1
|
Li S, Liu S, Yuan D, Liu R, Hu L, Zhu X. Discovery of quinazoline-benzothiazole derivatives as novel potent protease-activated receptor 4 antagonists with improved pharmacokinetics and low bleeding liability. Eur J Med Chem 2024; 280:116980. [PMID: 39442337 DOI: 10.1016/j.ejmech.2024.116980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Protease-activated receptor 4 (PAR4) plays a critical role in the development of pathological thrombosis, and targeting PAR4 is considered a promising strategy for improving antiplatelet therapies. Here, we reported the design of a series of quinazoline-benzothiazole-based PAR4 antagonists using a scaffold-hopping strategy. Systematic structure-activity relationship exploration leads to the discovery of compounds 20f and 20g, which displayed optimal activity (h. PAR4-AP PRP IC50 = 6.39 nM and 3.45 nM, respectively) on human platelets and high selectivity for PAR4. Both of them also showed excellent metabolic stability in human liver microsomes (compound 20f, T1/2 = 249.83 min, compound 20g, T1/2 = 282.60 min) and favourable PK profiles in rats (compound 20f, T1/2 = 5.16 h, F = 50.5 %, compound 20g, T1/2 = 7.05 h, F = 27.3 %). More importantly, neither compound prolonged the bleeding time in the mouse tail-cutting model (10 mg/kg, p.o.). These results suggest that these compounds have great potential for use in antiplatelet therapies.
Collapse
Affiliation(s)
- Shanshan Li
- School of Engineering China Pharmaceutical University, Nanjing, 210009, PR China
| | - Shangde Liu
- Faculty of Medicine, Dalian University of Technology, Dalian, 116081, PR China
| | - Duo Yuan
- School of Engineering China Pharmaceutical University, Nanjing, 210009, PR China
| | - Renjie Liu
- School of Engineering China Pharmaceutical University, Nanjing, 210009, PR China
| | - Lifang Hu
- School of Engineering China Pharmaceutical University, Nanjing, 210009, PR China
| | - Xiong Zhu
- School of Engineering China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
2
|
Smith S, Cassada JB, Von Bredow L, Erreger K, Webb EM, Trombley TA, Kalbfleisch JJ, Bender BJ, Zagol-Ikapitte I, Kramlinger VM, Bouchard JL, Mitchell SG, Tretbar M, Shoichet BK, Lindsley CW, Meiler J, Hamm HE. Discovery of Protease-Activated Receptor 4 (PAR4)-Tethered Ligand Antagonists Using Ultralarge Virtual Screening. ACS Pharmacol Transl Sci 2024; 7:1086-1100. [PMID: 38633591 PMCID: PMC11020070 DOI: 10.1021/acsptsci.3c00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 04/19/2024]
Abstract
Here, we demonstrate a structure-based small molecule virtual screening and lead optimization pipeline using a homology model of a difficult-to-drug G-protein-coupled receptor (GPCR) target. Protease-activated receptor 4 (PAR4) is activated by thrombin cleavage, revealing a tethered ligand that activates the receptor, making PAR4 a challenging target. A virtual screen of a make-on-demand chemical library yielded a one-hit compound. From the single-hit compound, we developed a novel series of PAR4 antagonists. Subsequent lead optimization via simultaneous virtual library searches and structure-based rational design efforts led to potent antagonists of thrombin-induced activation. Interestingly, this series of antagonists was active against PAR4 activation by the native protease thrombin cleavage but not the synthetic PAR4 agonist peptide AYPGKF.
Collapse
Affiliation(s)
- Shannon
T. Smith
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jackson B. Cassada
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Lukas Von Bredow
- Warren
Center for Neuroscience Drug Discovery, Nashville, Tennessee 37067, United States
- Institute
for Drug Discovery, Leipzig University Medical
School, Leipzig 04109, Germany
| | - Kevin Erreger
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Emma M. Webb
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Trevor A. Trombley
- Warren
Center for Neuroscience Drug Discovery, Nashville, Tennessee 37067, United States
| | - Jacob J. Kalbfleisch
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Warren
Center for Neuroscience Drug Discovery, Nashville, Tennessee 37067, United States
| | - Brian J. Bender
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Irene Zagol-Ikapitte
- Warren
Center for Neuroscience Drug Discovery, Nashville, Tennessee 37067, United States
| | - Valerie M. Kramlinger
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Warren
Center for Neuroscience Drug Discovery, Nashville, Tennessee 37067, United States
| | - Jacob L. Bouchard
- Warren
Center for Neuroscience Drug Discovery, Nashville, Tennessee 37067, United States
| | - Sidnee G. Mitchell
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Maik Tretbar
- Institute
for Drug Discovery, Leipzig University Medical
School, Leipzig 04109, Germany
| | - Brian K. Shoichet
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Craig W. Lindsley
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Warren
Center for Neuroscience Drug Discovery, Nashville, Tennessee 37067, United States
| | - Jens Meiler
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Institute
for Drug Discovery, Leipzig University Medical
School, Leipzig 04109, Germany
| | - Heidi E. Hamm
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
3
|
Chen P, Chen C, Zheng Y, Chen F, Liu Z, Ren S, Song H, Liu T, Lu Z, Sun H, Kong Y, Yuan H. Discovery of 2,3-Dihydro[1,4]dioxino[2,3- g]benzofuran Derivatives as Protease Activated Receptor 4 (PAR4) Antagonists with Potent Antiplatelet Aggregation Activity and Low Bleeding Tendency. J Med Chem 2024; 67:5502-5537. [PMID: 38552183 DOI: 10.1021/acs.jmedchem.3c02099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Patients with arterial embolic disease have benefited greatly from antiplatelet therapy. However, hemorrhage risk of antiplatelet agents cannot be ignored. Herein, we describe the discovery of 2,3-dihydro[1,4]dioxino[2,3-g]benzofuran compounds as novel PAR4 antagonists. Notably, the isomers 36 and 37 with the chemotype of phenoxyl methylene substituted on the 2,3-dihydro-1,4-dioxine ring exhibited potent in vitro antiplatelet activity (IC50 = 26.13 nM for 36 and 14.26 nM for 37) and significantly improved metabolic stability in human liver microsomes (T1/2 = 97.6 min for 36 and 11.1 min for BMS-986120). 36 also displayed good oral PK profiles (mice: T1/2 = 7.32 h and F = 45.11%). Both of them showed overall potent ex vivo antiplatelet activity at concentrations of 6 and 12 mg/kg, with no impact on the coagulation system and low bleeding liability. Our work will facilitate development of novel PAR4 antagonists as a safer therapeutic option for arterial embolism.
