1
|
Zhang LN, Li JX, Wang Z, Yang L, Chen Z, Tao F, Wu S, Lu WJ, Sun M, Qi SS, Zheng ZZ, Xiong H. Clinical significance of dynamic monitoring of EVI1 gene expression in pediatric acute myeloid leukemia. BMC Pediatr 2024; 24:802. [PMID: 39643863 PMCID: PMC11622451 DOI: 10.1186/s12887-024-05243-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/12/2024] [Indexed: 12/09/2024] Open
Abstract
OBJECTIVE To investigate the clinical significance of dynamic monitoring ecotropic virus integration site-1 (EVI1) expression in childhood acute myeloid leukemia (AML). METHODS A retrospective analysis was conducted on 113 pediatric AML patients of Wuhan Children's Hospital from 2014 to 2022. The correlation between EVI1 expression levels and clinical indicators including clinical characteristics, first complete remission (CR1), relapse, and overall survival (OS) was analyzed. Receiver operating characteristic (ROC) curve analysis was carried out to comprehend the influence of EVI1 expression on relapse. RESULTS A total of 78 AML children with EVI1 expression at initial diagnosis were eligible, divided into EVI1-positive (EVI1high) and EVI1-negative (EVI1low) groups. FAB classification (P = 0.047) and abnormal karyotype (P = 0.009) showed significant differences between the two groups. The proportion of EVI1high in individuals with complex and/or monomeric karyotypes was significantly higher than in other cases (P = 0.032). When completing the first induction therapy, the EVI1high group showed a significantly lower CR1 rate than the EVI1low group (P = 0.015). Among 51 cases with EVI1 expression dynamically monitored, those with EVI1 overexpression more than twice had significantly shorter OS (P < 0.05). Among 19 non-HSCT patients undergoing three EVI1 assessments during induction therapy, those with EVI1 overexpression over once had higher relapse rates (P = 0.045). In addition, EVI1 expression level ≥ 83.38% significantly predicted relapse (AUC = 0.833). CONCLUSION Aberrantly high expression of EVI1 in pediatric AML was associated with poor prognosis. Continuous and dynamic monitoring of EVI1 expression promotes prognostic evaluation. We add some insights into the impact of EVI1 on the AML patients' OS and survival.
Collapse
Affiliation(s)
- Lan-Nan Zhang
- Department of Hematology, Children's Medical Institute of Hematology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Jian-Xin Li
- Department of Hematology, Children's Medical Institute of Hematology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Zhuo Wang
- Department of Hematology, Children's Medical Institute of Hematology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Li Yang
- Department of Hematology, Children's Medical Institute of Hematology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Zhi Chen
- Department of Hematology, Children's Medical Institute of Hematology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Fang Tao
- Department of Hematology, Children's Medical Institute of Hematology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Sha Wu
- Department of Hematology, Children's Medical Institute of Hematology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Wen-Jie Lu
- Department of Hematology, Children's Medical Institute of Hematology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Ming Sun
- Department of Hematology, Children's Medical Institute of Hematology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Shan-Shan Qi
- Department of Hematology, Children's Medical Institute of Hematology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Zhong-Zheng Zheng
- Shanghai Tissuebank Biotechnology Co., Ltd, Shanghai, 201318, China.
| | - Hao Xiong
- Department of Hematology, Children's Medical Institute of Hematology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, China.
