1
|
Chen HS, van Roon L, Ge Y, van Gils JM, Schoones JW, DeRuiter MC, Zeppenfeld K, Jongbloed MRM. The relevance of the superior cervical ganglion for cardiac autonomic innervation in health and disease: a systematic review. Clin Auton Res 2024; 34:45-77. [PMID: 38393672 PMCID: PMC10944423 DOI: 10.1007/s10286-024-01019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
PURPOSE The heart receives cervical and thoracic sympathetic contributions. Although the stellate ganglion is considered the main contributor to cardiac sympathetic innervation, the superior cervical ganglia (SCG) is used in many experimental studies. The clinical relevance of the SCG to cardiac innervation is controversial. We investigated current morphological and functional evidence as well as controversies on the contribution of the SCG to cardiac innervation. METHODS A systematic literature review was conducted in PubMed, Embase, Web of Science, and COCHRANE Library. Included studies received a full/text review and quality appraisal. RESULTS Seventy-six eligible studies performed between 1976 and 2023 were identified. In all species studied, morphological evidence of direct or indirect SCG contribution to cardiac innervation was found, but its contribution was limited. Morphologically, SCG sidedness may be relevant. There is indirect functional evidence that the SCG contributes to cardiac innervation as shown by its involvement in sympathetic overdrive reactions in cardiac disease states. A direct functional contribution was not found. Functional data on SCG sidedness was largely unavailable. Information about sex differences and pre- and postnatal differences was lacking. CONCLUSION Current literature mainly supports an indirect involvement of the SCG in cardiac innervation, via other structures and plexuses or via sympathetic overdrive in response to cardiac diseases. Morphological evidence of a direct involvement was found, but its contribution seems limited. The relevance of SCG sidedness, sex, and developmental stage in health and disease remains unclear and warrants further exploration.
Collapse
Affiliation(s)
- H Sophia Chen
- Department of Cardiology, Willem Einthoven Center for Cardiac Arrhythmia Research and Management, Leiden University Medical Center, Leiden, The Netherlands
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lieke van Roon
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Yang Ge
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Janine M van Gils
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan W Schoones
- Directorate of Research Policy, Leiden University Medical Center, Leiden, The Netherlands
| | - Marco C DeRuiter
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Katja Zeppenfeld
- Department of Cardiology, Willem Einthoven Center for Cardiac Arrhythmia Research and Management, Leiden University Medical Center, Leiden, The Netherlands
- Department of Cardiology, Center of Congenital Heart Disease Amsterdam Leiden (CAHAL), Leiden University Medical Center, Leiden, The Netherlands
| | - Monique R M Jongbloed
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands.
- Department of Cardiology, Center of Congenital Heart Disease Amsterdam Leiden (CAHAL), Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
2
|
Belanger K, Koppes AN, Koppes RA. Impact of Non-Muscle Cells on Excitation-Contraction Coupling in the Heart and the Importance of In Vitro Models. Adv Biol (Weinh) 2023; 7:e2200117. [PMID: 36216583 DOI: 10.1002/adbi.202200117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/07/2022] [Indexed: 05/13/2023]
Abstract
Excitation-coupling (ECC) is paramount for coordinated contraction to maintain sufficient cardiac output. The study of ECC regulation has primarily been limited to cardiomyocytes (CMs), which conduct voltage waves via calcium fluxes from one cell to another, eliciting contraction of the atria followed by the ventricles. CMs rapidly transmit ionic flux via gap junction proteins, predominantly connexin 43. While the expression of connexin isoforms has been identified in each of the individual cell populations comprising the heart, the formation of gap junctions with nonmuscle cells (i.e., macrophages and Schwann cells) has gained new attention. Evaluating nonmuscle contributions to ECC in vivo or in situ remains difficult and necessitates the development of simple, yet biomimetic in vitro models to better understand and prevent physiological dysfunction. Standard 2D cell culture often consists of homogenous cell populations and lacks the dynamic mechanical environment of native tissue, confounding the phenotypic and proteomic makeup of these highly mechanosensitive cell populations in prolonged culture conditions. This review will highlight the recent developments and the importance of new microphysiological systems to better understand the complex regulation of ECC in cardiac tissue.
Collapse
Affiliation(s)
- Kirstie Belanger
- Department of Bioengineering, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Abigail N Koppes
- Department of Bioengineering, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
- Department of Biology, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Ryan A Koppes
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| |
Collapse
|
3
|
Truter N, Malan L, Essop MF. Glial cell activity in cardiovascular diseases and risk of acute myocardial infarction. Am J Physiol Heart Circ Physiol 2023; 324:H373-H390. [PMID: 36662577 DOI: 10.1152/ajpheart.00332.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Growing evidence indicates that the pathophysiological link between the brain and heart underlies cardiovascular diseases, specifically acute myocardial infarction (AMI). Astrocytes are the most abundant glial cells in the central nervous system and provide support/protection for neurons. Astrocytes and peripheral glial cells are emerging as key modulators of the brain-heart axis in AMI, by affecting sympathetic nervous system activity (centrally and peripherally). This review, therefore, aimed to gain an improved understanding of glial cell activity and AMI risk. This includes discussions on the potential role of contributing factors in AMI risk, i.e., autonomic nervous system dysfunction, glial-neurotrophic and ischemic risk markers [glial cell line-derived neurotrophic factor (GDNF), astrocytic S100 calcium-binding protein B (S100B), silent myocardial ischemia, and cardiac troponin T (cTnT)]. Consideration of glial cell activity and related contributing factors in certain brain-heart disorders, namely, blood-brain barrier dysfunction, myocardial ischemia, and chronic psychological stress, may improve our understanding regarding the pathological role that glial dysfunction can play in the development/onset of AMI. Here, findings demonstrated perturbations in glial cell activity and contributing factors (especially sympathetic activity). Moreover, emerging AMI risk included sympathovagal imbalance, low GDNF levels reflecting prothrombic risk, hypertension, and increased ischemia due to perfusion deficits (indicated by S100B and cTnT levels). Such perturbations impacted blood-barrier function and perfusion that were exacerbated during psychological stress. Thus, greater insights and consideration regarding such biomarkers may help drive future studies investigating brain-heart axis pathologies to gain a deeper understanding of astrocytic glial cell contributions and unlock potential novel therapies for AMI.
