1
|
Loong SK, Liam CK, Karunakaran R, Tan KK, Mahfodz NH, AbuBakar S. Non-classical Bordetella sp. (closely related to Bordetella hinzii and Bordetella pseudohinzii) lower respiratory tract infection in a patient with extensive bronchiectasis: a case report. J Int Med Res 2024; 52:3000605231214464. [PMID: 38216150 PMCID: PMC10787532 DOI: 10.1177/03000605231214464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024] Open
Abstract
An increasing number of reports have described the pathogenic nature of several non-classical Bordetella spp. Among them, Bordetella hinzii and Bordetella pseudohinzii have been implicated in a myriad of respiratory-associated infections in humans and animals. We report the isolation of a genetically close relative of B. hinzii and B. pseudohinzii from the sputum of a woman in her early 60s with extensive bronchiectasis who presented with fever and brown colored sputum. The isolate had initially been identified as Bordetella avium by API 20NE, the identification system for non-enteric Gram-negative rod bacteria. Sequencing of the 16S rDNA, ompA, nrdA, and genes used in the Bordetella multilocus sequence typing scheme could not resolve the identity of this Bordetella isolate. Whole-genome single nucleotide polymorphism analysis positioned the isolate between B. hinzii and B. pseudohinzii in the phylogenetic tree, forming a distinct cluster. Whole-genome sequencing enabled the further identification of this rare organism, and should be considered for wider applications, especially the confirmation of organism identity in the clinical diagnostic microbiology laboratory.
Collapse
Affiliation(s)
- Shih Keng Loong
- Tropical Infectious Diseases Research & Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chong Kin Liam
- Department of Medicine, University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia
- Department of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Rina Karunakaran
- Department of Medical Microbiology, University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia
- Department of Medical Microbiology, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kim-Kee Tan
- Tropical Infectious Diseases Research & Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nur Hidayana Mahfodz
- Tropical Infectious Diseases Research & Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research & Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Miguelena Chamorro B, De Luca K, Swaminathan G, Longet S, Mundt E, Paul S. Bordetella bronchiseptica and Bordetella pertussis: Similarities and Differences in Infection, Immuno-Modulation, and Vaccine Considerations. Clin Microbiol Rev 2023; 36:e0016422. [PMID: 37306571 PMCID: PMC10512794 DOI: 10.1128/cmr.00164-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
Bordetella pertussis and Bordetella bronchiseptica belong to the genus Bordetella, which comprises 14 other species. B. pertussis is responsible for whooping cough in humans, a severe infection in children and less severe or chronic in adults. These infections are restricted to humans and currently increasing worldwide. B. bronchiseptica is involved in diverse respiratory infections in a wide range of mammals. For instance, the canine infectious respiratory disease complex (CIRDC), characterized by a chronic cough in dogs. At the same time, it is increasingly implicated in human infections, while remaining an important pathogen in the veterinary field. Both Bordetella can evade and modulate host immune responses to support their persistence, although it is more pronounced in B. bronchiseptica infection. The protective immune responses elicited by both pathogens are comparable, while there are important characteristics in the mechanisms that differ. However, B. pertussis pathogenesis is more difficult to decipher in animal models than those of B. bronchiseptica because of its restriction to humans. Nevertheless, the licensed vaccines for each Bordetella are different in terms of formulation, route of administration and immune responses induced, with no known cross-reaction between them. Moreover, the target of the mucosal tissues and the induction of long-lasting cellular and humoral responses are required to control and eliminate Bordetella. In addition, the interaction between both veterinary and human fields are essential for the control of this genus, by preventing the infections in animals and the subsequent zoonotic transmission to humans.
Collapse
Affiliation(s)
- Beatriz Miguelena Chamorro
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Lyon, France
- Boehringer Ingelheim, Global Innovation, Saint-Priest, France
| | - Karelle De Luca
- Boehringer Ingelheim, Global Innovation, Saint-Priest, France
| | | | - Stéphanie Longet
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Lyon, France
- CIC Inserm 1408 Vaccinology, Saint-Etienne, France
| | - Egbert Mundt
- Boehringer Ingelheim, Global Innovation, Saint-Priest, France
| | - Stéphane Paul
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Lyon, France
- CIC Inserm 1408 Vaccinology, Saint-Etienne, France
| |
Collapse
|
3
|
Holban AM, Gregoire CM, Gestal MC. Conquering the host: Bordetella spp. and Pseudomonas aeruginosa molecular regulators in lung infection. Front Microbiol 2022; 13:983149. [PMID: 36225372 PMCID: PMC9549215 DOI: 10.3389/fmicb.2022.983149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/17/2022] [Indexed: 11/27/2022] Open
Abstract
When bacteria sense cues from the host environment, stress responses are activated. Two component systems, sigma factors, small RNAs, ppGpp stringent response, and chaperones start coordinate the expression of virulence factors or immunomodulators to allow bacteria to respond. Although, some of these are well studied, such as the two-component systems, the contribution of other regulators, such as sigma factors or ppGpp, is increasingly gaining attention. Pseudomonas aeruginosa is the gold standard pathogen for studying the molecular mechanisms to sense and respond to environmental cues. Bordetella spp., on the other hand, is a microbial model for studying host-pathogen interactions at the molecular level. These two pathogens have the ability to colonize the lungs of patients with chronic diseases, suggesting that they have the potential to share a niche and interact. However, the molecular networks that facilitate adaptation of Bordetella spp. to cues are unclear. Here, we offer a side-by-side comparison of what is known about these diverse molecular mechanisms that bacteria utilize to counteract host immune responses, while highlighting the relatively unexplored interactions between them.
