1
|
Barnault R, Verzeroli C, Fournier C, Michelet M, Redavid AR, Chicherova I, Plissonnier ML, Adrait A, Khomich O, Chapus F, Richaud M, Hervieu M, Reiterer V, Centonze FG, Lucifora J, Bartosch B, Rivoire M, Farhan H, Couté Y, Mirakaj V, Decaens T, Mehlen P, Gibert B, Zoulim F, Parent R. Hepatic inflammation elicits production of proinflammatory netrin-1 through exclusive activation of translation. Hepatology 2022; 76:1345-1359. [PMID: 35253915 DOI: 10.1002/hep.32446] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS Netrin-1 displays protumoral properties, though the pathological contexts and processes involved in its induction remain understudied. The liver is a major model of inflammation-associated cancer development, leading to HCC. APPROACH AND RESULTS A panel of cell biology and biochemistry approaches (reverse transcription quantitative polymerase chain reaction, reporter assays, run-on, polysome fractionation, cross linking immunoprecipitation, filter binding assay, subcellular fractionation, western blotting, immunoprecipitation, stable isotope labeling by amino acids in cell culture) on in vitro-grown primary hepatocytes, human liver cell lines, mouse samples and clinical samples was used. We identify netrin-1 as a hepatic inflammation-inducible factor and decipher its mode of activation through an exhaustive eliminative approach. We show that netrin-1 up-regulation relies on a hitherto unknown mode of induction, namely its exclusive translational activation. This process includes the transfer of NTN1 (netrin-1) mRNA to the endoplasmic reticulum and the direct interaction between the Staufen-1 protein and this transcript as well as netrin-1 mobilization from its cell-bound form. Finally, we explore the impact of a phase 2 clinical trial-tested humanized anti-netrin-1 antibody (NP137) in two distinct, toll-like receptor (TLR) 2/TLR3/TLR6-dependent, hepatic inflammatory mouse settings. We observe a clear anti-inflammatory activity indicating the proinflammatory impact of netrin-1 on several chemokines and Ly6C+ macrophages. CONCLUSIONS These results identify netrin-1 as an inflammation-inducible factor in the liver through an atypical mechanism as well as its contribution to hepatic inflammation.
Collapse
Affiliation(s)
- Romain Barnault
- Pathogenesis of Chronic Hepatitis B and C Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France.,University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Claire Verzeroli
- Pathogenesis of Chronic Hepatitis B and C Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France.,University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Carole Fournier
- Institute for Advanced Biosciences, Inserm U1209, University of Grenoble-Alpes, La Tronche, France
| | - Maud Michelet
- Pathogenesis of Chronic Hepatitis B and C Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France.,University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Anna Rita Redavid
- University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France.,Apoptosis, Cancer and Development Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France
| | - Ievgeniia Chicherova
- Pathogenesis of Chronic Hepatitis B and C Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France.,University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Marie-Laure Plissonnier
- University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France.,Inserm U1052, Cancer Research Centre of Lyon, Lyon, France
| | - Annie Adrait
- University of Grenoble-Alpes, Inserm, CEA, UMR BioSanté U1292, CNRS CEA FR2048, Grenoble, France
| | - Olga Khomich
- Pathogenesis of Chronic Hepatitis B and C Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France.,University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Fleur Chapus
- Single Cell Dynamics Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina, USA
| | - Mathieu Richaud
- University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France.,Apoptosis, Cancer and Development Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France
| | - Maëva Hervieu
- University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France.,Apoptosis, Cancer and Development Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France
| | - Veronika Reiterer
- Institute of Pathophysiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Julie Lucifora
- Pathogenesis of Chronic Hepatitis B and C Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France.,University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Birke Bartosch
- Pathogenesis of Chronic Hepatitis B and C Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France.,University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Michel Rivoire
- Léon Bérard Cancer Center, Lyon, France.,Université Lyon 1, Lyon, France
| | - Hesso Farhan
- Institute of Pathophysiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Yohann Couté
- University of Grenoble-Alpes, Inserm, CEA, UMR BioSanté U1292, CNRS CEA FR2048, Grenoble, France
| | - Valbona Mirakaj
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tuebingen, Eberhard-Karls University, Tuebingen, Germany
| | - Thomas Decaens
- Institute for Advanced Biosciences, Inserm U1209, University of Grenoble-Alpes, La Tronche, France
| | - Patrick Mehlen
- University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France.,Apoptosis, Cancer and Development Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France
| | - Benjamin Gibert
- University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France.,Apoptosis, Cancer and Development Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France
| | - Fabien Zoulim
- Pathogenesis of Chronic Hepatitis B and C Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France.,University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France.,Service of Hepato-Gastroenterology, Hospices Civils de Lyon, Lyon, France
| | - Romain Parent
- Pathogenesis of Chronic Hepatitis B and C Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France.,University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| |
Collapse
|
2
|
Woolbright BL, Nguyen NT, McGill MR, Sharpe MR, Curry SC, Jaeschke H. Generation of pro-and anti-inflammatory mediators after acetaminophen overdose in surviving and non-surviving patients. Toxicol Lett 2022; 367:59-66. [PMID: 35905941 PMCID: PMC9849076 DOI: 10.1016/j.toxlet.2022.07.813] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 01/21/2023]
Abstract
Acetaminophen (APAP) overdose causes liver injury in animals and humans. Although well-studied in animals, limited longitudinal data exist on cytokine release after APAP overdose in patients. The purpose of this study was to quantify concentrations of cytokines in APAP overdose patients to determine if early cytokine or complement measurements can distinguish between surviving and non-surviving patients. Plasma was obtained from healthy controls, APAP overdose patients with no increase in liver transaminases, and surviving and non-surviving APAP overdose patients with severe liver injury. Interleukin-10 (IL-10), and CC chemokine ligand-2 (CCL2, MCP-1) were substantially elevated in surviving and non-surviving patients, whereas IL-6 and CXC chemokine ligand-8 (CXCL8, IL-8) had early elevations in a subset of patients only with liver injury. Day 1 IL-10 and IL-6 levels, and Day 2 CCL2, levels correlated positively with survival. There was no significant increase in IL-1α, IL-1β or TNF-α in any patient during the first week after APAP. Monitoring cytokines such as CCL2 may be a good indicator of patient prognosis; furthermore, these data indicate the inflammatory response after APAP overdose in patients is not mediated by a second phase of inflammation driven by the inflammasome.
Collapse
Affiliation(s)
| | - Nga T Nguyen
- Department of Pharmacology, Toxicology & Therapeutics, USA
| | | | - Matthew R Sharpe
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Steven C Curry
- Department of Medical Toxicology, Banner Good Samaritan Medical Center, Phoenix, AZ, USA; Department of Medicine, and Center for Toxicology and Pharmacology Education and Research, University of Arizona College of Medicine, Phoenix, AZ, USA
| | | |
Collapse
|
3
|
Wang J, Zhang L, Shi Q, Yang B, He Q, Wang J, Weng Q. Targeting innate immune responses to attenuate acetaminophen-induced hepatotoxicity. Biochem Pharmacol 2022; 202:115142. [PMID: 35700755 DOI: 10.1016/j.bcp.2022.115142] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/02/2022]
Abstract
Acetaminophen (APAP) hepatotoxicity is an important cause of acute liver failure, resulting in massive deaths in many developed countries. Currently, the metabolic process of APAP in the body has been well studied. However, the underlying mechanism of APAP-induced liver injury remains elusive. Increasing clinical and experimental evidences indicate that the innate immune responses are involved in the pathogenesis of APAP-induced acute liver injury (AILI), in which immune cells have dual roles of inducing inflammation to exacerbate hepatotoxicity and removing dead cells and debris to help liver regeneration. In this review, we summarize the latest findings of innate immune cells involved in AILI, particularly emphasizing the activation of innate immune cells and their different roles during the injury and repair phases. Moreover, current available treatments are discussed according to the different roles of innate immune cells in the development of AILI. This review aims to update the knowledge about innate immune responses in the pathogenesis of AILI, and provide potential therapeutic interventions for AILI.
Collapse
Affiliation(s)
- Jincheng Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lulu Zhang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Shi
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
4
|
Ye H, Chen C, Wu H, Zheng K, Martín-Adrados B, Caparros E, Francés R, Nelson LJ, Gómez Del Moral M, Asensio I, Vaquero J, Bañares R, Ávila MA, Andrade RJ, Isabel Lucena M, Martínez-Chantar ML, Reeves HL, Masson S, Blumberg RS, Gracia-Sancho J, Nevzorova YA, Martínez-Naves E, Cubero FJ. Genetic and pharmacological inhibition of XBP1 protects against APAP hepatotoxicity through the activation of autophagy. Cell Death Dis 2022; 13:143. [PMID: 35145060 PMCID: PMC8831621 DOI: 10.1038/s41419-022-04580-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/12/2022] [Accepted: 01/26/2022] [Indexed: 12/11/2022]
Abstract
Acetaminophen (APAP) hepatotoxicity induces endoplasmic reticulum (ER) stress which triggers the unfolded protein response (UPR) in hepatocytes. However, the mechanisms underlying ER stress remain poorly understood, thus reducing the options for exploring new pharmacological therapies for patients with hyperacute liver injury. Eight-to-twelve-week-old C57BL/6J Xbp1-floxed (Xbp1f/f) and hepatocyte-specific knockout Xbp1 mice (Xbp1∆hepa) were challenged with either high dose APAP [500 mg/kg] and sacrificed at early (1-2 h) and late (24 h) stages of hepatotoxicity. Histopathological examination of livers, immunofluorescence and immunohistochemistry, Western blot, real time (RT)-qPCR studies and transmission electron microscopy (TEM) were performed. Pharmacological inhibition of XBP1 using pre-treatment with STF-083010 [STF, 75 mg/kg] and autophagy induction with Rapamycin [RAPA, 8 mg/kg] or blockade with Chloroquine [CQ, 60 mg/kg] was also undertaken in vivo. Cytoplasmic expression of XBP1 coincided with severity of human and murine hyperacute liver injury. Transcriptional and translational activation of the UPR and sustained activation of JNK1/2 were major events in APAP hepatotoxicity, both in a human hepatocytic cell line and in a preclinical model. Xbp1∆hepa livers showed decreased UPR and JNK1/2 activation but enhanced autophagy in response to high dose APAP. Additionally, blockade of XBP1 splicing by STF, mitigated APAP-induced liver injury and without non-specific off-target effects (e.g., CYP2E1 activity). Furthermore, enhanced autophagy might be responsible for modulating CYP2E1 activity in Xbp1∆hepa animals. Genetic and pharmacological inhibition of Xbp1 specifically in hepatocytes ameliorated APAP-induced liver injury by enhancing autophagy and decreasing CYP2E1 expression. These findings provide the basis for the therapeutic restoration of ER stress and/or induction of autophagy in patients with hyperacute liver injury.
