1
|
Soria B, Escacena N, Gonzaga A, Soria-Juan B, Andreu E, Hmadcha A, Gutierrez-Vilchez AM, Cahuana G, Tejedo JR, De la Cuesta A, Miralles M, García-Gómez S, Hernández-Blasco L. Cell Therapy of Vascular and Neuropathic Complications of Diabetes: Can We Avoid Limb Amputation? Int J Mol Sci 2023; 24:17512. [PMID: 38139339 PMCID: PMC10743405 DOI: 10.3390/ijms242417512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Globally, a leg is amputated approximately every 30 seconds, with an estimated 85 percent of these amputations being attributed to complications arising from diabetic foot ulcers (DFU), as stated by the American Diabetes Association. Peripheral arterial disease (PAD) is a risk factor resulting in DFU and can, either independently or in conjunction with diabetes, lead to recurring, slow-healing ulcers and amputations. According to guidelines amputation is the recommended treatment for patients with no-option critical ischemia of the limb (CTLI). In this article we propose cell therapy as an alternative strategy for those patients. We also suggest the optimal time-frame for an effective therapy, such as implanting autologous mononuclear cells (MNCs), autologous and allogeneic mesenchymal stromal cells (MSC) as these treatments induce neuropathy relief, regeneration of the blood vessels and tissues, with accelerated ulcer healing, with no serious side effects, proving that advanced therapy medicinal product (ATMPs) application is safe and effective and, hence, can significantly prevent limb amputation.
Collapse
Affiliation(s)
- Bernat Soria
- Institute of Biomedical Research ISABIAL of the University Miguel Hernández, Dr. Balmis General and University Hospital, 03010 Alicante, Spain
- Institute of Bioengineering, University Miguel Hernández, 03202 Elche, Spain
- CIBERDEM Network Research Center for Diabetes and Associated Metabolic Diseases, Carlos III Health Institute, 28029 Madrid, Spain
| | - Natalia Escacena
- Fresci Consultants, Human Health Innovation, 08025 Barcelona, Spain
| | - Aitor Gonzaga
- Institute of Biomedical Research ISABIAL of the University Miguel Hernández, Dr. Balmis General and University Hospital, 03010 Alicante, Spain
- Institute of Bioengineering, University Miguel Hernández, 03202 Elche, Spain
| | - Barbara Soria-Juan
- Reseaux Hôpitalieres Neuchatelois et du Jura, 2000 Neuchâtel, Switzerland
| | - Etelvina Andreu
- Institute of Biomedical Research ISABIAL of the University Miguel Hernández, Dr. Balmis General and University Hospital, 03010 Alicante, Spain
- Department of Applied Physics, University Miguel Hernández Elche, 03202 Elche, Spain
| | - Abdelkrim Hmadcha
- Biosanitary Research Institute (IIB-VIU), Valencian International University (VIU), 46002 Valencia, Spain
- Department of Molecular Biology, University Pablo de Olavide, 41013 Sevilla, Spain
| | - Ana Maria Gutierrez-Vilchez
- Institute of Bioengineering, University Miguel Hernández, 03202 Elche, Spain
- Department of Pharmacology, Pediatrics and Organic Chemistry, University Miguel Hernández, 03202 Elche, Spain
| | - Gladys Cahuana
- Department of Molecular Biology, University Pablo de Olavide, 41013 Sevilla, Spain
| | - Juan R. Tejedo
- CIBERDEM Network Research Center for Diabetes and Associated Metabolic Diseases, Carlos III Health Institute, 28029 Madrid, Spain
- Department of Molecular Biology, University Pablo de Olavide, 41013 Sevilla, Spain
| | | | - Manuel Miralles
- University and Polytechnic Hospital La Fe, 46026 Valencia, Spain
| | | | - Luis Hernández-Blasco
- Institute of Biomedical Research ISABIAL of the University Miguel Hernández, Dr. Balmis General and University Hospital, 03010 Alicante, Spain
| |
Collapse
|
2
|
Du R, Li D, Zhu M, Zheng L, Ren K, Han D, Li L, Ji J, Fan Y. Cell senescence alters responses of porcine trabecular meshwork cells to shear stress. Front Cell Dev Biol 2022; 10:1083130. [PMID: 36478743 PMCID: PMC9721263 DOI: 10.3389/fcell.2022.1083130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 10/05/2024] Open
Abstract
Mechanical microenvironment and cellular senescence of trabecular meshwork cells (TMCs) are suspected to play a vital role in primary open-angle glaucoma pathogenesis. However, central questions remain about the effect of shear stress on TMCs and how aging affects this process. We have investigated the effect of shear stress on the biomechanical properties and extracellular matrix regulation of normal and senescent TMCs. We found a more significant promotion of Fctin formation, a more obvious realignment of F-actin fibers, and a more remarkable increase in the stiffness of normal cells in response to the shear stress, in comparison with that of senescent cells. Further, as compared to normal cells, senescent cells show a reduced extracellular matrix turnover after shear stress stimulation, which might be attributed to the different phosphorylation levels of the extracellular signal-regulated kinase. Our results suggest that TMCs are able to sense and respond to the shear stress and cellular senescence undermines the mechanobiological response, which may lead to progressive failure of cellular TM function with age.
Collapse
Affiliation(s)
- Ruotian Du
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Dongyan Li
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Meng Zhu
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Lisha Zheng
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Keli Ren
- Lab for Biological Imaging and Nanomedicine, National Center for Nanoscience and Technology, Beijing, China
| | - Dong Han
- Lab for Biological Imaging and Nanomedicine, National Center for Nanoscience and Technology, Beijing, China
| | - Long Li
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Jing Ji
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
3
|
Cui X, Li X, He Y, Yu J, Dong N, Zhao RC. Slight up-regulation of Kir2.1 channel promotes endothelial progenitor cells to transdifferentiate into a pericyte phenotype by Akt/mTOR/Snail pathway. J Cell Mol Med 2021; 25:10088-10100. [PMID: 34592781 PMCID: PMC8572793 DOI: 10.1111/jcmm.16944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 08/22/2021] [Accepted: 09/19/2021] [Indexed: 12/27/2022] Open
Abstract
It was shown that endothelial progenitor cells (EPCs) have bidirectional differentiation potential and thus perform different biological functions. The purpose of this study was to investigate the effects of slight up‐regulation of the Kir2.1 channel on EPC transdifferentiation and the potential mechanism on cell function and transformed cell type. First, we found that the slight up‐regulation of Kir2.1 expression promoted the expression of the stem cell stemness factors ZFX and NS and inhibited the expression of senescence‐associated β‐galactosidase. Further studies showed the slightly increased expression of Kir2.1 could also improve the expression of pericyte molecular markers NG2, PDGFRβ and Desmin. Moreover, adenovirus‐mediated Kir2.1 overexpression had an enhanced contractile response to norepinephrine of EPCs. These results suggest that the up‐regulated expression of the Kir2.1 channel promotes EPC transdifferentiation into a pericyte phenotype. Furthermore, the mechanism of EPC transdifferentiation to mesenchymal cells (pericytes) was found to be closely related to the channel functional activity of Kir2.1 and revealed that this channel could promote EPC EndoMT by activating the Akt/mTOR/Snail signalling pathway. Overall, this study suggested that in the early stage of inflammatory response, regulating the Kir2.1 channel expression affects the biological function of EPCs, thereby determining the maturation and stability of neovascularization.