Collapse
Affiliation(s)
- Nina Truter
- Centre for Cardio-metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Cape Town, South Africa
| | - Leoné Malan
- Technology Transfer and Innovation-Support Office, North-West University, Potchefstroom, South Africa
| | - M Faadiel Essop
- Centre for Cardio-metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
4
|
Totoń-Żurańska J, Sulicka-Grodzicka J, Seweryn MT, Pitera E, Kapusta P, Konieczny P, Drabik L, Kołton-Wróż M, Chyrchel B, Nowak E, Surdacki A, Grodzicki T, Wołkow PP. MicroRNA composition of plasma extracellular vesicles: a harbinger of late cardiotoxicity of doxorubicin. Mol Med 2022; 28:156. [PMID: 36517751 PMCID: PMC9753431 DOI: 10.1186/s10020-022-00588-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The use of doxorubicin is associated with an increased risk of acute and long-term cardiomyopathy. Despite the constantly growing number of cancer survivors, little is known about the transcriptional mechanisms which progress in the time leading to a severe cardiac outcome. It is also unclear whether long-term transcriptomic alterations related to doxorubicin use are similar to transcriptomic patterns present in patients suffering from other cardiomyopathies. METHODS We have sequenced miRNA from total plasma and extracellular vesicles (EVs) from 66 acute lymphoblastic leukemia (ALL) survivors and 61 healthy controls (254 samples in total). We then analyzed processes regulated by differentially expressed circulating miRNAs and cross-validated results with the data of patients with clinically manifested cardiomyopathies. RESULTS We found that especially miRNAs contained within EVs may be informative in terms of cardiomyopathy development and may regulate pathways related to neurotrophin signaling, transforming growth factor beta (TGFβ) or epidermal growth factor receptors (ErbB). We identified vesicular miR-144-3p and miR-423-3p as the most variable between groups and significantly correlated with echocardiographic parameters and, respectively, for plasma: let-7g-5p and miR-16-2-3p. Moreover, vesicular miR-144-3p correlates with the highest number of echocardiographic parameters and is differentially expressed in the circulation of patients with dilated cardiomyopathy. We also found that distribution of particular miRNAs between of plasma and EVs (proportion between compartments) e.g., miR-184 in ALL, is altered, suggesting changes within secretory and miRNA sorting mechanisms. CONCLUSIONS Our results show that transcriptomic changes resulting from doxorubicin induced myocardial injury are reflected in circulating miRNA levels and precede development of the late onset cardiomyopathy phenotype. Among miRNAs related to cardiac function, we found vesicular miR-144-3p and miR-423-3p, as well as let-7g-5p and miR-16-2-3p contained in the total plasma. Selection of source for such studies (plasma or EVs) is of critical importance, as distribution of some miRNA between plasma and EVs is altered in ALL survivors, in comparison to healthy people, which suggests that doxorubicin-induced changes include miRNA sorting and export to extracellular space.
Collapse
Affiliation(s)
- Justyna Totoń-Żurańska
- grid.5522.00000 0001 2162 9631Center for Medical Genomics OMICRON, Jagiellonian University Medical College, ul. Kopernika 7C, 31-034 Krakow, Poland
| | - Joanna Sulicka-Grodzicka
- grid.5522.00000 0001 2162 9631Department of Rheumatology, Jagiellonian University Medical College, Krakow, Poland
| | - Michał T. Seweryn
- grid.5522.00000 0001 2162 9631Center for Medical Genomics OMICRON, Jagiellonian University Medical College, ul. Kopernika 7C, 31-034 Krakow, Poland ,grid.261331.40000 0001 2285 7943Department of Cancer Biology and Genetics, Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH USA
| | - Ewelina Pitera
- grid.5522.00000 0001 2162 9631Center for Medical Genomics OMICRON, Jagiellonian University Medical College, ul. Kopernika 7C, 31-034 Krakow, Poland
| | - Przemysław Kapusta
- grid.5522.00000 0001 2162 9631Center for Medical Genomics OMICRON, Jagiellonian University Medical College, ul. Kopernika 7C, 31-034 Krakow, Poland
| | - Paweł Konieczny
- grid.5522.00000 0001 2162 9631Center for Medical Genomics OMICRON, Jagiellonian University Medical College, ul. Kopernika 7C, 31-034 Krakow, Poland
| | - Leszek Drabik
- grid.5522.00000 0001 2162 9631Medical College and John Paul II Hospital, Jagiellonian University, Krakow, Poland ,grid.5522.00000 0001 2162 9631Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Maria Kołton-Wróż
- grid.5522.00000 0001 2162 9631Center for Medical Genomics OMICRON, Jagiellonian University Medical College, ul. Kopernika 7C, 31-034 Krakow, Poland
| | - Bernadeta Chyrchel
- grid.5522.00000 0001 2162 9631Second Department of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Ewelina Nowak
- grid.5522.00000 0001 2162 9631Department of Internal Medicine and Gerontology, Jagiellonian University Medical College, Krakow, Poland
| | - Andrzej Surdacki
- grid.5522.00000 0001 2162 9631Second Department of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz Grodzicki
- grid.5522.00000 0001 2162 9631Department of Internal Medicine and Gerontology, Jagiellonian University Medical College, Krakow, Poland
| | - Paweł P. Wołkow
- grid.5522.00000 0001 2162 9631Center for Medical Genomics OMICRON, Jagiellonian University Medical College, ul. Kopernika 7C, 31-034 Krakow, Poland ,grid.5522.00000 0001 2162 9631Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
5
|