Collapse
Affiliation(s)
- Hui Ye
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28007, Madrid, Spain
- Department of Anesthesiology, ZhongDa Hospital Southeast University, 210009, Nanjing, China
| | - Chaobo Chen
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28007, Madrid, Spain
- Department of General Surgery, Wuxi Xishan People's hospital, 214105, Wuxi, China
- Department of Hepatic-Biliary-Pancreatic Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical school, 210000, Nanjing, China
| | - Hanghang Wu
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040, Madrid, Spain
| | - Kang Zheng
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28007, Madrid, Spain
- Department of Anesthesiology, ZhongDa Hospital Southeast University, 210009, Nanjing, China
| | - Beatriz Martín-Adrados
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28007, Madrid, Spain
| | - Esther Caparros
- Departmento de Medicina Clínica, Universidad Miguel Hernández, 03550, San Juan de Alicante, Spain
- Instituto ISABIAL-FISABIO, Hospital General Universitario de Alicante, 03010, Alicante, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
| | - Rubén Francés
- Departmento de Medicina Clínica, Universidad Miguel Hernández, 03550, San Juan de Alicante, Spain
- Instituto ISABIAL-FISABIO, Hospital General Universitario de Alicante, 03010, Alicante, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
| | - Leonard J Nelson
- Institute for Bioengineering (IBioE), Human Tissue Engineering, Faraday Building, The University of Edinburgh, EH9 3DW, Edinburgh, Scotland, UK
| | - Manuel Gómez Del Moral
- Department of Cell Biology, Complutense University School of Medicine, 28040, Madrid, Spain
| | - Iris Asensio
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, 28007, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007, Madrid, Spain
| | - Javier Vaquero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, 28007, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007, Madrid, Spain
| | - Rafael Bañares
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, 28007, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007, Madrid, Spain
| | - Matías A Ávila
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
- Hepatology Program, CIMA, University of Navarra, 31008, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, 31008, Pamplona, Spain
| | - Raúl J Andrade
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
- Unidad de Gestión Clínica de Digestivo, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29010, Málaga, Spain
| | - M Isabel Lucena
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
- Unidad de Gestión Clínica de Digestivo, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29010, Málaga, Spain
| | - Maria Luz Martínez-Chantar
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
- Liver Disease Laboratory and Liver Metabolism Laboratory, CIC bioGUNE, CIBERehd, Bizkaia Science and Technology Park, 48160, Derio, Bizkaia, Spain
| | - Helen L Reeves
- The Liver Unit, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, NE7 DN, Newcastle upon Tyne, UK
- Newcastle University Translational and Clinical Research Institute, The Medical School, Newcastle University, NE7 DN, Newcastle upon Tyne, UK
| | - Steven Masson
- The Liver Unit, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, NE7 DN, Newcastle upon Tyne, UK
- Newcastle University Translational and Clinical Research Institute, The Medical School, Newcastle University, NE7 DN, Newcastle upon Tyne, UK
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women´s Hospital, Harvard Medical School, Boston, and Harvard Digestive Diseases Center, 02115, Boston, MA, USA
| | - Jordi Gracia-Sancho
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
- Liver Vascular Biology Research Group, IDIBAPS, 08036, Barcelona, Spain
- Hepatology, Department of Biomedical Research, University of Bern, cH-3008, Bern, Switzerland
| | - Yulia A Nevzorova
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007, Madrid, Spain
- Department of Internal Medicine III, University Hospital RWTH Aachen, 52074, Aachen, Germany
| | - Eduardo Martínez-Naves
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28007, Madrid, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007, Madrid, Spain.
| |
Collapse
|
5
|
3'mRNA sequencing reveals pro-regenerative properties of c5ar1 during resolution of murine acetaminophen-induced liver injury. NPJ Regen Med 2022; 7:10. [PMID: 35087052 PMCID: PMC8795215 DOI: 10.1038/s41536-022-00206-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022] Open
Abstract
Murine acetaminophen-induced acute liver injury (ALI) serves as paradigmatic model for drug-induced hepatic injury and regeneration. As major cause of ALI, acetaminophen overdosing is a persistent therapeutic challenge with N-acetylcysteine clinically used to ameliorate parenchymal necrosis. To identify further treatment strategies that serve patients with poor N-acetylcysteine responses, hepatic 3′mRNA sequencing was performed in the initial resolution phase at 24 h/48 h after sublethal overdosing. This approach disclosed 45 genes upregulated (≥5-fold) within this time frame. Focusing on C5aR1, we observed in C5aR1-deficient mice disease aggravation during resolution of intoxication as evidenced by increased liver necrosis and serum alanine aminotransferase. Moreover, decreased hepatocyte compensatory proliferation and increased caspase-3 activation at the surroundings of necrotic cores were detectable in C5aR1-deficient mice. Using a non-hypothesis-driven approach, herein pro-regenerative/-resolving effects of C5aR1 were identified during late acetaminophen-induced ALI. Data concur with protection by the C5a/C5aR1-axis during hepatectomy and emphasize the complex role of inflammation during hepatic regeneration and repair.
Collapse
|
6
|
Zhou Z, Qi J, Yang D, Yang MS, Jeong H, Lim CW, Kim JW, Kim B. Exogenous activation of toll-like receptor 5 signaling mitigates acetaminophen-induced hepatotoxicity in mice. Toxicol Lett 2021; 342:58-72. [PMID: 33571619 DOI: 10.1016/j.toxlet.2021.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/06/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
Acetaminophen (APAP) poisoning is the most common cause of drug-induced acute liver injury (ALI). Our results showed that toll-like receptor 5 (TLR5) was abundantly expressed in hepatocytes and dramatically downregulated in the toxic mouse livers. Hence, we herein investigated the role of TLR5 signaling after APAP overdose. Mice were intraperitoneally (i.p.) injected with APAP to induce ALI, and then injected with flagellin at one hour after APAP administration. Flagellin attenuated APAP-induced ALI based on decreased histopathologic lesions, serum biochemical, oxidative stress, and inflammation. Furthermore, the protective effects of flagellin were abolished by TH1020 (a TLR5 antagonist) treatment. These results suggest that flagellin exerted protective effects on ALI via TLR5 activation. Mechanistically, flagellin injection promoted the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) to the nucleus in hepatocytes. Consistent with the in vivo results, flagellin increased the activation of Nrf2 in hepatocytes, resulting in decreased APAP toxicity. ML385, a selective inhibitor of Nrf2, abolished the flagellin-mediated hepatoprotective effects in damaged livers and hepatocytes. Additionally, the flagellin-induced Nrf2 translocation was dependent upon the activation of TLR5-JNK/p38 pathways. These findings suggest that TLR5 signaling-induced Nrf2 activation, at least partially, contributed to the protection against APAP-induced ALI by flagellin treatment.
Collapse
Affiliation(s)
- Zixiong Zhou
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, No. 1, Xuefu North Road, University Town, Fuzhou, 350122, Fujian, China
| | - Jing Qi
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, No. 1, Xuefu North Road, University Town, Fuzhou, 350122, Fujian, China
| | - Daram Yang
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Myeon-Sik Yang
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Hyuneui Jeong
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Chae Woong Lim
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Jong-Won Kim
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea; Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Bumseok Kim
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea.
| |
Collapse
|
7
|
Current etiological comprehension and therapeutic targets of acetaminophen-induced hepatotoxicity. Pharmacol Res 2020; 161:105102. [DOI: 10.1016/j.phrs.2020.105102] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/03/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023]
|
8
|
Bachmann M, Lamprecht L, Gonther S, Pfeilschifter J, Mühl H. A murine cellular model of necroinflammation displays RAGE-dependent cytokine induction that connects to hepatoma cell injury. J Cell Mol Med 2020; 24:10356-10366. [PMID: 32697038 PMCID: PMC7521286 DOI: 10.1111/jcmm.15649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
Unresolved inflammation maintained by release of danger‐associated molecular patterns, particularly high‐mobility group box‐1 (HMGB1), is crucial for hepatocellular carcinoma (HCC) pathogenesis. To further characterize interactions between leucocytes and necrotic cancerous tissue, a cellular model of necroinflammation was studied in which murine Raw 264.7 macrophages or primary splenocytes were exposed to necrotic lysates (N‐lys) of murine hepatoma cells or primary hepatocytes. In comparison to those derived from primary hepatocytes, N‐lys from hepatoma cells were highly active—inducing in macrophages efficient expression of inflammatory cytokines like C‐X‐C motif ligand‐2 , tumor necrosis factor‐α, interleukin (IL)‐6 and IL‐23‐p19. This activity associated with higher levels of HMGB1 in hepatoma cells and was curbed by pharmacological blockage of the receptor for advanced glycation end product (RAGE)/HMGB1 axis or the mitogen‐activated protein kinases ERK1/2 pathway. Analysis of murine splenocytes furthermore demonstrated that N‐lys did not comprise of functionally relevant amounts of TLR4 agonists. Finally, N‐lys derived from hepatoma cells supported inflammatory splenic Th17 and Th1 polarization as detected by IL‐17, IL‐22 or interferon‐γ production. Altogether, a straightforward applicable model was established which allows for biochemical characterization of immunoregulation by HCC necrosis in cell culture. Data presented indicate a remarkably inflammatory capacity of necrotic hepatoma cells that, at least partly, depends on the RAGE/HMGB1 axis and may shape immunological properties of the HCC microenvironment.
