1
|
Tajeri S, Langsley G. Virulence attenuation of Theileria annulata-transformed macrophages. Trends Parasitol 2025; 41:301-316. [PMID: 40057452 DOI: 10.1016/j.pt.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 04/05/2025]
Abstract
Tropical theileriosis is a significant tick-borne disease affecting cattle. For decades an empirical live attenuated vaccine has been the primary method of controlling disease. The vaccine is produced through prolonged culture of Theileria annulata schizont-transformed macrophages, but how loss of virulence occurs remains unclear. Notably attenuated (vaccine) macrophages display dampened dissemination potential compared with their original, virulent counterparts. In addition, parasite schizonts in attenuated macrophages have significantly lost their ability to differentiate into merozoites. This review discusses the changes that occur during long-term passage of T. annulata-transformed bovine macrophages and how they contribute to loss of virulence, defined as heightened dissemination. Finally, we also suggest that a common parasite-dependent pathway is potentially involved in both macrophage dissemination and parasite merogony.
Collapse
Affiliation(s)
- Shahin Tajeri
- Laboratoire de Biologie des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France; INSERM U1016, CNRS UMR8104, Cochin Institute, Paris, France; Freie Universität Berlin, Institute for Parasitology and Tropical Veterinary Medicine, Berlin, Germany; Freie Universität Berlin, Veterinary Centre for Resistance Research, Berlin, Germany.
| | - Gordon Langsley
- Laboratoire de Biologie des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France; INSERM U1016, CNRS UMR8104, Cochin Institute, Paris, France.
| |
Collapse
|
2
|
Tajeri S, Shiels B, Langsley G, Nijhof AM. Upregulation of haematopoetic cell kinase (Hck) activity by a secreted parasite effector protein (Ta9) drives proliferation of Theileria annulata-transformed leukocytes. Microb Pathog 2025; 199:107252. [PMID: 39730099 DOI: 10.1016/j.micpath.2024.107252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024]
Abstract
Reversible transformation of bovine leukocytes by the intracellular parasites Theileria annulata and Theileria parva is central to pathogenesis of the diseases they cause, tropical theileriosis and East Coast Fever, respectively. Parasite-dependent constitutive activation of major host transcription factors such as AP-1 (Activating Protein 1) and NF-κB (Nuclear Factor-Kappa B) sustains the transformed state. Although parasite interaction with host cell signaling pathways upstream of AP-1 have been studied, the precise contribution of Theileria encoded factors capable of modulating AP-1 transcriptional activity, and other infection-altered signaling pathways is not fully understood. We previously showed that the Ta9 protein from T. annulata (TA15705) is secreted into the host cell cytoplasm and contributes to infection-induced AP-1 transcriptional activity. The current study employed RNA-seq to investigate the ability of ectopically expressed Ta9 to modulate the gene transcription profile of a bovine macrophage cell line, BoMac. RNA-seq identified 560 (400 upregulated and 160 downregulated) differentially expressed genes. KEGG analysis predicted a high number of upregulated genes associated with carcinogenesis such as CCND1, CDKN1A, ETV4, ETV5, FLI1, FRA1, GLI2, GRO1, HCK, IL7R, MYBL1, MYCN, PIM1 and TAL1. Ta9 introduction also affected genes associated with proinflammatory processes such as cytokines, chemokines, growth factors and metalloproteinases. Enrichment analysis of differentially expressed genes revealed that Ta9 is potentially involved in activating other host cell signaling pathways in addition to those that lead to induction of AP-1. Comparing our data with data on differentially expressed BoMac genes modulated by the secreted TashAT2 factor of T. annulata identified the gene encoding the tyrosine protein kinase hematopoietic cell kinase (HCK) as common to both data sets. HCK is essential for the proliferation of T. parva-transformed B cells and herein, we demonstrate that enzymatic activity of HCK is also essential for T. annulata- and T. lestoquardi-transformed macrophage proliferation.
Collapse
Affiliation(s)
- Shahin Tajeri
- Freie Universität Berlin, Institute for Parasitology and Tropical Veterinary Medicine, Berlin, Germany; Freie Universität Berlin, Veterinary Centre for Resistance Research, Berlin, Germany.
| | - Brian Shiels
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gordon Langsley
- Inserm U1016-CNRS UMR8104, Institut Cochin, Paris, France; Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France
| | - Ard Menzo Nijhof
- Freie Universität Berlin, Institute for Parasitology and Tropical Veterinary Medicine, Berlin, Germany; Freie Universität Berlin, Veterinary Centre for Resistance Research, Berlin, Germany.
| |
Collapse
|
3
|
Haidar M, Mourier T, Salunke R, Kaushik A, Ben-Rached F, Mfarrej S, Pain A. Defining epitranscriptomic hallmarks at the host-parasite interface and their roles in virulence and disease progression in Theileria annulata-infected leukocytes. Biomed J 2025:100828. [PMID: 39798869 DOI: 10.1016/j.bj.2025.100828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 12/05/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025] Open
Abstract
Theileria parasites are known to induce the transformation of host bovine leukocytes, involved in rapid proliferation, evasion from apoptotic mechanisms, and increased dissemination. In this study, we reveal the involvement of m6A RNA modification in T. annulata infection-induced transformation of bovine leukocytes. We conducted m6A sequencing and bioinformatics analysis to map the mRNA methylation patterns of T. annulata-infected host leukocytes. We observe specific mRNA modifications for T. annulata-infected leukocytes and a strong correlation between the proliferation rate of the infected Leukocytes with m6A modifications We observe that the increased amounts of m6A seem to impact some cell cycle dynamics, potentially via modifications of E2F4 mRNA. Moreover, we further identify HIF-1α as a possible driver of these m6A RNA modifications that have clear relevance to cellular proliferation dynamics. Overall, our results provide insights into the role of m6A mRNA methylation in the molecular crosstalk between Theileria and their host leukocytes, emphasizing the critical role of mRNA methylation in host-parasite interaction.
Collapse
Affiliation(s)
- Malak Haidar
- Pathogen Genomics Group, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia; Biozentrum, University of Basel, 4056 Basel-Stadt, Switzerland.
| | - Tobias Mourier
- Pathogen Genomics Group, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Rahul Salunke
- Pathogen Genomics Group, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Abhinav Kaushik
- Pathogen Genomics Group, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Fathia Ben-Rached
- Pathogen Genomics Group, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Sara Mfarrej
- Pathogen Genomics Group, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Arnab Pain
- Pathogen Genomics Group, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia; International Institute for Zoonosis Control, GI-CoRE, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
4
|
Brühlmann F, Perry C, Griessen C, Gunasekera K, Reymond JL, Naguleswaran A, Rottenberg S, Woods K, Olias P. TurboID mapping reveals the exportome of secreted intrinsically disordered proteins in the transforming parasite Theileria annulata. mBio 2024; 15:e0341223. [PMID: 38747635 PMCID: PMC11237503 DOI: 10.1128/mbio.03412-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/15/2024] [Indexed: 06/13/2024] Open
Abstract
Theileria annulata is a tick-transmitted apicomplexan parasite that gained the unique ability among parasitic eukaryotes to transform its host cell, inducing a fatal cancer-like disease in cattle. Understanding the mechanistic interplay between the host cell and malignant Theileria species that drives this transformation requires the identification of responsible parasite effector proteins. In this study, we used TurboID-based proximity labeling, which unbiasedly identified secreted parasite proteins within host cell compartments. By fusing TurboID to nuclear export or localization signals, we biotinylated proteins in the vicinity of the ligase enzyme in the nucleus or cytoplasm of infected macrophages, followed by mass spectrometry analysis. Our approach revealed with high confidence nine nuclear and four cytosolic candidate parasite proteins within the host cell compartments, eight of which had no orthologs in non-transforming T. orientalis. Strikingly, all eight of these proteins are predicted to be highly intrinsically disordered proteins. We discovered a novel tandem arrayed protein family, nuclear intrinsically disordered proteins (NIDP) 1-4, featuring diverse functions predicted by conserved protein domains. Particularly, NIDP2 exhibited a biphasic host cell-cycle-dependent localization, interacting with the EB1/CD2AP/CLASP1 parasite membrane complex at the schizont surface and the tumor suppressor stromal antigen 2 (STAG2), a cohesion complex subunit, in the host nucleus. In addition to STAG2, numerous NIDP2-associated host nuclear proteins implicated in various cancers were identified, shedding light on the potential role of the T. annulata exported protein family NIDP in host cell transformation and cancer-related pathways.IMPORTANCETurboID proximity labeling was used to identify secreted proteins of Theileria annulata, an apicomplexan parasite responsible for a fatal, proliferative disorder in cattle that represents a significant socio-economic burden in North Africa, central Asia, and India. Our investigation has provided important insights into the unique host-parasite interaction, revealing secreted parasite proteins characterized by intrinsically disordered protein structures. Remarkably, these proteins are conspicuously absent in non-transforming Theileria species, strongly suggesting their central role in the transformative processes within host cells. Our study identified a novel tandem arrayed protein family, with nuclear intrinsically disordered protein 2 emerging as a central player interacting with established tumor genes. Significantly, this work represents the first unbiased screening for exported proteins in Theileria and contributes essential insights into the molecular intricacies behind the malignant transformation of immune cells.