Collapse
Affiliation(s)
- Xiaodong Cui
- Department of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University Medical College, Qingdao University, Qingdao, China.,School of Basic Medicine Sciences, Weifang Medical University, Weifang, China
| | - Xiaoxia Li
- Department of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University Medical College, Qingdao University, Qingdao, China
| | - Yanting He
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, China
| | - Jie Yu
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, China
| | - Naijun Dong
- Department of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University Medical College, Qingdao University, Qingdao, China
| | - Robert Chunhua Zhao
- Department of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Huang Y, Qian JY, Cheng H, Li XM. Effects of shear stress on differentiation of stem cells into endothelial cells. World J Stem Cells 2021; 13:894-913. [PMID: 34367483 PMCID: PMC8316872 DOI: 10.4252/wjsc.v13.i7.894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/20/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Stem cell transplantation is an appealing potential therapy for vascular diseases and an indispensable key step in vascular tissue engineering. Substantial effort has been made to differentiate stem cells toward vascular cell phenotypes, including endothelial cells (ECs) and smooth muscle cells. The microenvironment of vascular cells not only contains biochemical factors that influence differentiation but also exerts hemodynamic forces, such as shear stress and cyclic strain. More recently, studies have shown that shear stress can influence the differentiation of stem cells toward ECs. A deep understanding of the responses and underlying mechanisms involved in this process is essential for clinical translation. This review highlights current data supporting the role of shear stress in stem cell differentiation into ECs. Potential mechanisms and signaling cascades for transducing shear stress into a biological signal are proposed. Further study of stem cell responses to shear stress will be necessary to apply stem cells for pharmacological applications and cardiovascular implants in the realm of regenerative medicine.
Collapse
Affiliation(s)
- Yan Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jia-Yi Qian
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Hong Cheng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xiao-Ming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
5
|
Current Status of Cell-Based Therapy in Patients with Critical Limb Ischemia. Int J Mol Sci 2020; 21:ijms21238999. [PMID: 33256237 PMCID: PMC7731417 DOI: 10.3390/ijms21238999] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
(1) Background: The treatment of peripheral arterial disease (PAD) is focused on improving perfusion and oxygenation in the affected limb. Standard revascularization methods include bypass surgery, endovascular interventional procedures, or hybrid revascularization. Cell-based therapy can be an alternative strategy for patients with no-option critical limb ischemia who are not eligible for endovascular or surgical procedures. (2) Aims: The aim of this narrative review was to provide an up-to-date critical overview of the knowledge and evidence-based medicine data on the position of cell therapy in the treatment of PAD. The current evidence on the cell-based therapy is summarized and future perspectives outlined, emphasizing the potential of exosomal cell-free approaches in patients with critical limb ischemia. (3) Methods: Cochrane and PubMed databases were searched for keywords “critical limb ischemia and cell therapy”. In total, 589 papers were identified, 11 of which were reviews and 11 were meta-analyses. These were used as the primary source of information, using cross-referencing for identification of additional papers. (4) Results: Meta-analyses focusing on cell therapy in PAD treatment confirm significantly greater odds of limb salvage in the first year after the cell therapy administration. Reported odds ratio estimates of preventing amputation being mostly in the region 1.6–3, although with a prolonged observation period, it seems that the odds ratio can grow even further. The odds of wound healing were at least two times higher when compared with the standard conservative therapy. Secondary endpoints of the available meta-analyses are also included in this review. Improvement of perfusion and oxygenation parameters in the affected limb, pain regression, and claudication interval prolongation are discussed. (5) Conclusions: The available evidence-based medicine data show that this technique is safe, associated with minimum complications or adverse events, and effective.
Collapse
|
6
|
Ding X, Xiang W, He X. IFN-I Mediates Dysfunction of Endothelial Progenitor Cells in Atherosclerosis of Systemic Lupus Erythematosus. Front Immunol 2020; 11:581385. [PMID: 33262760 PMCID: PMC7686511 DOI: 10.3389/fimmu.2020.581385] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multi-system autoimmune disease including the cardiovascular system. Atherosclerosis is the most common cardiovascular complication of SLE and a significant risk factor for morbidity and mortality. Vascular damage/protection mechanism in SLE patients is out of balance, caused by the cascade reaction among oxidative stress, proinflammatory cytokines, Neutrophil Extracellular Traps, activation of B cells and autoantibodies and abnormal T cells. As a precursor cell repairing vascular endothelium, endothelial progenitor cells (EPCs) belong to the protective mechanism and show the reduced number and impaired function in SLE. However, the pathological mechanism of EPCs dysfunction in SLE remains ill-defined. This paper reviews the latest SLE epidemiology and pathogenesis, discusses the changes in the number and function of EPCs in SLE, expounds the role of EPCs in SLE atherosclerosis, and provides new guidance and theoretical basis for exploring novel targets for SLE treatment.
Collapse
Affiliation(s)
- Xuewei Ding
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
- Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Xiang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, NHC Key Laboratory of Control of Tropical diseases (Hainan Medical University), Haikou, China
| | - Xiaojie He
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
- Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Gonzalez BA, Perez-Nevarez M, Mirza A, Perez MG, Lin YM, Hsu CPD, Caobi A, Raymond A, Gomez Hernandez ME, Fernandez-Lima F, George F, Ramaswamy S. Physiologically Relevant Fluid-Induced Oscillatory Shear Stress Stimulation of Mesenchymal Stem Cells Enhances the Engineered Valve Matrix Phenotype. Front Cardiovasc Med 2020; 7:69. [PMID: 32509802 PMCID: PMC7248568 DOI: 10.3389/fcvm.2020.00069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/07/2020] [Indexed: 11/20/2022] Open
Abstract
Support of somatic growth is a fundamental requirement of tissue-engineered valves. However, efforts thus far have been unable to maintain this support long term. A key event that will determine the valve's long-term success is the extent to which healthy host tissue remodeling can occur on the valve soon after implantation. The construct's phenotypic-status plays a critical role in accelerating tissue remodeling and engineered valve integration with the host via chemotaxis. In the current study, human bone-marrow-derived mesenchymal stem cells were utilized to seed synthetic, biodegradable scaffolds for a period of 8 days in rotisserie culture. Subsequently, cell-seeded scaffolds were exposed to physiologically relevant oscillatory shear stresses (overall mean, time-averaged shear stress, ~7.9 dynes/cm2; overall mean, oscillatory shear index, ~0.18) for an additional 2 weeks. The constructs were found to exhibit relatively augmented endothelial cell expression (CD31; compared to static controls) but concomitantly served to restrict the level of the activated smooth muscle phenotype (α-SMA) and also produced very low stem cell secretion levels of fibronectin (p < 0.05 compared to static and rotisserie controls). These findings suggest that fluid-induced oscillatory shear stresses alone are important in regulating a healthy valve phenotype of the engineered tissue matrix. Moreover, as solid stresses could lead to increased α-SMA levels, they should be excluded from conditioning during the culture process owing to their associated potential risks with pathological tissue remodeling. In conclusion, engineered valve tissues derived from mesenchymal stem cells revealed both a relatively robust valvular phenotype after exposure to physiologically relevant scales of oscillatory shear stress and may thereby serve to accelerate healthy valve tissue remodeling in the host post-implantation.