Collapse
Affiliation(s)
- Malte Bachmann
- pharmazentrum frankfurt/ZAFES, Universitätsklinikum Frankfurt, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Laura Lamprecht
- pharmazentrum frankfurt/ZAFES, Universitätsklinikum Frankfurt, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Sina Gonther
- pharmazentrum frankfurt/ZAFES, Universitätsklinikum Frankfurt, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Josef Pfeilschifter
- pharmazentrum frankfurt/ZAFES, Universitätsklinikum Frankfurt, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Heiko Mühl
- pharmazentrum frankfurt/ZAFES, Universitätsklinikum Frankfurt, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
9
|
Minsart C, Liefferinckx C, Lemmers A, Dressen C, Quertinmont E, Leclercq I, Devière J, Moreau R, Gustot T. New insights in acetaminophen toxicity: HMGB1 contributes by itself to amplify hepatocyte necrosis in vitro through the TLR4-TRIF-RIPK3 axis. Sci Rep 2020; 10:5557. [PMID: 32221312 PMCID: PMC7101425 DOI: 10.1038/s41598-020-61270-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/20/2020] [Indexed: 12/26/2022] Open
Abstract
Extracellular release of HMGB1 contributes to acetaminophen-induced liver injury. HMGB1 acts as a danger-associated molecular patterns during this toxic process but the mechanisms of action and targeted cells are incompletely defined. Here we studied, in vitro, the role of HMGB1 in amplifying the acetaminophen-induced hepatocyte necrosis process. Using cultured HepaRG cells, primary human hepatocytes and selective chemical inhibitors we evaluated acetaminophen-induced toxicity. We confirmed that addition of acetaminophen induced HepaRG cell death and HMGB1 release. We showed that inhibition of HMGB1 decreased acetaminophen-induced HepaRG cell death, suggesting a feedforward effect. We provide the first evidence that exposure of HepaRG cells to recombinant human HMGB1 (rhHMGB1) also resulted in cell death. Moreover, we found that both acetaminophen and rhHMGB1 induced programmed HepaRG cell necrosis through a RIPK3-dependent mechanism. By using TLR4 blocking antibody, we demonstrated the reduction of the HepaRG cell death induced by acetaminophen and rhHMGB1. Furthermore, inhibition of TRIF, known to induce a RIPK3-dependent cell death, reduced rhHMGB1-induced HepaRG cell death. Our data support that released HMGB1 from acetaminophen-stressed hepatocytes induced necrosis of neighboring hepatocytes by TLR4-TRIF-RIPK3- pathway. This in vitro study gives new insights in the role of HMGB1 in the amplification of acetaminophen-induced toxicity.
Collapse
Affiliation(s)
- Charlotte Minsart
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium.
| | - Claire Liefferinckx
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium
| | - Arnaud Lemmers
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium
- Department of Gastroenterology, HepatoPancreatology and Digestive Oncology, C.U.B. Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Cindy Dressen
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, Brussels, Belgium
| | - Eric Quertinmont
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium
| | - Isabelle Leclercq
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jacques Devière
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium
- Department of Gastroenterology, HepatoPancreatology and Digestive Oncology, C.U.B. Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Richard Moreau
- Inserm Unité 1149, Centre de Recherche sur l'inflammation [CRI], Paris, France
- UMR S_1149, Université Paris Diderot, Paris, France
- DHU UNITY, Service d'Hépatologie, Hôpital Beaujon, APHP, Clichy, France
| | - Thierry Gustot
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium.
- Department of Gastroenterology, HepatoPancreatology and Digestive Oncology, C.U.B. Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium.
- UMR S_1149, Université Paris Diderot, Paris, France.
- DHU UNITY, Service d'Hépatologie, Hôpital Beaujon, APHP, Clichy, France.
| |
Collapse
|
10
|
Bonnin M, Fares N, Testoni B, Estornes Y, Weber K, Vanbervliet B, Lefrançois L, Garcia A, Kfoury A, Pez F, Coste I, Saintigny P, Viari A, Lang K, Guey B, Hervieu V, Bancel B, Bartoch B, Durantel D, Renno T, Merle P, Lebecque S. Toll-like receptor 3 downregulation is an escape mechanism from apoptosis during hepatocarcinogenesis. J Hepatol 2019; 71:763-772. [PMID: 31220470 DOI: 10.1016/j.jhep.2019.05.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Low levels of toll-like receptor 3 (TLR3) in patients with hepatocellular carcinoma (HCC) are associated with poor prognosis, primarily owing to the loss of inflammatory signaling and subsequent lack of immune cell recruitment to the liver. Herein, we explore the role of TLR3-triggered apoptosis in HCC cells. METHODS Quantitative reverse transcription PCR, western blotting, immunohistochemistry and comparative genomic hybridization were used to analyze human and mouse HCC cell lines, as well as surgically resected primary human HCCs, and to study the impact of TLR3 expression on patient outcomes. Functional analyses were performed in HCC cells, following the restoration of TLR3 by lentiviral transduction. The role of TLR3-triggered apoptosis in HCC was analyzed in vivo in a transgenic mouse model of HCC. RESULTS Lower expression of TLR3 in tumor compared to non-tumor matched tissue was observed at both mRNA and protein levels in primary HCC, and was predictive of shorter recurrence-free survival after surgical resection in both univariate (hazard ratio [HR] 1.79; 95% CI 1.04-3.06; p = 0.03) and multivariate analyses (HR 1.73; CI 1.01-2.97; p = 0.04). Immunohistochemistry confirmed frequent downregulation of TLR3 in human and mouse primary HCC cells. None of the 6 human HCC cell lines analyzed expressed TLR3, and ectopic expression of TLR3 following lentiviral transduction not only restored the inflammatory response but also sensitized cells to TLR3-triggered apoptosis. Lastly, in the transgenic mouse model of HCC, absence of TLR3 expression was accompanied by a lower rate of preneoplastic hepatocyte apoptosis and accelerated hepatocarcinogenesis without altering the tumor immune infiltrate. CONCLUSION Downregulation of TLR3 protects transforming hepatocytes from direct TLR3-triggered apoptosis, thereby contributing to hepatocarcinogenesis and poor patient outcome. LAY SUMMARY Hepatocellular carcinoma (HCC) is a heterogeneous disease associated with a poor prognosis. In patients with HCC, TLR3 downregulation is associated with reduced survival. Herein, we show that the absence of TLR3 is associated with a lower rate of apoptosis, and subsequently more rapid hepatocarcinogenesis, without any change to the immune infiltrate in the liver. Therefore, the poor prognosis associated with low TLR3 expression in HCC is likely linked to tumors ability to escape apoptosis. TLR3 may become a promising therapeutic target in TLR3-positive HCC.
Collapse
Affiliation(s)
- Marc Bonnin
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Nadim Fares
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Barbara Testoni
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Yann Estornes
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Kathrin Weber
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Béatrice Vanbervliet
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Lydie Lefrançois
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Amandine Garcia
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Alain Kfoury
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Floriane Pez
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Isabelle Coste
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Pierre Saintigny
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France; Department of Translational Research and Innovation and Department of Medicine, Centre Léon Bérard, Lyon, France
| | - Alain Viari
- Synergie Lyon Cancer, Plateforme de Bioinformatique 'Gilles Thomas' Centre Léon Bérard, Lyon, France
| | - Kévin Lang
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Baptiste Guey
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Valérie Hervieu
- Service d'Anatomopathologie, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France
| | - Brigitte Bancel
- Service d'Anatomopathologie, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France
| | - Birke Bartoch
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - David Durantel
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Toufic Renno
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Philippe Merle
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France; Groupement Hospitalier Lyon Nord, Hepatology Unit, Lyon, France.
| | - Serge Lebecque
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France; Hospices Civils de Lyon, Laboratoire d'Anatomie et Cytologie Pathologiques, Centre Hospitalier Lyon Sud, Pierre Bénite, France.
| |
Collapse
|
11
|
Lee KY, Lee W, Jung SH, Park J, Sim H, Choi YJ, Park YJ, Chung Y, Lee BH. Hepatic upregulation of fetuin-A mediates acetaminophen-induced liver injury through activation of TLR4 in mice. Biochem Pharmacol 2019; 166:46-55. [PMID: 31077645 DOI: 10.1016/j.bcp.2019.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/06/2019] [Indexed: 01/29/2023]
Abstract
Acetaminophen (APAP)-induced liver injury (AILI) is initiated by the generation of a reactive metabolite and ultimately leads to hepatocyte necrosis. Necrotic cells secrete damage-associated molecular patterns that activate hepatic nonparenchymal cells and induce an inflammatory response. Fetuin-A is a hepatokine with reported involvement in low-grade inflammation in many diseases, due to acting as an endogenous ligand for TLR4. However, little is known about the role of fetuin-A in AILI. In this study, we showed that fetuin-A is involved in the aggravation of hepatotoxicity during the initial phase of AILI progression. Treatment with APAP increased the expression and serum levels of fetuin-A in mice. Fetuin-A upregulated transcription of pro-inflammatory cytokines and chemokines through activation of TLR4 and also increased monocyte infiltration into the liver, leading to necroinflammatory reactions in AILI. However, these reactions were attenuated with the silencing of fetuin-A using adenoviral shRNA. As a result, mice with silenced fetuin-A exhibited less centrilobular necrosis and liver injury compared to controls in response to APAP. In conclusion, our results suggest that fetuin-A is an important hepatokine that mediates the hepatotoxicity of APAP through production of chemokines and thus regulates the infiltration of monocytes into the liver, a critical event in the inflammatory response during the initial phase of AILI. Our results indicate that a strategy based on the antagonism of fetuin-A may be a novel therapeutic approach to the treatment of acetaminophen-induced acute liver failure.