Collapse
Affiliation(s)
- Francis Brühlmann
- Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Carmen Perry
- Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | | | - Kapila Gunasekera
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, Bern, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, Bern, Switzerland
| | | | - Sven Rottenberg
- Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Kerry Woods
- Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Philipp Olias
- Institute of Animal Pathology, University of Bern, Bern, Switzerland
- Institute of Veterinary Pathology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
5
|
Villares M, Lourenço N, Ktorza I, Berthelet J, Panagiotou A, Richard A, Amo A, Koziy Y, Medjkane S, Valente S, Fioravanti R, Pioche-Durieu C, Lignière L, Chevreux G, Mai A, Weitzman JB. Theileria parasites sequester host eIF5A to escape elimination by host-mediated autophagy. Nat Commun 2024; 15:2235. [PMID: 38472173 DOI: 10.1038/s41467-024-45022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/12/2024] [Indexed: 03/14/2024] Open
Abstract
Intracellular pathogens develop elaborate mechanisms to survive within the hostile environments of host cells. Theileria parasites infect bovine leukocytes and cause devastating diseases in cattle in developing countries. Theileria spp. have evolved sophisticated strategies to hijack host leukocytes, inducing proliferative and invasive phenotypes characteristic of cell transformation. Intracellular Theileria parasites secrete proteins into the host cell and recruit host proteins to induce oncogenic signaling for parasite survival. It is unknown how Theileria parasites evade host cell defense mechanisms, such as autophagy, to survive within host cells. Here, we show that Theileria annulata parasites sequester the host eIF5A protein to their surface to escape elimination by autophagic processes. We identified a small-molecule compound that reduces parasite load by inducing autophagic flux in host leukocytes, thereby uncoupling Theileria parasite survival from host cell survival. We took a chemical genetics approach to show that this compound induced host autophagy mechanisms and the formation of autophagic structures via AMPK activation and the release of the host protein eIF5A which is sequestered at the parasite surface. The sequestration of host eIF5A to the parasite surface offers a strategy to escape elimination by autophagic mechanisms. These results show how intracellular pathogens can avoid host defense mechanisms and identify a new anti-Theileria drug that induces autophagy to target parasite removal.
Collapse
Affiliation(s)
- Marie Villares
- Université Paris Cité, CNRS, UMR7126 Epigenetics and Cell Fate, Paris, 75013, France
| | - Nelly Lourenço
- Université Paris Cité, CNRS, UMR7126 Epigenetics and Cell Fate, Paris, 75013, France
| | - Ivan Ktorza
- Université Paris Cité, CNRS, UMR7126 Epigenetics and Cell Fate, Paris, 75013, France
| | - Jérémy Berthelet
- Université Paris Cité, CNRS, UMR7126 Epigenetics and Cell Fate, Paris, 75013, France
| | - Aristeidis Panagiotou
- Université Paris Cité, CNRS, UMR7126 Epigenetics and Cell Fate, Paris, 75013, France
| | - Aurélie Richard
- Université Paris Cité, CNRS, UMR7126 Epigenetics and Cell Fate, Paris, 75013, France
| | - Angélique Amo
- Université Paris Cité, CNRS, UMR7126 Epigenetics and Cell Fate, Paris, 75013, France
| | - Yulianna Koziy
- Université Paris Cité, CNRS, UMR7126 Epigenetics and Cell Fate, Paris, 75013, France
| | - Souhila Medjkane
- Université Paris Cité, CNRS, UMR7126 Epigenetics and Cell Fate, Paris, 75013, France
| | - Sergio Valente
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, 00185, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, 00185, Italy
| | | | - Laurent Lignière
- Université Paris Cité, CNRS, UMR 7592 Institut Jacques Monod, Paris, 75013, France
| | - Guillaume Chevreux
- Université Paris Cité, CNRS, UMR 7592 Institut Jacques Monod, Paris, 75013, France
| | - Antonello Mai
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, 00185, Italy
- Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Rome, 00185, Italy
| | - Jonathan B Weitzman
- Université Paris Cité, CNRS, UMR7126 Epigenetics and Cell Fate, Paris, 75013, France.
| |
Collapse
|
6
|
Elati K, Tajeri S, Obara I, Mhadhbi M, Zweygarth E, Darghouth MA, Nijhof AM. Dual RNA-seq to catalogue host and parasite gene expression changes associated with virulence of T. annulata-transformed bovine leukocytes: towards identification of attenuation biomarkers. Sci Rep 2023; 13:18202. [PMID: 37875584 PMCID: PMC10598219 DOI: 10.1038/s41598-023-45458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023] Open
Abstract
The apicomplexan parasite Theileria annulata is transmitted by Hyalomma ticks and causes an acute lymphoproliferative disease that is invariably lethal in exotic cattle breeds. The unique ability of the schizont stage of T. annulata to transform infected leukocytes to a cancer-like phenotype and the simplicity of culturing and passaging T. annulata-transformed cells in vitro have been explored for live vaccine development by attenuating the transformed cells using lengthy serial propagation in vitro. The empirical in vivo evaluation of attenuation required for each batch of long-term cultured cells is a major constraint since it is resource intensive and raises ethical issues regarding animal welfare. As yet, the molecular mechanisms underlying attenuation are not well understood. Characteristic changes in gene expression brought about by attenuation are likely to aid in the identification of novel biomarkers for attenuation. We set out to undertake a comparative transcriptome analysis of attenuated (passage 296) and virulent (passage 26) bovine leukocytes infected with a Tunisian strain of T. annulata termed Beja. RNA-seq was used to analyse gene expression profiles and the relative expression levels of selected genes were verified by real-time quantitative PCR (RT-qPCR) analysis. Among the 3538 T. annulata genes analysed, 214 were significantly differentially expressed, of which 149 genes were up-regulated and 65 down-regulated. Functional annotation of differentially expressed T. annulata genes revealed four broad categories of metabolic pathways: carbon metabolism, oxidative phosphorylation, protein processing in the endoplasmic reticulum and biosynthesis of secondary metabolites. It is interesting to note that of the top 40 genes that showed altered expression, 13 were predicted to contain a signal peptide and/or at least one transmembrane domain, suggesting possible involvement in host-parasite interaction. Of the 16,514 bovine transcripts, 284 and 277 showed up-regulated and down-regulated expression, respectively. These were assigned to functional categories relevant to cell surface, tissue morphogenesis and regulation of cell adhesion, regulation of leucocyte, lymphocyte and cell activation. The genetic alterations acquired during attenuation that we have catalogued herein, as well as the accompanying in silico functional characterization, do not only improve understanding of the attenuation process, but can also be exploited by studies aimed at identifying attenuation biomarkers across different cell lines focusing on some host and parasite genes that have been highlighted in this study, such as bovine genes (CD69, ZNF618, LPAR3, and APOL3) and parasite genes such as TA03875.
Collapse
Affiliation(s)
- Khawla Elati
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-Von-Ostertag-Str. 7, 14163, Berlin, Germany.
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Robert-Von-Ostertag-Str. 8, 14163, Berlin, Germany.
- Laboratoire de Parasitologie, École Nationale de Médecine Vétérinaire de Sidi Thabet, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, Univ. Manouba, 2020, Sidi Thabet, Tunisia.
| | - Shahin Tajeri
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-Von-Ostertag-Str. 7, 14163, Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Robert-Von-Ostertag-Str. 8, 14163, Berlin, Germany
| | - Isaiah Obara
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-Von-Ostertag-Str. 7, 14163, Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Robert-Von-Ostertag-Str. 8, 14163, Berlin, Germany
| | - Moez Mhadhbi
- Laboratoire de Parasitologie, École Nationale de Médecine Vétérinaire de Sidi Thabet, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, Univ. Manouba, 2020, Sidi Thabet, Tunisia
| | - Erich Zweygarth
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-Von-Ostertag-Str. 7, 14163, Berlin, Germany
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Mohamed Aziz Darghouth
- Laboratoire de Parasitologie, École Nationale de Médecine Vétérinaire de Sidi Thabet, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, Univ. Manouba, 2020, Sidi Thabet, Tunisia
| | - Ard Menzo Nijhof
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-Von-Ostertag-Str. 7, 14163, Berlin, Germany.
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Robert-Von-Ostertag-Str. 8, 14163, Berlin, Germany.
| |
Collapse
|
7
|
Durrani Z, Kinnaird J, Cheng CW, Brühlmann F, Capewell P, Jackson A, Larcombe S, Olias P, Weir W, Shiels B. A parasite DNA binding protein with potential to influence disease susceptibility acts as an analogue of mammalian HMGA transcription factors. PLoS One 2023; 18:e0286526. [PMID: 37276213 DOI: 10.1371/journal.pone.0286526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/15/2023] [Indexed: 06/07/2023] Open
Abstract
Intracellular pathogens construct their environmental niche, and influence disease susceptibility, by deploying factors that manipulate infected host cell gene expression. Theileria annulata is an important tick-borne parasite of cattle that causes tropical theileriosis. Excellent candidates for modulating host cell gene expression are DNA binding proteins bearing AT-hook motifs encoded within the TashAT gene cluster of the parasite genome. In this study, TashAT2 was transfected into bovine BoMac cells to generate three expressing and three non-expressing (opposite orientation) cell lines. RNA-Seq was conducted and differentially expressed (DE) genes identified. The resulting dataset was compared with genes differentially expressed between infected cells and non-infected cells, and DE genes between infected cell lines from susceptible Holstein vs tolerant Sahiwal cattle. Over 800 bovine genes displayed differential expression associated with TashAT2, 209 of which were also modulated by parasite infection. Network analysis showed enrichment of DE genes in pathways associated with cellular adhesion, oncogenesis and developmental regulation by mammalian AT-hook bearing high mobility group A (HMGA) proteins. Overlap of TashAT2 DE genes with Sahiwal vs Holstein DE genes revealed that a significant number of shared genes were associated with disease susceptibility. Altered protein levels encoded by one of these genes (GULP1) was strongly linked to expression of TashAT2 in BoMac cells and was demonstrated to be higher in infected Holstein leucocytes compared to Sahiwal. We conclude that TashAT2 operates as an HMGA analogue to differentially mould the epigenome of the infected cell and influence disease susceptibility.