| |
Collapse
|
2
|
Masaryk J, Kale D, Pohl P, Ruiz-Castilla FJ, Zimmermannová O, Obšilová V, Ramos J, Sychrová H. The second intracellular loop of the yeast Trk1 potassium transporter is involved in regulation of activity, and interaction with 14-3-3 proteins. Comput Struct Biotechnol J 2023; 21:2705-2716. [PMID: 37168872 PMCID: PMC10165143 DOI: 10.1016/j.csbj.2023.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023] Open
Abstract
Potassium is an essential intracellular ion, and a sufficient intracellular concentration of it is crucial for many processes; therefore it is fundamental for cells to precisely regulate K+ uptake and efflux through the plasma membrane. The uniporter Trk1 is a key player in K+ acquisition in yeasts. The TRK1 gene is expressed at a low and stable level; thus the activity of the transporter needs to be regulated at a posttranslational level. S. cerevisiae Trk1 changes its activity and affinity for potassium ion quickly and according to both internal and external concentrations of K+, as well as the membrane potential. The molecular basis of these changes has not been elucidated, though phosphorylation is thought to play an important role. In this study, we examined the role of the second, short, and highly conserved intracellular hydrophilic loop of Trk1 (IL2), and identified two phosphorylable residues (Ser882 and Thr900) as very important for 1) the structure of the loop and consequently for the targeting of Trk1 to the plasma membrane, and 2) the upregulation of the transporter's activity reaching maximal affinity under low external K+ conditions. Moreover, we identified three residues (Thr155, Ser414, and Thr900) within the Trk1 protein as strong candidates for interaction with 14-3-3 regulatory proteins, and showed, in an in vitro experiment, that phosphorylated Thr900 of the IL2 indeed binds to both isoforms of yeast 14-3-3 proteins, Bmh1 and Bmh2.
Collapse
Affiliation(s)
- Jakub Masaryk
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Membrane Transport, 14200 Prague 4, Czech Republic
| | - Deepika Kale
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Membrane Transport, 14200 Prague 4, Czech Republic
| | - Pavel Pohl
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division BIOCEV, 25250 Vestec, Czech Republic
| | - Francisco J. Ruiz-Castilla
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, 140 71 Córdoba, Spain
| | - Olga Zimmermannová
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Membrane Transport, 14200 Prague 4, Czech Republic
| | - Veronika Obšilová
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division BIOCEV, 25250 Vestec, Czech Republic
| | - José Ramos
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, 140 71 Córdoba, Spain
| | - Hana Sychrová
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Membrane Transport, 14200 Prague 4, Czech Republic
- Corresponding author.
| |
Collapse
|
3
|
Paredes R, Doleschall N, Connors K, Geary B, Meyer S. EVI1 protein interaction dynamics: targetable for therapeutic intervention? Exp Hematol 2021; 107:1-8. [PMID: 34958895 DOI: 10.1016/j.exphem.2021.12.398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/04/2022]
Abstract
High expression of the transcriptional regulator EVI1 encoded at the MECOM locus at 3q26 is one of the most aggressive oncogenic drivers in acute myeloid leukaemia (AML) and carries a very poor prognosis. How EVI1 confers leukaemic transformation and chemotherapy resistance in AML is subject to important ongoing clinical and experimental studies. Recent discoveries have revealed critical details about genetic mechanisms of the activation of EVI1 overexpression and downstream events of aberrantly high EVI1 expression. Here we review and discuss aspects concerning the protein interactions of EVI1 and the related proteins MDS-EVI1 and ΔEVI1 from the perspective of their potential for therapeutic intervention.
Collapse
Affiliation(s)
- Roberto Paredes
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester
| | - Nora Doleschall
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester
| | - Kathleen Connors
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester
| | - Bethany Geary
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester
| | - Stefan Meyer
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester; Department of Paediatric Haematology and Oncology, Royal Manchester Children's Hospital; Young Oncology Unit, The Christie NHS Foundation Trust.
| |
Collapse
|
4
|
EVI1 dysregulation: impact on biology and therapy of myeloid malignancies. Blood Cancer J 2021; 11:64. [PMID: 33753715 PMCID: PMC7985498 DOI: 10.1038/s41408-021-00457-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 02/08/2023] Open
Abstract
Ecotropic viral integration site 1 (Evi1) was discovered in 1988 as a common site of ecotropic viral integration resulting in myeloid malignancies in mice. EVI1 is an oncogenic zinc-finger transcription factor whose overexpression contributes to disease progression and an aggressive phenotype, correlating with poor clinical outcome in myeloid malignancies. Despite progress in understanding the biology of EVI1 dysregulation, significant improvements in therapeutic outcome remain elusive. Here, we highlight advances in understanding EVI1 biology and discuss how this new knowledge informs development of novel therapeutic interventions. EVI1 is overexpression is correlated with poor outcome in some epithelial cancers. However, the focus of this review is the genetic lesions, biology, and current therapeutics of myeloid malignancies overexpressing EVI1.