Collapse
Affiliation(s)
- Kang-Yo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanakro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Wonseok Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanakro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seung-Hwan Jung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanakro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jungmin Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanakro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyungtai Sim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanakro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - You-Jin Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanakro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Young-Jun Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanakro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yeonseok Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanakro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Byung-Hoon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanakro 1, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
12
|
Triantafyllou E, Woollard KJ, McPhail MJW, Antoniades CG, Possamai LA. The Role of Monocytes and Macrophages in Acute and Acute-on-Chronic Liver Failure. Front Immunol 2018; 9:2948. [PMID: 30619308 PMCID: PMC6302023 DOI: 10.3389/fimmu.2018.02948] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/30/2018] [Indexed: 12/28/2022] Open
Abstract
Acute and acute-on-chronic liver failure (ALF and ACLF), though distinct clinical entities, are considered syndromes of innate immune dysfunction. Patients with ALF and ACLF display evidence of a pro-inflammatory state with local liver inflammation, features of systemic inflammatory response syndrome (SIRS) and vascular endothelial dysfunction that drive progression to multi-organ failure. In an apparent paradox, these patients are concurrently immunosuppressed, exhibiting acquired immune defects that render them highly susceptible to infections. This paradigm of tissue injury succeeded by immunosuppression is seen in other inflammatory conditions such as sepsis, which share poor outcomes and infective complications that account for high morbidity and mortality. Monocyte and macrophage dysfunction are central to disease progression of ALF and ACLF. Activation of liver-resident macrophages (Kupffer cells) by pathogen and damage associated molecular patterns leads to the recruitment of innate effector cells to the injured liver. Early monocyte infiltration may contribute to local tissue destruction during the propagation phase and results in secretion of pro-inflammatory cytokines that drive SIRS. In the hepatic microenvironment, recruited monocytes mature into macrophages following local reprogramming so as to promote resolution responses in a drive to maintain tissue integrity. Intra-hepatic events may affect circulating monocytes through spill over of soluble mediators and exposure to apoptotic cell debris during passage through the liver. Hence, peripheral monocytes show numerous acquired defects in acute liver failure syndromes that impair their anti-microbial programmes and contribute to enhanced susceptibility to sepsis. This review will highlight the cellular and molecular mechanisms by which monocytes and macrophages contribute to the pathophysiology of ALF and ACLF, considering both hepatic inflammation and systemic immunosuppression. We identify areas for further research and potential targets for immune-based therapies to treat these devastating conditions.
Collapse
Affiliation(s)
- Evangelos Triantafyllou
- Division of Integrative Systems Medicine and Digestive Disease, Imperial College London, London, United Kingdom
- Division of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Kevin J. Woollard
- Division of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Mark J. W. McPhail
- Department of Inflammation Biology, Institute of Liver Studies, King's College London, London, United Kingdom
| | - Charalambos G. Antoniades
- Division of Integrative Systems Medicine and Digestive Disease, Imperial College London, London, United Kingdom
| | - Lucia A. Possamai
- Division of Integrative Systems Medicine and Digestive Disease, Imperial College London, London, United Kingdom
- Division of Immunology and Inflammation, Imperial College London, London, United Kingdom
| |
Collapse
|
13
|
Anti-Inflammatory Effect of a Polyphenol-Enriched Fraction from Acalypha wilkesiana on Lipopolysaccharide-Stimulated RAW 264.7 Macrophages and Acetaminophen-Induced Liver Injury in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7858094. [PMID: 30159118 PMCID: PMC6109486 DOI: 10.1155/2018/7858094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/22/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022]
Abstract
A polyphenol-enriched fraction (PEF) from Acalypha wilkesiana, whose leaves have been traditionally utilized for the treatment of diverse medical ailments, was investigated for the anti-inflammatory effect and molecular mechanisms by using lipopolysaccharide- (LPS-) stimulated RAW 264.7 macrophages and acetaminophen- (APAP-) induced liver injury mouse model. Results showed that PEF significantly attenuated LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production and suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) in RAW 264.7 macrophages. PEF also reduced the secretion of proinflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin- (IL-) 1β, and IL-6 in LPS-stimulated RAW 264.7 macrophages. Moreover, PEF potently inhibited LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs) as well as the activation of nuclear factor-κB (NF-κB) by preventing the degradation of inhibitor κB-α (IκB-α). In vivo, PEF pretreatment ameliorated APAP-induced liver injury and hepatic inflammation, as presented by decreased hepatic damage indicators and proinflammatory factors at both plasma and gene levels. Additionally, PEF pretreatment remarkably diminished Toll-like receptor 3 (TLR3) and TLR4 expression and the subsequent MAPKs and NF-κB activation. HPLC analysis revealed that two predominantly polyphenolic compounds present in PEF were geraniin and corilagin. These results indicated that PEF has an anti-inflammatory effect, and its molecular mechanisms may be involved in the inactivation of the TLR/MAPK/NF-κB signaling pathway, suggesting the therapeutic potential of PEF for inflammatory diseases.
Collapse
|
14
|
Abstract
Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the US, and decades of intense study of its pathogenesis resulted in the development of the antidote N-acetylcysteine, which facilitates scavenging of the reactive metabolite and is the only treatment in clinical use. However, the narrow therapeutic window of this intervention necessitates a better understanding of the intricacies of APAP-induced liver injury for the development of additional therapeutic approaches that can benefit late-presenting patients. More recent investigations into APAP hepatotoxicity have established the critical role of mitochondrial dysfunction in mediating liver injury as well as clarified mechanisms of APAP-induced hepatocyte cell death. Thus, it is now established that mitochondrial oxidative and nitrosative stress is a key mechanistic feature involved in downstream signaling after APAP overdose. The identification of specific mediators of necrotic cell death further establishes the regulated nature of APAP-induced hepatocyte cell death. In addition, the discovery of the role of mitochondrial dynamics and autophagy in APAP-induced liver injury provides additional insight into the elaborate cell signaling mechanisms involved in the pathogenesis of this important clinical problem. In spite of these new insights into the mechanisms of liver injury, significant controversy still exists on the role of innate immunity in APAP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
15
|
Xu T, Du Y, Fang XB, Chen H, Zhou DD, Wang Y, Zhang L. New insights into Nod-like receptors (NLRs) in liver diseases. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2018; 10:1-16. [PMID: 29593846 PMCID: PMC5871625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 02/19/2018] [Indexed: 06/08/2023]
Abstract
Activation of inflammatory signaling pathways is of central importance in the pathogenesis of alcoholic liver disease (ALD) and nonalcoholic steatohepatitis (NASH). Nod-like receptors (NLRs) are intracellular innate immune sensors of microbes and danger signals that control multiple aspects of inflammatory responses. Recent studies demonstrated that NLRs are expressed and activated in innate immune cells as well as in parenchymal cells in the liver. For example, NLRP3 signaling is involved in liver ischemia-reperfusion (I/R) injury and silencing of NLRP3 can protect the liver from I/R injury. In this article, we review the evidence that highlights the critical importance of NLRs in the prevalent liver diseases. The significance of NLR-induced intracellular signaling pathways and cytokine production is also evaluated.
Collapse
Affiliation(s)
- Tao Xu
- School of Pharmacy, Anhui Medical UniversityHefei 230032, China
- Institute for Liver Disease of Anhui Medical University, Anhui Medical UniversityHefei 230032, China
| | - Yan Du
- School of Pharmacy, Anhui Medical UniversityHefei 230032, China
- Institute for Liver Disease of Anhui Medical University, Anhui Medical UniversityHefei 230032, China
| | - Xiu-Bin Fang
- The Second Affiliated Hospital of Anhui Medical UniversityFu Rong Road, Hefei 230601, Anhui Province, China
| | - Hao Chen
- School of Pharmacy, Anhui Medical UniversityHefei 230032, China
- Institute for Liver Disease of Anhui Medical University, Anhui Medical UniversityHefei 230032, China
| | - Dan-Dan Zhou
- School of Pharmacy, Anhui Medical UniversityHefei 230032, China
- Institute for Liver Disease of Anhui Medical University, Anhui Medical UniversityHefei 230032, China
| | - Yang Wang
- School of Pharmacy, Anhui Medical UniversityHefei 230032, China
- Institute for Liver Disease of Anhui Medical University, Anhui Medical UniversityHefei 230032, China
| | - Lei Zhang
- School of Pharmacy, Anhui Medical UniversityHefei 230032, China
- Institute for Liver Disease of Anhui Medical University, Anhui Medical UniversityHefei 230032, China
| |
Collapse
|
16
|
Bachmann M, Pfeilschifter J, Mühl H. A Prominent Role of Interleukin-18 in Acetaminophen-Induced Liver Injury Advocates Its Blockage for Therapy of Hepatic Necroinflammation. Front Immunol 2018; 9:161. [PMID: 29472923 PMCID: PMC5809456 DOI: 10.3389/fimmu.2018.00161] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 01/18/2018] [Indexed: 12/19/2022] Open
Abstract
Acetaminophen [paracetamol, N-acetyl-p-aminophenol (APAP)]-induced acute liver injury (ALI) not only remains a persistent clinical challenge but likewise stands out as well-characterized paradigmatic model of drug-induced liver damage. APAP intoxication associates with robust hepatic necroinflammation the role of which remains elusive with pathogenic but also pro-regenerative/-resolving functions being ascribed to leukocyte activation. Here, we shine a light on and put forward a unique role of the interleukin (IL)-1 family member IL-18 in experimental APAP-induced ALI. Indeed, amelioration of disease as previously observed in IL-18-deficient mice was further substantiated herein by application of the IL-18 opponent IL-18-binding protein (IL-18BPd:Fc) to wild-type mice. Data altogether emphasize crucial pathological action of this cytokine in APAP toxicity. Adding recombinant IL-22 to IL-18BPd:Fc further enhanced protection from liver injury. In contrast to IL-18, the role of prototypic pro-inflammatory IL-1 and tumor necrosis factor-α is controversially discussed with lack of effects or even protective action being repeatedly reported. A prominent detrimental function for IL-18 in APAP-induced ALI as proposed herein should relate to its pivotal role for hepatic expression of interferon-γ and Fas ligand, both of which aggravate APAP toxicity. As IL-18 serum levels increase in patients after APAP overdosing, targeting IL-18 may evolve as novel therapeutic option in those hard-to-treat patients where standard therapy with N-acetylcysteine is unsuccessful. Being a paradigmatic experimental model of ALI, current knowledge on ill-fated properties of IL-18 in APAP intoxication likewise emphasizes the potential of this cytokine to serve as therapeutic target in other entities of inflammatory liver diseases.