Collapse
Affiliation(s)
- Alina M. Holban
- Research Institute of the University of Bucharest (ICUB), Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Courtney M. Gregoire
- Department of Microbiology and Immunology, Louisiana State University Health Science Center, Shreveport, LA, United States
| | - Monica C. Gestal
- Department of Microbiology and Immunology, Louisiana State University Health Science Center, Shreveport, LA, United States
- *Correspondence: Monica C. Gestal, ;
| |
Collapse
|
4
|
The Leaf Microbiome of Tobacco Plants across Eight Chinese Provinces. Microorganisms 2022; 10:microorganisms10020450. [PMID: 35208904 PMCID: PMC8878116 DOI: 10.3390/microorganisms10020450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 02/05/2023] Open
Abstract
Leaf microorganism communities play significant roles in the process of plant growth, but the microbiome profiling of crop leaves is still a relatively new research area. Here, we used 16S rDNA sequencing to profile the microbiomes of 78 primary dried tobacco leaf samples from 26 locations in eight Chinese provinces. Our analyses revealed that the national leaf microbial communities contain 4473 operational taxonomic units (OTU) representing 1234 species, but there is a small, national core microbiome with only 14 OTU representing nine species. The function of this core microbiome is related to processes including nitrogen fixation, detoxification of diverse pollutants, and heavy-metal reduction. The leaf microorganism communities are obviously affected by local environments but did not exhibit obvious relationships to single ecological factors (e.g., temperature, precipitation). Our findings enhance the understanding of microbial diversity of tobacco leaves, which could be utilized for a variety of bioprocess, agricultural, and environmental detoxification applications.
Collapse
|
5
|
McCormack RM, Szymanski EP, Hsu AP, Perez E, Olivier KN, Fisher E, Goodhew EB, Podack ER, Holland SM. MPEG1/perforin-2 mutations in human pulmonary nontuberculous mycobacterial infections. JCI Insight 2017; 2:89635. [PMID: 28422754 PMCID: PMC5396519 DOI: 10.1172/jci.insight.89635] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/09/2017] [Indexed: 12/15/2022] Open
Abstract
Perforin-2 is a highly conserved pore-forming protein encoded by macrophage expressed gene 1 (MPEG1). A number of studies have shown that Perforin-2-deficient mice are unable to survive following a bacterial challenge that is nonlethal in WT mice. There is also recent evidence that Mpeg1+/- heterozygous mice display an intermediate killing ability compared with Mpeg1 WT and Mpeg1-/- mice. Despite these in vivo findings, to date, no perforin-2 deficiencies have been associated with human disease. Here, we report four patients with persistent nontuberculous mycobacterial infection who had heterozygous MPEG1 mutations. In vitro, neutrophils, macrophages, and B cells from these patients were unable to kill Mycobacterium avium as efficiently as normal controls. CRISPR mutagenesis validated the deleterious antibacterial activity of these mutations. These data suggest that perforin-2 haploinsufficiency may contribute to human susceptibility to infections with intracellular bacteria.