Collapse
|
5
|
Paredes R, Kelly JR, Geary B, Almarzouq B, Schneider M, Pearson S, Narayanan P, Williamson A, Lovell SC, Wiseman DH, Chadwick JA, Jones NJ, Kustikova O, Schambach A, Garner T, Amaral FMR, Pierce A, Stevens A, Somervaille TCP, Whetton AD, Meyer S. EVI1 phosphorylation at S436 regulates interactions with CtBP1 and DNMT3A and promotes self-renewal. Cell Death Dis 2020; 11:878. [PMID: 33082307 PMCID: PMC7576810 DOI: 10.1038/s41419-020-03099-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 11/22/2022]
Abstract
The transcriptional regulator EVI1 has an essential role in early development and haematopoiesis. However, acute myeloid leukaemia (AML) driven by aberrantly high EVI1 expression has very poor prognosis. To investigate the effects of post-translational modifications on EVI1 function, we carried out a mass spectrometry (MS) analysis of EVI1 in AML and detected dynamic phosphorylation at serine 436 (S436). Wild-type EVI1 (EVI1-WT) with S436 available for phosphorylation, but not non-phosphorylatable EVI1-S436A, conferred haematopoietic progenitor cell self-renewal and was associated with significantly higher organised transcriptional patterns. In silico modelling of EVI1-S436 phosphorylation showed reduced affinity to CtBP1, and CtBP1 showed reduced interaction with EVI1-WT compared with EVI1-S436A. The motif harbouring S436 is a target of CDK2 and CDK3 kinases, which interacted with EVI1-WT. The methyltransferase DNMT3A bound preferentially to EVI1-WT compared with EVI1-S436A, and a hypomethylated cell population associated by EVI1-WT expression in murine haematopoietic progenitors is not maintained with EVI1-S436A. These data point to EVI1-S436 phosphorylation directing functional protein interactions for haematopoietic self-renewal. Targeting EVI1-S436 phosphorylation may be of therapeutic benefit when treating EVI1-driven leukaemia.
Collapse
Affiliation(s)
- Roberto Paredes
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
| | - James R Kelly
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
| | - Bethany Geary
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
| | - Batool Almarzouq
- Department of Biochemistry, Institute of Integrative Biology/School of Life Sciences, University of Liverpool, Liverpool, UK
| | - Marion Schneider
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
| | - Stella Pearson
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
| | - Prakrithi Narayanan
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
| | - Andrew Williamson
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
| | - Simon C Lovell
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Daniel H Wiseman
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
- Epigenetics of Haematopoiesis Laboratory, Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - John A Chadwick
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
- Leukaemia Biology Laboratory, CRUK Manchester Institute, The University of Manchester, Manchester, UK
| | - Nigel J Jones
- Department of Biochemistry, Institute of Integrative Biology/School of Life Sciences, University of Liverpool, Liverpool, UK
| | - Olga Kustikova
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Terence Garner
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Fabio M R Amaral
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
- Leukaemia Biology Laboratory, CRUK Manchester Institute, The University of Manchester, Manchester, UK
| | - Andrew Pierce
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
| | - Adam Stevens
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Tim C P Somervaille
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
- Leukaemia Biology Laboratory, CRUK Manchester Institute, The University of Manchester, Manchester, UK
| | - Anthony D Whetton
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
- Stoller Biomarker Discovery Centre, University of Manchester, Manchester, UK
| | - Stefan Meyer
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK.