Collapse
Affiliation(s)
- Brittany A Gonzalez
- Cardiovascular Therapeutics Laboratory (CV-PEUTICS Lab), Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Manuel Perez-Nevarez
- Cardiovascular Therapeutics Laboratory (CV-PEUTICS Lab), Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Asad Mirza
- Cardiovascular Therapeutics Laboratory (CV-PEUTICS Lab), Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Marcos Gonzalez Perez
- Cardiovascular Therapeutics Laboratory (CV-PEUTICS Lab), Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Yih-Mei Lin
- Cardiovascular Therapeutics Laboratory (CV-PEUTICS Lab), Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Chia-Pei Denise Hsu
- Cardiovascular Therapeutics Laboratory (CV-PEUTICS Lab), Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Allen Caobi
- Department of Immunology and Nano-Medicine, Florida International University, Miami, FL, United States
| | - Andrea Raymond
- Department of Immunology and Nano-Medicine, Florida International University, Miami, FL, United States
| | - Mario E Gomez Hernandez
- Advanced Mass Spectrometry Facility, Florida International University, Miami, FL, United States.,Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | - Francisco Fernandez-Lima
- Advanced Mass Spectrometry Facility, Florida International University, Miami, FL, United States.,Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | - Florence George
- Department of Mathematics and Statistics, Florida International University, Miami, FL, United States
| | - Sharan Ramaswamy
- Cardiovascular Therapeutics Laboratory (CV-PEUTICS Lab), Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| |
Collapse
|
8
|
Oscillating shear stress mediates mesenchymal transdifferentiation of EPCs by the Kir2.1 channel. Heart Vessels 2020; 35:1473-1482. [PMID: 32449050 DOI: 10.1007/s00380-020-01625-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/15/2020] [Indexed: 12/16/2022]
Abstract
Although endothelial progenitor cells (EPCs) are considered to be an essential source of vascular endothelial repair, their bidirectional differentiation determines that they play a double-edged role in the restoration of endothelial injury. In this research, we investigated the effect of Kir2.1 ion channel on the transdifferentiation of endothelial progenitor cells (EPCs) under the oscillating shear stress (OSS) and the molecular mechanisms underlying the pathological vascular remodeling. EPCs were treated with OSS (± 3.5 dynes/cm2, 1 Hz) simulated with the parallel flow chamber system. The results have shown that OSS promoted the expression of α-SMA and SM22, markers of mesenchymal cells on EPCs. Moreover, OSS also increased expression of Kir2.1 in EPCs. The down-regulation of Kir2.1 reduced OSS-induced EPC mesenchymal transdifferentiation. The overexpression of Kir2.1 suppressed the angiogenic abilities of EPCs in vitro. In parallel, the overexpression of Kir2.1 on EPCs thickened the carotid tunica intima in rat carotid artery balloon injured model in vivo. Taken together, those data indicated that the OSS could facilitate the transdifferentiation of EPCs by increasing Kir2.1 expression. This study provides a novel insight into the pathogenesis of cardiovascular diseases and gives evidence for Kir2.1 as a potential therapeutic target.
Collapse
|
9
|
Wu SH, Zhang F, Yao S, Tang L, Zeng HT, Zhu LP, Yang Z. Shear Stress Triggers Angiogenesis of Late Endothelial Progenitor Cells via the PTEN/Akt/GTPCH/BH4 Pathway. Stem Cells Int 2020; 2020:5939530. [PMID: 32399044 PMCID: PMC7210539 DOI: 10.1155/2020/5939530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/03/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Shear stress is an effective modulator of endothelial progenitor cells (EPCs) and has been suggested to play an important role in angiogenesis. The phosphatase and tensin homolog (PTEN)/Akt and guanosine triphosphate cyclohydrolase (GTPCH)/tetrahydrobiopterin (BH4) pathways regulate the function of early EPCs. However, the role of these pathways in the shear stress-induced angiogenesis of late EPCs remains poorly understood. Therefore, we aim to investigate whether shear stress could upregulate the angiogenesis capacity of late EPCs and to further explore the possible underlying mechanisms. METHODS Late EPCs were subjected to laminar shear stress (LSS), and their in vitro migration, proliferation, and tube formation capacity were determined. In addition, the in vivo angiogenesis capacity was explored, along with the expression of molecules involved in the PTEN/Akt and GTPCH/BH4 pathways. RESULTS LSS elevated the in vitro activities of late EPCs, which were accompanied by downregulated PTEN expression, accelerated Akt phosphorylation, and GTPCH/BH4 pathway activation (all P < 0.05). Following Akt inhibition, LSS-induced upregulated GTPCH expression, BH4, and NO level of EPCs were suppressed. LSS significantly improved the migration, proliferation, and tube formation ability (15 dyn/cm2 LSS vs. stationary: 72.2 ± 5.5 vs. 47.3 ± 7.3, 0.517 ± 0.05 vs. 0.367 ± 0.038, and 1.664 ± 0.315 vs. 1 ± 0, respectively; all P < 0.05) along with the in vivo angiogenesis capacity of late EPCs, contributing to the recovery of limb ischemia. These effects were also blocked by Akt inhibition or GTPCH knockdown (P < 0.05, respectively). CONCLUSIONS This study provides the first evidence that shear stress triggers angiogenesis in late EPCs via the PTEN/Akt/GTPCH/BH4 pathway, providing a potential nonpharmacologic therapeutic strategy for promoting angiogenesis in ischemia-related diseases.
Collapse
Affiliation(s)
- Shao-Hong Wu
- Department of Ultrasound, The First Affiliated Hospital, Sun Yat-Sen University, 58 2nd Zhongshan Road, Guangzhou, China 510080
| | - Feng Zhang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, China 410008
| | - Shun Yao
- Department of Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, China 510080
| | - Lu Tang
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, China 410008
| | - Hai-Tao Zeng
- Center for Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-Sen University, 58, 2nd Village Cross Road, Guangzhou, China 510080
| | - Ling-Ping Zhu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, China 410008
| | - Zhen Yang
- Division of Emergency Medicine, Department of General Internal Medicine, Department of Emergency Intensive Care Unit & Department of Cardiology & Key Laboratory on Assisted Circulation, Ministry of Health, The First Affiliated Hospital, Sun Yet-Sen University, 58 2nd Zhongshan Road, Guangzhou, China 510080
| |
Collapse
|
10
|
Gao Y, Cui X, Wang M, Zhang Y, He Y, Li L, Li H, Zhang X, Cheng M. Oscillatory shear stress induces the transition of EPCs into mesenchymal cells through ROS/PKCζ/p53 pathway. Life Sci 2020; 253:117728. [PMID: 32353430 DOI: 10.1016/j.lfs.2020.117728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 01/14/2023]
Abstract
AIMS Studies indicate that the pattern of shear stress determines the direction of endothelial progenitor cells (EPCs) differentiation. However, the mechanism remains largely unknown. Herein, we try to identify the role of oscillatory shear stress (OSS) in the transdifferentiation of EPCs into mesenchymal cells and the mechanism involved. MATERIALS AND METHODS OSS was applied to EPCs using the flow chamber system in vitro. Matrigel, Boyden chamber, and healing assay were used to observe the changes in EPCs function. Further, 2',7'-dichlorofluorescein diacetate (DCFH-DA) probe and/or western blot were performed to detect the expression of reactive oxygen species (ROS), p53 and PKCζ in EPCs. EPCs transduced with Lentivirus carrying Tp53 were implanted into the arterial vessel in the balloon injured rat model, and neointimal thickening was verified by HE staining. KEY FINDINGS OSS enhanced the expression of mesenchymal cell markers alpha-smooth muscle actin (α-SMA) and smooth muscle 22 alpha (SM22α) on EPCs. In the meantime, OSS time-dependently decreased p53 expression in EPCs, which was partially abolished by treatment with ROS scavenger N-acetylcysteine (NAC) or protein kinase C zeta (PKCζ) inhibitor Go6983. Moreover, the p53 agonist tenovin-1 attenuated the changes of OSS-mediated the mesenchymal cell markers and EPCs function. Besides, we also found that transplanting EPCs transfected with LV-Tp53 significantly inhibited neointimal thickening and promoted reendothelialization in vivo. SIGNIFICANCE This study demonstrates OSS-induced EPC transdifferentiation into mesenchymal cells and ROS/PKCζ/p53 pathway play an essential role in it. It may serve as a promising therapeutic target for cardiovascular disease in the future.