Collapse
Affiliation(s)
- Zeeshan Durrani
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jane Kinnaird
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Chew Weng Cheng
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Francis Brühlmann
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Paul Capewell
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Andrew Jackson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Stephen Larcombe
- School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - Philipp Olias
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Veterinary Pathology, Justus Liebig University, Giessen, Germany
| | - William Weir
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Brian Shiels
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
8
|
Terletsky A, Akhmerova LG. Malignant human thyroid neoplasms associated with blood parasitic (haemosporidian) infection. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2023. [DOI: 10.15789/2220-7619-mht-1948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Investigation of archival cytological material obtained by cytologists during fine-needle aspiration biopsy in follicular, papillary, and medullary human thyroid cancers revealed haemosporidian (blood parasitic) infection. Haemosporidian infection was detected as exo- and intraerythrocytic stages of development in thyrocytes schizogony. The exoerythrocytic stage of development is represented as microschizonts in a thyroid needle biopsy specimen. Probably, blood parasitic infection is the common etiology for these pathologies. All biopsy material in medical laboratories was stained with RomanowskyGiemsa stain. To clarify the localization of nuclei (DNA) of thyrocytes and nuclei (DNA) of haemosporidian infection in cytological material following investigation of the entire set of smears, a selective series of original archival smears was stained (restained) with a Feulgen/Schiff reagent. Staining of smears with RomanowskyGiemsa stain is an adsorption method that enables re-use of the same smears for staining with a Feulgen/Schiff reagent where the fuchsin dye, after DNA hydrolysis by hydrochloric acid, is incorporated into DNA and stains it in redviolet (crimsonlilac) color. An intentionally unstained protoplasm of blood parasitic infection was present as a light band around erythrocyte nuclei. In follicular thyroid cancer, Feulgen staining of thyrocytes revealed nuclear DNA and parasitic DNA (haemosporidium nuclei) as point inclusions and rings and diffusely distributed in the thyrocyte cytoplasm. The thyrocyte cytoplasm and nuclei were vacuolated, with thyrocyte nuclei being deformed, flattened, and displaced to the cell periphery. The erythrocytes, which were initially stained with eosin (orange color), contained haemosporidian nuclei (DNA). In some cases, endoglobular inclusions in thyrocytes and erythrocytes were of the same size. In papillary thyroid cancer, we were able to localize the nuclear DNA of thyrocytes and the parasitic DNA as point inclusions and diffusely distributed in the thyrocyte cytoplasm. Two or more polymorphic nuclei may eccentrically occur in the hyperplastic cytoplasm. Haemosporidian microschizonts occurred circumnuclearly in thyrocytes and as an exoerythrocytic stage in the blood. The erythrocyte cytoplasm contained redviolet polymorphic haemosporidian nuclei (DNA). In medullary thyroid cancer, the hyperplastic cytoplasm of thyrocytes contained eccentrically located nuclei (DNA) of thyrocytes and small haemosporidian nuclei (DNA), which may occupy the whole thyrocyte. There were thyrocytes with vacuolated cytoplasm and pronounced nuclear polymorphism. The size of hyperplastic nuclei was several times larger than that of normal thyrocyte nuclei. The color of stained cytoplasmic and nuclear vacuoles of thyrocytes was less redviolet compared with that of surrounding tissues, which probably indicates the presence of parasitic DNA in them. The haemosporidian nuclear material in erythrocytes is represented by polymorphic nuclei, which may indicate the simultaneous presence of different pathogen species and/or generations in the blood. Intracellular parasitism of haemosporidian infection in thyrocytes (schizogony) associated with three thyroid cancers leads to pronounced cytoplasmic hyperplasia, cytoplasmic vacuolization, and nuclear vacuolization of the thyrocyte, followed by impaired secretory function. Multinucleated thyrocytes with incomplete cytokinesis appear. The absence of lytic death of the affected thyrocytes indicates that the contagium is able to control apoptosis and influence physiological functions of the cell. There is deformation of the nuclei, which leads to a decrease in their size, their flattening and displacement to the cell periphery, with high risk of DNA mutations and deletions in affected cells, reaching a neoplastic level.
Collapse
|
9
|
Florentino PTV, Vitorino FNL, Mendes D, da Cunha JPC, Menck CFM. Trypanosoma cruzi infection changes the chromatin proteome profile of infected human cells. J Proteomics 2023; 272:104773. [PMID: 36414228 DOI: 10.1016/j.jprot.2022.104773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/12/2022] [Accepted: 11/01/2022] [Indexed: 11/21/2022]
Abstract
Chagas disease is endemic in 22 Latin American countries, with approximately 8 million individuals infected worldwide and 10,000 deaths yearly. Trypanosoma cruzi presents an intracellular life cycle in mammalian hosts to sustain infection. Parasite infection activates host cell responses, promoting an unbalance in reactive oxygen species (ROS) in the intracellular environment inducing genomic DNA lesions in the host cell during infection. To further understand changes in host cell chromatin induced by parasite infection, we investigated alterations in chromatin caused by infection by performing quantitative proteomic analysis. DNA Damage Repair proteins, such as Poly-ADP-ribose Polymerase 1 (PARP-1) and X-Ray Repair Cross Complementing 6 (XRRC6), were recruited to the chromatin during infection. Also, changes in chromatin remodeling enzymes suggest that parasite infection may shape the epigenome of the host cells. Interestingly, the abundance of oxidative phosphorylation mitochondrial and vesicle-mediated transport proteins increased in the host chromatin at the final stages of infection. In addition, Apoptosis-inducing Factor (AIF) is translocated to the host cell nucleus upon infection, suggesting that cells enter parthanatos type of death. Altogether, this study reveals how parasites interfere with the host cells' responses at the chromatin level leading to significant crosstalk that support and disseminate infection. SIGNIFICANCE: The present study provides novel insights into the effects of Trypanosoma cruzi on the chromatin from the host cell. This manuscript investigated proteomic alterations in chromatin caused by parasite infection at early and late infection phases by performing a quantitative proteomic analysis. In this study, we revealed that parasites interfere with DNA metabolism in the early and late stages of infection. We identified that proteins related to DNA damage repair, oxidative phosphorylation, and vesicle-mediated transport have increased abundance at the host chromatin. Additionally, we have observed that Apoptosis-inducing Factor is translocated to the host cell nucleus upon infection, suggesting that the parasites could lead the cells to enter Parthanatos as a form of programmed cell death. The findings improve our understanding on how the parasites modulate the host cell chromatin to disseminate infection. In this study, we suggest a mechanistic parasite action towards host nucleus that could be used to indicate targets for future treatments.
Collapse
Affiliation(s)
- P T V Florentino
- Dept. of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - F N L Vitorino
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, Brazil; Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil.
| | - D Mendes
- Dept. of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - J P C da Cunha
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, Brazil; Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - C F M Menck
- Dept. of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
10
|
Liu J, Zhao S, Li Z, Zhang Z, Zhao B, Guan G, Yin H, Luo J. Activation of telomerase activity and telomere elongation of host cells by Theileria annulata infection. Front Microbiol 2023; 14:1128433. [PMID: 36910209 PMCID: PMC9997645 DOI: 10.3389/fmicb.2023.1128433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Theileria annulata-transformed cells share many phenotypes with cancer cells, including uncontrolled proliferation, immortalization, and dissemination. Telomeres are DNA-protein complex at the end of eukaryotic chromosomes that function to maintain genome stability and cell replicative capacity. Telomere length maintenance is primarily dependent on telomerase activity. In up to 90% of human cancer cells, telomerase is reactivated through expression of its catalytic subunit TERT. However, the effect of T. annulata infection on telomere and telomerase activity in bovine cells has not yet been described. In the present study, we confirmed that telomere length and telomerase activity are upregulated after T. annulata infection in three types of cell lines. This change depends on the presence of parasites. After eliminating Theileria from cells with antitheilerial drug buparvaquone, telomerase activity and the expression level of bTERT were decreased. In addition, inhibition of bHSP90 by novobiocin led to decreased AKT phosphorylation levels and telomerase activity, indicating that the bHSP90-AKT complex is a potent factor modulates telomerase activity in T. annulata-infected cells.
Collapse
Affiliation(s)
- Junlong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Shuaiyang Zhao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Zhi Li
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, Qinghai, China
| | - Zhigang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Baocai Zhao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| |
Collapse
|
11
|
Chepkwony M, Wragg D, Latré de Laté P, Paxton E, Cook E, Ndambuki G, Kitala P, Gathura P, Toye P, Prendergast J. Longitudinal transcriptome analysis of cattle infected with Theileria parva. Int J Parasitol 2022; 52:799-813. [PMID: 36244429 DOI: 10.1016/j.ijpara.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 11/05/2022]
Abstract
The apicomplexan cattle parasite Theileria parva is a major barrier to improving the livelihoods of smallholder farmers in Africa, killing over one million cattle on the continent each year. Although exotic breeds not native to Africa are highly susceptible to the disease, previous studies have illustrated that such breeds often show innate tolerance to infection by the parasite. The mechanisms underlying this tolerance remain largely unclear. To better understand the host response to T. parva infection we characterised the transcriptional response over 15 days in tolerant and susceptible cattle (n = 29) naturally exposed to the parasite. We identify key genes and pathways activated in response to infection as well as, importantly, several genes differentially expressed between the animals that ultimately survived or succumbed to infection. These include genes linked to key cell proliferation and infection pathways. Furthermore, we identify response expression quantitative trait loci containing genetic variants whose impact on the expression level of nearby genes changes in response to the infection. These therefore provide an indication of the genetic basis of differential host responses. Together these results provide a comprehensive analysis of the host transcriptional response to this under-studied pathogen, providing clues as to the mechanisms underlying natural tolerance to the disease.
