1
|
Tangeraas T, Kristensen E, Mørkrid L, Elind E, Bliksrud YT, Eide L. Fasting and non-fasting plasma levels of monomethyl branched chain fatty acids: Implications for maple syrup urine disease. JIMD Rep 2023; 64:360-366. [PMID: 37701324 PMCID: PMC10494493 DOI: 10.1002/jmd2.12380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 09/14/2023] Open
Abstract
The branched-chain amino acids (BCAA) leucine, valine, and isoleucine provide precursors for monomethyl branched-chain fatty acids (BCFA). Established reference ranges for BCFAs are lacking. In maple syrup urine disease (MSUD), a rare inborn error of BCAA metabolism, the endogen production is impaired and MSUD patients are treated with a low protein (low BCAA) diet. The protein restriction may affect the dietary intake of BCFA, depending on the dietary choices made. Patients with MSUD are prescribed a more or less protein-restricted diet depending on the severity of the disease. The combination of a protein-restricted diet and subsequent impaired endogenous synthesis may render MSUD patients sensitive to BCFA deficiency, with yet unknown implications. To investigate the possibility of lower circulatory BCFA levels in MSUD that favors dietary BCFA supplementation, we first established fasting-state reference ranges for selected BCFAs and saturated/unsaturated fatty acids in plasma. Then, the effect of fasting on BCFA levels was evaluated by comparing the distribution in a fasting versus a non-fasting cohort. To test the hypothesis that BCFA deficiency could contribute to MSUD pathophysiology, we recruited patients with intermittent, intermediate, and classical form of MSUD and analyzed the corresponding BCFA z-scores. None of the BCFA species had |z-scores| > 2 relative to the reference range. Our findings do not support the requirement of BCFA supplementation in MSUD patients. The origin of BCFAs is discussed. Impaired capacity to synthesize BCFA do not manifest as reduced plasma levels in MSUD, suggesting that endogenous synthesis is dispensable for plasma levels.
Collapse
Affiliation(s)
- Trine Tangeraas
- Department of Newborn ScreeningOslo University HospitalOsloNorway
| | - Erle Kristensen
- Department of Medical BiochemistryOslo University HospitalOsloNorway
| | - Lars Mørkrid
- Department of Medical BiochemistryOslo University HospitalOsloNorway
- Department of Medical BiochemistryUniversity of OsloOsloNorway
| | - Elisabeth Elind
- Department of Newborn ScreeningOslo University HospitalOsloNorway
| | | | - Lars Eide
- Department of Medical BiochemistryOslo University HospitalOsloNorway
- Department of Medical BiochemistryUniversity of OsloOsloNorway
| |
Collapse
|
2
|
Zhang Y, Higgins CB, Van Tine BA, Bomalaski JS, DeBosch BJ. Pegylated arginine deiminase drives arginine turnover and systemic autophagy to dictate energy metabolism. Cell Rep Med 2022; 3:100498. [PMID: 35106510 PMCID: PMC8784773 DOI: 10.1016/j.xcrm.2021.100498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/16/2021] [Accepted: 12/16/2021] [Indexed: 12/30/2022]
Abstract
Obesity is a multi-systemic disorder of energy balance. Despite intense investigation, the determinants of energy homeostasis remain incompletely understood, and efficacious treatments against obesity and its complications are lacking. Here, we demonstrate that conferred arginine iminohydrolysis by the bacterial virulence factor and arginine deiminase, arcA, promotes mammalian energy expenditure and insulin sensitivity and reverses dyslipidemia, hepatic steatosis, and inflammation in obese mice. Extending this, pharmacological arginine catabolism via pegylated arginine deiminase (ADI-PEG 20) recapitulates these metabolic effects in dietary and genetically obese models. These effects require hepatic and whole-body expression of the autophagy complex protein BECN1 and hepatocyte-specific FGF21 secretion. Single-cell ATAC sequencing further reveals BECN1-dependent hepatocyte chromatin accessibility changes in response to ADI-PEG 20. The data thus reveal an unexpected therapeutic utility for arginine catabolism in modulating energy metabolism by activating systemic autophagy, which is now exploitable through readily available pharmacotherapy.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cassandra B. Higgins
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian A. Van Tine
- Division of Medical Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA
- Division of Pediatric Hematology/Oncology, St. Louis Children’s Hospital, St. Louis, MO 63108, USA
- Siteman Cancer Center, St. Louis, MO 63108, USA
| | | | - Brian J. DeBosch
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Huang J, Ladeiras D, Yu Y, Ming XF, Yang Z. Detrimental Effects of Chronic L-Arginine Rich Food on Aging Kidney. Front Pharmacol 2021; 11:582155. [PMID: 33542686 PMCID: PMC7851093 DOI: 10.3389/fphar.2020.582155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/18/2020] [Indexed: 11/13/2022] Open
Abstract