Collapse
Affiliation(s)
- Yu Gao
- School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Xiaodong Cui
- School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Meiyue Wang
- School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Yaowen Zhang
- School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Yanting He
- School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Lanlan Li
- School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Hong Li
- School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Xiaoyun Zhang
- School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, PR China.
| | - Min Cheng
- School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, PR China.
| |
Collapse
|
11
|
Royer C, Guay‐Bégin A, Chanseau C, Chevallier P, Bordenave L, Laroche G, Durrieu M. Bioactive micropatterning of biomaterials for induction of endothelial progenitor cell differentiation: Acceleration of in situ endothelialization. J Biomed Mater Res A 2020; 108:1479-1492. [DOI: 10.1002/jbm.a.36918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/24/2020] [Accepted: 03/09/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Caroline Royer
- Univ. BordeauxChimie et Biologie des Membranes et Nano‐Objets (UMR5248 CBMN) Pessac France
- CNRSCBMN UMR5248 Pessac France
- Bordeaux INPCBMN UMR5248 Pessac France
- Laboratoire d'Ingénierie de SurfaceCentre de recherche du CHU de Québec—Université Laval, Hôpital Saint‐François d'Assise Québec Quebec Canada
- Département de génie des minesde la métallurgie et des matériaux, Centre de Recherche sur les Matériaux Avancés Québec Quebec Canada
| | - Andrée‐Anne Guay‐Bégin
- Laboratoire d'Ingénierie de SurfaceCentre de recherche du CHU de Québec—Université Laval, Hôpital Saint‐François d'Assise Québec Quebec Canada
| | | | - Pascale Chevallier
- Laboratoire d'Ingénierie de SurfaceCentre de recherche du CHU de Québec—Université Laval, Hôpital Saint‐François d'Assise Québec Quebec Canada
- Département de génie des minesde la métallurgie et des matériaux, Centre de Recherche sur les Matériaux Avancés Québec Quebec Canada
| | | | - Gaétan Laroche
- Laboratoire d'Ingénierie de SurfaceCentre de recherche du CHU de Québec—Université Laval, Hôpital Saint‐François d'Assise Québec Quebec Canada
- Département de génie des minesde la métallurgie et des matériaux, Centre de Recherche sur les Matériaux Avancés Québec Quebec Canada
| | - Marie‐Christine Durrieu
- Univ. BordeauxChimie et Biologie des Membranes et Nano‐Objets (UMR5248 CBMN) Pessac France
- CNRSCBMN UMR5248 Pessac France
- Bordeaux INPCBMN UMR5248 Pessac France
| |
Collapse
|
12
|
Yan J, Bao H, Fan YJ, Jiang ZL, Qi YX, Han Y. Platelet-derived microvesicles promote endothelial progenitor cell proliferation in intimal injury by delivering TGF-β1. FEBS J 2020; 287:5196-5217. [PMID: 32167224 DOI: 10.1111/febs.15293] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/21/2020] [Accepted: 03/11/2020] [Indexed: 12/20/2022]
Abstract
Intimal injury is an early stage of several cardiovascular diseases. Endothelial progenitor cells (EPCs) play a significant role in endothelial repair following vascular injury. Once the intima is damaged, EPCs are mobilized from the bone marrow to the injury site. Meanwhile, the injury to the intimal surface triggers platelet degranulation, aggregation, and adhesion to the damaged endothelium, and exposed collagen stimulates platelet to secrete platelet-derived microvesicles (PMVs). However, the role of PMVs in EPC function during this process remains unknown. In an in vivo study, EPCs and platelets were found to adhere to the injury site in Sprague-Dawley (SD) rat vascular injury model. In vitro, collagen stimulation induced the release of PMVs, and collagen-activated PMVs (ac.PMVs) significantly promoted EPC proliferation. Transforming growth factor-β1 (TGF-β1) content was increased in ac.PMVs. Activated PMVs significantly upregulated Smad3 phosphorylation in EPCs and increased Smad3 nuclear translocation from the cytoplasm. TGF-β1 knockdown ac.PMVs downregulated EPC proliferation. Recombinant TGF-β1 enhanced EPC proliferation. The TGF-β1 inhibitor SB431542 significantly repressed the intracellular signal triggered by ac.PMVs. Furthermore, the Smad3-specific phosphorylation inhibitor SIS3 effectively reversed the cell proliferation induced by ac.PMVs. Smad3 translocated to the nucleus and enhanced EPC proliferation via its downstream genes tenascin C (TNC), CDKN1A, and CDKN2A. r-TGF-β1 promoted reendothelialization and EPC proliferation in vivo. Our data demonstrate that activated PMVs deliver TGF-β1 from collagen-activated platelets to EPCs, which in turn activates Smad3 phosphorylation and regulates TNC, CDKN1A, and CDKN2A expression to promote EPC proliferation, suggesting that PMVs act as a key transporter and a potential therapeutic target for vascular injury.
Collapse
Affiliation(s)
- Jing Yan
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, China
| | - Han Bao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, China
| | - Yang-Jing Fan
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, China
| | - Zong-Lai Jiang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, China
| | - Ying-Xin Qi
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, China
| | - Yue Han
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, China
| |
Collapse
|
13
|
Yang G, Mahadik B, Choi JY, Fisher JP. Vascularization in tissue engineering: fundamentals and state-of-art. ACTA ACUST UNITED AC 2020; 2. [PMID: 34308105 DOI: 10.1088/2516-1091/ab5637] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vascularization is among the top challenges that impede the clinical application of engineered tissues. This challenge has spurred tremendous research endeavor, defined as vascular tissue engineering (VTE) in this article, to establish a pre-existing vascular network inside the tissue engineered graft prior to implantation. Ideally, the engineered vasculature can be integrated into the host vasculature via anastomosis to supply nutrient to all cells instantaneously after surgery. Moreover, sufficient vascularization is of great significance in regenerative medicine from many other perspectives. Due to the critical role of vascularization in successful tissue engineering, we aim to provide an up-to-date overview of the fundamentals and VTE strategies in this article, including angiogenic cells, biomaterial/bio-scaffold design and bio-fabrication approaches, along with the reported utility of vascularized tissue complex in regenerative medicine. We will also share our opinion on the future perspective of this field.
Collapse
Affiliation(s)
- Guang Yang
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States of America.,Center for Engineering Complex Tissues, University of Maryland, College Park, MD, United States of America
| | - Bhushan Mahadik
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States of America.,Center for Engineering Complex Tissues, University of Maryland, College Park, MD, United States of America
| | - Ji Young Choi
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States of America
| | - John P Fisher
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States of America.,Center for Engineering Complex Tissues, University of Maryland, College Park, MD, United States of America
| |
Collapse
|
14
|
Tian GE, Zhou JT, Liu XJ, Huang YC. Mechanoresponse of stem cells for vascular repair. World J Stem Cells 2019; 11:1104-1114. [PMID: 31875871 PMCID: PMC6904862 DOI: 10.4252/wjsc.v11.i12.1104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/25/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
Stem cells have shown great potential in vascular repair. Numerous evidence indicates that mechanical forces such as shear stress and cyclic strain can regulate the adhesion, proliferation, migration, and differentiation of stem cells via serious signaling pathways. The enrichment and differentiation of stem cells play an important role in the angiogenesis and maintenance of vascular homeostasis. In normal tissues, blood flow directly affects the microenvironment of vascular endothelial cells (ECs); in pathological status, the abnormal interactions between blood flow and vessels contribute to the injury of vessels. Next, the altered mechanical forces are transduced into cells by mechanosensors to trigger the reformation of vessels. This process occurs when signaling pathways related to EC differentiation are initiated. Hence, a deep understanding of the responses of stem cells to mechanical stresses and the underlying mechanisms involved in this process is essential for clinical translation. In this the review, we provide an overview of the role of stem cells in vascular repair, outline the performance of stem cells under the mechanical stress stimulation, and describe the related signaling pathways.
Collapse
Affiliation(s)
- Ge-Er Tian
- Regenerative Medicine Research Center of West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jun-Teng Zhou
- Department of Cardiology of West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xiao-Jing Liu
- Regenerative Medicine Research Center of West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yong-Can Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China.
| |
Collapse
|
15
|
Teng EL, Engler AJ. Mechanical influences on cardiovascular differentiation and disease modeling. Exp Cell Res 2019; 377:103-108. [PMID: 30794804 DOI: 10.1016/j.yexcr.2019.02.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/09/2019] [Accepted: 02/18/2019] [Indexed: 01/06/2023]
Abstract
Tissues are continuously exposed to forces in vivo, whether from fluid pressure in an artery from our blood or compressive forces on joints from our body weight. The forces that cells are exposed to arise almost immediately after conception; it is therefore important to understand how forces shape stem cell differentiation into lineage committed cells, how they help organize cells into tissues, and how forces can cause or exacerbate disease. No tissue is exempt, but cardiovascular tissues in particular are exposed to these forces. While animal models have been used extensively in the past, there is growing recognition of their limitations when modeling disease complexity or human genetics. In this mini review, we summarize current understanding of the mechanical influences on the differentiation of cardiovascular progeny, how the transduction of forces influence the onset of disease, and how engineering approaches applied to this problem have yielded systems that create mature-like human tissues in vitro in which to assess the impact of disease on cell function.