Onesto MM, Short CA, Rempel SK, Catlett TS, Gomez TM. Growth Factors as Axon Guidance Molecules: Lessons From in vitro Studies. Front Neurosci 2021; 15:678454. [PMID: 34093120 PMCID: PMC8175860 DOI: 10.3389/fnins.2021.678454] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Growth cones at the tips of extending axons navigate through developing organisms by probing extracellular cues, which guide them through intermediate steps and onto final synaptic target sites. Widespread focus on a few guidance cue families has historically overshadowed potentially crucial roles of less well-studied growth factors in axon guidance. In fact, recent evidence suggests that a variety of growth factors have the ability to guide axons, affecting the targeting and morphogenesis of growth cones in vitro. This review summarizes in vitro experiments identifying responses and signaling mechanisms underlying axon morphogenesis caused by underappreciated growth factors.
Collapse
Affiliation(s)
| | | | | | | | - Timothy M. Gomez
- Neuroscience Training Program and Cell and Molecular Biology Program, Department of Neuroscience, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
6
|
Kannan S, Lee M, Muthusamy S, Blasiak A, Sriram G, Cao T. Peripheral sensory neurons promote angiogenesis in neurovascular models derived from hESCs. Stem Cell Res 2021; 52:102231. [PMID: 33601097 DOI: 10.1016/j.scr.2021.102231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/10/2021] [Accepted: 02/03/2021] [Indexed: 01/06/2023] Open
Abstract
In the adult tissues, blood vessels traverse the body with neurons side by side; and share common signaling molecules. Developmental studies on animal models have shown that peripheral sensory neurons (PSNs) secrete angiogenic factors and endothelial cells (ECs) secrete neurotrophic factors which contribute to their coexistence, thereby forming the peripheral neurovascular (PNV) unit. Despite the large number of studies showing that innervation and vascularization complement each other, the interaction between human PSNs and ECs is still largely unknown. To study this interaction and to evaluate if PSNs affect angiogenesis, we derived both PSNs and ECs from human embryonic stem cells (hESCs) and developed a co-culture system. Seeding the two cell types together showed that PSNs induced endothelial morphogenesis with formation of vessel-like structures (VLSs). The PSN precursors, neural crest stem cells also induced VLS formation in the co-culture system; however, to a lesser extent. This sheds new light on the in vitro angiogenic potential of these cell types. PSNs derived from hESCs are powerful tools for studying development and disease as human PSNs are inaccessible for in vitro assays. Our novel approach, with optimized media condition allowed for integrating hESC-derived PSNs with hESC-derived ECs in three-dimensional (3D) collagen gel for creating a completely humanised PNV model. This preliminary model showed that innervation improves the development of vascularized channels in vitro, and provides insight to the development of innervated 3D models in future.
Collapse
Affiliation(s)
- Sathya Kannan
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Marcus Lee
- Faculty of Dentistry, National University of Singapore, Singapore
| | | | - Agata Blasiak
- The N.1 Institute for Health, National University of Singapore, Singapore
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore; NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore.
| | - Tong Cao
- Faculty of Dentistry, National University of Singapore, Singapore.
| |
Collapse
|
7
|
Circulating neurotrophins and hemostatic risk factors of atherothrombotic cardiovascular disease at baseline and during sympathetic challenge: the SABPA study. Sci Rep 2021; 11:2297. [PMID: 33504912 PMCID: PMC7841151 DOI: 10.1038/s41598-021-81946-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 01/14/2021] [Indexed: 01/15/2023] Open
Abstract
Sympathetic activation may trigger acute coronary syndromes. We examined the relation between circulating neurotrophic factors and hemostatic risk factors of atherothrombotic cardiovascular disease at baseline and in response to acute mental stress to establish a brain-heart link. In 409 black and white South Africans, brain-derived neurotrophic factor (BDNF) and fibrinolytic measures were assessed at baseline. Glial cell-derived neurotrophic factor (GDNF), S100 calcium-binding protein (S100B), von Willebrand factor (VWF), fibrinogen and D-dimer were assessed at baseline and 10 min after the Stroop test. Neurotrophins were regressed on hemostatic measures adjusting for demographics, comorbidities, cardiometabolic factors and health behaviors. Higher baseline BDNF was associated with greater stress-induced increase in fibrinogen (p = 0.003) and lower D-dimer increase (p = 0.016). Higher baseline S100B was significantly associated with higher baseline VWF (p = 0.031) and lower fibrinogen increase (p = 0.048). Lower baseline GDNF was associated with higher baseline VWF (p = 0.035) but lower VWF increase (p = 0.001). Greater GDNF (p = 0.006) and S100B (p = 0.042) increases were associated with lower VWF increase. All associations showed small-to-moderate effect sizes. Neurotrophins and fibrinolytic factors showed no significant associations. The findings support the existence of a peripheral neurothrophin-hemostasis interaction of small-to-moderate clinical relevance. The implications for atherothrombotic cardiovascular disease need further exploration.