Collapse
Affiliation(s)
- Panpan Chen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Cai Chen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yizheng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Fangjun Chen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhaojun Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Shenhong Ren
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Hangyu Song
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Tongdan Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Zhipeng Lu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Yi Kong
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Haoliang Yuan
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| |
Collapse
|
4
|
Fernández DI, Troitiño S, Sobota V, Tullemans BME, Zou J, van den Hurk H, García Á, Honarnejad S, Kuijpers MJE, Heemskerk JWM. Ultra-high throughput-based screening for the discovery of antiplatelet drugs affecting receptor dependent calcium signaling dynamics. Sci Rep 2024; 14:6229. [PMID: 38486006 PMCID: PMC10940705 DOI: 10.1038/s41598-024-56799-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
Distinct platelet activation patterns are elicited by the tyrosine kinase-linked collagen receptor glycoprotein VI (GPVI) and the G-protein coupled protease-activated receptors (PAR1/4) for thrombin. This is reflected in the different platelet Ca2+ responses induced by the GPVI agonist collagen-related peptide (CRP) and the PAR1/4 agonist thrombin. Using a 96 well-plate assay with human Calcium-6-loaded platelets and a panel of 22 pharmacological inhibitors, we assessed the cytosolic Ca2+ signaling domains of these receptors and developed an automated Ca2+ curve algorithm. The algorithm was used to evaluate an ultra-high throughput (UHT) based screening of 16,635 chemically diverse small molecules with orally active physicochemical properties for effects on platelets stimulated with CRP or thrombin. Stringent agonist-specific selection criteria resulted in the identification of 151 drug-like molecules, of which three hit compounds were further characterized. The dibenzyl formamide derivative ANO61 selectively modulated thrombin-induced Ca2+ responses, whereas the aromatic sulfonyl imidazole AF299 and the phenothiazine ethopropazine affected CRP-induced responses. Platelet functional assays confirmed selectivity of these hits. Ethopropazine retained its inhibitory potential in the presence of plasma, and suppressed collagen-dependent thrombus buildup at arterial shear rate. In conclusion, targeting of platelet Ca2+ signaling dynamics in a screening campaign has the potential of identifying novel platelet-inhibiting molecules.
Collapse
Affiliation(s)
- Delia I Fernández
- The Department of Biochemistry, CARIM, Maastricht University, 6229 ER, Maastricht, The Netherlands
- Platelet Proteomics Group, CiMUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Sara Troitiño
- Platelet Proteomics Group, CiMUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Vladimír Sobota
- IHU-LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33604, Bordeaux, France
- Institut de Mathématiques de Bordeaux, UMR5251, University of Bordeaux, 33 405, Talence, France
| | - Bibian M E Tullemans
- The Department of Biochemistry, CARIM, Maastricht University, 6229 ER, Maastricht, The Netherlands
- Synapse Research Institute, Kon. Emmaplein 7, 6217 KD, Maastricht, The Netherlands
| | - Jinmi Zou
- The Department of Biochemistry, CARIM, Maastricht University, 6229 ER, Maastricht, The Netherlands
- Synapse Research Institute, Kon. Emmaplein 7, 6217 KD, Maastricht, The Netherlands
| | | | - Ángel García
- Platelet Proteomics Group, CiMUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | | | - Marijke J E Kuijpers
- The Department of Biochemistry, CARIM, Maastricht University, 6229 ER, Maastricht, The Netherlands.
- Thrombosis Expertise Centre, Heart and Vascular Centre, Maastricht University Medical Centre+, 6229 HX, Maastricht, The Netherlands.
| | - Johan W M Heemskerk
- The Department of Biochemistry, CARIM, Maastricht University, 6229 ER, Maastricht, The Netherlands.
- Synapse Research Institute, Kon. Emmaplein 7, 6217 KD, Maastricht, The Netherlands.
| |
Collapse
|
5
|
Wen T, Liang B, Liang J, Wang D, Shi J, Xu S, Zhu W, Chen X, Zhu Z. Copper-Promoted N-Alkylation and Bromination of Arylamines/Indazoles Using Alkyl Bromides as Reagents for Difunctionalization. J Org Chem 2022; 87:12214-12224. [PMID: 36053202 DOI: 10.1021/acs.joc.2c01356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Practical copper-promoted N-alkylation and bromination of arylamines/indazoles with alkyl bromides are described; the N-alkylation-C-4-bromination and N-dialkylation-C-4-bromination of arylamines, and N-alkylation-C-3-bromination of indazoles, with alkyl bromides have been analyzed. The full use of alkyl bromides as alkylating and brominating building blocks without atom wastage, indicating excellent atom and step economy, has been highlighted. Eco-friendly oxygen and water are the reaction oxidant and byproduct, respectively.