Collapse
Affiliation(s)
- Evan L Teng
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, United States; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, United States
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, United States; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, United States.
| |
Collapse
|
16
|
Chu HR, Sun YC, Gao Y, Guan XM, Yan H, Cui XD, Zhang XY, Li X, Li H, Cheng M. Function of Krüppel‑like factor 2 in the shear stress‑induced cell differentiation of endothelial progenitor cells to endothelial cells. Mol Med Rep 2019; 19:1739-1746. [PMID: 30628700 DOI: 10.3892/mmr.2019.9819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 10/15/2018] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to evaluate the effects of Krüppel‑like factor 2 (KLF2) on the differentiation of endothelial progenitor cells (EPCs) to endothelial cells (ECs) induced by shear stress, and to investigate the corresponding mechanisms. Cultured rat late EPCs were exposed to shear stress (12 dyn/cm2) for different lengths of time. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) was used to measure the initial KLF2 mRNA levels in each group. Subsequently, the EPCs were treated with anti‑integrin β1 or β3 antibodies to block integrin β1 and β3, respectively, or cytochalasin D to destroy F‑actin, and the subsequent expression levels of KLF2 in EPCs were measured. Then, KLF2 small interfering RNAs (siRNAs) were transfected into EPCs, and RT‑qPCR was used to measure the mRNA expression level of KLF2. Additionally, flow cytometry was applied to evaluate the protein levels of cluster of differentiation 31 (CD31) and the von Willebrand factor (vWF), and the regulatory effects of KLF2 in the promoter region of vWF were determined via a luciferase assay. High shear stress upregulated KLF2 expression, while blocking integrin β1/β3 or destroying F‑actin resulted in a corresponding decrease in KLF2 expression. Downregulation of KLF2 expression by siKLF2 inhibited the differentiation of EPCs to ECs under shear stress conditions, while the expression of EC‑specific markers decreased, including CD31 and vWF. Various lengths of the vWF promoter region induced vWF expression, and EPCs co‑transfected with KLF2 significantly increased the vWF expression levels compared with the group treated with vWF alone (P<0.01). In conclusion, shear stress may upregulate KLF2 expression, which may be associated with the integrin‑actin cytoskeleton system. Most importantly, the shear stress‑induced differentiation of EPCs may be mediated by KLF2.
Collapse
Affiliation(s)
- Hai-Rong Chu
- Medicine Research Center, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Yu-Cong Sun
- Medicine Research Center, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Yu Gao
- Medicine Research Center, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiu-Mei Guan
- Medicine Research Center, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Hong Yan
- Medicine Research Center, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiao-Dong Cui
- Medicine Research Center, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiao-Yun Zhang
- Medicine Research Center, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xin Li
- Medicine Research Center, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Hong Li
- Medicine Research Center, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Min Cheng
- Medicine Research Center, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
17
|
Li N, Wang WB, Bao H, Shi Q, Jiang ZL, Qi YX, Han Y. MicroRNA-129-1-3p regulates cyclic stretch-induced endothelial progenitor cell differentiation by targeting Runx2. J Cell Biochem 2018; 120:5256-5267. [PMID: 30320897 DOI: 10.1002/jcb.27800] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 09/10/2018] [Indexed: 12/15/2022]
Abstract
Endothelial progenitor cells (EPCs) are vital to the recovery of endothelial function and maintenance of vascular homeostasis. EPCs mobilize to sites of vessel injury and differentiate into mature endothelial cells (ECs). Locally mobilized EPCs are exposed to cyclic stretch caused by blood flow, which is important for EPC differentiation. MicroRNAs (miRNAs) have emerged as key regulators of several cellular processes. However, the role of miRNAs in cyclic stretch-induced EPC differentiation remains unclear. Here, we investigate the effects of microRNA-129-1-3p (miR-129-1-3p) and its novel target Runt-related transcription factor 2 (Runx2) on EPC differentiation induced by cyclic stretch. Bone marrow-derived EPCs were exposed to cyclic stretch with a magnitude of 5% (which mimics physiological mechanical stress) at a constant frequency of 1.25 Hz for 24 hours. The results from a miRNA array revealed that cyclic stretch significantly decreased miR-129-1-3p expression. Furthermore, we found that downregulation of miR-129-1-3p during cyclic stretch-induced EPC differentiation toward ECs. Meanwhile, expression of Runx2, a putative target gene of miR-129-1-3p, was increased as a result of cyclic stretch. A 3'UTR reporter assay validated Runx2 as a direct target of miR-129-1-3p. Furthermore, small interfering RNA (siRNA)-mediated knockdown of Runx2 inhibited EPC differentiation into ECs and attenuated EPC tube formation via modulation of vascular endothelial growth factor (VEGF) secretion from EPCs in vitro. Our findings demonstrated that cyclic stretch suppresses miR-129-1-3p expression, which in turn activates Runx2 and VEGF to promote endothelial differentiation of EPCs and angiogenesis. Therefore, targeting miR-129-1-3p and Runx2 may be a potential therapeutic strategy for treating vessel injury.
Collapse
Affiliation(s)
- Na Li
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wen-Bin Wang
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Han Bao
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Shi
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zong-Lai Jiang
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Xin Qi
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Han
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Whole-Transcriptome Sequencing: a Powerful Tool for Vascular Tissue Engineering and Endothelial Mechanobiology. High Throughput 2018; 7:ht7010005. [PMID: 29485616 PMCID: PMC5876531 DOI: 10.3390/ht7010005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/18/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023] Open
Abstract
Among applicable high-throughput techniques in cardiovascular biology, whole-transcriptome sequencing is of particular use. By utilizing RNA that is isolated from virtually all cells and tissues, the entire transcriptome can be evaluated. In comparison with other high-throughput approaches, RNA sequencing is characterized by a relatively low-cost and large data output, which permits a comprehensive analysis of spatiotemporal variation in the gene expression profile. Both shear stress and cyclic strain exert hemodynamic force upon the arterial endothelium and are considered to be crucial determinants of endothelial physiology. Laminar blood flow results in a high shear stress that promotes atheroresistant endothelial phenotype, while a turbulent, oscillatory flow yields a pathologically low shear stress that disturbs endothelial homeostasis, making respective arterial segments prone to atherosclerosis. Severe atherosclerosis significantly impairs blood supply to the organs and frequently requires bypass surgery or an arterial replacement surgery that requires tissue-engineered vascular grafts. To provide insight into patterns of gene expression in endothelial cells in native or bioartificial arteries under different biomechanical conditions, this article discusses applications of whole-transcriptome sequencing in endothelial mechanobiology and vascular tissue engineering.
Collapse
|
19
|
Wu Y, Zhuang J, Zhao D, Zhang F, Ma J, Xu C. Cyclic stretch-induced the cytoskeleton rearrangement and gene expression of cytoskeletal regulators in human periodontal ligament cells. Acta Odontol Scand 2017; 75:507-516. [PMID: 28681629 DOI: 10.1080/00016357.2017.1347823] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE This study aimed to explore the mechanism of the stretch-induced cell realignment and cytoskeletal rearrangement by identifying several mechanoresponsive genes related to cytoskeletal regulators in human PDL cells. MATERIAL AND METHODS After the cells were stretched by 1, 10 and 20% strains for 0.5, 1, 2, 4, 6, 12 or 24 h, the changes of the morphology and content of microfilaments were recorded and calculated. Meanwhile, the expression of 84 key genes encoding cytoskeletal regulators after 6 and 24 h stretches with 20% strain was detected by using real-time PCR array. Western blot was applied to identify the protein expression level of several cytoskeletal regulators encoded by these differentially expressed genes. RESULTS The confocal fluorescent staining results confirmed that stretch-induced realignment of cells and rearrangement of microfilaments. Among the 84 genes screened, one gene was up-regulated while two genes were down-regulated after 6 h stretch. Meanwhile, three genes were up-regulated while two genes were down-regulated after 24 h stretch. These genes displaying differential expression included genes regulating polymerization/depolymerization of microfilaments (CDC42EP2, FNBP1L, NCK2, PIKFYVE, WASL), polymerization/depolymerization of microtubules (STMN1), interacting between microfilaments and microtubules (MACF1), as well as a phosphatase (PPP1R12B). Among the proteins encoded by these genes, the protein expression level of Cdc42 effector protein-2 (encoded by CDC42EP2) and Stathmin-1 (encoded by STMN1) was down-regulated, while the protein expression level of N-WASP (encoded by WASL) was up-regulated. CONCLUSION The present study confirmed the cyclic stretch-induced cellular realignment and rearrangement of microfilaments in the human PDL cells and indicated several force-sensitive genes with regard to cytoskeletal regulators.