Collapse
|
8
|
Pius-Sadowska E, Machaliński B. Pleiotropic activity of nerve growth factor in regulating cardiac functions and counteracting pathogenesis. ESC Heart Fail 2021; 8:974-987. [PMID: 33465292 PMCID: PMC8006610 DOI: 10.1002/ehf2.13138] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 12/30/2022] Open
Abstract
Cardiac innervation density generally reflects the levels of nerve growth factor (NGF) produced by the heart—changes in NGF expression within the heart and vasculature contribute to neuronal remodelling (e.g. sympathetic hyperinnervation or denervation). Its synthesis and release are altered under different pathological conditions. Although NGF is well known for its survival effects on neurons, it is clear that these effects are more wide ranging. Recent studies reported both in vitro and in vivo evidence for beneficial actions of NGF on cardiomyocytes in normal and pathological hearts, including prosurvival and antiapoptotic effects. NGF also plays an important role in the crosstalk between the nervous and cardiovascular systems. It was the first neurotrophin to be implicated in postnatal angiogenesis and vasculogenesis by autocrine and paracrine mechanisms. In connection with these unique cardiovascular properties of NGF, we have provided comprehensive insight into its function and potential effect of NGF underlying heart sustainable/failure conditions. This review aims to summarize the recent data on the effects of NGF on various cardiovascular neuronal and non‐neuronal functions. Understanding these mechanisms with respect to the diversity of NGF functions may be crucial for developing novel therapeutic strategies, including NGF action mechanism‐guided therapies.
Collapse
Affiliation(s)
- Ewa Pius-Sadowska
- Department of General Pathology, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin, 70111, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin, 70111, Poland
| |
Collapse
|
9
|
Soucy JR, Bindas AJ, Brady R, Torregrosa T, Denoncourt CM, Hosic S, Dai G, Koppes AN, Koppes RA. Reconfigurable Microphysiological Systems for Modeling Innervation and Multitissue Interactions. ADVANCED BIOSYSTEMS 2020; 4:e2000133. [PMID: 32755004 PMCID: PMC8136149 DOI: 10.1002/adbi.202000133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/05/2020] [Indexed: 12/11/2022]
Abstract
Tissue-engineered models continue to experience challenges in delivering structural specificity, nutrient delivery, and heterogenous cellular components, especially for organ-systems that require functional inputs/outputs and have high metabolic requirements, such as the heart. While soft lithography has provided a means to recapitulate complex architectures in the dish, it is plagued with a number of prohibitive shortcomings. Here, concepts from microfluidics, tissue engineering, and layer-by-layer fabrication are applied to develop reconfigurable, inexpensive microphysiological systems that facilitate discrete, 3D cell compartmentalization, and improved nutrient transport. This fabrication technique includes the use of the meniscus pinning effect, photocrosslinkable hydrogels, and a commercially available laser engraver to cut flow paths. The approach is low cost and robust in capabilities to design complex, multilayered systems with the inclusion of instrumentation for real-time manipulation or measures of cell function. In a demonstration of the technology, the hierarchal 3D microenvironment of the cardiac sympathetic nervous system is replicated. Beat rate and neurite ingrowth are assessed on-chip and quantification demonstrates that sympathetic-cardiac coculture increases spontaneous beat rate, while drug-induced increases in beating lead to greater sympathetic innervation. Importantly, these methods may be applied to other organ-systems and have promise for future applications in drug screening, discovery, and personal medicine.
Collapse
Affiliation(s)
- Jonathan R Soucy
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Adam J Bindas
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Ryan Brady
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Tess Torregrosa
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Cailey M Denoncourt
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Sanjin Hosic
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Guohao Dai
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Abigail N Koppes
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Ryan A Koppes
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
10
|
Torregrosa T, Webster S, Aghaizu C, Soucy JR, Bertucci C, Plant L, Koppes AN, Koppes RA. Cryopreservation and functional analysis of cardiac autonomic neurons. J Neurosci Methods 2020; 341:108724. [PMID: 32423864 DOI: 10.1016/j.jneumeth.2020.108724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 02/22/2020] [Accepted: 04/03/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Generally, primary neurons are isolated and seeded within hours of isolation, but cryopreservation, documented for a small number of central and peripheral neuronal subtypes, can contribute to improved utility and reduce the cost of developing new in vitro models. The preservation of cells of the autonomic nervous system (ANS), specifically sympathetic and parasympathetic neurons, has not been explored. NEW METHOD In this work, we establish a method for preserving cardiac ANS neurons as well as evaluating the phenotypical changes of dissociated superior cervical ganglia (sympathetic neurons) and intracardiac ganglia (parasympathetic neurons) for up to a month of storage in liquid nitrogen. RESULTS Neuron populations maintained a viability of at least 35%, and the extent of neurite outgrowth was not different from fresh cells, regardless of the storage duration studied. Expression of tyrosine hydroxylase and choline acetyl transferase were maintained over one month of cryopreservation in sympathetic and parasympathetic populations, respectively. Electrophysiological recordings for both neuron types indicate sustained characteristic resting potentials, excitability, and action potentials after more than one month in liquid nitrogen. COMPARISON WITH EXISTING METHODS Primary cultures of the autonomic nervous system have been previously established for in vitro investigations. This is the first example of preserving primary ANS neuron cultures for long-term on-demand use. CONCLUSIONS This report describes a readily implemented method for cryopreserving sympathetic and parasympathetic neurons that does not alter neither morphological nor electrophysiological characteristics. This methodology expands the utility of ANS cultures for use in morphological and functional assays.