- Department of Paediatric Haematology and Oncology, Royal Manchester Children's Hospital, Manchester, UK.
- Young Oncology Unit, The Christie NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
6
|
Impact of Epigenetics on Complications of Fanconi Anemia: The Role of Vitamin D-Modulated Immunity. Nutrients 2020; 12:nu12051355. [PMID: 32397406 PMCID: PMC7285109 DOI: 10.3390/nu12051355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/02/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
Fanconi anemia (FA) is a rare disorder with the clinical characteristics of (i) specific malformations at birth, (ii) progressive bone marrow failure already during early childhood and (iii) dramatically increased risk of developing cancer in early age, such as acute myeloid leukemia and squamous cell carcinoma. Patients with FA show DNA fragility due to a defect in the DNA repair machinery based on predominately recessive mutations in 23 genes. Interestingly, patients originating from the same family and sharing an identical mutation, frequently show significant differences in their clinical presentation. This implies that epigenetics plays an important role in the manifestation of the disease. The biologically active form of vitamin D, 1α,25-dihydroxyvitamin D3 controls cellular growth, differentiation and apoptosis via the modulation of the immune system. The nuclear hormone activates the transcription factor vitamin D receptor that affects, via fine-tuning of the epigenome, the transcription of >1000 human genes. In this review, we discuss that changes in the epigenome, in particular in immune cells, may be central for the clinical manifestation of FA. These epigenetic changes can be modulated by vitamin D suggesting that the individual FA patient’s vitamin D status and responsiveness are of critical importance for disease progression.
Collapse
|
7
|
Paredes R, Schneider M, Stevens A, White DJ, Williamson AJK, Muter J, Pearson S, Kelly JR, Connors K, Wiseman DH, Chadwick JA, Löffler H, Teng HY, Lovell S, Unwin R, van de Vrugt HJ, Smith H, Kustikova O, Schambach A, Somervaille TCP, Pierce A, Whetton AD, Meyer S. EVI1 carboxy-terminal phosphorylation is ATM-mediated and sustains transcriptional modulation and self-renewal via enhanced CtBP1 association. Nucleic Acids Res 2018; 46:7662-7674. [PMID: 29939287 PMCID: PMC6125627 DOI: 10.1093/nar/gky536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/24/2018] [Accepted: 05/29/2018] [Indexed: 01/15/2023] Open
Abstract
The transcriptional regulator EVI1 has an essential role in early hematopoiesis and development. However, aberrantly high expression of EVI1 has potent oncogenic properties and confers poor prognosis and chemo-resistance in leukemia and solid tumors. To investigate to what extent EVI1 function might be regulated by post-translational modifications we carried out mass spectrometry- and antibody-based analyses and uncovered an ATM-mediated double phosphorylation of EVI1 at the carboxy-terminal S858/S860 SQS motif. In the presence of genotoxic stress EVI1-WT (SQS), but not site mutated EVI1-AQA was able to maintain transcriptional patterns and transformation potency, while under standard conditions carboxy-terminal mutation had no effect. Maintenance of hematopoietic progenitor cell clonogenic potential was profoundly impaired with EVI1-AQA compared with EVI1-WT, in particular in the presence of genotoxic stress. Exploring mechanistic events underlying these observations, we showed that after genotoxic stress EVI1-WT, but not EVI1-AQA increased its level of association with its functionally essential interaction partner CtBP1, implying a role for ATM in regulating EVI1 protein interactions via phosphorylation. This aspect of EVI1 regulation is therapeutically relevant, as chemotherapy-induced genotoxicity might detrimentally sustain EVI1 function via stress response mediated phosphorylation, and ATM-inhibition might be of specific targeted benefit in EVI1-overexpressing malignancies.