Collapse
Affiliation(s)
- Yaqin Wu
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiabao Zhuang
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Dan Zhao
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Fuqiang Zhang
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiayin Ma
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chun Xu
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
20
|
Cui X, Zhang X, Bu H, Liu N, Li H, Guan X, Yan H, Wang Y, Zhang H, Ding Y, Cheng M. Shear stress-mediated changes in the expression of complement regulatory protein CD59 on human endothelial progenitor cells by ECM-integrinα Vβ 3-F-actin pathway in vitro. Biochem Biophys Res Commun 2017; 494:416-421. [PMID: 28943429 DOI: 10.1016/j.bbrc.2017.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/06/2017] [Indexed: 01/27/2023]
Abstract
Membrane regulatory proteins, such as CD46, CD55, and CD59, prevent excess complement activation and to protect cells from damage. Previous investigations confirmed that shear stress in the physiological range was more favorable for endothelial progenitor cells (EPCs) to repair injured vascular endothelial cells and operates mainly in atheroprotective actions. However, detailed events that contribute to shear stress-induced protection in EPCs, particularly the mechanisms of signal transduction, remain poorly understood. In this study, we observed shear stress-mediated changes in the expression of complement regulatory proteins CD46, CD55, and CD59 on human EPCs and focused on the mechanical transmission mechanism in transformed cells in response to the ECM-F-actin pathway in vitro. Shear stress was observed to promote the expression of complement regulatory protein CD59, but not CD46 or CD55, on EPCs. In addition, the shear stress-induced CD59 expression was confirmed to be associated with the ECM components and was alleviated in EPCs pretreated with GRGDSP, which inhibits ECM components-integrin interaction. Furthermore, shear stress also promotes the rearrangement and polymerization of F-actin. However, shear stress-induced CD59 expression was reduced when the F-actin stress fiber formation process was delayed by Gly-Arg-Gly-Asp-Ser-Pro (GRGDSP) or destroyed by cytochalasin D (Cyto D), while Jasplakinolide (JAS) reversed the expression of CD59 through promotion of F-actin polymerization and its stabilizing capacities. Our results indicates that shear stress is an important mediator in EPC expression of CD59 regulated by the ECM-F-actin pathway, which is a key factor in preventing membrane attack complex (MAC) -mediated cell autolysis.
Collapse
Affiliation(s)
- Xiaodong Cui
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Xiaoyun Zhang
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Hongnan Bu
- Department of Gynaecology and Obstetrics, The 89 Hospital of Chinese PLA, Weifang, Shandong, 261021, China
| | - Na Liu
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Hong Li
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Xiumei Guan
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Hong Yan
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Yuzhen Wang
- Medical Research Center, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Hua Zhang
- Department of Gynaecology and Obstetrics, The 89 Hospital of Chinese PLA, Weifang, Shandong, 261021, China
| | - Yuzhen Ding
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Min Cheng
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, PR China.
| |
Collapse
|
21
|
Molladavoodi S, Robichaud M, Wulff D, Gorbet M. Corneal epithelial cells exposed to shear stress show altered cytoskeleton and migratory behaviour. PLoS One 2017; 12:e0178981. [PMID: 28662184 PMCID: PMC5491001 DOI: 10.1371/journal.pone.0178981] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 05/22/2017] [Indexed: 12/22/2022] Open
Abstract
Cells that form the corneal epithelium, the outermost layer of the cornea, are exposed to shear stress through blinking during waking hours. In this in vitro study, the effect of fluid shear stress on human corneal epithelial cells (HCECs) was investigated. Following exposure to shear stresses of 4 and 8 dyn/cm2, HCECs showed cytoskeletal rearrangement with more prominent, organized and elongated filamentous actin. Cytoskeletal changes were time-dependent, and were most significant after 24 hours of shear stress. Higher rates of migration and proliferation, as evaluated by a scratch assay, were also observed following 24 hours of low shear stress exposure (4 dyn/cm2). This result contrasted the poor migration observed in samples scratched before shear exposure, indicating that shear-induced cytoskeletal changes played a key role in improved wound healing and must therefore precede any damage to the cell layer. HCEC cytoskeletal changes were accompanied by an upregulation in integrin β1 and downregulation of ICAM-1. These results demonstrate that HCECs respond favourably to flow-induced shear stress, impacting their proliferation and migration properties as well as phenotype.
Collapse
Affiliation(s)
- Sara Molladavoodi
- Department of System Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Matthew Robichaud
- Department of System Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - David Wulff
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Maud Gorbet
- Department of System Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
- * E-mail:
| |
Collapse
|
22
|
Repeat remote ischaemic pre-conditioning for improved cardiovascular function in humans: A systematic review. IJC HEART & VASCULATURE 2016; 11:55-58. [PMID: 28616526 PMCID: PMC5441349 DOI: 10.1016/j.ijcha.2016.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/04/2016] [Indexed: 01/17/2023]
Abstract
BACKGROUND Single exposure to remote ischaemic pre-conditioning (RIPC) has been shown to be effective in reducing major adverse events during cardiac surgery. We evaluated the efficacy of repeated exposure RIPC to elicit improvements in cardiovascular function. METHODS A systematic search was conducted up until May 1st, 2015, using the following databases: EMBASE, PubMed (Medline), Web of Science and the Cochrane Central Registry of Controlled Trials (CENTRAL). Data was extracted and synthesized from published studies of repeat RIPC. RESULTS Data from seven studies showed evidence of improvements in vascular function and anti-hypertensive effects of systolic, diastolic and mean arterial blood pressure following repeat RIPC. Currently existing work justifies a systematic review but not data pooling of individual study data. Repeat RIPC has also produced evidence of improvements in endothelial dependent vasodilation, but not non-endothelial dependent vasodilation, cutaneous vascular conductance or cardiorespiratory fitness. CONCLUSION Repeated RIPC exposure has produced evidence of improvements in endothelial dependent vasodilation, ulcer healing and blood pressure but no benefit in non-endothelial dependent vasodilation, cutaneous vascular conductance or cardiorespiratory fitness. The optimal delivery of RIPC remains unclear, but at least 3 or preferably 4, 5 min exposures appears to be most beneficial, at least for reducing blood pressure. Aside from those undertaking cardiac surgery, other study populations with endothelial dysfunction may benefit from repeat exposure to RIPC.
Collapse
|
23
|
Stinghen AEM, Massy ZA, Vlassara H, Striker GE, Boullier A. Uremic Toxicity of Advanced Glycation End Products in CKD. J Am Soc Nephrol 2015; 27:354-70. [PMID: 26311460 DOI: 10.1681/asn.2014101047] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Advanced glycation end products (AGEs), a heterogeneous group of compounds formed by nonenzymatic glycation reactions between reducing sugars and amino acids, lipids, or DNA, are formed not only in the presence of hyperglycemia, but also in diseases associated with high levels of oxidative stress, such as CKD. In chronic renal failure, higher circulating AGE levels result from increased formation and decreased renal clearance. Interactions between AGEs and their receptors, including advanced glycation end product-specific receptor (RAGE), trigger various intracellular events, such as oxidative stress and inflammation, leading to cardiovascular complications. Although patients with CKD have a higher burden of cardiovascular disease, the relationship between AGEs and cardiovascular disease in patients with CKD is not fully characterized. In this paper, we review the various deleterious effects of AGEs in CKD that lead to cardiovascular complications and the role of these AGEs in diabetic nephropathy. We also discuss potential pharmacologic approaches to circumvent these deleterious effects by reducing exogenous and endogenous sources of AGEs, increasing the breakdown of existing AGEs, or inhibiting AGE-induced inflammation. Finally, we speculate on preventive and therapeutic strategies that focus on the AGE-RAGE axis to prevent vascular complications in patients with CKD.