Collapse
Affiliation(s)
- Tess Torregrosa
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, United States
| | - Sophie Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, United States
| | - Chiamaka Aghaizu
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, United States
| | - Jonathan R Soucy
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, United States
| | - Christopher Bertucci
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, United States
| | - Leigh Plant
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, United States
| | - Abigail N Koppes
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, United States; Department of Biology, Northeastern University, Boston, MA, 02115, United States
| | - Ryan A Koppes
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, United States.
| |
Collapse
|
11
|
Das S, Gordián-Vélez WJ, Ledebur HC, Mourkioti F, Rompolas P, Chen HI, Serruya MD, Cullen DK. Innervation: the missing link for biofabricated tissues and organs. NPJ Regen Med 2020; 5:11. [PMID: 32550009 PMCID: PMC7275031 DOI: 10.1038/s41536-020-0096-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Innervation plays a pivotal role as a driver of tissue and organ development as well as a means for their functional control and modulation. Therefore, innervation should be carefully considered throughout the process of biofabrication of engineered tissues and organs. Unfortunately, innervation has generally been overlooked in most non-neural tissue engineering applications, in part due to the intrinsic complexity of building organs containing heterogeneous native cell types and structures. To achieve proper innervation of engineered tissues and organs, specific host axon populations typically need to be precisely driven to appropriate location(s) within the construct, often over long distances. As such, neural tissue engineering and/or axon guidance strategies should be a necessary adjunct to most organogenesis endeavors across multiple tissue and organ systems. To address this challenge, our team is actively building axon-based "living scaffolds" that may physically wire in during organ development in bioreactors and/or serve as a substrate to effectively drive targeted long-distance growth and integration of host axons after implantation. This article reviews the neuroanatomy and the role of innervation in the functional regulation of cardiac, skeletal, and smooth muscle tissue and highlights potential strategies to promote innervation of biofabricated engineered muscles, as well as the use of "living scaffolds" in this endeavor for both in vitro and in vivo applications. We assert that innervation should be included as a necessary component for tissue and organ biofabrication, and that strategies to orchestrate host axonal integration are advantageous to ensure proper function, tolerance, assimilation, and bio-regulation with the recipient post-implant.
Collapse
Affiliation(s)
- Suradip Das
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
| | - Wisberty J. Gordián-Vélez
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA
| | | | - Foteini Mourkioti
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Panteleimon Rompolas
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - H. Isaac Chen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
| | - Mijail D. Serruya
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA USA
| | - D. Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA
- Axonova Medical, LLC., Philadelphia, PA USA
| |
Collapse
|
12
|
Novel Evidence of the Increase in Angiogenic Factor Plasma Levels after Lineage-Negative Stem/Progenitor Cell Intracoronary Infusion in Patients with Acute Myocardial Infarction. Int J Mol Sci 2019; 20:ijms20133330. [PMID: 31284593 PMCID: PMC6650859 DOI: 10.3390/ijms20133330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 06/19/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
Cell therapy raises hope to reduce the harmful effects of acute myocardial ischemia. Stem and progenitor cells (SPCs) may be a valuable source of trophic factors. In this study, we assessed the plasma levels of selected trophic factors in patients undergoing application of autologous bone marrow (BM)-derived, lineage-negative (Lin-) stem/progenitor cells into the coronary artery in the acute phase of myocardial infarction. The study group consisted of 15 patients with acute myocardial infarction (AMI) who underwent percutaneous revascularization and, afterwards, Lin- stem/progenitor cell administration into the infarct-related artery. The control group consisted of 19 patients. BM Lin- cells were isolated using immunomagnetic methods. Peripheral blood was collected on day 0, 2, 4, and 7 and after the first and third month to assess the concentration of selected trophic factors using multiplex fluorescent bead-based immunoassays. We found in the Lin- group that several angiogenic trophic factors (vascular endothelial growth factor, Angiopoietin-1, basic fibroblast growth factor, platelet-derived growth factor-aa) plasma level significantly increased to the 4th day after myocardial infarction. In parallel, we noticed a tendency where the plasma levels of the brain-derived neurotrophic factor were increased in the Lin- group. The obtained results suggest that the administered SPCs may be a valuable source of angiogenic trophic factors for damaged myocardium, although this observation requires further in-depth studies.