Collapse
Affiliation(s)
- Ryan M. McCormack
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, Florida, USA
| | | | - Amy P. Hsu
- Laboratory of Clinical Infectious Diseases, NIAID, NIH
| | - Elena Perez
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, Florida, USA
| | - Kenneth N. Olivier
- Cardiovascular and Pulmonary Branch, NHLBI, NIH, Bethesda, Maryland, USA
| | - Eva Fisher
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, Florida, USA
| | - E. Brook Goodhew
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, Florida, USA
| | - Eckhard R. Podack
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, Florida, USA
| | | |
Collapse
|
6
|
Jeukens J, Freschi L, Vincent AT, Emond-Rheault JG, Kukavica-Ibrulj I, Charette SJ, Levesque RC. A Pan-Genomic Approach to Understand the Basis of Host Adaptation in Achromobacter. Genome Biol Evol 2017; 9:1030-1046. [PMID: 28383665 PMCID: PMC5405338 DOI: 10.1093/gbe/evx061] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2017] [Indexed: 12/13/2022] Open
Abstract
Over the past decade, there has been a rising interest in Achromobacter sp., an emerging opportunistic pathogen responsible for nosocomial and cystic fibrosis lung infections. Species of this genus are ubiquitous in the environment, can outcompete resident microbiota, and are resistant to commonly used disinfectants as well as antibiotics. Nevertheless, the Achromobacter genus suffers from difficulties in diagnosis, unresolved taxonomy and limited understanding of how it adapts to the cystic fibrosis lung, not to mention other host environments. The goals of this first genus-wide comparative genomics study were to clarify the taxonomy of this genus and identify genomic features associated with pathogenicity and host adaptation. This was done with a widely applicable approach based on pan-genome analysis. First, using all publicly available genomes, a combination of phylogenetic analysis based on 1,780 conserved genes with average nucleotide identity and accessory genome composition allowed the identification of a largely clinical lineage composed of Achromobacter xylosoxidans, Achromobacter insuavis, Achromobacter dolens, and Achromobacter ruhlandii. Within this lineage, we identified 35 positively selected genes involved in metabolism, regulation and efflux-mediated antibiotic resistance. Second, resistome analysis showed that this clinical lineage carried additional antibiotic resistance genes compared with other isolates. Finally, we identified putative mobile elements that contribute 53% of the genus's resistome and support horizontal gene transfer between Achromobacter and other ecologically similar genera. This study provides strong phylogenetic and pan-genomic bases to motivate further research on Achromobacter, and contributes to the understanding of opportunistic pathogen evolution.
Collapse
Affiliation(s)
- Julie Jeukens
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Luca Freschi
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Antony T Vincent
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Quebec City, Quebec, Canada.,Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Quebec City, Quebec, Canada
| | | | - Irena Kukavica-Ibrulj
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Steve J Charette
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Quebec City, Quebec, Canada.,Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Quebec City, Quebec, Canada
| | - Roger C Levesque
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
7
|
Basheer SM, Bouchez V, Novikov A, Augusto LA, Guiso N, Caroff M. Structure activity characterization of Bordetella petrii lipid A, from environment to human isolates. Biochimie 2016; 120:87-95. [DOI: 10.1016/j.biochi.2015.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/06/2015] [Indexed: 11/30/2022]
|
8
|
Kwon SS, Kim JO, Kim KH, Jeong SH, Lee K. Persistent Bordetella petrii infection related to bone fractures. Ann Lab Med 2015; 36:70-2. [PMID: 26522764 PMCID: PMC4697348 DOI: 10.3343/alm.2016.36.1.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/13/2015] [Accepted: 10/08/2015] [Indexed: 11/19/2022] Open
Affiliation(s)
- Soon Sung Kwon
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Ok Kim
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Kun Han Kim
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea.
| | - Kyungwon Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Biederman L, Rosen MR, Bobik BS, Roberts AL. Bordetella petrii recovered from chronic pansinusitis in an adult with cystic fibrosis. IDCases 2015; 2:97-8. [PMID: 26793470 PMCID: PMC4712203 DOI: 10.1016/j.idcr.2015.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 11/05/2022] Open
Abstract
To date Bordetella petrii has infrequently been identified within the clinical setting likely due to the asaccharolytic nature of this organism. We present a case of B. petrii recovered on two separate events in a patient with adult cystic fibrosis experiencing chronic pansinusitis.
Collapse
Affiliation(s)
- Laura Biederman
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Pavilion Building, Suite 207, Philadelphia, PA 19107, USA
| | - Marc R Rosen
- Department of Otolaryngology-Head and Neck Surgery, Sidney Kimmel Medical College at Thomas Jefferson University, 925 Chestnut Street, 6th Floor, Philadelphia, PA 19107, USA
| | - Brent S Bobik
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Pavilion Building, Suite 207, Philadelphia, PA 19107, USA
| | - Amity L Roberts
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Pavilion Building, Suite 207, Philadelphia, PA 19107, USA
| |
Collapse
|
10
|
|
11
|
Abstract
A case of Bordetella petrii septic arthritis and osteomyelitis in an elbow resulted from a dirt bike accident in Hawaii. Two months of intravenous antibiotics and repeated surgeries were required to cure this infection. Our case, and literature review, suggests that extended-spectrum penicillins, tetracycline, and trimethoprim-sulfamethoxazole are good treatment options.