Collapse
Affiliation(s)
- Malte Bachmann
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Josef Pfeilschifter
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Heiko Mühl
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
17
|
Bachmann M, Waibler Z, Pleli T, Pfeilschifter J, Mühl H. Type I Interferon Supports Inducible Nitric Oxide Synthase in Murine Hepatoma Cells and Hepatocytes and during Experimental Acetaminophen-Induced Liver Damage. Front Immunol 2017; 8:890. [PMID: 28824623 PMCID: PMC5534483 DOI: 10.3389/fimmu.2017.00890] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022] Open
Abstract
Cytokine regulation of high-output nitric oxide (NO) derived from inducible NO synthase (iNOS) is critically involved in inflammation biology and host defense. Herein, we set out to characterize the role of type I interferon (IFN) as potential regulator of hepatic iNOS in vitro and in vivo. In this regard, we identified in murine Hepa1-6 hepatoma cells a potent synergism between pro-inflammatory interleukin-β/tumor necrosis factor-α and immunoregulatory IFNβ as detected by analysis of iNOS expression and nitrite release. Upregulation of iNOS by IFNβ coincided with enhanced binding of signal transducer and activator of transcription-1 to a regulatory region at the murine iNOS promoter known to support target gene expression in response to this signaling pathway. Synergistic iNOS induction under the influence of IFNβ was confirmed in alternate murine Hepa56.1D hepatoma cells and primary hepatocytes. To assess iNOS regulation by type I IFN in vivo, murine acetaminophen (APAP)-induced sterile liver inflammation was investigated. In this model of acute liver injury, excessive necroinflammation drives iNOS expression in diverse liver cell types, among others hepatocytes. Herein, we demonstrate impaired iNOS expression in type I IFN receptor-deficient mice which associated with diminished APAP-induced liver damage. Data presented indicate a vital role of type I IFN within the inflamed liver for fine-tuning pathological processes such as overt iNOS expression.
Collapse
Affiliation(s)
- Malte Bachmann
- Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Zoe Waibler
- Junior Research Group "Novel Vaccination Strategies Early Immune Responses", Paul-Ehrlich-Institut, Langen, Germany
| | - Thomas Pleli
- Department of Medicine I, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Josef Pfeilschifter
- Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Heiko Mühl
- Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
18
|
He Y, Feng D, Li M, Gao Y, Ramirez T, Cao H, Kim SJ, Yang Y, Cai Y, Ju C, Wang H, Li J, Gao B. Hepatic mitochondrial DNA/Toll-like receptor 9/MicroRNA-223 forms a negative feedback loop to limit neutrophil overactivation and acetaminophen hepatotoxicity in mice. Hepatology 2017; 66:220-234. [PMID: 28295449 PMCID: PMC5481471 DOI: 10.1002/hep.29153] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/08/2017] [Accepted: 03/07/2017] [Indexed: 12/24/2022]
Abstract
Acetaminophen (APAP) overdose is a leading cause of acute liver failure worldwide, in which mitochondrial DNA (mtDNA) released by damaged hepatocytes activates neutrophils through binding of Toll-like receptor 9 (TLR9), further aggravating liver injury. Here, we demonstrated that mtDNA/TLR9 also activates a negative feedback pathway through induction of microRNA-223 (miR-223) to limit neutrophil overactivation and liver injury. After injection of APAP in mice, levels of miR-223, the most abundant miRNAs in neutrophils, were highly elevated in neutrophils. Disruption of the miR-223 gene exacerbated APAP-induced hepatic neutrophil infiltration, oxidative stress, and injury and enhanced TLR9 ligand-mediated activation of proinflammatory mediators in neutrophils. An additional deletion of the intercellular adhesion molecule 1 (ICAM-1) gene ameliorated APAP-induced neutrophil infiltration and liver injury in miR-223 knockout mice. In vitro experiments revealed that miR-223-deficient neutrophils were more susceptible to TLR9 agonist-mediated induction of proinflammatory mediators and nuclear factor kappa B (NF-κB) signaling, whereas overexpression of miR-223 attenuated these effects in neutrophils. Moreover, inhibition of TLR9 signaling by either treatment with a TLR9 inhibitor or by disruption of TLR9 gene partially, but significantly, suppressed miR-223 expression in neutrophils post-APAP injection. In contrast, activation of TLR9 up-regulated miR-223 expression in neutrophils in vivo and in vitro. Mechanistically, activation of TLR9 up-regulated miR-223 by enhancing NF-κB binding on miR-223 promoter, whereas miR-223 attenuated TLR9/NF-κB-mediated inflammation by targeting IκB kinase α expression. Collectively, up-regulation of miR-223 plays a key role in terminating the acute neutrophilic response and is a therapeutic target for treatment of APAP-induced liver failure. (Hepatology 2017;66:220-234).
Collapse
Affiliation(s)
- Yong He
- School of pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China,Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA,Institute for Liver Diseases, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Man Li
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yanhang Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Teresa Ramirez
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haixia Cao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seung-Jin Kim
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yang Yang
- School of pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China,Institute for Liver Diseases, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yan Cai
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cynthia Ju
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Hua Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA,Institute for Liver Diseases, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Jun Li
- School of pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China,Institute for Liver Diseases, Anhui Medical University, Hefei, Anhui, 230032, China,Corresponding authors: Bin Gao, M.D., Ph.D., Laboratory of Liver Diseases, NIAAA/NIH, Bethesda, MD 20892; Tel: 301-443-3998. ; or Jun Li, M.D., Ph.D., School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui, China. Tel/fax: +86 551 65161001.
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA,Corresponding authors: Bin Gao, M.D., Ph.D., Laboratory of Liver Diseases, NIAAA/NIH, Bethesda, MD 20892; Tel: 301-443-3998. ; or Jun Li, M.D., Ph.D., School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui, China. Tel/fax: +86 551 65161001.
| |
Collapse
|
19
|
Chen LC, Hu LH, Yin MC. Alleviative effects from boswellic acid on acetaminophen-induced hepatic injury - Corrected and republished from: Biomedicine (Taipei). 2016 Jun; 6 (2): 9. doi: 10.7603/s40681-016-0009-1PMCID: PMC4864770. Biomedicine (Taipei) 2017; 7:13. [PMID: 28612711 PMCID: PMC5479439 DOI: 10.1051/bmdcn/2017070207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/11/2016] [Indexed: 01/10/2023] Open
Abstract
Protective effects of boswellic acid (BA) against acetaminophen (APAP)-induced hepatotoxicity in Balb/ cA mice were examined. BA, at 0.05 or 0.1%, was supplied for 4 weeks. Acute liver injury was induced by APAP treatment. Results showed that BA intake increased hepatic BA bioavailability. APAP treatment decreased glutathione (GSH) level, increased reactive oxygen species (ROS) and oxidized glutathione (GSSG) production; and lowered activity and protein expression of glutathione reductase (GR) and heme oxygenase (HO)-1 in liver. BA intake at both doses alleviated subsequent APAP-induced oxidative stress by retaining GSH content, decreasing ROS and GSSG formations, reserving activity and expression of GR and HO-1 in liver, and lowering hepatic cytochrome P450 2E1 activity and expression. APAP treatment enhanced hepatic levels of interleukin-6, tumor necrosis factor-alpha and monocyte chemoattractant protein-1. BA pre-intake diminished APAP-induced release of those inflammatory cytokines and chemokines. APAP up-regulated hepatic protein expression of toll-like receptor (TLR)-3, TLR-4, MyD88, nuclear factor kappa B (NF-κB) p50, NF-κB p65 and JNK. BA pre-intake at both doses suppressed the expression of NF-κB p65 and p-JNK, and only at 0.1% down-regulated hepatic TLR-3, TLR-4 and MyD88 expression. APAP led to obvious foci of inflammatory cell infiltration in liver, determined by H&E stain. BA intake at both doses attenuated hepatic inflammatory infiltration. These findings support that boswellic acid is a potent hepato-protective agent.
Collapse
Affiliation(s)
- Lung-Che Chen
- Department of Otolaryngology, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Li-Hong Hu
- Shanghai Research Center for the Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mei-Chin Yin
- Department of Nutrition, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
20
|
Zhang C, Feng J, Du J, Zhuo Z, Yang S, Zhang W, Wang W, Zhang S, Iwakura Y, Meng G, Fu YX, Hou B, Tang H. Macrophage-derived IL-1α promotes sterile inflammation in a mouse model of acetaminophen hepatotoxicity. Cell Mol Immunol 2017; 15:973-982. [PMID: 28504245 DOI: 10.1038/cmi.2017.22] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 02/15/2017] [Accepted: 03/13/2017] [Indexed: 01/08/2023] Open
Abstract
The metabolic intermediate of acetaminophen (APAP) can cause severe hepatocyte necrosis, which triggers aberrant immune activation of liver non-parenchymal cells (NPC). Overzealous hepatic inflammation determines the morbidity and mortality of APAP-induced liver injury (AILI). Interleukin-1 receptor (IL-1R) signaling has been shown to play a critical role in various inflammatory conditions, but its precise role and underlying mechanism in AILI remain debatable. Herein, we show that NLRP3 inflammasome activation of IL-1β is dispensable to AILI, whereas IL-1α, the other ligand of IL-1R1, accounts for hepatic injury by a lethal dose of APAP. Furthermore, Kupffer cells function as a major source of activated IL-1α in the liver, which is activated by damaged hepatocytes through TLR4/MyD88 signaling. Finally, IL-1α is able to chemoattract and activate CD11b+Gr-1+ myeloid cells, mostly neutrophils and inflammatory monocytes, to amplify deteriorated inflammation in the lesion. Therefore, this work identifies that MyD88-dependent activation of IL-1α in Kupffer cells plays a central role in the immunopathogenesis of AILI and implicates that IL-1α is a promising therapeutic target for AILI treatment.