Collapse
Affiliation(s)
- Roberto Paredes
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - Marion Schneider
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - Adam Stevens
- Manchester Academic Health Science Centre, Manchester, UK
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health M13 9WL, University of Manchester, UK
| | - Daniel J White
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - Andrew J K Williamson
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - Joanne Muter
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - Stella Pearson
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - James R Kelly
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - Kathleen Connors
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - Daniel H Wiseman
- Manchester Academic Health Science Centre, Manchester, UK
- Leukaemia Biology Group, CRUK Manchester Institute, Manchester M20 4XB, UK
| | - John A Chadwick
- Manchester Academic Health Science Centre, Manchester, UK
- Leukaemia Biology Group, CRUK Manchester Institute, Manchester M20 4XB, UK
| | - Harald Löffler
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Hsiang Ying Teng
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - Simon Lovell
- Manchester Academic Health Science Centre, Manchester, UK
- Evolution, Systems and Genomics Domain,Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Richard Unwin
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - Henri J van de Vrugt
- Oncogenetics, Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Helen Smith
- Manchester Academic Health Science Centre, Manchester, UK
- Evolution, Systems and Genomics Domain,Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Olga Kustikova
- Institute of Experimental Hematology, Hannover Medical School; Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School; Hannover, Germany
| | - Tim C P Somervaille
- Manchester Academic Health Science Centre, Manchester, UK
- Leukaemia Biology Group, CRUK Manchester Institute, Manchester M20 4XB, UK
| | - Andrew Pierce
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - Anthony D Whetton
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
- Stoller Biomarker Discovery Centre, University of Manchester, Manchester M13 9NQ, UK
| | - Stefan Meyer
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
- Department of Paediatric Haematology and Oncology, Royal Manchester Children's Hospital, Manchester M13 9WL, UK
- Young Oncology Unit, The Christie NHS Foundation Trust, Manchester M20 4XB, UK
| |
Collapse
|
8
|
Lang WJ, Chen FY. The reciprocal link between EVI1 and miRNAs in human malignancies. Gene 2018; 672:56-63. [DOI: 10.1016/j.gene.2018.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/05/2018] [Accepted: 06/03/2018] [Indexed: 12/26/2022]
|
9
|
Abstract
Deregulated expression of the ecotropic virus integration site 1 (EVI1) gene is the molecular hallmark of therapy-resistant myeloid malignancies bearing chromosomal inv(3)(q21q26·2) or t(3;3)(q21;q26·2) [hereafter referred to as inv(3)/t(3;3)] abnormalities. EVI1 is a haematopoietic stemness and transcription factor with chromatin remodelling activity. Interestingly, the EVI1 gene also shows overexpression in 6-11% of adult acute myeloid leukaemia (AML) cases that do not carry any 3q aberrations. Deregulated expression of EVI1 is strongly associated with monosomy 7 and 11q23 abnormalities, which are known to be associated with poor response to treatment. However, EVI1 overexpression has been revealed as an important independent adverse prognostic marker in adult AML and defines distinct risk categories in 11q23-rearranged AML. Recently, important progress has been made in the delineation of the mechanism by which EVI1 becomes deregulated in inv(3)/t(3;3) as well as the cooperating mutations in this specific subset of AML with dismal prognosis.
Collapse
Affiliation(s)
- Adil A Hinai
- Department of Haematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Peter J M Valk
- Department of Haematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Yuan X, Wang X, Bi K, Jiang G. The role of EVI-1 in normal hematopoiesis and myeloid malignancies (Review). Int J Oncol 2015; 47:2028-36. [PMID: 26496831 DOI: 10.3892/ijo.2015.3207] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/30/2015] [Indexed: 11/06/2022] Open
Abstract
Ecotropic virus integration site-1 (EVI-1) gene, locus on chromosome 3 (3q26.2) in the human genome, was first found in the AKXD strain of mice, in a model of retrovirus-induced acute myeloid leukemia (AML) established twenty years ago. Since then, EVI-1 was regarded as one of the most invasive proto-oncogenes in human leukemia. EVI-1 can encode a unique zinc-finger protein of 145 kDa that can bind with DNA, and its overexpression was closely related to human hemopoietic diseases. Furthermore, accumulating research indicates that EVI-1 is involved in the differentiation, apoptosis and proliferation of leukemia cells. The present review focuses on the biochemical properties of EVI-1 which plays a role in myeloid malignancies.