Collapse
Affiliation(s)
- Tingting Wen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Baihui Liang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Jiacheng Liang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Dongyi Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Jianyi Shi
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Shengting Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Weidong Zhu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xiuwen Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Zhongzhi Zhu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
6
|
Lin YT, Li Y, Hsu HC, Tsai JY, Lee JH, Tai CJ, Wu MJ, Wu CC. Discovery of 7, 4'-dimethoxy-3-hydroxyflavone as a protease-activated receptor 4 antagonist with antithrombotic activity and less bleeding tendency in mice. Biochem Pharmacol 2022; 202:115152. [PMID: 35752281 DOI: 10.1016/j.bcp.2022.115152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/31/2022] [Accepted: 06/17/2022] [Indexed: 11/29/2022]
Abstract
There is growing evidence of the importance of protease-activated receptor 4 (PAR4), one of thrombin receptors, as a therapeutic target in thrombotic cardiovascular diseases. In the present study, we utilized ligand-based virtual screening, bioassay, and structure-activity relationship study to discover PAR4 antagonists with new chemical scaffolds from natural origin, and examined their application as antiplatelet agents. By using these approaches, we have identified a flavonoid, 7, 4'-dimethoxy-3-hydroxyflavone, that exhibits anti-PAR4 activity. 7, 4'-Dimethoxy-3-hydroxyflavone inhibited PAR4-mediated human platelet aggregation, GPIIb/IIIa activation, and P-selectin secretion. Also, it inhibited PAR4 downstream signaling pathways, including Ca2+/protein kinase C, Akt, and MAP kinases ERK and p38, in human platelets, and suppressed PAR4-mediated β-arrestin recruitment in CHO-K1 cells exogenously expressed human PAR4. In a microfluidic system, 7, 4'-dimethoxy-3-hydroxyflavone reduced thrombus formation on collagen-coated chambers at an arterial shear rate in recalcified whole blood. Furthermore, mice treated with 7, 4'-dimethoxy-3-hydroxyflavone were significantly protected from FeCl3-induced carotid arterial occlusions, without significantly affecting tail bleeding time. In conclusion, 7, 4'-dimethoxy-3-hydroxyflavone represents a new class of nature-based PAR4 antagonist, it shows effective in vivo antithrombotic properties with less bleeding tendency, and could be a potential candidate for developing new antiplatelet agents.
Collapse
Affiliation(s)
- Ying-Ting Lin
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu Li
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hui-Ching Hsu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ju-Ying Tsai
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jia-Hau Lee
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chi-Jung Tai
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Jung Wu
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Chin-Chung Wu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
7
|
Yu X, Li S, Zhu X, Kong Y. Inhibitors of protease activated receptor 4 (PAR4): a review of recent patents (2013-2021). Expert Opin Ther Pat 2022; 32:153-170. [PMID: 35081321 DOI: 10.1080/13543776.2022.2034786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Protease-activated receptor 4 (PAR4), belonging to a subfamily of G-protein-coupled receptors (GPCR), is expressed on the surface of Human platelets, and the activation of it can lead to platelets aggregation. Studies demonstrated that PAR4 inhibition protect mice from arterial/arteriolar thrombosis, pulmonary embolism and cerebral infarct, while do not affect the haemostatic responses integrity. Therefore, PAR4 has been a promising target for the development of anti-thrombotic agents. AREAS COVERED This review covers recent patents and literature on PAR4 and their application published between 2013 and 2021. EXPERT OPINION PAR4 is a promising anti-thrombotic target and PAR4 inhibitors are important biologically active compounds for the treatment of thrombosis. Most the recent patents and literature focus on PAR4 selective inhibitors, and BMS-986120 and BMS-986141, which were developed by BMS, have entered clinical trials. With the deep understanding of the crystal structures and biological functions of PAR4, we believe that many other novel types of molecules targeting PAR4 would enter the clinical studies or the market.
Collapse
Affiliation(s)
- Xiangying Yu
- School of Life & Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Shanshan Li
- Institute of Medicinal & Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Xiong Zhu
- Institute of Medicinal & Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yi Kong
- School of Life & Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| |
Collapse
|
8
|
Bertron JL, Duvernay MT, Mitchell SG, Smith ST, Maeng JG, Blobaum AL, Davis DC, Meiler J, Hamm HE, Lindsley CW. Discovery and Optimization of a Novel Series of Competitive and Central Nervous System-Penetrant Protease-Activated Receptor 4 (PAR4) Inhibitors. ACS Chem Neurosci 2021; 12:4524-4534. [PMID: 34855359 PMCID: PMC8823334 DOI: 10.1021/acschemneuro.1c00557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The detailed pharmacology and therapeutic potential of the central PAR4 receptors are poorly understood due to a lack of potent, selective, and brain-penetrant tool compounds. Despite this, robust data with biochemical and genetic tools show the therapeutic potential of PAR4 antagonists in traumatic brain injury, Alzheimer's disease, Parkinson's disease, and other neurodegenerative disorders with a neuroinflammatory component. Thus, we performed a functional HTS campaign, identified a fundamentally new PAR4 competitive inhibitor chemotype, optimized this new series (increased potency >45-fold), discovered enantiospecific activity (though opposing preference for human versus mouse PAR4), and engendered high central nervous system penetration (rat Kp's of 0.52 to 4.2 and Kp,uu's of 0.52 to 1.2).
Collapse
Affiliation(s)
- Jeanette L. Bertron
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Matthew T. Duvernay
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Sidnee G. Mitchell
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Shannon T. Smith
- Chemical and Physical Biology Program, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jae G. Maeng
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Anna L. Blobaum
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Dexter C. Davis
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Institute for Drug Discovery, Leipzig University, Saxony 04109, Germany
| | - Heidi E. Hamm
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
9
|
Chandrabalan A, Ramachandran R. Molecular mechanisms regulating Proteinase‐Activated Receptors (PARs). FEBS J 2021; 288:2697-2726. [DOI: 10.1111/febs.15829] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Arundhasa Chandrabalan
- Department of Physiology and Pharmacology Schulich School of Medicine and Dentistry University of Western Ontario London Canada
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology Schulich School of Medicine and Dentistry University of Western Ontario London Canada
| |
Collapse
|
10
|
Liu S, Li S, Yuan D, Wang E, Xie R, Zhang W, Kong Y, Zhu X. Protease activated receptor 4 (PAR4) antagonists: Research progress on small molecules in the field of antiplatelet agents. Eur J Med Chem 2020; 209:112893. [PMID: 33049608 DOI: 10.1016/j.ejmech.2020.112893] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 12/27/2022]
Abstract
Protease activated receptor 4 (PAR4) is a key target in antiplatelet medication to reduce the risk of heart attack and thrombotic complications in stroke. PAR4 antagonists can prevent harmful and stable thrombus growth while retaining initial thrombus formation by acting on the late diffusion stage of platelet activation, which may provide a safer alternative than other antiplatelet agents. Currently, research on PAR4 antagonists is of increasing interest in the field of antiplatelet agents. This article provides an overview of the discovery and development of small-molecule antagonists of PAR4 as novel antiplatelet agents, including structure-activity relationship (SAR) analysis, progress of structure and bioassay optimization, and the latest structural and/or clinical information of representative small-molecule antagonists of PAR4.