Collapse
Affiliation(s)
- M Chepkwony
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi 00100, Kenya
| | - D Wragg
- Centre for Tropical Livestock Genetics and Health (CTLGH), Easter Bush Campus, EH25 9RG, UK
| | - P Latré de Laté
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi 00100, Kenya
| | - E Paxton
- Centre for Tropical Livestock Genetics and Health (CTLGH), Easter Bush Campus, EH25 9RG, UK
| | - E Cook
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi 00100, Kenya
| | - G Ndambuki
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi 00100, Kenya
| | - P Kitala
- College of Agriculture and Veterinary Sciences (CAVS), University of Nairobi, P.O. Box 29053-00624, Kangemi, Nairobi, Kenya
| | - P Gathura
- College of Agriculture and Veterinary Sciences (CAVS), University of Nairobi, P.O. Box 29053-00624, Kangemi, Nairobi, Kenya
| | - P Toye
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi 00100, Kenya.
| | - J Prendergast
- Centre for Tropical Livestock Genetics and Health (CTLGH), Easter Bush Campus, EH25 9RG, UK.
| |
Collapse
|
12
|
Li Z, Liu J, Zhao S, Ma Q, Guo Z, Liu A, Li Y, Guan G, Luo J, Yin H. Theileria annulata SVSP455 interacts with host HSP60. Parasit Vectors 2022; 15:308. [PMID: 36042502 PMCID: PMC9426020 DOI: 10.1186/s13071-022-05427-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/06/2022] [Indexed: 11/26/2022] Open
Abstract
Background Theileria annulata, a transforming parasite, invades bovine B cells, dendritic cells and macrophages, promoting the uncontrolled proliferation of these cells. This protozoan evolved intricate strategies to subvert host cell signaling pathways related to antiapoptotic signaling to enable survival and proliferation within the host cells. However, the molecular mechanisms of the cell transformation induced by T. annulata remain largely unclear. Although some studies have predicted that the subtelomere-encoded variable secreted protein (SVSP) family plays roles in host-parasite interactions, the evidence for this is limited. Methods In the present study, the SVSP455 (TA05545) gene, a member of the SVSP gene family, was used as the target molecule. The expression pattern of SVSP455 in different life-cycle stages of T. annulata infection was explored using a quantitative real-time PCR assay, and the subcellular distribution of SVSP455 was observed using confocal microscopy. The host cell proteins interacting with SVSP455 were screened using the Y2H system, and their interactions were verified in vivo and in vitro using both bimolecular fluorescence complementation and confocal microscopy, and co-immunoprecipitation assays. The role played by SVSP455 in cell transformation was further explored by using overexpression, RNA interference and drug treatment experiments. Results The highest level of the SVSP455 transcript was detected in the schizont stage of T. annulata, and the protein was located both on the surface of schizonts and in the host cell cytoplasm. In addition, the interaction between SVSP455 and heat shock protein 60 was shown in vitro, and their link may regulate host cell apoptosis in T. annulata-infected cells. Conclusion Our findings are the first to reveal that T. annulata-secreted SVSP455 molecule directly interacts with both exogenous and endogenous bovine HSP60 protein, and that the interaction of SVSP455-HSP60 may manipulate the host cell apoptosis signaling pathway. These results provide insights into cancer-like phenotypes underlying Theilera transformation and therapeutics for protection against other pathogens. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05427-z.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute-Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China.,Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, Qinghai, 810016, People's Republic of China
| | - Junlong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute-Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China.
| | - Shuaiyang Zhao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute-Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Quanying Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute-Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Zhihong Guo
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, Qinghai, 810016, People's Republic of China
| | - Aihong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute-Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Youquan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute-Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute-Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute-Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute-Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| |
Collapse
|
13
|
Araveti PB, Vijay M, Kar PP, Varunan S, Srivastava A. MMV560185 from pathogen box induces extrinsic pathway of apoptosis in Theileria annulata infected bovine leucocytes. Int J Parasitol Drugs Drug Resist 2022; 18:20-31. [PMID: 35032948 PMCID: PMC8761611 DOI: 10.1016/j.ijpddr.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
Tropical theileriosis is a lymphoproliferative disease caused by the intracellular schizonts of Theileria annulata, an apicomplexan parasite. It causes severe infection in cattle and the untreated cattle would possibly die within 3–4 weeks of infection. The chemotherapy for this disease is largely dependent on the use of hydroxynaphthoquinone, namely buparvaquone. There have been reports recently of the development of resistance against this drug in T. annulata. Hence, identification of new drug molecule(s) or repurposing of existing drug molecule(s) against T. annulata is quite important. Here, we present the screening of 400 compounds included in the open-access Pathogen box from Medicine for Malaria Venture (MMV) to discover the novel compounds with potential inhibitory activity against T. annulata infected bovine leucocytes. We identified two compounds, MMV000062 and MMV560185, with IC50 values of 2.97 μM and 3.07 μM, respectively. MMV000062 and MMV560185 were found non-toxic to BoMac cells with CC50 values 34 μM and > 100 μM, respectively. The therapeutic indices of these compounds, MMV000062 and MMV560185, were calculated as more than 33 and 11, respectively. Further, it was observed that the parasite-infected cells under long-term culture were unable to recover with these compounds. We further deciphered that MMV560185 kills the infected cell by activation of TNFR-1 mediated extrinsic pathway of the apoptosis. The phenotypic characteristics of apoptosis were confirmed by Transmission Electron Microscopy. Our results suggest that it may be possible to develop MMV560185 further for chemotherapeutics of tropical theilerosis.
Collapse
|
14
|
Susceptibility to disease (tropical theileriosis) is associated with differential expression of host genes that possess motifs recognised by a pathogen DNA binding protein. PLoS One 2022; 17:e0262051. [PMID: 35061738 PMCID: PMC8782480 DOI: 10.1371/journal.pone.0262051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/15/2021] [Indexed: 12/04/2022] Open
Abstract
Background Knowledge of factors that influence the outcome of infection are crucial for determining the risk of severe disease and requires the characterisation of pathogen-host interactions that have evolved to confer variable susceptibility to infection. Cattle infected by Theileria annulata show a wide range in disease severity. Native (Bos indicus) Sahiwal cattle are tolerant to infection, whereas exotic (Bos taurus) Holstein cattle are susceptible to acute disease. Methodology/Principal findings We used RNA-seq to assess whether Theileria infected cell lines from Sahiwal cattle display a different transcriptome profile compared to Holstein and screened for altered expression of parasite factors that could generate differences in host cell gene expression. Significant differences (<0.1 FDR) in the expression level of a large number (2211) of bovine genes were identified, with enrichment of genes associated with Type I IFN, cholesterol biosynthesis, oncogenesis and parasite infection. A screen for parasite factors found limited evidence for differential expression. However, the number and location of DNA motifs bound by the TashAT2 factor (TA20095) were found to differ between the genomes of B. indicus vs. B. taurus, and divergent motif patterns were identified in infection-associated genes differentially expressed between Sahiwal and Holstein infected cells. Conclusions/Significance We conclude that divergent pathogen-host molecular interactions that influence chromatin architecture of the infected cell are a major determinant in the generation of gene expression differences linked to disease susceptibility.
Collapse
|
15
|
Djomkam Zune AL, Olwal CO, Tapela K, Owoicho O, Nganyewo NN, Lyko F, Paemka L. Pathogen-Induced Epigenetic Modifications in Cancers: Implications for Prevention, Detection and Treatment of Cancers in Africa. Cancers (Basel) 2021; 13:cancers13236051. [PMID: 34885162 PMCID: PMC8656768 DOI: 10.3390/cancers13236051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is a major public health burden worldwide. Tumor formation is caused by multiple intrinsic and extrinsic factors. Many reports have demonstrated a positive correlation between the burden of infectious pathogens and the occurrence of cancers. However, the mechanistic link between pathogens and cancer development remains largely unclear and is subject to active investigations. Apart from somatic mutations that have been widely linked with various cancers, an appreciable body of knowledge points to alterations of host epigenetic patterns as key triggers for cancer development. Several studies have associated various infectious pathogens with epigenetic modifications. It is therefore plausible to assume that pathogens induce carcinogenesis via alteration of normal host epigenetic patterns. Thus, Africa with its disproportionate burden of infectious pathogens is threatened by a dramatic increase in pathogen-mediated cancers. To curb the potential upsurge of such cancers, a better understanding of the role of tropical pathogens in cancer epigenetics could substantially provide resources to improve cancer management among Africans. Therefore, this review discusses cancer epigenetic studies in Africa and the link between tropical pathogens and cancer burden. In addition, we discuss the potential mechanisms by which pathogens induce cancers and the opportunities and challenges of tropical pathogen-induced epigenetic changes for cancer prevention, detection and management.
Collapse
Affiliation(s)
- Alexandra Lindsey Djomkam Zune
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana; (C.O.O.); (K.T.); (O.O.); (N.N.N.)
- Correspondence: (A.L.D.Z.); (L.P.); Tel.: +233-205652619 (L.P.)
| | - Charles Ochieng’ Olwal
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana; (C.O.O.); (K.T.); (O.O.); (N.N.N.)
| | - Kesego Tapela
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana; (C.O.O.); (K.T.); (O.O.); (N.N.N.)
| | - Oloche Owoicho
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana; (C.O.O.); (K.T.); (O.O.); (N.N.N.)
- Department of Biological Sciences, Benue State University, Makurdi P.M.B. 102119, Benue State, Nigeria
| | - Nora Nghochuzie Nganyewo
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana; (C.O.O.); (K.T.); (O.O.); (N.N.N.)