Collapse
Affiliation(s)
- Xiaofen Yuan
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| | - Xidi Wang
- Laboratory Department, People's Hospital of Zhangqiu City, Zhangqiu, Shandong, P.R. China
| | - Kehong Bi
- Department of Hematology, Qianfoshan Hospital of Shandong, Jinan, Shandong, P.R. China
| | - Guosheng Jiang
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| |
Collapse
|
11
|
Cheng D, Qian W, Wang Y, Meng M, Wei L, Li Z, Kang L, Peng J, Xia Q. Nuclear import of transcription factor BR-C is mediated by its interaction with RACK1. PLoS One 2014; 9:e109111. [PMID: 25280016 PMCID: PMC4184850 DOI: 10.1371/journal.pone.0109111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/29/2014] [Indexed: 11/18/2022] Open
Abstract
The transcription factor Broad Complex (BR-C) is an early ecdysone response gene in insects and contains two types of domains: two zinc finger domains for the activation of gene transcription and a Bric-a-brac/Tramtrack/Broad complex (BTB) domain for protein-protein interaction. Although the mechanism of zinc finger-mediated gene transcription is well studied, the partners interacting with the BTB domain of BR-C has not been elucidated until now. Here, we performed a yeast two-hybrid screen using the BTB domain of silkworm BR-C as bait and identified the receptor for activated C-kinase 1 (RACK1), a scaffolding/anchoring protein, as the novel partner capable of interacting with BR-C. The interaction between BR-C and RACK1 was further confirmed by far-western blotting and pull-down assays. Importantly, the disruption of this interaction, via RNAi against the endogenous RACK1 gene or deletion of the BTB domain, abolished the nuclear import of BR-C in BmN4 cells. In addition, RNAi against the endogenous PKC gene as well as phosphorylation-deficient mutation of the predicted PKC phosphorylation sites at either Ser373 or Thr406 in BR-C phenocopied RACK1 RNAi and altered the nuclear localization of BR-C. However, when BTB domain was deleted, phosphorylation mimics of either Ser373 or Thr406 had no effect on the nuclear import of BR-C. Moreover, mutating the PKC phosphorylation sites at Ser373 and Thr406 or deleting the BTB domain significantly decreased the transcriptional activation of a BR-C target gene. Given that RACK1 is necessary for recruiting PKC to close and phosphorylate target proteins, we suggest that the PKC-mediated phosphorylation and nuclear import of BR-C is determined by its interaction with RACK1. This novel finding will be helpful for further deciphering the mechanism underlying the role of BR-C proteins during insect development.
Collapse
Affiliation(s)
- Daojun Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Wenliang Qian
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yonghu Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Meng Meng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ling Wei
- School of Life Science, Southwest University, Chongqing, China
| | - Zhiqing Li
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Lixia Kang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Jian Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- * E-mail:
| |
Collapse
|
12
|
Syed J, Pandian GN, Sato S, Taniguchi J, Chandran A, Hashiya K, Bando T, Sugiyama H. Targeted suppression of EVI1 oncogene expression by sequence-specific pyrrole-imidazole polyamide. ACTA ACUST UNITED AC 2014; 21:1370-1380. [PMID: 25219965 DOI: 10.1016/j.chembiol.2014.07.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 01/13/2023]
Abstract
Human ectopic viral integration site 1 (EVI1) is an oncogenic transcription factor known to play a critical role in many aggressive forms of cancer. Its selective modulation is thought to alter the cancer-specific gene regulatory networks. Pyrrole-imidazole polyamides (PIPs) are a class of small DNA binders that can be designed to target any destined DNA sequence. Herein, we report a sequence-specific pyrrole-imidazole polyamide, PIP1, which can target specific base pairs of the REL/ELK1 binding site in the EVI1 minimal promoter. The designed PIP1 significantly inhibited EVI1 in MDA-MB-231 cells. Whole-transcriptome analysis confirmed that PIP1 affected a fraction of EVI1-mediated gene regulation. In vitro assays suggested that this polyamide can also effectively inhibit breast cancer cell migration. Taken together, these results suggest that EVI1-targeted PIP1 is an effective transcriptional regulator in cancer cells.