Collapse
Affiliation(s)
- Shangde Liu
- Institute of Medicinal & Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Shanshan Li
- Institute of Medicinal & Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Duo Yuan
- Institute of Medicinal & Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Enmao Wang
- Institute of Medicinal & Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Roujie Xie
- Institute of Medicinal & Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Weiqi Zhang
- Institute of Medicinal & Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yi Kong
- School of Life & Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Xiong Zhu
- Institute of Medicinal & Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
11
|
Heuberger DM, Schuepbach RA. Protease-activated receptors (PARs): mechanisms of action and potential therapeutic modulators in PAR-driven inflammatory diseases. Thromb J 2019; 17:4. [PMID: 30976204 PMCID: PMC6440139 DOI: 10.1186/s12959-019-0194-8] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/08/2019] [Indexed: 12/29/2022] Open
Abstract
Inflammatory diseases have become increasingly prevalent with industrialization. To address this, numerous anti-inflammatory agents and molecular targets have been considered in clinical trials. Among molecular targets, protease-activated receptors (PARs) are abundantly recognized for their roles in the development of chronic inflammatory diseases. In particular, several inflammatory effects are directly mediated by the sensing of proteolytic activity by PARs. PARs belong to the seven transmembrane domain G protein-coupled receptor family, but are unique in their lack of physiologically soluble ligands. In contrast with classical receptors, PARs are activated by N-terminal proteolytic cleavage. Upon removal of specific N-terminal peptides, the resulting N-termini serve as tethered activation ligands that interact with the extracellular loop 2 domain and initiate receptor signaling. In the classical pathway, activated receptors mediate signaling by recruiting G proteins. However, activation of PARs alternatively lead to the transactivation of and signaling through receptors such as co-localized PARs, ion channels, and toll-like receptors. In this review we consider PARs and their modulators as potential therapeutic agents, and summarize the current understanding of PAR functions from clinical and in vitro studies of PAR-related inflammation.
Collapse
Affiliation(s)
- Dorothea M Heuberger
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Surgical Research Division, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Reto A Schuepbach
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
A function-blocking PAR4 antibody is markedly antithrombotic in the face of a hyperreactive PAR4 variant. Blood Adv 2019; 2:1283-1293. [PMID: 29884748 DOI: 10.1182/bloodadvances.2017015552] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 05/06/2018] [Indexed: 11/20/2022] Open
Abstract
Thrombin activates human platelets via 2 protease-activated receptors (PARs), PAR1 and PAR4, both of which are antithrombotic drug targets: a PAR1 inhibitor is approved for clinical use, and a PAR4 inhibitor is in trial. However, a common sequence variant in human PAR4 (rs773902, encoding Thr120 in place of Ala120) renders the receptor more sensitive to agonists and less sensitive to antagonists. Here, we develop the first human monoclonal function-blocking antibody to human PAR4 and show it provides equivalent efficacy against the Ala120 and Thr120 PAR4 variants. This candidate was generated from a panel of anti-PAR4 antibodies, was found to bind PAR4 with affinity (KD ≈ 0.4 nM) and selectivity (no detectable binding to any of PAR1, PAR2, or PAR3), and is capable of near-complete inhibition of thrombin cleavage of either the Ala120 or Thr120 PAR4 variant. Platelets from individuals expressing the Thr120 PAR4 variant exhibit increased thrombin-induced aggregation and phosphatidylserine exposure vs those with the Ala120 PAR4 variant, yet the PAR4 antibody inhibited these responses equivalently (50% inhibitory concentration, 4.3 vs 3.2 µg/mL against Ala120 and Thr120, respectively). Further, the antibody significantly impairs platelet procoagulant activity in an ex vivo thrombosis assay, with equivalent inhibition of fibrin formation and overall thrombus size in blood from individuals expressing the Ala120 or Thr120 PAR4 variant. These findings reveal antibody-mediated inhibition of PAR4 cleavage and activation provides robust antithrombotic activity independent of the rs773902 PAR4 sequence variant and provides rationale for such an approach for antithrombotic therapy targeting this receptor.
Collapse
|
13
|
|
14
|
Martins Lima A, Bragina ME, Burri O, Bortoli Chapalay J, Costa-Fraga FP, Chambon M, Fraga-Silva RA, Stergiopulos N. An optimized and validated 384-well plate assay to test platelet function in a high-throughput screening format. Platelets 2018; 30:563-571. [PMID: 30183501 DOI: 10.1080/09537104.2018.1514106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite significant advances in the treatment of cardiovascular diseases, antiplatelet therapies are still associated with a high risk of hemorrhage. In order to develop new drugs, methods to measure platelet function must be adapted for the high-throughput screening (HTS) format. Currently, all assays capable of assessing platelet function are either expensive, complex, or not validated, which makes them unsuitable for drug discovery. Here, we propose a simple, low-cost, and high-throughput-compatible platelet function assay, validated for the 384-well plate. In the proposed assay, agonist-induced platelet activity was assessed by three different methods: (i) measurement of light absorbance, which decreases with platelet aggregation; (ii) luminescence measurement, based on ATP release from activated platelets and luciferin-luciferase reaction; and (iii) automated bright-field microscopy of the wells and further quantification of platelet image area, described here for the first time. Brightfield imaging results were validated by demonstrating the similarity of dose-response curves obtained with absorbance and luminescence measurements after stimulating platelets, pre-incubated with prostaglandin E1 or tirofiban, and demonstrating the similarity of dose-response curves obtained with agonists. Assay quality was confirmed using the Z'-factor, a statistical parameter used to validate the robustness and suitability of an HTS assay. The results showed that, under high rotations per minute (1200 RPM), an acceptable Z'-factor score is reached for absorbance measurements (Z'-factor - 0.58) and automated brightfield imaging (Z'-factor - 0.52), without the need of replicates, while triplicates must be used to achieve an acceptable Z'-factor score (0.54) for luminescence measurements. Using low platelet concentration (4 × 104/μl - 10 μl), the brightfield imaging test was further validated using washed platelets. Furthermore, drug screening was performed with compounds selected by structure-based virtual screening. Taken together, this study presents an optimized and validated assay for HTS to be used as a tool for antiplatelet drug discovery.