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul P.O. Box 273, The Gambia
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany;
| | - Lily Paemka
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana; (C.O.O.); (K.T.); (O.O.); (N.N.N.)
- Correspondence: (A.L.D.Z.); (L.P.); Tel.: +233-205652619 (L.P.)
| |
Collapse
|
16
|
Woods K, Perry C, Brühlmann F, Olias P. Theileria's Strategies and Effector Mechanisms for Host Cell Transformation: From Invasion to Immortalization. Front Cell Dev Biol 2021; 9:662805. [PMID: 33959614 PMCID: PMC8096294 DOI: 10.3389/fcell.2021.662805] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
One of the first events that follows invasion of leukocytes by Theileria sporozoites is the destruction of the surrounding host cell membrane and the rapid association of the intracellular parasite with host microtubules. This is essential for the parasite to establish its niche within the cytoplasm of the invaded leukocyte and sets Theileria spp. apart from other members of the apicomplexan phylum such as Toxoplasma gondii and Plasmodium spp., which reside within the confines of a host-derived parasitophorous vacuole. After establishing infection, transforming Theileria species (T. annulata, T. parva) significantly rewire the signaling pathways of their bovine host cell, causing continual proliferation and resistance to ligand-induced apoptosis, and conferring invasive properties on the parasitized cell. Having transformed its target cell, Theileria hijacks the mitotic machinery to ensure its persistence in the cytoplasm of the dividing cell. Some of the parasite and bovine proteins involved in parasite-microtubule interactions have been fairly well characterized, and the schizont expresses at least two proteins on its membrane that contain conserved microtubule binding motifs. Theileria-encoded proteins have been shown to be translocated to the host cell cytoplasm and nucleus where they have the potential to directly modify signaling pathways and host gene expression. However, little is known about their mode of action, and even less about how these proteins are secreted by the parasite and trafficked to their target location. In this review we explore the strategies employed by Theileria to transform leukocytes, from sporozoite invasion until immortalization of the host cell has been established. We discuss the recent description of nuclear pore-like complexes that accumulate on membranes close to the schizont surface. Finally, we consider putative mechanisms of protein and nutrient exchange that might occur between the parasite and the host. We focus in particular on differences and similarities with recent discoveries in T. gondii and Plasmodium species.
Collapse
Affiliation(s)
- Kerry Woods
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | | | - Philipp Olias
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
17
|
Tajeri S, Haidar M, Sakura T, Langsley G. Interaction between transforming Theileria parasites and their host bovine leukocytes. Mol Microbiol 2021; 115:860-869. [PMID: 33565178 DOI: 10.1111/mmi.14642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/07/2020] [Accepted: 11/08/2020] [Indexed: 12/24/2022]
Abstract
Theileria are tick-transmitted parasites that cause often fatal leuko-proliferative diseases in cattle called tropical theileriosis (T. annulata) and East Coast fever (T. parva). However, upon treatment with anti-theilerial drug-transformed leukocytes die of apoptosis indicating that Theileria-induced transformation is reversible making infected leukocytes a powerful example of how intracellular parasites interact with their hosts. Theileria-transformed leukocytes disseminate throughout infected cattle causing a cancer-like disease and here, we discuss how cytokines, noncoding RNAs and oncometabolites can contribute to the transformed phenotype and disease pathology.
Collapse
Affiliation(s)
- Shahin Tajeri
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France.,Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI, Paris, France
| | - Malak Haidar
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France.,Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Takaya Sakura
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France.,Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.,School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Gordon Langsley
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| |
Collapse
|
18
|
Tajeri S, Langsley G. Theileria secretes proteins to subvert its host leukocyte. Biol Cell 2021; 113:220-233. [PMID: 33314227 DOI: 10.1111/boc.202000096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/31/2020] [Accepted: 09/10/2020] [Indexed: 12/26/2022]
Abstract
Theileria parasites are classified in the phylum Apicomplexa that includes several genera of medical and veterinary importance such as Plasmodium, Babesia, Toxoplasma and Cryptosporidium. These protozoans have evolved subtle ways to reshape their intracellular niche for their own benefit and Theileria is no exception. This tick transmitted microorganism is unique among all eukaryotes in that its intracellular schizont stage is able to transform its mammalian host leukocytes into an immortalised highly disseminating cell that phenocopies tumour cells. Here, we describe what is known about secreted Theileria-encoded host cell manipulators.
Collapse
Affiliation(s)
- Shahin Tajeri
- INSERM U1016, CNRS UMR8104, Cochin Institute, Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes-Sorbonne Paris Cité, Paris, 75014, France.,Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI, Paris, 75013, France
| | - Gordon Langsley
- INSERM U1016, CNRS UMR8104, Cochin Institute, Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes-Sorbonne Paris Cité, Paris, 75014, France
| |
Collapse
|
19
|
Rchiad Z, Haidar M, Ansari HR, Tajeri S, Mfarrej S, Ben Rached F, Kaushik A, Langsley G, Pain A. Novel tumour suppressor roles for GZMA and RASGRP1 in Theileria annulata-transformed macrophages and human B lymphoma cells. Cell Microbiol 2020; 22:e13255. [PMID: 32830401 PMCID: PMC7685166 DOI: 10.1111/cmi.13255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 12/22/2022]
Abstract
Theileria annulata is a tick-transmitted apicomplexan parasite that infects and transforms bovine leukocytes into disseminating tumours that cause a disease called tropical theileriosis. Using comparative transcriptomics we identified genes transcriptionally perturbed during Theileria-induced leukocyte transformation. Dataset comparisons highlighted a small set of genes associated with Theileria-transformed leukocyte dissemination. The roles of Granzyme A (GZMA) and RAS guanyl-releasing protein 1 (RASGRP1) were verified by CRISPR/Cas9-mediated knockdown. Knocking down expression of GZMA and RASGRP1 in attenuated macrophages led to a regain in their dissemination in Rag2/γC mice confirming their role as dissemination suppressors in vivo. We further evaluated the roles of GZMA and RASGRP1 in human B lymphomas by comparing the transcriptome of 934 human cancer cell lines to that of Theileria-transformed bovine host cells. We confirmed dampened dissemination potential of human B lymphomas that overexpress GZMA and RASGRP1. Our results provide evidence that GZMA and RASGRP1 have a novel tumour suppressor function in both T. annulata-infected bovine host leukocytes and in human B lymphomas.
Collapse
Affiliation(s)
- Zineb Rchiad
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France.,INSERM U1016, CNRS UMR8104, Cochin Institute, Paris, France.,Centre de Coalition, Innovation, et de prévention des Epidémies au Maroc (CIPEM), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Malak Haidar
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France.,INSERM U1016, CNRS UMR8104, Cochin Institute, Paris, France
| | - Hifzur Rahman Ansari
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Shahin Tajeri
- Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France.,INSERM U1016, CNRS UMR8104, Cochin Institute, Paris, France
| | - Sara Mfarrej
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Fathia Ben Rached
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Abhinav Kaushik
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Gordon Langsley
- Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France.,INSERM U1016, CNRS UMR8104, Cochin Institute, Paris, France
| | - Arnab Pain
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| |
Collapse
|
20
|
Agina OA, Shaari MR, Isa NMM, Ajat M, Zamri-Saad M, Hamzah H. Clinical Pathology, Immunopathology and Advanced Vaccine Technology in Bovine Theileriosis: A Review. Pathogens 2020; 9:E697. [PMID: 32854179 PMCID: PMC7558346 DOI: 10.3390/pathogens9090697] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 01/29/2023] Open
Abstract
Theileriosis is a blood piroplasmic disease that adversely affects the livestock industry, especially in tropical and sub-tropical countries. It is caused by haemoprotozoan of the Theileria genus, transmitted by hard ticks and which possesses a complex life cycle. The clinical course of the disease ranges from benign to lethal, but subclinical infections can occur depending on the infecting Theileria species. The main clinical and clinicopathological manifestations of acute disease include fever, lymphadenopathy, anorexia and severe loss of condition, conjunctivitis, and pale mucous membranes that are associated with Theileria-induced immune-mediated haemolytic anaemia and/or non-regenerative anaemia. Additionally, jaundice, increases in hepatic enzymes, and variable leukocyte count changes are seen. Theileria annulata and Theileria parva induce an incomplete transformation of lymphoid and myeloid cell lineages, and these cells possess certain phenotypes of cancer cells. Pathogenic genotypes of Theileria orientalis have been recently associated with severe production losses in Southeast Asia and some parts of Europe. The infection and treatment method (ITM) is currently used in the control and prevention of T. parva infection, and recombinant vaccines are still under evaluation. The use of gene gun immunization against T. parva infection has been recently evaluated. This review, therefore, provides an overview of the clinicopathological and immunopathological profiles of Theileria-infected cattle and focus on DNA vaccines consisting of plasmid DNA with genes of interest, molecular adjuvants, and chitosan as the most promising next-generation vaccine against bovine theileriosis.