The impaired L-arginine/nitric oxide pathway is a well-recognized mechanism for cardiovascular and renal diseases with aging. Therefore, supplementation of L-arginine is widely proposed to boost health or as adjunct therapy for the patients. However, clinical data, show adverse effects and even enhanced mortality in patients receiving long-term L-arginine supplementation. The effects of long-term L-arginine supplementation on kidney aging and the underlying mechanisms remain elusive. Moreover, high protein and high amino acid diet has been thought detrimental for kidney. We therefore investigated effects of chronic dietary L-arginine supplementation on kidney aging. In both young (4 months) and old (18-24 months) mice, animals either receive standard chow containing 0.65% L-arginine or diet supplemented with L-arginine to 2.46% for 16 weeks. Inflammation and fibrosis markers and albuminuria are then analyzed. Age-associated increases in tnf-α, il-1β, and il-6, vcam-1, icam-1, mcp1, inos, and macrophage infiltration, collagen expression, and S6K1 activation are observed, which is not favorably affected, but rather further enhanced, by L-arginine supplementation. Importantly, L-arginine supplementation further enhances age-associated albuminuria and mortality particularly in females, accompanied by elevated renal arginase-II (Arg-II) levels. The enhanced albuminuria by L-arginine supplementation in aging is not protected in Arg-II-/- mice. In contrast, L-arginine supplementation increases ROS and decreases nitric oxide production in old mouse aortas, which is reduced in Arg-II-/- mice. The results do not support benefits of long-term L-arginine supplementation. It rather accelerates functional decline of kidney and vasculature in aging. Thus, the long-term dietary L-arginine supplementation should be avoided particularly in elderly population.
Collapse
Affiliation(s)
- Ji Huang
- Department of Endocrinology, Metabolism, and Cardiovascular System, Laboratory of Cardiovascular and Aging Research, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.,National Center of Competence in Research "Kidney.CH", University of Zürich, Zürich, Switzerland
| | - Diogo Ladeiras
- Department of Endocrinology, Metabolism, and Cardiovascular System, Laboratory of Cardiovascular and Aging Research, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.,National Center of Competence in Research "Kidney.CH", University of Zürich, Zürich, Switzerland
| | - Yi Yu
- Department of Endocrinology, Metabolism, and Cardiovascular System, Laboratory of Cardiovascular and Aging Research, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Xiu-Fen Ming
- Department of Endocrinology, Metabolism, and Cardiovascular System, Laboratory of Cardiovascular and Aging Research, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.,National Center of Competence in Research "Kidney.CH", University of Zürich, Zürich, Switzerland
| | - Zhihong Yang
- Department of Endocrinology, Metabolism, and Cardiovascular System, Laboratory of Cardiovascular and Aging Research, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.,National Center of Competence in Research "Kidney.CH", University of Zürich, Zürich, Switzerland
| |
Collapse
|
4
|
Clark JE, Welch S. Comparing effectiveness of fat burners and thermogenic supplements to diet and exercise for weight loss and cardiometabolic health: Systematic review and meta-analysis. Nutr Health 2021; 27:445-459. [PMID: 33427571 DOI: 10.1177/0260106020982362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Those who are overfat face an onslaught of advice for losing weight, including using dietary supplements that purport to have fat burning capabilities to achieve a reduced body mass, fat mass and improvement in cardiometabolic health in combination with exercise or diet and exercise regimens. AIM To examine long-term effectiveness of supplements for both weight loss and improvements in cardiometabolic health for these individuals. METHODS A PRISMA methods of systematic review was conducted from August 2018 through January 2019 using Medline, PubChem, PubMed, EBOSCO CINHAL and SPORTDiscus, and Google Scholar yielding 23,441 returns of which 21 studies (duration greater than 8 weeks with participant populations of BMI greater than 24.9) were included for meta-analysis. Meta-analysis examined pooled effect size and 95% confidence interval for: body mass, fat mass, fat-free mass, total cholesterol, high-density lipoproteins, low-density lipoproteins, resting metabolic rate. Intra-study effect sizes were compared with previously reported results for diet or diet and exercise in a 2x2 chi-square analysis for the number of studies that induced effects greater than or less than the effect size. RESULTS There is a general trend to show effectiveness (effect size greater than 0.00) for obtaining beneficial changes from use of thermogenic dietary supplements, yet the 95% confidence interval for effect size crossed 0.00 (indicating no benefit). Chi-square comparison to exercise, or combination of diet and exercise, indicates that responses induced from weight-loss supplements were less effective than what is obtained from utilizing exercise, or diet and exercise, without additional weight-loss supplements. CONCLUSION There appears to be limited benefit that may be derived from the inclusion of thermogenic dietary supplements to reduce body mass and improve cardiometabolic health for individuals who are overfat.