Collapse
Affiliation(s)
- Augusto Martins Lima
- a Institute of Bioengineering , École Polytechnique Fédérale de Lausanne , Lausanne , Switzerland
| | - Maiia E Bragina
- a Institute of Bioengineering , École Polytechnique Fédérale de Lausanne , Lausanne , Switzerland
| | - Olivier Burri
- b BioImaging and Optics Core Facility , École Polytechnique Fédérale de Lausanne , Lausanne , Switzerland
| | - Julien Bortoli Chapalay
- c Biomolecular Screening Facility , École Polytechnique Federale de Lausanne , Lausanne , Switzerland
| | - Fabiana P Costa-Fraga
- a Institute of Bioengineering , École Polytechnique Fédérale de Lausanne , Lausanne , Switzerland
| | - Marc Chambon
- c Biomolecular Screening Facility , École Polytechnique Federale de Lausanne , Lausanne , Switzerland
| | - Rodrigo A Fraga-Silva
- a Institute of Bioengineering , École Polytechnique Fédérale de Lausanne , Lausanne , Switzerland
| | - Nikolaos Stergiopulos
- a Institute of Bioengineering , École Polytechnique Fédérale de Lausanne , Lausanne , Switzerland
| |
Collapse
|
15
|
Han X, Nieman MT. Protease activated receptor 4: a backup receptor or a dark horse as a target in antiplatelet therapy? ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:56. [PMID: 29610748 DOI: 10.21037/atm.2017.11.36] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xu Han
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Marvin T Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
16
|
Rwibasira Rudinga G, Khan GJ, Kong Y. Protease-Activated Receptor 4 (PAR4): A Promising Target for Antiplatelet Therapy. Int J Mol Sci 2018; 19:E573. [PMID: 29443899 PMCID: PMC5855795 DOI: 10.3390/ijms19020573] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular diseases (CVDs) are currently among the leading causes of death worldwide. Platelet aggregation is a key cellular component of arterial thrombi and major cause of CVDs. Protease-activated receptors (PARs), including PAR1, PAR2, PAR3 and PAR4, fall within a subfamily of seven-transmembrane G-protein-coupled receptors (GPCR). Human platelets express PAR1 and PAR4, which contribute to the signaling transduction processes. In association with CVDs, PAR4 not only contributes to platelet activation but also is a modulator of cellular responses that serve as hallmarks of inflammation. Although several antiplatelet drugs are available on the market, they have many side effects that limit their use. Emerging evidence shows that PAR4 targeting is a safer strategy for preventing thrombosis and consequently may improve the overall cardiac safety profile. Our present review summarizes the PAR4 structural characteristics, activation mechanism, role in the pathophysiology of diseases and understanding the association of PAR4 targeting for improved cardiac protection. Conclusively, this review highlights the importance of PAR4 antagonists and its potential utility in different CVDs.
Collapse
Affiliation(s)
- Gamariel Rwibasira Rudinga
- School of Life Science & Technology, China Pharmaceutical University, 24 Tong Jia Street, Nanjing 210009, China.
| | - Ghulam Jilany Khan
- Jiangsu Center for Pharmacodynamics Research, Evaluation and Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Yi Kong
- School of Life Science & Technology, China Pharmaceutical University, 24 Tong Jia Street, Nanjing 210009, China.
| |
Collapse
|
17
|
Ramachandran R, Mihara K, Thibeault P, Vanderboor CM, Petri B, Saifeddine M, Bouvier M, Hollenberg MD. Targeting a Proteinase-Activated Receptor 4 (PAR4) Carboxyl Terminal Motif to Regulate Platelet Function. Mol Pharmacol 2017; 91:287-295. [PMID: 28126849 DOI: 10.1124/mol.116.106526] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/18/2017] [Indexed: 12/22/2022] Open
Abstract
Thrombin initiates human platelet aggregation by coordinately activating proteinase-activated receptors (PARs) 1 and 4. However, targeting PAR1 with an orthosteric-tethered ligand binding-site antagonist results in bleeding, possibly owing to the important role of PAR1 activation on cells other than platelets. Because of its more restricted tissue expression profile, we have therefore turned to PAR4 as an antiplatelet target. We have identified an intracellular PAR4 C-terminal motif that regulates calcium signaling and β-arrestin interactions. By disrupting this PAR4 calcium/β-arrestin signaling process with a novel cell-penetrating peptide, we were able to inhibit both thrombin-triggered platelet aggregation in vitro and clot consolidation in vivo. We suggest that targeting PAR4 represents an attractive alternative to blocking PAR1 for antiplatelet therapy in humans.
Collapse
Affiliation(s)
- Rithwik Ramachandran
- Snyder Institute for Chronic Diseases and Department of Physiology and Pharmacology (R.R., K.M., M.S., M.D.H.), Mouse Phenomics Resource Laboratory, Snyder Institute for Chronic Diseases and Department of Microbiology, Immunology, and Infectious Diseases (B.P.), and Department of Medicine (M.D.H.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada (R.R., P.T., C.M.V.); and IRIC-Université de Montréal, Montréal, Québec, Canada (M.B.)
| | - Koichiro Mihara
- Snyder Institute for Chronic Diseases and Department of Physiology and Pharmacology (R.R., K.M., M.S., M.D.H.), Mouse Phenomics Resource Laboratory, Snyder Institute for Chronic Diseases and Department of Microbiology, Immunology, and Infectious Diseases (B.P.), and Department of Medicine (M.D.H.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada (R.R., P.T., C.M.V.); and IRIC-Université de Montréal, Montréal, Québec, Canada (M.B.)