Collapse
Affiliation(s)
- Onyinyechukwu Ada Agina
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University of Nigeria Nsukka, Nsukka 410001, Nigeria
| | - Mohd Rosly Shaari
- Animal Science Research Centre, Malaysian Agricultural Research and Development Institute, Headquarters, Serdang 43400, Malaysia;
| | - Nur Mahiza Md Isa
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Mokrish Ajat
- Department of Veterinary Pre-clinical sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Mohd Zamri-Saad
- Research Centre for Ruminant Diseases, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Hazilawati Hamzah
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| |
Collapse
|
21
|
Tretina K, Haidar M, Madsen-Bouterse SA, Sakura T, Mfarrej S, Fry L, Chaussepied M, Pain A, Knowles DP, Nene VM, Ginsberg D, Daubenberger CA, Bishop RP, Langsley G, Silva JC. Theileria parasites subvert E2F signaling to stimulate leukocyte proliferation. Sci Rep 2020; 10:3982. [PMID: 32132598 PMCID: PMC7055300 DOI: 10.1038/s41598-020-60939-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 02/18/2020] [Indexed: 01/22/2023] Open
Abstract
Intracellular pathogens have evolved intricate mechanisms to subvert host cell signaling pathways and ensure their own propagation. A lineage of the protozoan parasite genus Theileria infects bovine leukocytes and induces their uncontrolled proliferation causing a leukemia-like disease. Given the importance of E2F transcription factors in mammalian cell cycle regulation, we investigated the role of E2F signaling in Theileria-induced host cell proliferation. Using comparative genomics and surface plasmon resonance, we identified parasite-derived peptides that have the sequence-specific ability to increase E2F signaling by binding E2F negative regulator Retinoblastoma-1 (RB). Using these peptides as a tool to probe host E2F signaling, we show that the disruption of RB complexes ex vivo leads to activation of E2F-driven transcription and increased leukocyte proliferation in an infection-dependent manner. This result is consistent with existing models and, together, they support a critical role of E2F signaling for Theileria-induced host cell proliferation, and its potential direct manipulation by one or more parasite proteins.
Collapse
Affiliation(s)
- Kyle Tretina
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Program in Molecular Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Malak Haidar
- Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes, Sorbonne, Paris Cité, France
- Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris, 75014, France
| | - Sally A Madsen-Bouterse
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164-7040, USA
| | - Takaya Sakura
- Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes, Sorbonne, Paris Cité, France
- Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris, 75014, France
| | - Sara Mfarrej
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Lindsay Fry
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164-7040, USA
- Animal Disease Research Unit, Agricultural Research Service, USDA, Pullman, WA, 99164-7030, USA
| | - Marie Chaussepied
- Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes, Sorbonne, Paris Cité, France
- Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris, 75014, France
- Weizmann Institute of Science, Molecular Cell Biology Department, PO Box 26, Rehovot, 76100, Israel
| | - Arnab Pain
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Donald P Knowles
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164-7040, USA
| | | | - Doron Ginsberg
- Weizmann Institute of Science, Molecular Cell Biology Department, PO Box 26, Rehovot, 76100, Israel
- The Mina and Everard Goodman Faculty of Life Sciences Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Claudia A Daubenberger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Richard P Bishop
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164-7040, USA
| | - Gordon Langsley
- Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes, Sorbonne, Paris Cité, France
- Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris, 75014, France
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
22
|
Abstract
Theileria schizonts are the only known eukaryotic organisms capable of transforming another eukaryotic cell; as such, probing of the interactions that occur at the host-parasite interface is likely to lead to novel insights into the cell biology underlying leukocyte proliferation and transformation. Little is known about how the parasite communicates with its host or by what route secreted parasite proteins are translocated into the host, and we propose that nuclear trafficking machinery at the parasite surface might play a role in this. The function of AL remains completely unknown, and our work provides a basis for further investigation into the contribution that these porous, cytomembranous structures might make to the survival of fast-growing transformed cells. Parasitic protozoans of the genus Theileria are intracellular pathogens that induce the cellular transformation of leukocytes, causing uncontrolled proliferation of the infected host cell. The transforming stage of the parasite has a strictly intracellular lifestyle and ensures its distribution to both daughter cells during host cell cytokinesis by aligning itself across the metaphase plate and by binding tightly to central spindle and astral microtubules. Given the importance of the parasite surface in maintaining interactions with host microtubules, we analyzed the ultrastructure of the host-parasite interface using transmission electron microscopy combined with high-resolution fluorescence microscopy and live-cell imaging. We show that porous membranes, termed annulate lamellae (AL), closely associate with the Theileria surface in infected T cells, B cells, and macrophages and are not detectable in noninfected bovine cell lines such as BL20 or BoMACs. AL are membranous structures found in the cytoplasm of fast-proliferating cells such as cancer cells, oocytes, and embryonic cells. Although AL were first observed more than 60 years ago, the function of these organelles is still not known. Indirect immunofluorescence analysis with a pan-nuclear pore complex antibody, combined with overexpression of a panel of nuclear pore proteins, revealed that the parasite recruits nuclear pore complex components close to its surface. Importantly, we show that, in addition to structural components of the nuclear pore complex, nuclear trafficking machinery, including importin beta 1, RanGAP1, and the small GTPase Ran, also accumulated close to the parasite surface. IMPORTANCETheileria schizonts are the only known eukaryotic organisms capable of transforming another eukaryotic cell; as such, probing of the interactions that occur at the host-parasite interface is likely to lead to novel insights into the cell biology underlying leukocyte proliferation and transformation. Little is known about how the parasite communicates with its host or by what route secreted parasite proteins are translocated into the host, and we propose that nuclear trafficking machinery at the parasite surface might play a role in this. The function of AL remains completely unknown, and our work provides a basis for further investigation into the contribution that these porous, cytomembranous structures might make to the survival of fast-growing transformed cells.
Collapse
|
23
|
Lecoeur H, Prina E, Rosazza T, Kokou K, N’Diaye P, Aulner N, Varet H, Bussotti G, Xing Y, Milon G, Weil R, Meng G, Späth GF. Targeting Macrophage Histone H3 Modification as a Leishmania Strategy to Dampen the NF-κB/NLRP3-Mediated Inflammatory Response. Cell Rep 2020; 30:1870-1882.e4. [DOI: 10.1016/j.celrep.2020.01.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/08/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
|
24
|
Dacher M, Tachiwana H, Horikoshi N, Kujirai T, Taguchi H, Kimura H, Kurumizaka H. Incorporation and influence of Leishmania histone H3 in chromatin. Nucleic Acids Res 2019; 47:11637-11648. [PMID: 31722422 PMCID: PMC7145708 DOI: 10.1093/nar/gkz1040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022] Open
Abstract
Immunopathologies caused by Leishmania cause severe human morbidity and mortality. This protozoan parasite invades and persists inside host cells, resulting in disease development. Leishmania modifies the epigenomic status of the host cells, thus probably averting the host cell defense mechanism. To accomplish this, Leishmania may change the host cell chromatin structure. However, the mechanism by which the parasite changes the host cell chromatin has not been characterized. In the present study, we found that ectopically produced Leishmania histone H3, LmaH3, which mimics the secreted LmaH3 in infected cells, is incorporated into chromatin in human cells. A crystallographic analysis revealed that LmaH3 forms nucleosomes with human histones H2A, H2B and H4. We found that LmaH3 was less stably incorporated into the nucleosome, as compared to human H3.1. Consistently, we observed that LmaH3-H4 association was remarkably weakened. Mutational analyses revealed that the specific LmaH3 Trp35, Gln57 and Met98 residues, which correspond to the H3.1 Tyr41, Arg63 and Phe104 residues, might be responsible for the instability of the LmaH3 nucleosome. Nucleosomes containing LmaH3 resisted the Mg2+-mediated compaction of the chromatin fiber. These distinct physical characteristics of LmaH3 support the possibility that histones secreted by parasites during infection may modulate the host chromatin structure.
Collapse
Affiliation(s)
- Mariko Dacher
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hiroaki Tachiwana
- Department of Cancer Biology, The Cancer Institute of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Naoki Horikoshi
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Tomoya Kujirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hiroyuki Taguchi
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
25
|
Cabezas-Cruz A, Estrada-Peña A, de la Fuente J. The Good, the Bad and the Tick. Front Cell Dev Biol 2019; 7:79. [PMID: 31157221 PMCID: PMC6529820 DOI: 10.3389/fcell.2019.00079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/30/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | | | - Jose de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
26
|
Gillan V, Simpson DM, Kinnaird J, Maitland K, Shiels B, Devaney E. Characterisation of infection associated microRNA and protein cargo in extracellular vesicles of Theileria annulata infected leukocytes. Cell Microbiol 2018; 21:e12969. [PMID: 30370674 PMCID: PMC6492283 DOI: 10.1111/cmi.12969] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022]
Abstract
The protozoan parasites Theileria annulata and Theileria parva are unique amongst intracellular eukaryotic pathogens as they induce a transformation-like phenotype in their bovine host cell. T. annulata causes tropical theileriosis, which is frequently fatal, with infected leukocytes becoming metastatic and forming foci in multiple organs resulting in destruction of the lymphoid system. Exosomes, a subset of extracellular vesicles (EV), are critical in metastatic progression in many cancers. Here, we characterised the cargo of EV from a control bovine lymphosarcoma cell line (BL20) and BL20 infected with T. annulata (TBL20) by comparative mass spectrometry and microRNA (miRNA) profiling (data available via ProteomeXchange, identifier PXD010713 and NCBI GEO, accession number GSE118456, respectively). Ingenuity pathway analysis that many infection-associated proteins essential to migration and extracellular matrix digestion were upregulated in EV from TBL20 cells compared with BL20 controls. An altered repertoire of host miRNA, many with known roles in tumour and/or infection biology, was also observed. Focusing on the tumour suppressor miRNA, bta-miR-181a and bta-miR-181b, we identified putative messenger RNA targets and confirmed the interaction of bta-miR181a with ICAM-1. We propose that EV and their miRNA cargo play an important role in the manipulation of the host cell phenotype and the pathobiology of Theileria infection.