Collapse
|
13
|
Tomek J, Hao G, Tomková M, Lewis A, Carr C, Paterson DJ, Rodriguez B, Bub G, Herring N. β-Adrenergic Receptor Stimulation and Alternans in the Border Zone of a Healed Infarct: An ex vivo Study and Computational Investigation of Arrhythmogenesis. Front Physiol 2019; 10:350. [PMID: 30984029 PMCID: PMC6450465 DOI: 10.3389/fphys.2019.00350] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/14/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Following myocardial infarction (MI), the myocardium is prone to calcium-driven alternans, which typically precedes ventricular tachycardia and fibrillation. MI is also associated with remodeling of the sympathetic innervation in the infarct border zone, although how this influences arrhythmogenesis is controversial. We hypothesize that the border zone is most vulnerable to alternans, that β-adrenergic receptor stimulation can suppresses this, and investigate the consequences in terms of arrhythmogenic mechanisms. Methods and Results: Anterior MI was induced in Sprague-Dawley rats (n = 8) and allowed to heal over 2 months. This resulted in scar formation, significant (p < 0.05) dilation of the left ventricle, and reduction in ejection fraction compared to sham operated rats (n = 4) on 7 T cardiac magnetic resonance imaging. Dual voltage/calcium optical mapping of post-MI Langendorff perfused hearts (using RH-237 and Rhod2) demonstrated that the border zone was significantly more prone to alternans than the surrounding myocardium at longer cycle lengths, predisposing to spatially heterogeneous alternans. β-Adrenergic receptor stimulation with norepinephrine (1 μmol/L) attenuated alternans by 60 [52–65]% [interquartile range] and this was reversed with metoprolol (10 μmol/L, p = 0.008). These results could be reproduced by computer modeling of the border zone based on our knowledge of β-adrenergic receptor signaling pathways and their influence on intracellular calcium handling and ion channels. Simulations also demonstrated that β-adrenergic receptor stimulation in this specific region reduced the formation of conduction block and the probability of premature ventricular activation propagation. Conclusion: While high levels of overall cardiac sympathetic drive are a negative prognostic indicator of mortality following MI and during heart failure, β-adrenergic receptor stimulation in the infarct border zone reduced spatially heterogeneous alternans, and prevented conduction block and propagation of extrasystoles. This may help explain recent clinical imaging studies using meta-iodobenzylguanidine (MIBG) and 11C-meta-hydroxyephedrine positron emission tomography (PET) which demonstrate that border zone denervation is strongly associated with a high risk of future arrhythmia.
Collapse
Affiliation(s)
- Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Guoliang Hao
- Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Markéta Tomková
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew Lewis
- Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Carolyn Carr
- Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - David J Paterson
- Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Gil Bub
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Neil Herring
- Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Saito Y, Nakamura K, Yoshida M, Sugiyama H, Takano M, Nagase S, Morita H, Kusano KF, Ito H. HCN4-Overexpressing Mouse Embryonic Stem Cell-Derived Cardiomyocytes Generate a New Rapid Rhythm in Rats with Bradycardia. Int Heart J 2018; 59:601-606. [PMID: 29628472 DOI: 10.1536/ihj.17-241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A biological pacemaker is expected to solve the persisting problems of an artificial cardiac pacemaker including short battery life, lead breaks, infection, and electromagnetic interference. We previously reported HCN4 overexpression enhances pacemaking ability of mouse embryonic stem cell-derived cardiomyocytes (mESC-CMs) in vitro. However, the effect of these cells on bradycardia in vivo has remained unclear. Therefore, we transplanted HCN4-overexpressing mESC-CMs into bradycardia model animals and investigated whether they could function as a biological pacemaker. The rabbit Hcn4 gene was transfected into mouse embryonic stem cells and induced HCN4-overexpressing mESC-CMs. Non-cardiomyocytes were removed under serum/glucose-free and lactate-supplemented conditions. Cardiac balls containing 5 × 103 mESC-CMs were made by using the hanging drop method. One hundred cardiac balls were injected into the left ventricular free wall of complete atrioventricular block (CAVB) model rats. Heart beats were evaluated using an implantable telemetry system 7 to 30 days after cell transplantation. The result showed that ectopic ventricular beats that were faster than the intrinsic escape rhythm were often observed in CAVB model rats transplanted with HCN4-overexpressing mESC-CMs. On the other hand, the rats transplanted with non-overexpressing mESC-CMs showed sporadic single premature ventricular contraction but not sustained ectopic ventricular rhythms. These results indicated that HCN4-overexpressing mESC-CMs produce rapid ectopic ventricular rhythms as a biological pacemaker.
Collapse
Affiliation(s)
- Yukihiro Saito
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| | - Kazufumi Nakamura
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| | - Masashi Yoshida
- Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| | - Hiroki Sugiyama
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| | - Makoto Takano
- Department of Physiology, Kurume University School of Medicine
| | - Satoshi Nagase
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Hiroshi Morita
- Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| | - Kengo F Kusano
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences.,Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Hiroshi Ito
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| |
Collapse
|
15
|
Sakai K, Shimba K, Ishizuka K, Yang Z, Oiwa K, Takeuchi A, Kotani K, Jimbo Y. Functional innervation of human induced pluripotent stem cell-derived cardiomyocytes by co-culture with sympathetic neurons developed using a microtunnel technique. Biochem Biophys Res Commun 2017; 494:138-143. [PMID: 29042197 DOI: 10.1016/j.bbrc.2017.10.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/13/2017] [Indexed: 01/05/2023]
Abstract
Microelectrode array (MEA) based-drug screening with human induced pluripotent stem cell-derived cardiomyocytes (hiPSCM) is a potent pre-clinical assay for efficiently assessing proarrhythmic risks in new candidates. Furthermore, predicting sympathetic modulation of the proarrhythmic side-effects is an important issue. Although we have previously developed an MEA-based co-culture system of rat primary cardiomyocyte and sympathetic neurons (rSNs), it is unclear if this co-culture approach is applicable to develop and investigate sympathetic innervation of hiPSCMs. In this study, we developed a co-culture of rSNs and hiPSCMs on MEA substrate, and assessed functional connections. The inter-beat interval of hiPSCM was significantly shortened by stimulation in SNs depending on frequency and pulse number, indicating functional connections between rSNs and hiPSCM and the dependency of chronotropic effects on rSN activity pattern. These results suggest that our co-culture approach can evaluate sympathetic effects on hiPSCMs and would be a useful tool for assessing sympathetic modulated-cardiotoxicity in human cardiac tissue.