| | - Pierre Thibeault
- Snyder Institute for Chronic Diseases and Department of Physiology and Pharmacology (R.R., K.M., M.S., M.D.H.), Mouse Phenomics Resource Laboratory, Snyder Institute for Chronic Diseases and Department of Microbiology, Immunology, and Infectious Diseases (B.P.), and Department of Medicine (M.D.H.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada (R.R., P.T., C.M.V.); and IRIC-Université de Montréal, Montréal, Québec, Canada (M.B.)
| | - Christina M Vanderboor
- Snyder Institute for Chronic Diseases and Department of Physiology and Pharmacology (R.R., K.M., M.S., M.D.H.), Mouse Phenomics Resource Laboratory, Snyder Institute for Chronic Diseases and Department of Microbiology, Immunology, and Infectious Diseases (B.P.), and Department of Medicine (M.D.H.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada (R.R., P.T., C.M.V.); and IRIC-Université de Montréal, Montréal, Québec, Canada (M.B.)
| | - Björn Petri
- Snyder Institute for Chronic Diseases and Department of Physiology and Pharmacology (R.R., K.M., M.S., M.D.H.), Mouse Phenomics Resource Laboratory, Snyder Institute for Chronic Diseases and Department of Microbiology, Immunology, and Infectious Diseases (B.P.), and Department of Medicine (M.D.H.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada (R.R., P.T., C.M.V.); and IRIC-Université de Montréal, Montréal, Québec, Canada (M.B.)
| | - Mahmoud Saifeddine
- Snyder Institute for Chronic Diseases and Department of Physiology and Pharmacology (R.R., K.M., M.S., M.D.H.), Mouse Phenomics Resource Laboratory, Snyder Institute for Chronic Diseases and Department of Microbiology, Immunology, and Infectious Diseases (B.P.), and Department of Medicine (M.D.H.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada (R.R., P.T., C.M.V.); and IRIC-Université de Montréal, Montréal, Québec, Canada (M.B.)
| | - Michel Bouvier
- Snyder Institute for Chronic Diseases and Department of Physiology and Pharmacology (R.R., K.M., M.S., M.D.H.), Mouse Phenomics Resource Laboratory, Snyder Institute for Chronic Diseases and Department of Microbiology, Immunology, and Infectious Diseases (B.P.), and Department of Medicine (M.D.H.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada (R.R., P.T., C.M.V.); and IRIC-Université de Montréal, Montréal, Québec, Canada (M.B.)
| | - Morley D Hollenberg
- Snyder Institute for Chronic Diseases and Department of Physiology and Pharmacology (R.R., K.M., M.S., M.D.H.), Mouse Phenomics Resource Laboratory, Snyder Institute for Chronic Diseases and Department of Microbiology, Immunology, and Infectious Diseases (B.P.), and Department of Medicine (M.D.H.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada (R.R., P.T., C.M.V.); and IRIC-Université de Montréal, Montréal, Québec, Canada (M.B.)
| |
Collapse
|
18
|
Proteinase-activated receptors (PARs) as targets for antiplatelet therapy. Biochem Soc Trans 2016; 44:606-12. [PMID: 27068977 DOI: 10.1042/bst20150282] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Indexed: 01/07/2023]
Abstract
Since the identification of the proteinase-activated receptor (PAR) family as mediators of serine protease activity in the 1990s, there has been tremendous progress in the elucidation of their pathophysiological roles. The development of drugs that target PARs has been the focus of many laboratories for the potential treatment of thrombosis, cancer and other inflammatory diseases. Understanding the mechanisms of PAR activation and G protein signalling pathways evoked in response to the growing list of endogenous proteases has yielded great insight into receptor regulation at the molecular level. This has led to the development of new selective modulators of PAR activity, particularly PAR1. The mixed success of targeting PARs has been best exemplified in the context of inhibiting PAR1 as a new antiplatelet therapy. The development of the competitive PAR1 antagonist, vorapaxar (Zontivity), has clearly shown the value in targeting PAR1 in acute coronary syndrome (ACS); however the severity of associated bleeding with this drug has limited its use in the clinic. Due to the efficacy of thrombin acting via PAR1, strategies to selectively inhibit specific PAR1-mediated G protein signalling pathways or to target the second thrombin platelet receptor, PAR4, are being devised. The rationale behind these alternative approaches is to bias downstream thrombin activity via PARs to allow for inhibition of pro-thrombotic pathways but maintain other pathways that may preserve haemostatic balance and improve bleeding profiles for widespread clinical use. This review summarizes the structural determinants that regulate PARs and the modulators of PAR activity developed to date.
Collapse
|
19
|
Temple KJ, Duvernay MT, Maeng JG, Blobaum AL, Stauffer SR, Hamm HE, Lindsley CW. Identification of the minimum PAR4 inhibitor pharmacophore and optimization of a series of 2-methoxy-6-arylimidazo[2,1-b][1,3,4]thiadiazoles. Bioorg Med Chem Lett 2016; 26:5481-5486. [PMID: 27777004 PMCID: PMC5340293 DOI: 10.1016/j.bmcl.2016.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 01/05/2023]
Abstract
This letter describes the further deconstruction of the known PAR4 inhibitor chemotypes (MWs 490-525 and with high plasma protein binding) to identify a minimum PAR4 pharmacophore devoid of metabolic liabilities and improved properties. This exercise identified a greatly simplified 2-methoxy-6-arylimidazo[2,1-b][1,3,4]thiadiazole scaffold that afforded nanomolar inhibition of both activating peptide and γ-thrombin mediated PAR4 stimulation, while reducing both molecular weight and the number of hydrogen bond donors/acceptors by ∼50%. This minimum PAR4 pharmacophore, with competitive inhibition, versus non-competitive of the larger chemotypes, allows an ideal starting point to incorporate desired functional groups to engender optimal DMPK properties towards a preclinical candidate.