Collapse
Affiliation(s)
- Victoria Gillan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Deborah M Simpson
- Institute of Integrative Biology, Centre for Proteome Research, University of Liverpool, Liverpool, UK
| | - Jane Kinnaird
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Kirsty Maitland
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Brian Shiels
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Eileen Devaney
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
27
|
Huber S, Karagenc T, Ritler D, Rottenberg S, Woods K. Identification and characterisation of a Theileria annulata proline-rich microtubule and SH3 domain-interacting protein (TaMISHIP) that forms a complex with CLASP1, EB1, and CD2AP at the schizont surface. Cell Microbiol 2018; 20:e12838. [PMID: 29520916 PMCID: PMC6033098 DOI: 10.1111/cmi.12838] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/23/2018] [Accepted: 02/27/2018] [Indexed: 12/20/2022]
Abstract
Theileria annulata is an apicomplexan parasite that modifies the phenotype of its host cell completely, inducing uncontrolled proliferation, resistance to apoptosis, and increased invasiveness. The infected cell thus resembles a cancer cell, and changes to various host cell signalling pathways accompany transformation. Most of the molecular mechanisms leading to Theileria-induced immortalization of leukocytes remain unknown. The parasite dissolves the surrounding host cell membrane soon after invasion and starts interacting with host proteins, ensuring its propagation by stably associating with the host cell microtubule network. By using BioID technology together with fluorescence microscopy and co-immunoprecipitation, we identified a CLASP1/CD2AP/EB1-containing protein complex that surrounds the schizont throughout the host cell cycle and integrates bovine adaptor proteins (CIN85, 14-3-3 epsilon, and ASAP1). This complex also includes the schizont membrane protein Ta-p104 together with a novel secreted T. annulata protein (encoded by TA20980), which we term microtubule and SH3 domain-interacting protein (TaMISHIP). TaMISHIP localises to the schizont surface and contains a functional EB1-binding SxIP motif, as well as functional SH3 domain-binding Px(P/A)xPR motifs that mediate its interaction with CD2AP. Upon overexpression in non-infected bovine macrophages, TaMISHIP causes binucleation, potentially indicative of a role in cytokinesis.
Collapse
Affiliation(s)
- Sandra Huber
- Institute for Animal Pathology, Vetsuisse FacultyUniversity of BernBernSwitzerland
| | - Tulin Karagenc
- Department of Parasitology, Faculty of Veterinary MedicineAdnan Menderes UniversityAydinTurkey
| | - Dominic Ritler
- Institute of Parasitology, Vetsuisse FacultyUniversity of BernBernSwitzerland
| | - Sven Rottenberg
- Institute for Animal Pathology, Vetsuisse FacultyUniversity of BernBernSwitzerland
| | - Kerry Woods
- Institute for Animal Pathology, Vetsuisse FacultyUniversity of BernBernSwitzerland
| |
Collapse
|
28
|
Cheeseman KM, Weitzman JB. [What makes a parasite "transforming"? Insights into cancer from the agents of an exotic pathology, Theileria spp]. ACTA ACUST UNITED AC 2017; 110:55-60. [PMID: 28155040 DOI: 10.1007/s13149-017-0551-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/24/2017] [Indexed: 11/30/2022]
Abstract
Theileria are obligate eukaryotic intracellular parasites of cattle. The diseases they cause, Tropical theileriosis and East Coast Fever, cause huge economic loss in East African, Mediterranean and central and South-East Asian countries. These apicomplexan parasites are the only intracellular eukaryotic parasites known to transform their host cell and represent a unique model to study host-parasite interactions and mechanisms of cancer onset.Here, we review how Theileria parasites induce transformation of their leukocyte host cell and discuss similarities with tumorigenesis. We describe how genomic innovation, epigenetic changes and hijacking of signal transductions enable a eukaryotic parasite to transform its host cell.
Collapse
Affiliation(s)
- K M Cheeseman
- Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Université Paris Diderot, 75013, Paris, France
| | - J B Weitzman
- Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Université Paris Diderot, 75013, Paris, France.
| |
Collapse
|
29
|
Kumar A, Gaur GK, Gandham RK, Panigrahi M, Ghosh S, Saravanan BC, Bhushan B, Tiwari AK, Sulabh S, Priya B, V N MA, Gupta JP, Wani SA, Sahu AR, Sahoo AP. Global gene expression profile of peripheral blood mononuclear cells challenged with Theileria annulata in crossbred and indigenous cattle. INFECTION GENETICS AND EVOLUTION 2016; 47:9-18. [PMID: 27840256 DOI: 10.1016/j.meegid.2016.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/03/2016] [Accepted: 11/09/2016] [Indexed: 12/28/2022]
Abstract
Bovine tropical theileriosis is an important haemoprotozoan disease associated with high rates of morbidity and mortality particularly in exotic and crossbred cattle. It is one of the major constraints of the livestock development programmes in India and Southeast Asia. Indigenous cattle (Bos indicus) are reported to be comparatively less affected than exotic and crossbred cattle. However, genetic basis of resistance to tropical theileriosis in indigenous cattle is not well documented. Recent studies incited an idea that differentially expressed genes in exotic and indigenous cattle play significant role in breed specific resistance to tropical theileriosis. The present study was designed to determine the global gene expression profile in peripheral blood mononuclear cells derived from indigenous (Tharparkar) and cross-bred cattle following in vitro infection of T. annulata (Parbhani strain). Two separate microarray experiments were carried out each for cross-bred and Tharparkar cattle. The cross-bred cattle showed 1082 differentially expressed genes (DEGs). Out of total DEGs, 597 genes were down-regulated and 485 were up-regulated. Their fold change varied from 2283.93 to -4816.02. Tharparkar cattle showed 875 differentially expressed genes including 451 down-regulated and 424 up-regulated. The fold change varied from 94.93 to -19.20. A subset of genes was validated by qRT-PCR and results were correlated well with microarray data indicating that microarray results provided an accurate report of transcript level. Functional annotation study of DEGs confirmed their involvement in various pathways including response to oxidative stress, immune system regulation, cell proliferation, cytoskeletal changes, kinases activity and apoptosis. Gene network analysis of these DEGs plays an important role to understand the interaction among genes. It is therefore, hypothesized that the different susceptibility to tropical theileriosis exhibited by indigenous and crossbred cattle is due to breed-specific differences in the dealing of infected cells with other immune cells, which ultimately influence the immune response responded against T. annulata infection.
Collapse
Affiliation(s)
- Amod Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Gyanendra Kumar Gaur
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India.
| | - Ravi Kumar Gandham
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India.
| | - Manjit Panigrahi
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Shrikant Ghosh
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - B C Saravanan
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Bharat Bhushan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Ashok Kumar Tiwari
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Sourabh Sulabh
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Bhuvana Priya
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Muhasin Asaf V N
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Jay Prakash Gupta
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Sajad Ahmad Wani
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Amit Ranjan Sahu
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Aditya Prasad Sahoo
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| |
Collapse
|
30
|
Kinnaird JH, Singh M, Gillan V, Weir W, Calder EDD, Hostettler I, Tatu U, Devaney E, Shiels BR. Characterization of HSP90 isoforms in transformed bovine leukocytes infected with Theileria annulata. Cell Microbiol 2016; 19. [PMID: 27649068 PMCID: PMC5333456 DOI: 10.1111/cmi.12669] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/15/2016] [Indexed: 12/04/2022]
Abstract
HSP90 chaperones are essential regulators of cellular function, as they ensure the appropriate conformation of multiple key client proteins. Four HSP90 isoforms were identified in the protozoan parasite Theileria annulata. Partial characterization was undertaken for three and localization confirmed for cytoplasmic (TA12105), endoplasmic reticulum (TA06470), and apicoplast (TA10720) forms. ATPase activity and binding to the HSP90 inhibitor geldanamycin were demonstrated for recombinant TA12105, and all three native forms could be isolated to varying extents by binding to geldanamycin beads. Because it is essential, HSP90 is considered a potential therapeutic drug target. Resistance to the only specific Theileriacidal drug is increasing, and one challenge for design of drugs that target the parasite is to limit the effect on the host. An in vitro cell culture system that allows comparison between uninfected bovine cells and the T. annulata‐infected counterpart was utilized to test the effects of geldanamycin and the derivative 17‐AAG. T. annulata‐infected cells had greater tolerance to geldanamycin than uninfected cells yet exhibited significantly more sensitivity to 17‐AAG. These findings suggest that parasite HSP90 isoform(s) can alter the drug sensitivity of infected host cells and that members of the Theileria HSP90 family are potential targets worthy of further investigation.