Collapse
Affiliation(s)
- Junetha Syed
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Ganesh N Pandian
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Shinsuke Sato
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Junichi Taniguchi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Anandhakumar Chandran
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
13
|
Pradhan AK, Halder A, Chakraborty S. Physical and functional interaction of the proto-oncogene EVI1 and tumor suppressor gene HIC1 deregulates Bcl-xL mediated block in apoptosis. Int J Biochem Cell Biol 2014; 53:320-8. [PMID: 24907396 DOI: 10.1016/j.biocel.2014.05.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/05/2014] [Accepted: 05/27/2014] [Indexed: 12/11/2022]
Abstract
Ecotropic viral integration site 1 was originally identified as a retroviral integration site in murine leukemias. Several studies have established ecotropic viral integration site 1 as both a transcription factor and an interacting partner that presumably regulates gene expression. Using coimmunoprecipitation and fluorescence resonance energy transfer analysis, we found that the N-terminal domain of hypermethylated in cancer 1 interacts with the proximal set of zinc fingers of ecotropic viral integration site 1. This interaction not only abolishes the DNA binding activity of ecotropic viral integration site 1 but also disrupts the transcriptional activity of an anti-apoptotic gene promoter selectively targeted by ecotropic viral integration site 1. By using flow cytometry and western blotting, here we show that hypermethylated in cancer 1 can deregulate ecotropic viral integration site 1-mediated blockage of apoptosis. We hypothesize that therapeutic upregulation of hypermethylated in cancer 1 may provide an important means of targeting ecotropic viral integration site 1-positive cancers.
Collapse
Affiliation(s)
- Anjan Kumar Pradhan
- Institute of Life Sciences, Department of Gene Function and Regulation, Nalco Square, Bhubaneswar, Orissa 751023, India
| | - Arundhati Halder
- Institute of Life Sciences, Department of Gene Function and Regulation, Nalco Square, Bhubaneswar, Orissa 751023, India
| | - Soumen Chakraborty
- Institute of Life Sciences, Department of Gene Function and Regulation, Nalco Square, Bhubaneswar, Orissa 751023, India.
| |
Collapse
|
14
|
Glass C, Wilson M, Gonzalez R, Zhang Y, Perkins AS. The role of EVI1 in myeloid malignancies. Blood Cells Mol Dis 2014; 53:67-76. [PMID: 24495476 DOI: 10.1016/j.bcmd.2014.01.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 12/26/2013] [Indexed: 01/01/2023]
Abstract
The EVI1 oncogene at human chr 3q26 is rearranged and/or overexpressed in a subset of acute myeloid leukemias and myelodysplasias. The EVI1 protein is a 135 kDa transcriptional regulator with DNA-binding zinc finger domains. Here we provide a critical review of the current state of research into the molecular mechanisms by which this gene plays a role in myeloid malignancies. The major pertinent cellular effects are blocking myeloid differentiation and preventing cellular apoptosis, and several potential mechanisms for these phenomena have been identified. Evidence supports a role for EVI1 in inducing cellular quiescence, and this may contribute to the resistance to chemotherapy seen in patients with neoplasms that overexpress EVI1. Another isoform, MDS1-EVI1 (or PRDM3), encoded by the same locus as EVI1, harbors an N-terminal histone methyltransferase(HMT) domain; experimental findings indicate that this protein and its HMT activity are critical for the progression of a subset of AMLs, and this provides a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Carolyn Glass
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | - Michael Wilson
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | - Ruby Gonzalez
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | - Yi Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | - Archibald S Perkins
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| |
Collapse
|