Collapse
Affiliation(s)
- Kayla J. Temple
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Matthew T. Duvernay
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jae G. Maeng
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Anna L. Blobaum
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Shaun R. Stauffer
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Heidi E. Hamm
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Craig W. Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
20
|
Hamilton JR, Trejo J. Challenges and Opportunities in Protease-Activated Receptor Drug Development. Annu Rev Pharmacol Toxicol 2016; 57:349-373. [PMID: 27618736 DOI: 10.1146/annurev-pharmtox-011613-140016] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protease-activated receptors (PARs) are a unique class of G protein-coupled receptors (GPCRs) that transduce cellular responses to extracellular proteases. PARs have important functions in the vasculature, inflammation, and cancer and are important drug targets. A unique feature of PARs is their irreversible proteolytic mechanism of activation that results in the generation of a tethered ligand that cannot diffuse away. Despite the fact that GPCRs have proved to be the most successful class of druggable targets, the development of agents that target PARs specifically has been challenging. As a consequence, researchers have taken a remarkable diversity of approaches to develop pharmacological entities that modulate PAR function. Here, we present an overview of the diversity of therapeutic agents that have been developed against PARs. We further discuss PAR biased signaling and the influence of receptor compartmentalization, posttranslational modifications, and dimerization, which are important considerations for drug development.
Collapse
Affiliation(s)
- Justin R Hamilton
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093;
| |
Collapse
|
21
|
Temple KJ, Duvernay MT, Young SE, Wen W, Wu W, Maeng JG, Blobaum AL, Stauffer SR, Hamm HE, Lindsley CW. Development of a Series of (1-Benzyl-3-(6-methoxypyrimidin-3-yl)-5-(trifluoromethoxy)-1H-indol-2-yl)methanols as Selective Protease Activated Receptor 4 (PAR4) Antagonists with in Vivo Utility and Activity Against γ-Thrombin. J Med Chem 2016; 59:7690-5. [PMID: 27482618 PMCID: PMC5775816 DOI: 10.1021/acs.jmedchem.6b00928] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we describe the development of a series of highly selective PAR4 antagonists with nanomolar potency and selectivity versus PAR1, derived from the indole-based 3. Of these, 9j (PAR4 IC50 = 445 nM, PAR1 response IC50 > 30 μM) and 10h (PAR4 IC50 = 179 nM, PAR1 response IC50 > 30 μM) maintained an overall favorable in vitro DMPK profile, encouraging rat/mouse in vivo pharmacokinetics (PK) and activity against γ-thrombin.
Collapse
Affiliation(s)
- Kayla J. Temple
- Department of Pharmacology, Vanderbilt University School of Medicine, 9281 Wardley Park Lane, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, 9281 Wardley Park Lane, Nashville, Tennessee 37232, United States
| | - Matthew T. Duvernay
- Department of Pharmacology, Vanderbilt University School of Medicine, 9281 Wardley Park Lane, Nashville, Tennessee 37232, United States
| | - Summer E. Young
- Department of Pharmacology, Vanderbilt University School of Medicine, 9281 Wardley Park Lane, Nashville, Tennessee 37232, United States
| | - Wandong Wen
- College of Science, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100, China
| | - Wenjun Wu
- College of Science, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100, China
| | - Jae G. Maeng
- Department of Pharmacology, Vanderbilt University School of Medicine, 9281 Wardley Park Lane, Nashville, Tennessee 37232, United States
| | - Anna L. Blobaum
- Department of Pharmacology, Vanderbilt University School of Medicine, 9281 Wardley Park Lane, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, 9281 Wardley Park Lane, Nashville, Tennessee 37232, United States
| | - Shaun R. Stauffer
- Department of Pharmacology, Vanderbilt University School of Medicine, 9281 Wardley Park Lane, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Heidi E. Hamm
- Department of Pharmacology, Vanderbilt University School of Medicine, 9281 Wardley Park Lane, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Department of Pharmacology, Vanderbilt University School of Medicine, 9281 Wardley Park Lane, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, 9281 Wardley Park Lane, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
22
|
French SL, Hamilton JR. Protease-activated receptor 4: from structure to function and back again. Br J Pharmacol 2016; 173:2952-65. [PMID: 26844674 DOI: 10.1111/bph.13455] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 01/22/2016] [Accepted: 01/29/2016] [Indexed: 12/21/2022] Open
Abstract
Protease-activated receptors are a family of four GPCRs (PAR1-PAR4) with a number of unique attributes. Nearly two and a half decades after the discovery of the first PAR, an antagonist targeting this receptor has been approved for human use. The first-in-class PAR1 antagonist, vorapaxar, was approved for use in the USA in 2014 for the prevention of thrombotic cardiovascular events in patients with a history of myocardial infarction or with peripheral arterial disease. These recent developments indicate the clinical potential of manipulating PAR function. While much work has been aimed at uncovering the function of PAR1 and, to a lesser extent, PAR2, comparatively little is known regarding the pharmacology and physiology of PAR3 and PAR4. Recent studies have begun to develop the pharmacological and genetic tools required to study PAR4 function in detail, and there is now emerging evidence for the function of PAR4 in disease settings. In this review, we detail the discovery, structure, pharmacology, physiological significance and therapeutic potential of PAR4. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- Shauna L French
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Justin R Hamilton
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia.
| |
Collapse
|
23
|
Bao Y, Gao Y, Yang L, Kong X, Zheng H, Hou W, Hua B. New insights into protease-activated receptor 4 signaling pathways in the pathogenesis of inflammation and neuropathic pain: a literature review. Channels (Austin) 2015; 9:5-13. [PMID: 25664811 DOI: 10.4161/19336950.2014.995001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pain is an unpleasant sensory and emotional experience that is commonly associated with actual or potential tissue damage. Despite decades of pain research, many patients continue to suffer from chronic pain that is refractory to current treatments. Accumulating evidence has indicated an important role of protease-activated receptor 4 (PAR4) in the pathogenesis of inflammation and neuropathic pain. Here we reviewed PAR4 expression and activation via intracellular signaling pathways and the role of PAR4 signaling pathways in the development and maintenance of pain. Understanding PAR4 and its corresponding signaling pathways will provide insight to further explore the molecular basis of pain, which will also help to identify new targets for pharmacological intervention for pain relief.