Collapse
Affiliation(s)
- Chao Zhang
- The Key Laboratory of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jin Feng
- The Key Laboratory of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jun Du
- The Institute of Biotechnology, Shanxi University, 030006, Taiyuan, China
| | - Zhiyong Zhuo
- The Key Laboratory of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Shuo Yang
- The Key Laboratory of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Weihong Zhang
- The Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Weihong Wang
- The Key Laboratory of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Shengyuan Zhang
- The Key Laboratory of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yoichiro Iwakura
- Division of Experimental Animal Immunology, Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, 278-0022, Chiba, Japan
| | - Guangxun Meng
- The Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yang-Xin Fu
- The Key Laboratory of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,Department of Pathology, The University of Chicago, 60637, Chicago, USA, IL
| | - Baidong Hou
- The Key Laboratory of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Hong Tang
- The Key Laboratory of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China. .,The Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 200031, Shanghai, China.
| |
Collapse
|
21
|
Brempelis KJ, Yuen SY, Schwarz N, Mohar I, Crispe IN. Central role of the TIR-domain-containing adaptor-inducing interferon-β (TRIF) adaptor protein in murine sterile liver injury. Hepatology 2017; 65:1336-1351. [PMID: 28120431 PMCID: PMC5391172 DOI: 10.1002/hep.29078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 01/11/2017] [Accepted: 01/18/2017] [Indexed: 12/31/2022]
Abstract
UNLABELLED Multiple pathways drive the sterile injury response in the liver; however, it is unclear how the type of cells injured or the mechanism of injury activates these pathways. Here, we use a model of selective hepatocyte death to investigate sterile liver injury. In this model, the TIR-domain-containing adaptor-inducing interferon-β (TRIF) was a central mediator of the resulting intrahepatic inflammatory response that was independent of both upstream Toll-like receptor (TLR) 4 signaling and downstream type I interferon (IFN) signaling. TRIF was required for induction of interleukin (IL)-10, IL-6, and IL-1β cytokines. Conversely, although induction of C-C motif chemokine ligand (CCL) 2 and C-X-C motif chemokine ligand (CXCL) 1 chemokines and up-regulation of chemokine (Ccl2, Ccl7, Cxcl1, Cxcl2, and Cxcl10) and cell-adhesion (intracellular adhesion molecule 1 and vascular cell adhesion molecule 1) genes involved in myeloid cell recruitment was reduced in a majority of TRIF-/- mice, a subset of TRIF-/- mice showed breakthrough inflammation and the ability to induce these genes and proteins, indicating that redundant pathways exist to respond to hepatocyte death. Furthermore, we found that hepatocytes themselves were the main responders to hepatocyte death, increasing transcription of genes involved in myeloid cell recruitment more than either liver sinusoidal endothelial cells or Kupffer cells. CONCLUSION Our studies define a TRIF-dependent, TLR4- and type I IFN-independent pathway of sterile liver injury in which hepatocytes are both the targets of damage and the principal responding cell type. (Hepatology 2017;65:1336-1351).
Collapse
Affiliation(s)
- Katherine J. Brempelis
- Department of Global Health, University of Washington, Seattle, WA 98195, USA,Department of Pathology, University of Washington, Seattle, WA 98195, USA,Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Sebastian Y. Yuen
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Nicole Schwarz
- Department of Pathology, University of Washington, Seattle, WA 98195, USA,Institute of Immunology, University of Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Isaac Mohar
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Ian N. Crispe
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
22
|
Horng CT, Liu ZH, Huang YT, Lee HJ, Wang CJ. Extract from Mulberry (Morus australis) leaf decelerate acetaminophen induced hepatic inflammation involving downregulation of myeloid differentiation factor 88 (MyD88) signals. J Food Drug Anal 2016; 25:862-871. [PMID: 28987363 PMCID: PMC9328886 DOI: 10.1016/j.jfda.2016.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 12/20/2022] Open
Abstract
Acetaminophen (APAP) induced inflammation and oxidative stress can cause cell death to induce liver damage. The antioxidative and anti-inflammatory effect of Mulberry (Morus australis) leaf extract (MLE) was shown in previous studies. In this study, we investigated the modulation of MLE on APAP induced inflammation and oxidative stress in rat liver injury or liver cancer cell (HepG2). Wistar rat was fed orally with MLE (0.5% or 1.0 %) for 1 week, and then, 900 mg/kg of APAP was injected intraperitoneally (i.p.). Pretreatment of MLE decreased obvious foci of inflammatory cell infiltration in liver. It also reduced the expression of inflammatory parameters including cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and nuclear factor kappa B (NF-κB) in liver. Treating with MLE increased the antioxidative enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase. Giving APAP to HepG2 hepatocyte was conducted to elucidate the mechanism of MLE or its functional components. The result showed that APAP upregulated hepatic protein expression of (myeloid differentiation factor 88) MyD88, nuclear factor kappa B (NF-kB), inhibitor of kappa B (IkB), c-Jun N-terminal kinases (JNK), and receptor interacting proteins (RIP1 and RIP3). Pretreatment of MLE, gallic acid (GA), gallocatechin gallate (GCG), or protocatechuic acid (PCA) suppressed the indicated protein expression. These findings confirmed that MLE has the potential to protect liver from APAP-induced inflammation, and the protecting mechanism might involve decreasing oxidative stress and regulating the innate immunity involving MyD88.
Collapse
Affiliation(s)
- Chi-Ting Horng
- Institute of Biochemistry, Microbiology and Immunology, Medical College, Chung Shan Medical University, Taichung, Taiwan; Medical Education Center, Kaohsiung Armed Forces General Hospital, Kaohsiung City, Taiwan
| | - Zhi-Hong Liu
- Institute of Biochemistry, Microbiology and Immunology, Medical College, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Ting Huang
- Institute of Biochemistry, Microbiology and Immunology, Medical College, Chung Shan Medical University, Taichung, Taiwan
| | - Huei-Jane Lee
- Institute of Biochemistry, Microbiology and Immunology, Medical College, Chung Shan Medical University, Taichung, Taiwan; Department of Biochemistry, School of Medicine, Medical College, Chung Shan Medical University, Taichung, Taiwan; Department of Clinical Biochemistry, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Chau-Jong Wang
- Institute of Biochemistry, Microbiology and Immunology, Medical College, Chung Shan Medical University, Taichung, Taiwan; Department of Clinical Biochemistry, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
23
|
Carson WF, Kunkel SL. Regulation of Cellular Immune Responses in Sepsis by Histone Modifications. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 106:191-225. [PMID: 28057212 DOI: 10.1016/bs.apcsb.2016.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Severe sepsis, septic shock, and related inflammatory syndromes are driven by the aberrant expression of proinflammatory mediators by immune cells. During the acute phase of sepsis, overexpression of chemokines and cytokines drives physiological stress leading to organ failure and mortality. Following recovery from sepsis, the immune system exhibits profound immunosuppression, evidenced by an inability to produce the same proinflammatory mediators that are required for normal responses to infectious microorganisms. Gene expression in inflammatory responses is influenced by the transcriptional accessibility of the chromatin, with histone posttranslational modifications determining whether inflammatory gene loci are set to transcriptionally active, repressed, or poised states. Experimental evidence indicates that histone modifications play a central role in governing the cytokine storm of severe sepsis, and that aberrant chromatin modifications induced during the acute phase of sepsis may mediate chronic immunosuppression in sepsis survivors. This review will focus on the role of histone modifications in governing immune responses in severe sepsis, with an emphasis on specific leukocyte subsets and the histone modifications observed in these cells during chronic stages of sepsis. Additionally, the expression and function of chromatin-modifying enzymes (CMEs) will be discussed in the context of severe sepsis, as potential mediators of epigenetic regulation of gene expression in sepsis responses. In summary, this review will argue for the use of chromatin modifications and CME expression in leukocytes as potential biomarkers of immunosuppression in patients with severe sepsis.
Collapse
Affiliation(s)
- W F Carson
- University of Michigan Medical School, Ann Arbor, MI, United States.
| | - S L Kunkel
- University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
24
|
Zhang L, Xiang W, Wang G, Yan Z, Zhu Z, Guo Z, Sengupta R, Chen AF, Loughran PA, Lu B, Wang Q, Billiar TR. Interferon β (IFN-β) Production during the Double-stranded RNA (dsRNA) Response in Hepatocytes Involves Coordinated and Feedforward Signaling through Toll-like Receptor 3 (TLR3), RNA-dependent Protein Kinase (PKR), Inducible Nitric Oxide Synthase (iNOS), and Src Protein. J Biol Chem 2016; 291:15093-107. [PMID: 27226571 DOI: 10.1074/jbc.m116.717942] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Indexed: 12/19/2022] Open
Abstract
The sensing of double-stranded RNA (dsRNA) in the liver is important for antiviral defenses but can also contribute to sterile inflammation during liver injury. Hepatocytes are often the target of viral infection and are easily injured by inflammatory insults. Here we sought to establish the pathways involved in the production of type I interferons (IFN-I) in response to extracellular poly(I:C), a dsRNA mimetic, in hepatocytes. This was of interest because hepatocytes are long-lived and, unlike most immune cells that readily die after activation with dsRNA, are not viewed as cells with robust antimicrobial capacity. We found that poly(I:C) leads to rapid up-regulation of inducible nitric oxide synthase (iNOS), double-stranded RNA-dependent protein kinase (PKR), and Src. The production of IFN-β was dependent on iNOS, PKR, and Src and partially dependent on TLR3/Trif. iNOS and Src up-regulation was partially dependent on TLR3/Trif but entirely dependent on PKR. The phosphorylation of TLR3 on tyrosine 759 was shown to increase in parallel to IFN-β production in an iNOS- and Src-dependent manner, and Src was found to directly interact with TLR3 in the endosomal compartment of poly(I:C)-treated cells. Furthermore, we identified a robust NO/cGMP/PKG-dependent feedforward pathway for the amplification of iNOS expression. These data identify iNOS/NO as an integral component of IFN-β production in response to dsRNA in hepatocytes in a pathway that involves the coordinated activities of TLR3/Trif and PKR.