Collapse
Affiliation(s)
- Andréa E M Stinghen
- Institut National de la Santé et de la Recherche Médicale (INSERM) U-1088, Jules Verne University of Picardie, Amiens, France
| | - Ziad A Massy
- Institut National de la Santé et de la Recherche Médicale (INSERM) U-1088, Jules Verne University of Picardie, Amiens, France; Division of Nephrology, Ambroise Paré University Medical Center, Assistance Publique-Hôpitaux de Paris (APHP), University of Paris Ouest, University Versailles-Saint Quentin, Boulogne Billancourt/Paris, France
| | - Helen Vlassara
- Division of Experimental Diabetes and Aging, Departments of Geriatrics and Palliative Care and Medicine and Division of Experimental Diabetes and Aging, Department of Geriatrics and Aging and Division of Nephrology, Department of Medicine, Icahn School of Medicine, New York, New York; and
| | - Gary E Striker
- Division of Experimental Diabetes and Aging, Departments of Geriatrics and Palliative Care and Medicine and Division of Experimental Diabetes and Aging, Department of Geriatrics and Aging and Division of Nephrology, Department of Medicine, Icahn School of Medicine, New York, New York; and
| | - Agnès Boullier
- Institut National de la Santé et de la Recherche Médicale (INSERM) U-1088, Jules Verne University of Picardie, Amiens, France; Biochemistry Laboratory, Amiens University Medical Center, Amiens, France
| |
Collapse
|
24
|
Dan P, Velot É, Decot V, Menu P. The role of mechanical stimuli in the vascular differentiation of mesenchymal stem cells. J Cell Sci 2015; 128:2415-22. [DOI: 10.1242/jcs.167783] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are among the most promising and suitable stem cell types for vascular tissue engineering. Substantial effort has been made to differentiate MSCs towards vascular cell phenotypes, including endothelial cells and smooth muscle cells (SMCs). The microenvironment of vascular cells not only contains biochemical factors that influence differentiation, but also exerts hemodynamic forces, such as shear stress and cyclic strain. Recent evidence has shown that these forces can influence the differentiation of MSCs into endothelial cells or SMCs. In this Commentary, we present the main findings in the area with the aim of summarizing the mechanisms by which shear stress and cyclic strain induce MSC differentiation. We will also discuss the interactions between these mechanical cues and other components of the microenvironment, and highlight how these insights could be used to maintain differentiation.
Collapse
Affiliation(s)
- Pan Dan
- UMR 7365 CNRS Université de Lorraine, Ingenierie Moleculaire et Physiopathologie Articulaire, Department of Cell and Tissue Engineering, Vectorization, Imaging, Biopôle de l'Université de Lorraine, Avenue de la forêt de Haye, C.S. 50184, Vandœuvre-lès-Nancy Cedex F-54505, France
- Department of Thoracic and Cardiovascular surgery, Zhongnan hospital of Wuhan University, Wuhan, 430071, China
| | - Émilie Velot
- UMR 7365 CNRS Université de Lorraine, Ingenierie Moleculaire et Physiopathologie Articulaire, Department of Cell and Tissue Engineering, Vectorization, Imaging, Biopôle de l'Université de Lorraine, Avenue de la forêt de Haye, C.S. 50184, Vandœuvre-lès-Nancy Cedex F-54505, France
| | - Véronique Decot
- UMR 7365 CNRS Université de Lorraine, Ingenierie Moleculaire et Physiopathologie Articulaire, Department of Cell and Tissue Engineering, Vectorization, Imaging, Biopôle de l'Université de Lorraine, Avenue de la forêt de Haye, C.S. 50184, Vandœuvre-lès-Nancy Cedex F-54505, France
- CHU de Nancy, Unité de Thérapie Cellulaire et Tissus, allée du Morvan, Vandœuvre-lès-Nancy F-54500, France
| | - Patrick Menu
- UMR 7365 CNRS Université de Lorraine, Ingenierie Moleculaire et Physiopathologie Articulaire, Department of Cell and Tissue Engineering, Vectorization, Imaging, Biopôle de l'Université de Lorraine, Avenue de la forêt de Haye, C.S. 50184, Vandœuvre-lès-Nancy Cedex F-54505, France
| |
Collapse
|
25
|
Goh ET, Wong E, Farhatnia Y, Tan A, Seifalian AM. Accelerating in situ endothelialisation of cardiovascular bypass grafts. Int J Mol Sci 2014; 16:597-627. [PMID: 25551605 PMCID: PMC4307264 DOI: 10.3390/ijms16010597] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 12/19/2014] [Indexed: 12/18/2022] Open
Abstract
The patency of synthetic cardiovascular grafts in the long run is synonymous with their ability to inhibit the processes of intimal hyperplasia, thrombosis and calcification. In the human body, the endothelium of blood vessels exhibits characteristics that inhibit such processes. As such it is not surprising that research in tissue engineering is directed towards replicating the functionality of the natural endothelium in cardiovascular grafts. This can be done either by seeding the endothelium within the lumen of the grafts prior to implantation or by designing the graft such that in situ endothelialisation takes place after implantation. Due to certain difficulties identified with in vitro endothelialisation, in situ endothelialisation, which will be the focus of this article, has garnered interest in the last years. To promote in situ endothelialisation, the following aspects can be taken into account: (1) Endothelial progenital cell mobilization, adhesion and proliferation; (2) Regulating differentiation of progenitor cells to mature endothelium; (3) Preventing thrombogenesis and inflammation during endothelialisation. This article aims to review and compile recent developments to promote the in situ endothelialisation of cardiovascular grafts and subsequently improve their patency, which can also have widespread implications in the field of tissue engineering.
Collapse
Affiliation(s)
- Ee Teng Goh
- Centre for Nanotechnology & Regenerative Medicine, Research Department of Nanotechnology, UCL Division of Surgery & Interventional Science, University College London (UCL), London NW3 2QG, UK.
| | - Eleanor Wong
- Centre for Nanotechnology & Regenerative Medicine, Research Department of Nanotechnology, UCL Division of Surgery & Interventional Science, University College London (UCL), London NW3 2QG, UK.
| | - Yasmin Farhatnia
- Centre for Nanotechnology & Regenerative Medicine, Research Department of Nanotechnology, UCL Division of Surgery & Interventional Science, University College London (UCL), London NW3 2QG, UK.
| | - Aaron Tan
- Centre for Nanotechnology & Regenerative Medicine, Research Department of Nanotechnology, UCL Division of Surgery & Interventional Science, University College London (UCL), London NW3 2QG, UK.
| | - Alexander M Seifalian
- Centre for Nanotechnology & Regenerative Medicine, Research Department of Nanotechnology, UCL Division of Surgery & Interventional Science, University College London (UCL), London NW3 2QG, UK.
| |
Collapse
|
26
|
Rohringer S, Holnthoner W, Hackl M, Weihs AM, Rünzler D, Skalicky S, Karbiener M, Scheideler M, Pröll J, Gabriel C, Schweighofer B, Gröger M, Spittler A, Grillari J, Redl H. Molecular and cellular effects of in vitro shockwave treatment on lymphatic endothelial cells. PLoS One 2014; 9:e114806. [PMID: 25502694 PMCID: PMC4263473 DOI: 10.1371/journal.pone.0114806] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/11/2014] [Indexed: 01/23/2023] Open
Abstract
Extracorporeal shockwave treatment was shown to improve orthopaedic diseases and wound healing and to stimulate lymphangiogenesis in vivo. The aim of this study was to investigate in vitro shockwave treatment (IVSWT) effects on lymphatic endothelial cell (LEC) behavior and lymphangiogenesis. We analyzed migration, proliferation, vascular tube forming capability and marker expression changes of LECs after IVSWT compared with HUVECs. Finally, transcriptome- and miRNA analyses were conducted to gain deeper insight into the IVSWT-induced molecular mechanisms in LECs. The results indicate that IVSWT-mediated proliferation changes of LECs are highly energy flux density-dependent and LEC 2D as well as 3D migration was enhanced through IVSWT. IVSWT suppressed HUVEC 3D migration but enhanced vasculogenesis. Furthermore, we identified podoplaninhigh and podoplaninlow cell subpopulations, whose ratios changed upon IVSWT treatment. Transcriptome- and miRNA analyses on these populations showed differences in genes specific for signaling and vascular tissue. Our findings help to understand the cellular and molecular mechanisms underlying shockwave-induced lymphangiogenesis in vivo.