Collapse
Affiliation(s)
- Jane H Kinnaird
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Bearsden Road, Glasgow, G61 1QH, UK
| | - Meetali Singh
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Victoria Gillan
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Bearsden Road, Glasgow, G61 1QH, UK
| | - William Weir
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Bearsden Road, Glasgow, G61 1QH, UK
| | - Ewen D D Calder
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Bearsden Road, Glasgow, G61 1QH, UK
| | - Isabel Hostettler
- Institute for Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Utpal Tatu
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Eileen Devaney
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Bearsden Road, Glasgow, G61 1QH, UK
| | - Brian R Shiels
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Bearsden Road, Glasgow, G61 1QH, UK
| |
Collapse
|
31
|
Panigrahi M, Kumar A, Bhushan B, Ghosh S, Saravanan BC, Sulabh S, Parida S, Gaur GK. No change in mRNA expression of immune-related genes in peripheral blood mononuclear cells challenged with Theileria annulata in Murrah buffalo (Bubalus bubalis). Ticks Tick Borne Dis 2016; 7:754-758. [DOI: 10.1016/j.ttbdis.2016.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 03/06/2016] [Accepted: 03/09/2016] [Indexed: 12/17/2022]
|
32
|
Epigenetics: A New Model for Intracellular Parasite–Host Cell Regulation. Trends Parasitol 2016; 32:515-521. [DOI: 10.1016/j.pt.2016.04.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 01/31/2016] [Accepted: 04/01/2016] [Indexed: 12/12/2022]
|
33
|
Pieszko M, Weir W, Goodhead I, Kinnaird J, Shiels B. ApiAP2 Factors as Candidate Regulators of Stochastic Commitment to Merozoite Production in Theileria annulata. PLoS Negl Trop Dis 2015; 9:e0003933. [PMID: 26273826 PMCID: PMC4537280 DOI: 10.1371/journal.pntd.0003933] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/25/2015] [Indexed: 02/05/2023] Open
Abstract
Background Differentiation of one life-cycle stage to the next is critical for survival and transmission of apicomplexan parasites. A number of studies have shown that stage differentiation is a stochastic process and is associated with a point that commits the cell to a change over in the pattern of gene expression. Studies on differentiation to merozoite production (merogony) in T. annulata postulated that commitment involves a concentration threshold of DNA binding proteins and an auto-regulatory loop. Principal Findings In this study ApiAP2 DNA binding proteins that show changes in expression level during merogony of T. annulata have been identified. DNA motifs bound by orthologous domains in Plasmodium were found to be enriched in upstream regions of stage-regulated T. annulata genes and validated as targets for the T. annulata AP2 domains by electrophoretic mobility shift assay (EMSA). Two findings were of particular note: the gene in T. annulata encoding the orthologue of the ApiAP2 domain in the AP2-G factor that commits Plasmodium to gametocyte production, has an expression profile indicating involvement in transmission of T. annulata to the tick vector; genes encoding related domains that bind, or are predicted to bind, sequence motifs of the type 5'-(A)CACAC(A) are implicated in differential regulation of gene expression, with one gene (TA11145) likely to be preferentially up-regulated via auto-regulation as the cell progresses to merogony. Conclusions We postulate that the Theileria factor possessing the AP2 domain orthologous to that of Plasmodium AP2-G may regulate gametocytogenesis in a similar manner to AP2-G. In addition, paralogous ApiAP2 factors that recognise 5'-(A)CACAC(A) type motifs could operate in a competitive manner to promote reversible progression towards the point that commits the cell to undergo merogony. Factors possessing AP2 domains that bind (or are predicted to bind) this motif are present in the vector-borne genera Theileria, Babesia and Plasmodium, and other Apicomplexa; leading to the proposal that the mechanisms that control stage differentiation will show a degree of conservation. The ability of vector-borne Apicomplexan parasites (Babesia, Plasmodium and Theileria) to change from one life-cycle stage to the next is critical for establishment of infection and transmission to new hosts. Stage differentiation steps of both Plasmodium and Theileria are known to involve stochastic transition through an intermediate form to a point that commits the cell to generate the next stage in the life-cycle. In this study we have identified genes encoding ApiAP2 DNA binding proteins in Theileria annulata that are differentially expressed during differentiation from the macroschizont stage, through merozoite production (merogony) to the piroplasm stage. The results provide evidence that the ApiAp2 factor in Theileria that possesses the orthologue of the Plasmodium AP2-G domain may also operate to regulate gametocytogenesis, and that progression to merogony is promoted by the ability of a merozoite DNA binding protein to preferentially up-regulate its own production. In addition, identification of multiple ApiAP2 DNA binding domains that bind related motifs within and across vector-borne Apicomplexan genera lead to the proposal that the mechanisms that promote the transition from asexual to sexual replication will show a degree of conservation.
Collapse
Affiliation(s)
- Marta Pieszko
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, United Kingdom
| | - William Weir
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, United Kingdom
| | - Ian Goodhead
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, United Kingdom
| | - Jane Kinnaird
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, United Kingdom
| | - Brian Shiels
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Cheeseman K, Weitzman JB. Host–parasite interactions: an intimate epigenetic relationship. Cell Microbiol 2015; 17:1121-32. [DOI: 10.1111/cmi.12471] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/28/2015] [Accepted: 06/01/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Kevin Cheeseman
- Sorbonne Paris Cité Epigenetics and Cell Fate UMR 7216 CNRS Université Paris Diderot Paris France
| | - Jonathan B. Weitzman
- Sorbonne Paris Cité Epigenetics and Cell Fate UMR 7216 CNRS Université Paris Diderot Paris France
| |
Collapse
|
35
|
Theileria-transformed bovine leukocytes have cancer hallmarks. Trends Parasitol 2015; 31:306-14. [DOI: 10.1016/j.pt.2015.04.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/30/2015] [Accepted: 04/01/2015] [Indexed: 12/19/2022]
|
36
|
Wiens O, Xia D, von Schubert C, Wastling JM, Dobbelaere DAE, Heussler VT, Woods KL. Cell cycle-dependent phosphorylation of Theileria annulata schizont surface proteins. PLoS One 2014; 9:e103821. [PMID: 25077614 PMCID: PMC4117643 DOI: 10.1371/journal.pone.0103821] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/07/2014] [Indexed: 11/19/2022] Open
Abstract
The invasion of Theileria sporozoites into bovine leukocytes is rapidly followed by the destruction of the surrounding host cell membrane, allowing the parasite to establish its niche within the host cell cytoplasm. Theileria infection induces host cell transformation, characterised by increased host cell proliferation and invasiveness, and the activation of anti-apoptotic genes. This process is strictly dependent on the presence of a viable parasite. Several host cell kinases, including PI3-K, JNK, CK2 and Src-family kinases, are constitutively activated in Theileria-infected cells and contribute to the transformed phenotype. Although a number of host cell molecules, including IkB kinase and polo-like kinase 1 (Plk1), are recruited to the schizont surface, very little is known about the schizont molecules involved in host-parasite interactions. In this study we used immunofluorescence to detect phosphorylated threonine (p-Thr), serine (p-Ser) and threonine-proline (p-Thr-Pro) epitopes on the schizont during host cell cycle progression, revealing extensive schizont phosphorylation during host cell interphase. Furthermore, we established a quick protocol to isolate schizonts from infected macrophages following synchronisation in S-phase or mitosis, and used mass spectrometry to detect phosphorylated schizont proteins. In total, 65 phosphorylated Theileria proteins were detected, 15 of which are potentially secreted or expressed on the surface of the schizont and thus may be targets for host cell kinases. In particular, we describe the cell cycle-dependent phosphorylation of two T. annulata surface proteins, TaSP and p104, both of which are highly phosphorylated during host cell S-phase. TaSP and p104 are involved in mediating interactions between the parasite and the host cell cytoskeleton, which is crucial for the persistence of the parasite within the dividing host cell and the maintenance of the transformed state.
Collapse
Affiliation(s)
- Olga Wiens
- Division of Molecular Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Dong Xia
- Department of Infection Biology, Institute of Infection and Global Health & School of Veterinary Science, University of Liverpool, Liverpool, England
| | - Conrad von Schubert
- Division of Molecular Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Jonathan M. Wastling
- Department of Infection Biology, Institute of Infection and Global Health & School of Veterinary Science, University of Liverpool, Liverpool, England
- The National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, England
| | - Dirk A. E. Dobbelaere
- Division of Molecular Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Kerry L. Woods
- Division of Molecular Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
37
|
Ramsay JD, Ueti MW, Johnson WC, Scoles GA, Knowles DP, Mealey RH. Lymphocytes and macrophages are infected by Theileria equi, but T cells and B cells are not required to establish infection in vivo. PLoS One 2013; 8:e76996. [PMID: 24116194 PMCID: PMC3792048 DOI: 10.1371/journal.pone.0076996] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/04/2013] [Indexed: 11/18/2022] Open
Abstract
Theileria equi has a biphasic life cycle in horses, with a period of intraleukocyte development followed by patent erythrocytic parasitemia that causes acute and sometimes fatal hemolytic disease. Unlike Theileria spp. that infect cattle (Theileria parva and Theileria annulata), the intraleukocyte stage (schizont) of Theileria equi does not cause uncontrolled host cell proliferation or other significant pathology. Nevertheless, schizont-infected leukocytes are of interest because of their potential to alter host cell function and because immune responses directed against this stage could halt infection and prevent disease. Based on cellular morphology, Theileria equi has been reported to infect lymphocytes in vivo and in vitro, but the specific phenotype of schizont-infected cells has yet to be defined. To resolve this knowledge gap in Theileria equi pathogenesis, peripheral blood mononuclear cells were infected in vitro and the phenotype of infected cells determined using flow cytometry and immunofluorescence microscopy. These experiments demonstrated that the host cell range of Theileria equi was broader than initially reported and included B lymphocytes, T lymphocytes and monocyte/macrophages. To determine if B and T lymphocytes were required to establish infection in vivo, horses affected with severe combined immunodeficiency (SCID), which lack functional B and T lymphocytes, were inoculated with Theileria equi sporozoites. SCID horses developed patent erythrocytic parasitemia, indicating that B and T lymphocytes are not necessary to complete the Theileria equi life cycle in vivo. These findings suggest that the factors mediating Theileria equi leukocyte invasion and intracytoplasmic differentiation are common to several leukocyte subsets and are less restricted than for Theileria annulata and Theileria parva. These data will greatly facilitate future investigation into the relationships between Theileria equi leukocyte tropism and pathogenesis, breed susceptibility, and strain virulence.
Collapse
Affiliation(s)
- Joshua D. Ramsay
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| | - Massaro W. Ueti
- Animal Disease Research Unit, Agricultural Research Service, USDA, Pullman, Washington, United States of America
| | - Wendell C. Johnson
- Animal Disease Research Unit, Agricultural Research Service, USDA, Pullman, Washington, United States of America
| | - Glen A. Scoles
- Animal Disease Research Unit, Agricultural Research Service, USDA, Pullman, Washington, United States of America
| | - Donald P. Knowles
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, Washington, United States of America
- Animal Disease Research Unit, Agricultural Research Service, USDA, Pullman, Washington, United States of America
| | - Robert H. Mealey
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|