Collapse
Affiliation(s)
- Liyong Zhang
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Wenpei Xiang
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, the Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoliang Wang
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Zhengzheng Yan
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Zhaowei Zhu
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Zhong Guo
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Rajib Sengupta
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Alex F Chen
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Patricia A Loughran
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, the Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, and
| | - Ben Lu
- the Xiangya Third Hospital and Central South University School of Medicine, Changsha, China
| | - Qingde Wang
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Timothy R Billiar
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213,
| |
Collapse
|
25
|
Chen LC, Hu LH, Yin MC. Alleviative effects from boswellic acid on acetaminophen-induced hepatic injury. Biomedicine (Taipei) 2016; 6:9. [PMID: 27161000 PMCID: PMC4864770 DOI: 10.7603/s40681-016-0009-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/11/2016] [Indexed: 02/03/2023] Open
Abstract
Protective effects of boswellic acid (BA) against acetaminophen (APAP)-induced hepatotoxicity in Balb/ cA mice were examined. BA, at 0.05 or 0.1%, was supplied for 4 weeks. Acute liver injury was induced by APAP treatment. Results showed that BA intake increased hepatic BA bioavailability. APAP treatment decreased glutathione (GSH) level, increased reactive oxygen species (ROS) and oxidized glutathione (GSSG) production; and lowered activity and protein expression of glutathione reductase (GR) and heme oxygenase (HO)-1 in liver. BA intake at both doses alleviated subsequent APAP-induced oxidative stress by retaining GSH content, decreasing ROS and GSSG formations, reserving activity and expression of GR and HO-1 in liver, and lowering hepatic cytochrome P450 2E1 activity and expression. APAP treatment enhanced hepatic levels of interleukin-6, tumor necrosis factor-alpha and monocyte chemoattractant protein-1. BA pre-intake diminished APAP-induced release of those inflammatory cytokines and chemokines. APAP upregulated hepatic protein expression of toll-like receptor (TLR)-3, TLR-4, MyD88, nuclear factor kappa B (NF-κB) p50, NF-κB p65 and JNK. BA pre-intake at both doses suppressed the expression of NF-κB p65 and p-JNK, and only at 0.1% down-regulated hepatic TLR-3, TLR-4 and MyD88 expression. APAP led to obvious foci of inflammatory cell infiltration in liver, determined by H&E stain. BA intake at both doses attenuated hepatic inflammatory infiltration. These findings support that boswellic acid is a potent hepatoprotective agent.
Collapse
Affiliation(s)
- Lung-Che Chen
- Department of Otolaryngology, Taipei Medical University Hospital, 110, Taipei, Taiwan
| | - Li-Hong Hu
- Shanghai Research Center for the Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Mei-Chin Yin
- Department of Nutrition, China Medical University, 404, No. 91, Hsueh-Shih Road, Taichung, China.
| |
Collapse
|
26
|
Mühl H. STAT3, a Key Parameter of Cytokine-Driven Tissue Protection during Sterile Inflammation - the Case of Experimental Acetaminophen (Paracetamol)-Induced Liver Damage. Front Immunol 2016; 7:163. [PMID: 27199988 PMCID: PMC4852172 DOI: 10.3389/fimmu.2016.00163] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 04/15/2016] [Indexed: 12/12/2022] Open
Abstract
Acetaminophen (APAP, N-acetyl-p-aminophenol, or paracetamol) overdosing is a prevalent cause of acute liver injury. While clinical disease is initiated by overt parenchymal hepatocyte necrosis in response to the analgetic, course of intoxication is substantially influenced by associated activation of innate immunity. This process is supposed to be set in motion by release of danger-associated molecular patterns (DAMPs) from dying hepatocytes and is accompanied by an inflammatory cytokine response. Murine models of APAP-induced liver injury emphasize the complex role that DAMPs and cytokines play in promoting either hepatic pathogenesis or resolution and recovery from intoxication. Whereas the function of key inflammatory cytokines is controversially discussed, a subclass of specific cytokines capable of efficiently activating the hepatocyte signal transducer and activator of transcription (STAT)-3 pathway stands out as being consistently protective in murine models of APAP intoxication. Those include foremost interleukin (IL)-6, IL-11, IL-13, and IL-22. Above all, activation of STAT3 under the influence of these cytokines has the capability to drive hepatocyte compensatory proliferation, a key principle of the regenerating liver. Herein, the role of these specific cytokines during experimental APAP-induced liver injury is highlighted and discussed in a broader perspective. In hard-to-treat or at-risk patients, standard therapy may fail and APAP intoxication can proceed toward a fatal condition. Focused administration of recombinant STAT3-activating cytokines may evolve as novel therapeutic approach under those ill-fated conditions.
Collapse
Affiliation(s)
- Heiko Mühl
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt am Main , Frankfurt am Main , Germany
| |
Collapse
|
27
|
A Novel Resolvin-Based Strategy for Limiting Acetaminophen Hepatotoxicity. Clin Transl Gastroenterol 2016; 7:e153. [PMID: 26986653 PMCID: PMC4822092 DOI: 10.1038/ctg.2016.13] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/28/2015] [Indexed: 12/31/2022] Open
Abstract
Objectives: Acetaminophen (APAP)-induced hepatotoxicity is a major cause of morbidity and mortality. The current pharmacologic treatment for APAP hepatotoxicity, N-acetyl cysteine (NAC), targets the initial metabolite-driven injury but does not directly affect the host inflammatory response. Because of this, NAC is less effective if given at later stages in the disease course. Resolvins, a novel group of lipid mediators shown to attenuate host inflammation, may be a therapeutic intervention for APAP hepatotoxicity. Methods: The temporal patterns of liver injury and neutrophil activation were investigated in a murine model of APAP hepatotoxicity. In addition, the effect of neutrophil depletion and resolvin administration on the severity of liver injury induced by APAP was studied. In vitro studies to investigate the mechanism of resolvin effect on hepatocyte injury and neutrophil adhesion were performed. Results: We demonstrate that hepatic neutrophil activation occurs secondary to the initial liver injury induced directly by APAP. We also show that neutrophil depletion attenuates APAP-induced liver injury, and administration of resolvins hours after APAP challenge not only attenuates liver injury, but also extends the therapeutic window eightfold compared to NAC. Mechanistic in vitro analysis highlights resolvins' ability to inhibit neutrophil attachment to endothelial cells in the presence of the reactive metabolite of APAP. Conclusions: This study highlights the ability of resolvins to protect against APAP-induced liver injury and extend the therapeutic window compared to NAC. Although the mechanism for resolvin-mediated hepatoprotection is likely multifactorial, inhibition of neutrophil infiltration and activation appears to play an important role.
Collapse
|
28
|
Zheng Z, Sheng Y, Lu B, Ji L. The therapeutic detoxification of chlorogenic acid against acetaminophen-induced liver injury by ameliorating hepatic inflammation. Chem Biol Interact 2015; 238:93-101. [PMID: 26079055 DOI: 10.1016/j.cbi.2015.05.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 05/12/2015] [Accepted: 05/26/2015] [Indexed: 12/20/2022]
Abstract
Chlorogenic acid (CGA) has been reported to prevent acetaminophen (AP)-induced hepatotoxicity when mice were pre-administered orally with CGA for consecutive 7days before AP intoxication in our previous study. This study investigated the therapeutic detoxification of CGA against AP-induced hepatotoxicity and the engaged mechanism. The mice were orally administered with CGA (10, 20, 40mg/kg) at 1h after given AP (400mg/kg), and another 3h later the mice were killed for the following experiments. Results of serum transaminases analysis and histological evaluation demonstrated the detoxification of CGA against AP-induced hepatotoxicity. CGA reduced AP-induced the increased myeloperoxidase (MPO) enzymatic activity and its expression. CGA reduced AP-induced the increased liver expression of toll-like receptor (TLR)-3/4 and MyD88, and the increased phosphorylation of inhibitor of kappa B (IκB) and p65 subunit of nuclear factor κB (NFκB). CGA reduced AP-induced the increased NFκBp65 expression in nucleus. In addition, CGA reduced AP-induced the increased serum levels and liver mRNA expression of tumor necrosis factor alpha (TNFα), interleukin (IL)-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), and keratinocyte chemoattractant (KC). Taken together, our results demonstrate the therapeutic detoxification of CGA against AP-induced liver injury, and TLR3/4 and NFκB signaling pathway are involved in such process.