Collapse
Affiliation(s)
- Sabrina Rohringer
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstrasse 13, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Wolfgang Holnthoner
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstrasse 13, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- * E-mail:
| | - Matthias Hackl
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- TAmiRNA GmbH, Muthgasse 11, Vienna, Austria
| | - Anna M. Weihs
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, Hoechstaedtplatz 6, Vienna, Austria
| | - Dominik Rünzler
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, Hoechstaedtplatz 6, Vienna, Austria
| | - Susanna Skalicky
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- TAmiRNA GmbH, Muthgasse 11, Vienna, Austria
| | - Michael Karbiener
- Institute for Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz, Austria
| | - Marcel Scheideler
- Institute for Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz, Austria
| | - Johannes Pröll
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Red Cross Blood Transfusion Service, Krankenhausstrasse 7, Linz, Austria
| | - Christian Gabriel
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Red Cross Blood Transfusion Service, Krankenhausstrasse 7, Linz, Austria
| | - Bernhard Schweighofer
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Marion Gröger
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Core Facility Imaging, Medical University of Vienna, Vienna, Austria
| | - Andreas Spittler
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Core Facility Flow Cytometry & Surgical Research Laboratories, Medical University of Vienna, Vienna, Austria
| | - Johannes Grillari
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstrasse 13, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
27
|
Lancerotto L, Orgill DP. Mechanoregulation of Angiogenesis in Wound Healing. Adv Wound Care (New Rochelle) 2014; 3:626-634. [PMID: 25302137 DOI: 10.1089/wound.2013.0491] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 11/06/2013] [Indexed: 12/15/2022] Open
Abstract
Significance: Mechanical forces are important regulators of cell and tissue function. Endothelial cells proliferate in response to tissue stretch and the mechanical properties of the environment direct capillary sprouting and growth. As the vascular network is a key factor in physiology and disease, control of the vascularity by means of mechanical forces could lead to the development of innovative therapeutic strategies. Recent Advances: Increased understanding of mechanobiology has stimulated translational research and allowed the development and optimization of clinical devices that exploit mechanical forces for the treatment of diseases, in particular in the field of wound healing. Stretching in distraction osteogenesis and tissue expansion induces neogenesis of well-vascularized tissues. In micro-deformational wound therapy, micro-mechanical distortions of the wound bed stimulate cell proliferation and angiogenesis by stretching resident cells to improve healing of difficult wounds. Relief from tension antagonizes proliferation and angiogenesis in primarily closed wounds allowing for better scar quality. Critical Issues: The integration of mechanobiology into traditional cell biology and pathophysiology in general is not yet complete and further research is needed to fill existing gaps, in particular in the complexity of in vivo conditions. Future Directions: Still largely unexplored approaches based on mechanical perturbation of the micro-/macro-environment can be devised to overcome the limits of current strategies in a broad spectrum of clinical conditions.
Collapse
Affiliation(s)
- Luca Lancerotto
- Clinic of Plastic Surgery, University of Padova , Italy . ; Division of Plastic Surgery, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Dennis P Orgill
- Division of Plastic Surgery, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
28
|
Higuita-Castro N, Mihai C, Hansford DJ, Ghadiali SN. Influence of airway wall compliance on epithelial cell injury and adhesion during interfacial flows. J Appl Physiol (1985) 2014; 117:1231-42. [PMID: 25213636 DOI: 10.1152/japplphysiol.00752.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Interfacial flows during cyclic airway reopening are an important source of ventilator-induced lung injury. However, it is not known how changes in airway wall compliance influence cell injury during airway reopening. We used an in vitro model of airway reopening in a compliant microchannel to investigate how airway wall stiffness influences epithelial cell injury. Epithelial cells were grown on gel substrates with different rigidities, and cellular responses to substrate stiffness were evaluated in terms of metabolic activity, mechanics, morphology, and adhesion. Repeated microbubble propagations were used to simulate cyclic airway reopening, and cell injury and detachment were quantified via live/dead staining. Although cells cultured on softer gels exhibited a reduced elastic modulus, these cells experienced less plasma membrane rupture/necrosis. Cells on rigid gels exhibited a minor, but statistically significant, increase in the power law exponent and also exhibited a significantly larger height-to-length aspect ratio. Previous studies indicate that this change in morphology amplifies interfacial stresses and, therefore, correlates with the increased necrosis observed during airway reopening. Although cells cultured on stiff substrates exhibited more plasma membrane rupture, these cells experienced significantly less detachment and monolayer disruption during airway reopening. Western blotting and immunofluorescence indicate that this protection from detachment and monolayer disruption correlates with increased focal adhesion kinase and phosphorylated paxillin expression. Therefore, changes in cell morphology and focal adhesion structure may govern injury responses during compliant airway reopening. In addition, these results indicate that changes in airway compliance, as occurs during fibrosis or emphysema, may significantly influence cell injury during mechanical ventilation.
Collapse
Affiliation(s)
| | - Cosmin Mihai
- Biomedical Engineering Department, The Ohio State University, Columbus, Ohio
| | - Derek J Hansford
- Biomedical Engineering Department, The Ohio State University, Columbus, Ohio
| | - Samir N Ghadiali
- Biomedical Engineering Department, The Ohio State University, Columbus, Ohio; Department of Internal Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio; and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
29
|
Potter CMF, Lao KH, Zeng L, Xu Q. Role of biomechanical forces in stem cell vascular lineage differentiation. Arterioscler Thromb Vasc Biol 2014; 34:2184-90. [PMID: 25012135 DOI: 10.1161/atvbaha.114.303423] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mechanical forces have long been known to play a role in the maintenance of vascular homeostasis in the mature animal and in developmental regulation in the fetus. More recently, it has been shown that stem cells play a role in vascular repair and remodeling in response to biomechanical stress. Laminar shear stress can directly activate growth factor receptors on stem/progenitor cells, initiating signaling pathways leading toward endothelial cell differentiation. Cyclic strain can stimulate stem cell differentiation toward smooth muscle lineages through different mechanisms. In vivo, blood flow in the coronary artery is significantly altered after stenting, leading to changes in biomechanical forces on the vessel wall. This disruption may activate stem cell differentiation into a variety of cells and cause delayed re-endothelialization. Based on progress in the research field, the present review aims to explore the role of mechanical forces in stem cell differentiation both in vivo and in vitro and to examine what this means for the application of stem cells in the clinic, in tissue engineering, and for the management of aberrant stem cell contribution to disease.
Collapse
Affiliation(s)
- Claire M F Potter
- From the Cardiovascular Division, King's College London, London, United Kingdom
| | - Ka Hou Lao
- From the Cardiovascular Division, King's College London, London, United Kingdom
| | - Lingfang Zeng
- From the Cardiovascular Division, King's College London, London, United Kingdom
| | - Qingbo Xu
- From the Cardiovascular Division, King's College London, London, United Kingdom.
| |
Collapse
|