Collapse
Affiliation(s)
- Koji Sakai
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Japan Society for the Promotion of Science (JSPS), Tokyo, Japan.
| | - Kenta Shimba
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Japan Society for the Promotion of Science (JSPS), Tokyo, Japan; School of Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 Japan
| | - Kazuma Ishizuka
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Zhuonan Yang
- Zanvyl Krieger School of Arts & Sciences Undergraduate Program in Neuroscience, Johns Hopkins University, 434 3400 N. Charles Street, Baltimore, MD 21218, United States
| | - Kosuke Oiwa
- College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5258, Japan
| | - Akimasa Takeuchi
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kiyoshi Kotani
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yasuhiko Jimbo
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
16
|
Gowran A, Rasponi M, Visone R, Nigro P, Perrucci GL, Righetti S, Zanobini M, Pompilio G. Young at Heart: Pioneering Approaches to Model Nonischaemic Cardiomyopathy with Induced Pluripotent Stem Cells. Stem Cells Int 2016; 2016:4287158. [PMID: 27110250 PMCID: PMC4823509 DOI: 10.1155/2016/4287158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/09/2016] [Indexed: 01/01/2023] Open
Abstract
A mere 9 years have passed since the revolutionary report describing the derivation of induced pluripotent stem cells from human fibroblasts and the first in-patient translational use of cells obtained from these stem cells has already been achieved. From the perspectives of clinicians and researchers alike, the promise of induced pluripotent stem cells is alluring if somewhat beguiling. It is now evident that this technology is nascent and many areas for refinement have been identified and need to be considered before induced pluripotent stem cells can be routinely used to stratify, treat and cure patients, and to faithfully model diseases for drug screening purposes. This review specifically addresses the pioneering approaches to improve induced pluripotent stem cell based models of nonischaemic cardiomyopathy.
Collapse
Affiliation(s)
- Aoife Gowran
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Building No. 21, 20133 Milan, Italy
| | - Roberta Visone
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Building No. 21, 20133 Milan, Italy
| | - Patrizia Nigro
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
| | - Gianluca L. Perrucci
- Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Stefano Righetti
- Cardiology Unit, San Gerardo Hospital, Via Giambattista Pergolesi 33, 20052 Monza, Italy
| | - Marco Zanobini
- Department of Cardiac Surgery, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
- Department of Cardiac Surgery, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
| |
Collapse
|
17
|
Bang C, Antoniades C, Antonopoulos AS, Eriksson U, Franssen C, Hamdani N, Lehmann L, Moessinger C, Mongillo M, Muhl L, Speer T, Thum T. Intercellular communication lessons in heart failure. Eur J Heart Fail 2015; 17:1091-103. [PMID: 26398116 DOI: 10.1002/ejhf.399] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/30/2015] [Accepted: 04/08/2015] [Indexed: 01/02/2023] Open
Abstract
Cell-cell or inter-organ communication allows the exchange of information and messages, which is essential for the coordination of cell/organ functions and the maintenance of homeostasis. It has become evident that dynamic interactions of different cell types play a major role in the heart, in particular during the progression of heart failure, a leading cause of mortality worldwide. Heart failure is associated with compensatory structural and functional changes mostly in cardiomyocytes and cardiac fibroblasts, which finally lead to cardiomyocyte hypertrophy and fibrosis. Intercellular communication within the heart is mediated mostly via direct cell-cell interaction or the release of paracrine signalling mediators such as cytokines and chemokines. However, recent studies have focused on the exchange of genetic information via the packaging into vesicles as well as the crosstalk of lipids and other paracrine molecules within the heart and distant organs, such as kidney and adipose tissue, which might all contribute to the pathogenesis of heart failure. In this review, we discuss emerging communication networks and respective underlying mechanisms which could be involved in cardiovascular disease conditions and further emphasize promising therapeutic targets for drug development.