Collapse
Affiliation(s)
- James E Clark
- Scientific Health: Education and Human Performance, Brentwood, CA, USA.,Los Medanos College Brentwood Center, Brentwood, USA
| | - Sarah Welch
- Scientific Health: Education and Human Performance, Brentwood, CA, USA
| |
Collapse
|
5
|
Heirendt L, Arreckx S, Pfau T, Mendoza SN, Richelle A, Heinken A, Haraldsdóttir HS, Wachowiak J, Keating SM, Vlasov V, Magnusdóttir S, Ng CY, Preciat G, Žagare A, Chan SHJ, Aurich MK, Clancy CM, Modamio J, Sauls JT, Noronha A, Bordbar A, Cousins B, El Assal DC, Valcarcel LV, Apaolaza I, Ghaderi S, Ahookhosh M, Ben Guebila M, Kostromins A, Sompairac N, Le HM, Ma D, Sun Y, Wang L, Yurkovich JT, Oliveira MAP, Vuong PT, El Assal LP, Kuperstein I, Zinovyev A, Hinton HS, Bryant WA, Aragón Artacho FJ, Planes FJ, Stalidzans E, Maass A, Vempala S, Hucka M, Saunders MA, Maranas CD, Lewis NE, Sauter T, Palsson BØ, Thiele I, Fleming RMT. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. Nat Protoc 2019; 14:639-702. [PMID: 30787451 PMCID: PMC6635304 DOI: 10.1038/s41596-018-0098-2] [Citation(s) in RCA: 698] [Impact Index Per Article: 116.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Constraint-based reconstruction and analysis (COBRA) provides a molecular mechanistic framework for integrative analysis of experimental molecular systems biology data and quantitative prediction of physicochemically and biochemically feasible phenotypic states. The COBRA Toolbox is a comprehensive desktop software suite of interoperable COBRA methods. It has found widespread application in biology, biomedicine, and biotechnology because its functions can be flexibly combined to implement tailored COBRA protocols for any biochemical network. This protocol is an update to the COBRA Toolbox v.1.0 and v.2.0. Version 3.0 includes new methods for quality-controlled reconstruction, modeling, topological analysis, strain and experimental design, and network visualization, as well as network integration of chemoinformatic, metabolomic, transcriptomic, proteomic, and thermochemical data. New multi-lingual code integration also enables an expansion in COBRA application scope via high-precision, high-performance, and nonlinear numerical optimization solvers for multi-scale, multi-cellular, and reaction kinetic modeling, respectively. This protocol provides an overview of all these new features and can be adapted to generate and analyze constraint-based models in a wide variety of scenarios. The COBRA Toolbox v.3.0 provides an unparalleled depth of COBRA methods.
Collapse
Affiliation(s)
- Laurent Heirendt
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Sylvain Arreckx
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Thomas Pfau
- Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | - Sebastián N Mendoza
- Center for Genome Regulation (Fondap 15090007), University of Chile, Santiago, Chile
- Mathomics, Center for Mathematical Modeling, University of Chile, Santiago, Chile
| | - Anne Richelle
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Almut Heinken
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Hulda S Haraldsdóttir
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Jacek Wachowiak
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Sarah M Keating
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, UK
| | - Vanja Vlasov
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Stefania Magnusdóttir
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Chiam Yu Ng
- Department of Chemical Engineering, The Pennsylvania State University, State College, PA, USA
| | - German Preciat
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Alise Žagare
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Siu H J Chan
- Department of Chemical Engineering, The Pennsylvania State University, State College, PA, USA
| | - Maike K Aurich
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Catherine M Clancy
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Jennifer Modamio
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - John T Sauls
- Department of Physics, and Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA
| | - Alberto Noronha
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | | | - Benjamin Cousins
- Algorithms and Randomness Center, School of Computer Science, Georgia Institute of Technology, Atlanta, GA, USA
| | - Diana C El Assal
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Luis V Valcarcel
- Biomedical Engineering and Sciences Department, TECNUN, University of Navarra, San Sebastián, Spain
| | - Iñigo Apaolaza
- Biomedical Engineering and Sciences Department, TECNUN, University of Navarra, San Sebastián, Spain
| | - Susan Ghaderi
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Masoud Ahookhosh
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Marouen Ben Guebila
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Andrejs Kostromins
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Nicolas Sompairac
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, Paris, France
| | - Hoai M Le
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Ding Ma
- Department of Management Science and Engineering, Stanford University, Stanford, CA, USA
