the induced atrophy group. In BM-MSCs treated group, multiple positive CD34 stained cells were detected. However, recovery group showed some positive CD34 stained cells at the periphery of the muscle fibers. Marked improvement in the regenerative capacity of skeletal muscles after BM-MSCs therapy. Hence, stem cell therapy provides a new hope for patients suffering from myopathies and severe injuries.
Collapse
Affiliation(s)
| | | | - Samah M Ahmed
- Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | | |
Collapse
|
23
|
Rems L. Applicative Use of Electroporation Models. ADVANCES IN BIOMEMBRANES AND LIPID SELF-ASSEMBLY 2017. [DOI: 10.1016/bs.abl.2017.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
24
|
Bhansali S, Kumar V, Saikia UN, Medhi B, Jha V, Bhansali A, Dutta P. Effect of mesenchymal stem cells transplantation on glycaemic profile & their localization in streptozotocin induced diabetic Wistar rats. Indian J Med Res 2016; 142:63-71. [PMID: 26261168 PMCID: PMC4557252 DOI: 10.4103/0971-5916.162116] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND & OBJECTIVES Bone marrow is a rich source of adult stem cells that can differentiate into various cell types. Administration of mesenchymal stem cells (MSCs) in irradiated diabetic rat model has transiently shown to decrease blood glucose level. This study examines the effect of high dose and multiple injections of MSCs on glycemic profile, their localization and regeneration of islet in diabetic Wistar rat. METHODS The study was carried out in male Wistar rats categorized into three groups (n=6, in each group): Group 1 as control, group 2 streptozotocin (STZ) (50 mg/kg) induced diabetic group and group 3 experimental group; 5-bromo-2-deoxyuridine (BrdU) labelled allogenic MSCs were injected in the non-irradiated diabetic rat of the experimental group through tail vein. The blood glucose profile was subsequently monitored at regular intervals. Rats were sacrificed on day 45 and pancreas was examined for localization of BrdU labelled stem cells by immunofluorescence and islet-neogenesis by immunohistochemistry . RESULTS There was a significant reduction in blood glucose level after administration of MSCs in the experimental group (P<0.001). The presence of BrdU labelled MSCs in islet suggested their localization in the pancreas. Co-expression of anti-BrdU and anti-insulin antibody indicated trans-differentiation / fusion into insulin producing cells evidenced by significant increase in total number of islet (P=0.004) and insulin positive cells ( P<0.0001) in experimental group. INTERPRETATION & CONCLUSIONS Our results showed that the MSCs administration in non-irradiated diabetic Wistar rat reduced hyperglycaemia and was accompanied by increased islet-neogenesis, possibly through trans-differentiation/fusion.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pinaki Dutta
- Department of Endocrinology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
25
|
Rørvig-Lund A, Bahadori A, Semsey S, Bendix PM, Oddershede LB. Vesicle Fusion Triggered by Optically Heated Gold Nanoparticles. NANO LETTERS 2015; 15:4183-4188. [PMID: 26010468 DOI: 10.1021/acs.nanolett.5b01366] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Membrane fusion can be accelerated by heating that causes membrane melting and expansion. We locally heated the membranes of two adjacent vesicles by laser irradiating gold nanoparticles, thus causing vesicle fusion with associated membrane and cargo mixing. The mixing time scales were consistent with diffusive mixing of the membrane dyes and the aqueous content. This method is useful for nanoscale reactions as demonstrated here by I-BAR protein-mediated membrane tubulation triggered by fusion.
Collapse
Affiliation(s)
- Andreas Rørvig-Lund
- †Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Azra Bahadori
- †Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
- ‡Lundbeck Foundation Center of Excellence for Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark
| | - Szabolcs Semsey
- †Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Poul Martin Bendix
- †Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Lene B Oddershede
- †Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
- ‡Lundbeck Foundation Center of Excellence for Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Bueno PDG, Yochite JNU, Derigge-Pisani GF, Malmegrim de Farias KCR, de Avó LRDS, Voltarelli JC, Leal ÂMDO. Metabolic and pancreatic effects of bone marrow mesenchymal stem cells transplantation in mice fed high-fat diet. PLoS One 2015; 10:e0124369. [PMID: 25923733 PMCID: PMC4414281 DOI: 10.1371/journal.pone.0124369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/27/2015] [Indexed: 12/22/2022] Open
Abstract
The purpose of this study was to investigate the effects of multiple infusions of allogeneic MSCs on glucose homeostasis and morphometry of pancreatic islets in high- fat diet (HFD) fed mice. Swiss mice were fed standard diet (C group) or HFD (HFD group). After 8 weeks, animals of HFD group received sterile phosphate-buffered saline infusions (HFD-PBS) or four infusions of MSCs one week apart (HFD-MSCs). Fasting glycemia (FG) was determined weekly and glucose (GTT) and insulin (ITT) tolerance tests were performed 4, 8, 12, and 16 weeks after the infusions of MSCs. The MSCs transplanted mice were classified as responder (FG < 180 mg/dL, 72.2% of transplanted mice) or non-responder (FG > 180mg/dL, 28.8%) Seven weeks after MSCs infusions, FG decreased in HFD-MSCs responder mice compared with the HFD-PBS group. Sixteen weeks post MSCs infusions, GTT and ITT areas under the curve (AUC) decreased in HFD-MSCs responder mice compared to HFD-PBS group. Serum insulin concentration was higher in HFD-PBS group than in control animals and was not different compared with the other groups. The relative volume of α-cells was significantly smaller in HFD-PBS group than in C group and significantly higher in HFD-MSCs-NR than in HFD-PBS and HFD-MSCs-R groups. Cell apoptosis in the islets was higher in HFD-PBS group than in C group, and lower in HFD-MSCs responder mice than in HFD-PBS group and non-responder animals. The results demonstrate the ability of multiple infusions of MSCs to promote prolonged decrease in hyperglycemia and apoptosis in pancreatic islets and increase in insulin sensitivity in HFD fed mice.