Collapse
Affiliation(s)
- Claudia Bang
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Hannover, Germany
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK
| | - Alexios S Antonopoulos
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK
| | - Ulf Eriksson
- Department of Medical Biochemistry and Biophysics, Tissue Biology Group, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Constantijn Franssen
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, the Netherlands
| | - Nazha Hamdani
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, the Netherlands.,Department of Cardiovascular Physiology, Ruhr University Bochum, Germany
| | - Lorenz Lehmann
- Department of Cardiology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Christine Moessinger
- Department of Medical Biochemistry and Biophysics, Tissue Biology Group, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Marco Mongillo
- Venetian Institute of Molecular Medicine and Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lars Muhl
- Department of Medical Biochemistry and Biophysics, Tissue Biology Group, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Thimoteus Speer
- Department of Internal Medicine IV, Nephrology and Hypertension, Saarland University Hospital, Homburg/Saar, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Hannover, Germany.,Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany.,National Heart and Lung Institute, Imperial College London, UK
| |
Collapse
|
18
|
Taguchi YH, Iwadate M, Umeyama H. Principal component analysis-based unsupervised feature extraction applied to in silico drug discovery for posttraumatic stress disorder-mediated heart disease. BMC Bioinformatics 2015; 16:139. [PMID: 25925353 PMCID: PMC4448281 DOI: 10.1186/s12859-015-0574-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 04/14/2015] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Feature extraction (FE) is difficult, particularly if there are more features than samples, as small sample numbers often result in biased outcomes or overfitting. Furthermore, multiple sample classes often complicate FE because evaluating performance, which is usual in supervised FE, is generally harder than the two-class problem. Developing sample classification independent unsupervised methods would solve many of these problems. RESULTS Two principal component analysis (PCA)-based FE, specifically, variational Bayes PCA (VBPCA) was extended to perform unsupervised FE, and together with conventional PCA (CPCA)-based unsupervised FE, were tested as sample classification independent unsupervised FE methods. VBPCA- and CPCA-based unsupervised FE both performed well when applied to simulated data, and a posttraumatic stress disorder (PTSD)-mediated heart disease data set that had multiple categorical class observations in mRNA/microRNA expression of stressed mouse heart. A critical set of PTSD miRNAs/mRNAs were identified that show aberrant expression between treatment and control samples, and significant, negative correlation with one another. Moreover, greater stability and biological feasibility than conventional supervised FE was also demonstrated. Based on the results obtained, in silico drug discovery was performed as translational validation of the methods. CONCLUSIONS Our two proposed unsupervised FE methods (CPCA- and VBPCA-based) worked well on simulated data, and outperformed two conventional supervised FE methods on a real data set. Thus, these two methods have suggested equivalence for FE on categorical multiclass data sets, with potential translational utility for in silico drug discovery.
Collapse
Affiliation(s)
- Y-h Taguchi
- Department of Physics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan.
| | - Mitsuo Iwadate
- Department of Biological Science, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan.
| | - Hideaki Umeyama
- Department of Biological Science, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan.
| |
Collapse
|
19
|
Backes C, Rühle F, Stoll M, Haas J, Frese K, Franke A, Lieb W, Wichmann HE, Weis T, Kloos W, Lenhof HP, Meese E, Katus H, Meder B, Keller A. Systematic permutation testing in GWAS pathway analyses: identification of genetic networks in dilated cardiomyopathy and ulcerative colitis. BMC Genomics 2014; 15:622. [PMID: 25052024 PMCID: PMC4223581 DOI: 10.1186/1471-2164-15-622] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/17/2014] [Indexed: 12/20/2022] Open
Abstract
Background Genome wide association studies (GWAS) are applied to identify genetic loci, which are associated with complex traits and human diseases. Analogous to the evolution of gene expression analyses, pathway analyses have emerged as important tools to uncover functional networks of genome-wide association data. Usually, pathway analyses combine statistical methods with a priori available biological knowledge. To determine significance thresholds for associated pathways, correction for multiple testing and over-representation permutation testing is applied. Results We systematically investigated the impact of three different permutation test approaches for over-representation analysis to detect false positive pathway candidates and evaluate them on genome-wide association data of Dilated Cardiomyopathy (DCM) and Ulcerative Colitis (UC). Our results provide evidence that the gold standard - permuting the case–control status – effectively improves specificity of GWAS pathway analysis. Although permutation of SNPs does not maintain linkage disequilibrium (LD), these permutations represent an alternative for GWAS data when case–control permutations are not possible. Gene permutations, however, did not add significantly to the specificity. Finally, we provide estimates on the required number of permutations for the investigated approaches. Conclusions To discover potential false positive functional pathway candidates and to support the results from standard statistical tests such as the Hypergeometric test, permutation tests of case control data should be carried out. The most reasonable alternative was case–control permutation, if this is not possible, SNP permutations may be carried out. Our study also demonstrates that significance values converge rapidly with an increasing number of permutations. By applying the described statistical framework we were able to discover axon guidance, focal adhesion and calcium signaling as important DCM-related pathways and Intestinal immune network for IgA production as most significant UC pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
20
|
Sympathetic innervation induced in engrafted engineered cardiomyocyte sheets by glial cell line derived neurotrophic factor in vivo. BIOMED RESEARCH INTERNATIONAL 2013; 2013:532720. [PMID: 24066291 PMCID: PMC3771253 DOI: 10.1155/2013/532720] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 07/18/2013] [Indexed: 11/17/2022]
Abstract
The aim of myocardial tissue engineering is to repair or regenerate damaged myocardium with engineered cardiac tissue. However, this strategy has been hampered by lack of functional integration of grafts with native myocardium. Autonomic innervation may be crucial for grafts to function properly with host myocardium. In this study, we explored the feasibility of in vivo induction of autonomic innervation to engineered myocardial tissue using genetic modulation by adenovirus encoding glial cell line derived neurotrophic factor (GDNF). GFP-transgene (control group) or GDNF overexpressing (GDNF group) engineered cardiomyocyte sheets were transplanted on cryoinjured hearts in rats. Nerve fibers in the grafts were examined by immunohistochemistry at 1, 2, and 4 weeks postoperatively. Growth associated protein-43 positive growing nerves and tyrosine hydroxylase positive sympathetic nerves were first detected in the grafts at 2 weeks postoperatively in control group and 1 week in GDNF group. The densities of growing nerve and sympathetic nerve in grafts were significantly increased in GDNF group. No choline acetyltransferase immunopositive parasympathetic nerves were observed in grafts. In conclusion, sympathetic innervation could be effectively induced into engrafted engineered cardiomyocyte sheets using GDNF.
Collapse
|