Collapse
|
12
|
Mordukhova EA, Pan JG. Stabilization of homoserine-O-succinyltransferase (MetA) decreases the frequency of persisters in Escherichia coli under stressful conditions. PLoS One 2014; 9:e110504. [PMID: 25329174 PMCID: PMC4201533 DOI: 10.1371/journal.pone.0110504] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 09/15/2014] [Indexed: 02/01/2023] Open
Abstract
Bacterial persisters are a small subpopulation of cells that exhibit multi-drug tolerance without genetic changes. Generally, persistence is associated with a dormant state in which the microbial cells are metabolically inactive. The bacterial response to unfavorable environmental conditions (heat, oxidative, acidic stress) induces the accumulation of aggregated proteins and enhances formation of persister cells in Escherichia coli cultures. We have found that methionine supplementation reduced the frequency of persisters at mild (37°C) and elevated (42°C) temperatures, as well as in the presence of acetate. Homoserine-o-succinyltransferase (MetA), the first enzyme in the methionine biosynthetic pathway, is prone to aggregation under many stress conditions, resulting in a methionine limitation in E. coli growth. Overexpression of MetA induced the greatest number of persisters at 42°C, which is correlated to an increased level of aggregated MetA. Substitution of the native metA gene on the E. coli K-12 WE chromosome by a mutant gene encoding the stabilized MetA led to reduction in persisters at the elevated temperature and in the presence of acetate, as well as lower aggregation of the mutated MetA. Decreased persister formation at 42°C was confirmed also in E. coli K-12 W3110 and a fast-growing WErph+ mutant harboring the stabilized MetA. Thus, this is the first study to demonstrate manipulation of persister frequency under stressful conditions by stabilization of a single aggregation-prone protein, MetA.
Collapse
Affiliation(s)
- Elena A. Mordukhova
- Superbacteria Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Jae-Gu Pan
- Superbacteria Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- * E-mail:
| |
Collapse
|
13
|
Abstract
The Bordetella genus comprises nine species of which Bordetella pertussis and B. parapertussis are isolated from humans and are the most studied Bordetella species since they cause whooping cough. They both originate from B. bronchiseptica, which infects several mammals and immune compromised humans, but the intensive use of pertussis vaccines induced changes in B. pertussis and B. parapertussis populations. B. petrii and B. holmesii are other species of unknown reservoir and transmission pattern that have been described in humans. It is still unknown whether these species are pathogens for humans or only opportunistic bacteria but biological diagnosis has confirmed the presence of B. holmesii in human respiratory samples while B. petrii and the four other species have little implications for public health.
Collapse
Affiliation(s)
- Nicole Guiso
- Institut Pasteur, Unité de Prévention et Thérapies Moléculaires des Maladies Humaines, 25-28 rue du Dr Roux, F-75015 Paris, France
| | | |
Collapse
|
14
|
Carleton A, Casserly B, Power L, Linnane B, O’flaherty G, Powell J, Hartnett P, Collins J, Murphy P, Kenna D, O’connell NH, Dunne C. Clustered multidrug‐resistant Bordetella petrii in adult cystic fibrosis patients in Ireland: case report and review of antimicrobial therapies. JMM Case Rep 2014. [DOI: 10.1099/jmmcr.0.000075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ailise Carleton
- Graduate Entry Medical School and Centre for Interventions in Infection, Inflammation & Immunity (4i), University of Limerick, Limerick, Ireland
| | - Brian Casserly
- Graduate Entry Medical School and Centre for Interventions in Infection, Inflammation & Immunity (4i), University of Limerick, Limerick, Ireland
- University Hospital Limerick, Dooradoyle, Limerick, Ireland
| | - Lorraine Power
- University Hospital Limerick, Dooradoyle, Limerick, Ireland
| | - Barry Linnane
- University Hospital Limerick, Dooradoyle, Limerick, Ireland
- Graduate Entry Medical School and Centre for Interventions in Infection, Inflammation & Immunity (4i), University of Limerick, Limerick, Ireland
| | | | - James Powell
- University Hospital Limerick, Dooradoyle, Limerick, Ireland
| | - Peig Hartnett
- University Hospital Limerick, Dooradoyle, Limerick, Ireland
| | | | - Philip Murphy
- Trinity College Dublin, Clinical Microbiology Department, Dublin, Ireland
| | - Dervla Kenna
- AMRHAI Reference Unit, Reference Microbiology Services, Public Health England, London, United Kingdom
| | - Nuala H. O’connell
- Graduate Entry Medical School and Centre for Interventions in Infection, Inflammation & Immunity (4i), University of Limerick, Limerick, Ireland
- University Hospital Limerick, Dooradoyle, Limerick, Ireland
| | - Colum Dunne
- Graduate Entry Medical School and Centre for Interventions in Infection, Inflammation & Immunity (4i), University of Limerick, Limerick, Ireland
| |
Collapse
|