Collapse
Affiliation(s)
- Yanju Bao
- a Department of Oncology ; Guang'anmen Hospital ; China Academy of Chinese Medical Sciences; Beixiange 5 ; Xicheng District , Beijing , P. R. China
| | | | | | | | | | | | | |
Collapse
|
24
|
Edelstein LC, Simon LM, Lindsay CR, Kong X, Teruel-Montoya R, Tourdot BE, Chen ES, Ma L, Coughlin S, Nieman M, Holinstat M, Shaw CA, Bray PF. Common variants in the human platelet PAR4 thrombin receptor alter platelet function and differ by race. Blood 2014; 124:3450-8. [PMID: 25293779 PMCID: PMC4246040 DOI: 10.1182/blood-2014-04-572479] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 09/22/2014] [Indexed: 01/22/2023] Open
Abstract
Human platelets express 2 thrombin receptors: protease-activated receptor (PAR)-1 and PAR4. Recently, we reported 3.7-fold increased PAR4-mediated aggregation kinetics in platelets from black subjects compared with white subjects. We now show that platelets from blacks (n = 70) express 14% more PAR4 protein than those from whites (n = 84), but this difference is not associated with platelet PAR4 function. Quantitative trait locus analysis identified 3 common single nucleotide polymorphisms in the PAR4 gene (F2RL3) associated with PAR4-induced platelet aggregation. Among these single nucleotide polymorphisms, rs773902 determines whether residue 120 in transmembrane domain 2 is an alanine (Ala) or threonine (Thr). Compared with the Ala120 variant, Thr120 was more common in black subjects than in white subjects (63% vs 19%), was associated with higher PAR4-induced human platelet aggregation and Ca2+ flux, and generated greater inositol 1,4,5-triphosphate in transfected cells. A second, less frequent F2RL3 variant, Phe296Val, was only observed in blacks and abolished the enhanced PAR4-induced platelet aggregation and 1,4,5-triphosphate generation associated with PAR4-Thr120. PAR4 genotype did not affect vorapaxar inhibition of platelet PAR1 function, but a strong pharmacogenetic effect was observed with the PAR4-specific antagonist YD-3 [1-benzyl-3(ethoxycarbonylphenyl)-indazole]. These findings may have an important pharmacogenetic effect on the development of new PAR antagonists.
Collapse
Affiliation(s)
- Leonard C Edelstein
- Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Philadelphia, PA
| | - Lukas M Simon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Cory R Lindsay
- Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Philadelphia, PA
| | - Xianguo Kong
- Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Philadelphia, PA
| | - Raúl Teruel-Montoya
- Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Philadelphia, PA
| | - Benjamin E Tourdot
- Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Philadelphia, PA
| | - Edward S Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Lin Ma
- Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Philadelphia, PA
| | - Shaun Coughlin
- Cardiovascular Research Institute, University of California, San Francisco, CA
| | - Marvin Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH; and
| | - Michael Holinstat
- Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Philadelphia, PA
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Department of Statistics, Rice University, Houston, TX
| | - Paul F Bray
- Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Philadelphia, PA
| |
Collapse
|
25
|
Wen W, Young SE, Duvernay MT, Schulte ML, Nance KD, Melancon BJ, Engers J, Locuson CW, Wood MR, Daniels JS, Wu W, Lindsley CW, Hamm HE, Stauffer SR. Substituted indoles as selective protease activated receptor 4 (PAR-4) antagonists: Discovery and SAR of ML354. Bioorg Med Chem Lett 2014; 24:4708-4713. [PMID: 25176330 PMCID: PMC5716344 DOI: 10.1016/j.bmcl.2014.08.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/04/2014] [Accepted: 08/06/2014] [Indexed: 10/24/2022]
Abstract
Herein we report the discovery and SAR of an indole-based protease activated receptor-4 (PAR-4) antagonist scaffold derived from a similarity search of the Vanderbilt HTS collection, leading to MLPCN probe ML354 (VU0099704). Using a novel PAC-1 fluorescent αIIbβ3 activation assay this probe molecule antagonist was found to have an IC50 of 140nM for PAR-4 with 71-fold selectivity versus PAR-1 (PAR-1IC50=10μM).
Collapse
Affiliation(s)
- Wandong Wen
- College of Science, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100, China; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Summer E Young
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Matthew T Duvernay
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael L Schulte
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Kellie D Nance
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Bruce J Melancon
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Julie Engers
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Charles W Locuson
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Michael R Wood
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - J Scott Daniels
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Wenjun Wu
- College of Science, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100, China.
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shaun R Stauffer
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA.
| |
Collapse
|
26
|
Sidhu TS, French SL, Hamilton JR. Differential signaling by protease-activated receptors: implications for therapeutic targeting. Int J Mol Sci 2014; 15:6169-83. [PMID: 24733067 PMCID: PMC4013622 DOI: 10.3390/ijms15046169] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/14/2014] [Accepted: 04/03/2014] [Indexed: 12/29/2022] Open
Abstract
Protease-activated receptors (PARs) are a family of four G protein-coupled receptors that exhibit increasingly appreciated differences in signaling and regulation both within and between the receptor class. By nature of their proteolytic self-activation mechanism, PARs have unique processes of receptor activation, "ligand" binding, and desensitization/resensitization. These distinctive aspects have presented both challenges and opportunities in the targeting of PARs for therapeutic benefit-the most notable example of which is inhibition of PAR1 on platelets for the prevention of arterial thrombosis. However, more recent studies have uncovered further distinguishing features of PAR-mediated signaling, revealing mechanisms by which identical proteases elicit distinct effects in the same cell, as well as how distinct proteases produce different cellular consequences via the same receptor. Here we review this differential signaling by PARs, highlight how important distinctions between PAR1 and PAR4 are impacting on the progress of a new class of anti-thrombotic drugs, and discuss how these more recent insights into PAR signaling may present further opportunities for manipulating PAR activation and signaling in the development of novel therapies.
Collapse
Affiliation(s)
- Tejminder S Sidhu
- Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne 3004, Australia.
| | - Shauna L French
- Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne 3004, Australia.
| | - Justin R Hamilton
- Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne 3004, Australia.
| |
Collapse
|