Collapse
Affiliation(s)
- Patricia de Godoy Bueno
- Department of Physiological Science, Center of Biological Sciences and Health, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Juliana Navarro Ueda Yochite
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Graziela Fernanda Derigge-Pisani
- Department of Physiological Science, Center of Biological Sciences and Health, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Kelen Cristina Ribeiro Malmegrim de Farias
- Department of Clinical, Toxicological and Bromatological Analyses, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | | | | | | |
Collapse
|
27
|
Abstract
Auxiliary use of mesenchymal stem/stromal cells (MSCs) to islet transplantation is shown to enhance efficacy. We hypothesized cell fusion of islet cells and MSCs may provide a new cell source with robustness of MSCs and islet cell function. We succeeded electrofusion between dispersed islet cells and MSCs in rats and fused cells sustained beta-cell function in vitro and in vivo, suggesting their possibility of therapeutic application. Here, we describe our method of cell fusion that enabled us to fuse islet cells to MSCs.
Collapse
Affiliation(s)
- Shoichiro Sumi
- Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan,
| | | |
Collapse
|
28
|
Czubak P, Bojarska-Junak A, Tabarkiewicz J, Putowski L. A modified method of insulin producing cells' generation from bone marrow-derived mesenchymal stem cells. J Diabetes Res 2014; 2014:628591. [PMID: 25405207 PMCID: PMC4227461 DOI: 10.1155/2014/628591] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/24/2014] [Accepted: 10/08/2014] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes mellitus is a result of autoimmune destruction of pancreatic insulin producing β-cells and so far it can be cured only by insulin injection, by pancreas transplantation, or by pancreatic islet cells' transplantation. The methods are, however, imperfect and have a lot of disadvantages. Therefore new solutions are needed. The best one would be the use of differentiated mesenchymal stem cells (MSCs). In the present study, we investigated the potential of the bone marrow-derived MSCs line for in vitro differentiation into insulin producing cells (IPSs). We applied an 18-day protocol to differentiate MSCs. Differentiating cells formed cell clusters some of which resembled pancreatic islet-like cells. Using dithizone we confirmed the presence of insulin in the cells. What is more, the expression of proinsulin C-peptide in differentiated IPCs was analyzed by flow cytometry. For the first time, we investigated the influence of growth factors' concentration on IPCs differentiation efficiency. We have found that an increase in the concentration of growth factors up to 60 ng/mL of β-FGF/EGF and 30 ng/mL of activin A/β-cellulin increases the percentage of IPCs. Further increase of growth factors does not show any increase of the percentage of differentiated cells. Our findings suggest that the presented protocol can be adapted for differentiation of insulin producing cells from stem cells.
Collapse
Affiliation(s)
- Paweł Czubak
- Chair and Department of Gynaecology and Gynaecological Endocrinology, Medical University of Lublin, Aleje Racławickie 23 (SPSW), 20-037 Lublin, Poland
| | - Agnieszka Bojarska-Junak
- Chair and Department of Clinical Immunology, Medical University of Lublin, W. Chodźki 4a, 20-093 Lublin, Poland
| | - Jacek Tabarkiewicz
- Chair and Department of Clinical Immunology, Medical University of Lublin, W. Chodźki 4a, 20-093 Lublin, Poland
- Centre for Innovative Research in Medical and Natural Sciences, Medical Faculty of University of Rzeszow, 35-959 Rzeszów, Poland
| | - Lechosław Putowski
- Chair and Department of Gynaecology and Gynaecological Endocrinology, Medical University of Lublin, Aleje Racławickie 23 (SPSW), 20-037 Lublin, Poland
| |
Collapse
|
29
|
Cell electrofusion using nanosecond electric pulses. Sci Rep 2013; 3:3382. [PMID: 24287643 PMCID: PMC3843160 DOI: 10.1038/srep03382] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 11/13/2013] [Indexed: 12/21/2022] Open
Abstract
Electrofusion is an efficient method for fusing cells using short-duration high-voltage electric pulses. However, electrofusion yields are very low when fusion partner cells differ considerably in their size, since the extent of electroporation (consequently membrane fusogenic state) with conventionally used microsecond pulses depends proportionally on the cell radius. We here propose a new and innovative approach to fuse cells with shorter, nanosecond (ns) pulses. Using numerical calculations we demonstrate that ns pulses can induce selective electroporation of the contact areas between cells (i.e. the target areas), regardless of the cell size. We then confirm experimentally on B16-F1 and CHO cell lines that electrofusion of cells with either equal or different size by using ns pulses is indeed feasible. Based on our results we expect that ns pulses can improve fusion yields in electrofusion of cells with different size, such as myeloma cells and B lymphocytes in hybridoma technology.
Collapse
|