Collapse
Affiliation(s)
- Zhiyong Zheng
- The Shanghai Key Laboratory of Complex Prescription, The MOE Key Laboratory for Standardization of Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuchen Sheng
- Center for Drug Safety Evaluation and Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bing Lu
- The Shanghai Key Laboratory of Complex Prescription, The MOE Key Laboratory for Standardization of Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lili Ji
- The Shanghai Key Laboratory of Complex Prescription, The MOE Key Laboratory for Standardization of Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
29
|
Scheiermann P, Bachmann M, Härdle L, Pleli T, Piiper A, Zwissler B, Pfeilschifter J, Mühl H. Application of IL-36 receptor antagonist weakens CCL20 expression and impairs recovery in the late phase of murine acetaminophen-induced liver injury. Sci Rep 2015; 5:8521. [PMID: 25687687 PMCID: PMC4330543 DOI: 10.1038/srep08521] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/22/2015] [Indexed: 12/14/2022] Open
Abstract
Overdosing of the analgesic acetaminophen (APAP, paracetamol) is a major cause of acute liver injury. Whereas toxicity is initiated by hepatocyte necrosis, course of disease is regulated by mechanisms of innate immunity having the potential to serve in complex manner pathogenic or pro-regenerative functions. Interleukin (IL)-36γ has been identified as novel IL-1-like cytokine produced by and targeting epithelial (-like) tissues. Herein, we investigated IL-36γ in acute liver disease focusing on murine APAP-induced hepatotoxicity. Enhanced expression of hepatic IL-36γ and its prime downstream chemokine target CCL20 was detected upon liver injury. CCL20 expression coincided with the later regeneration phase of intoxication. Primary murine hepatocytes and human Huh7 hepatocellular carcinoma cells indeed displayed enhanced IL-36γ expression when exposed to inflammatory cytokines. Administration of IL-36 receptor antagonist (IL-36Ra) decreased hepatic CCL20 in APAP-treated mice. Unexpectedly, IL-36Ra likewise increased late phase hepatic injury as detected by augmented serum alanine aminotransferase activity and histological necrosis which suggests disturbed tissue recovery upon IL-36 blockage. Finally, we demonstrate induction of IL-36γ in inflamed livers of endotoxemic mice. Observations presented introduce IL-36γ as novel parameter in acute liver injury which may contribute to the decision between unleashed tissue damage and initiation of liver regeneration during late APAP toxicity.
Collapse
Affiliation(s)
- Patrick Scheiermann
- 1] pharmazentrum frankfurt/ZAFES, University Hospital Goethe-University Frankfurt [2] Clinic for Anesthesiology, University Hospital Ludwig-Maximilians-University Munich
| | - Malte Bachmann
- pharmazentrum frankfurt/ZAFES, University Hospital Goethe-University Frankfurt
| | - Lorena Härdle
- pharmazentrum frankfurt/ZAFES, University Hospital Goethe-University Frankfurt
| | - Thomas Pleli
- Medical Clinic I, University Hospital Goethe-University Frankfurt, Germany
| | - Albrecht Piiper
- Medical Clinic I, University Hospital Goethe-University Frankfurt, Germany
| | - Bernhard Zwissler
- Clinic for Anesthesiology, University Hospital Ludwig-Maximilians-University Munich
| | - Josef Pfeilschifter
- pharmazentrum frankfurt/ZAFES, University Hospital Goethe-University Frankfurt
| | - Heiko Mühl
- pharmazentrum frankfurt/ZAFES, University Hospital Goethe-University Frankfurt
| |
Collapse
|
30
|
Zhi-Feng W, Le-Yuan Z, Xiao-Hui Z, Ya-Bo G, Jian-Ying Z, Yong H, Zhao-Chong Z. TLR4-dependent immune response promotes radiation-induced liver disease by changing the liver tissue interstitial microenvironment during liver cancer radiotherapy. Radiat Res 2015; 182:674-82. [PMID: 25402554 DOI: 10.1667/rr13630.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Liver tissue interstitial fluid (TIF) a special microenvironment around liver cells, which may play a vital role in cell communication during liver injury. Moreover, toll-like receptor 4 (TLR4) is an important trigger of the immune response that may also play a role in liver injuries, including radiation-induced liver disease (RILD). Therefore, the purpose of this study was to identify the roles of the TLR4-dependent immune response and TIFs in RILD after radiation therapy (RT) for liver cancer. This study consisted of two phases, and in the primary phase, the livers of TLR4 mutant (TLR4(-)) and normal (TLR4(+)) mice were irradiated with 30 Gy. TIF was then obtained from mouse livers and assessed by cytokine array analysis 20 days after irradiation, and cytokines in the TIFs, TLR4 and RILD were analyzed. In the second or validation phase, hepatocytes were isolated from TLR4(+) or TLR4(-) mice irradiated with 8 Gy and were co-cultured with TIFs from mouse livers, apoptosis of the hepatocytes was then measured using flow cytometry. We found that severe RILD was accompanied by higher expression of granulocyte macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor-related apoptosis inducing ligand (TRAIL) and vascular endothelial growth factor receptor 2(VEGFR-2) in liver TIFs, from in TLR4(+) mice compared with TLR4(-) mice (P < 0.05). In both TLR4(+) and TLR4(-) hepatocytes, apoptosis after irradiaton was increased significantly after co-culture in TIFs from TLR4(+) mice that had their livers irradiated, compared with TIFs from TLR4(-) mice that had their livers irradiated or TIFs from unirradiated mice (P < 0.05). In summary, these findings indicate that the TLR4-dependent immune response may promote RILD by enhancing the expression of GM-CSF, VEGFR-2 and TRAIL in liver TIFs.
Collapse
Affiliation(s)
- Wu Zhi-Feng
- a Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Karthivashan G, Arulselvan P, Fakurazi S. Pathways involved in acetaminophen hepatotoxicity with specific targets for inhibition/downregulation. RSC Adv 2015. [DOI: 10.1039/c5ra07838e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Insights on molecular/immunological mechanisms involve in APAP hepatotoxicity and pave way for researchers/clinicians/pharma bodies to identify novel biomarkers, effective bioactive candidates and fruitful therapy against APAP hepatotoxicity.
Collapse
Affiliation(s)
- Govindarajan Karthivashan
- Laboratory of Vaccines and Immunotherapeutics
- Institute of Bioscience
- Universiti Putra Malaysia
- Serdang
- Malaysia
| | - Palanisamy Arulselvan
- Laboratory of Vaccines and Immunotherapeutics
- Institute of Bioscience
- Universiti Putra Malaysia
- Serdang
- Malaysia
| | - Sharida Fakurazi
- Laboratory of Vaccines and Immunotherapeutics
- Institute of Bioscience
- Universiti Putra Malaysia
- Serdang
- Malaysia
| |
Collapse
|
32
|
Possamai LA, Thursz MR, Wendon JA, Antoniades CG. Modulation of monocyte/macrophage function: a therapeutic strategy in the treatment of acute liver failure. J Hepatol 2014; 61:439-45. [PMID: 24703954 DOI: 10.1016/j.jhep.2014.03.031] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/12/2014] [Accepted: 03/27/2014] [Indexed: 12/15/2022]
Abstract
Acute liver failure (ALF) is a condition with a high mortality and morbidity for which new treatments are desperately required. We contend that although the initial event in ALF is liver cell death, the clinical syndrome of ALF and its complications including multi-organ dysfunction and sepsis, are largely generated by the immune response to liver injury. Hepatic macrophages fulfil a diversity of roles in ALF, from pro-inflammatory to pro-resolution. Their inherent plasticity means the same macrophages may have a variety of functions depending on the local tissue environment at different stages of disease. A better understanding of the mechanisms that regulate macrophage plasticity during ALF will be an essential step towards realising the potential of immune-modulating therapies that re-orientate macrophages to promote the desirable functions of attenuating liver injury and promoting liver repair/regenerative responses. The key dynamics: temporal (early vs. late phase), regional (hepatic vs. systemic), and activation (pro-inflammatory vs. pro-resolution) are discussed and the potential for novel ALF therapies that modulate monocyte/macrophage function are described.
Collapse
Affiliation(s)
- Lucia A Possamai
- Department of Hepatology, St Mary's Campus, Imperial College London, London, UK
| | - Mark R Thursz
- Department of Hepatology, St Mary's Campus, Imperial College London, London, UK
| | - Julia A Wendon
- Liver Intensive Care Unit, Institute of Liver Sciences, King's College London, London, UK
| | - Charalambos Gustav Antoniades
- Department of Hepatology, St Mary's Campus, Imperial College London, London, UK; Liver Intensive Care Unit, Institute of Liver Sciences, King's College London, London, UK.
| |
Collapse
|
33
|
Abstract
Apoptosis is a prominent feature of liver diseases. Causative factors such as alcohol, viruses, toxic bile acids, fatty acids, drugs, and immune response, can induce apoptotic cell death via membrane receptors and intracellular stress. Apoptotic signaling network, including membrane death receptor-mediated cascade, reactive oxygen species (ROS) generation, endoplasmic reticulum (ER) stress, lysosomal permeabilization, and mitochondrial dysfunction, is intermixed each other, but one mechanism may dominate at a particular stage. Mechanisms of hepatic apoptosis are complicated by multiple signaling pathways. The progression of liver disease is affected by the balance between apoptotic and antiapoptotic capabilities. Therapeutic options of liver injury are impacted by the clear understanding toward mechanisms of hepatic apoptosis.
Collapse
|
34
|
Molecular mechanisms of hepatic apoptosis. Cell Death Dis 2014; 5:e996. [PMID: 24434519 PMCID: PMC4040708 DOI: 10.1038/cddis.2013.499] [Citation(s) in RCA: 244] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 11/07/2013] [Accepted: 11/07/2013] [Indexed: 02/07/2023]
Abstract
Apoptosis is a prominent feature of liver diseases. Causative factors such as alcohol, viruses, toxic bile acids, fatty acids, drugs, and immune response, can induce apoptotic cell death via membrane receptors and intracellular stress. Apoptotic signaling network, including membrane death receptor-mediated cascade, reactive oxygen species (ROS) generation, endoplasmic reticulum (ER) stress, lysosomal permeabilization, and mitochondrial dysfunction, is intermixed each other, but one mechanism may dominate at a particular stage. Mechanisms of hepatic apoptosis are complicated by multiple signaling pathways. The progression of liver disease is affected by the balance between apoptotic and antiapoptotic capabilities. Therapeutic options of liver injury are impacted by the clear understanding toward mechanisms of hepatic apoptosis.
Collapse
|