| | - Yuekai Sun
- Department of Statistics, University of Michigan, Ann Arbor, MI, USA
| | - Lin Wang
- Department of Chemical Engineering, The Pennsylvania State University, State College, PA, USA
| | - James T Yurkovich
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Miguel A P Oliveira
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Phan T Vuong
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Lemmer P El Assal
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Inna Kuperstein
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, Paris, France
| | - Andrei Zinovyev
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, Paris, France
| | - H Scott Hinton
- Utah State University Research Foundation, North Logan, UT, USA
| | - William A Bryant
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, UK
| | | | - Francisco J Planes
- Biomedical Engineering and Sciences Department, TECNUN, University of Navarra, San Sebastián, Spain
| | - Egils Stalidzans
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Alejandro Maass
- Center for Genome Regulation (Fondap 15090007), University of Chile, Santiago, Chile
- Mathomics, Center for Mathematical Modeling, University of Chile, Santiago, Chile
| | - Santosh Vempala
- Algorithms and Randomness Center, School of Computer Science, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michael Hucka
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Michael A Saunders
- Department of Management Science and Engineering, Stanford University, Stanford, CA, USA
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, State College, PA, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, USA
- Novo Nordisk Foundation Center for Biosustainability, University of California, San Diego, La Jolla, CA, USA
| | - Thomas Sauter
- Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | - Bernhard Ø Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Lyngby, Denmark
| | - Ines Thiele
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Ronan M T Fleming
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg.
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
6
|
Fassina P, Quadros Nunes G, Scherer Adami F, Goettert MI, Volken de Souza CF. Importance of Cheese Whey Processing: Supplements for Sports Activities – a Review. POL J FOOD NUTR SCI 2019. [DOI: 10.31883/pjfns-2019-0008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
7
|
Thiele I, Clancy CM, Heinken A, Fleming RM. Quantitative systems pharmacology and the personalized drug-microbiota-diet axis. CURRENT OPINION IN SYSTEMS BIOLOGY 2017; 4:43-52. [PMID: 32984662 PMCID: PMC7493425 DOI: 10.1016/j.coisb.2017.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Precision medicine is an emerging paradigm that aims at maximizing the benefits and minimizing the adverse effects of drugs. Realistic mechanistic models are needed to understand and limit heterogeneity in drug responses. While pharmacokinetic models describe in detail a drug's absorption and metabolism, they generally do not account for individual variations in response to environmental influences, in addition to genetic variation. For instance, the human gut microbiota metabolizes drugs and is modulated by diet, and it exhibits significant variation among individuals. However, the influence of the gut microbiota on drug failure or drug side effects is under-researched. Here, we review recent advances in computational modeling approaches that could contribute to a better, mechanism-based understanding of drug-microbiota-diet interactions and their contribution to individual drug responses. By integrating systems biology and quantitative systems pharmacology with microbiology and nutrition, the conceptually and technologically demand for novel approaches could be met to enable the study of individual variability, thereby providing breakthrough support for progress in precision medicine.
Collapse
Affiliation(s)
- Ines Thiele
- University of Luxembourg, Luxembourg Centre for Systems Biomedicine, Esch-sur-Alzette, Luxembourg
| | - Catherine M. Clancy
- University of Luxembourg, Luxembourg Centre for Systems Biomedicine, Esch-sur-Alzette, Luxembourg
| | - Almut Heinken
- University of Luxembourg, Luxembourg Centre for Systems Biomedicine, Esch-sur-Alzette, Luxembourg
| | - Ronan M.T. Fleming
- University of Luxembourg, Luxembourg Centre for Systems Biomedicine, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
8
|
D'Antona G, Tedesco L, Ruocco C, Corsetti G, Ragni M, Fossati A, Saba E, Fenaroli F, Montinaro M, Carruba MO, Valerio A, Nisoli E. A Peculiar Formula of Essential Amino Acids Prevents Rosuvastatin Myopathy in Mice. Antioxid Redox Signal 2016; 25:595-608. [PMID: 27245589 PMCID: PMC5065032 DOI: 10.1089/ars.2015.6582] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS Myopathy, characterized by mitochondrial oxidative stress, occurs in ∼10% of statin-treated patients, and a major risk exists with potent statins such as rosuvastatin (Rvs). We sought to determine whether a peculiar branched-chain amino acid-enriched mixture (BCAAem), found to improve mitochondrial function and reduce oxidative stress in muscle of middle-aged mice, was able to prevent Rvs myopathy. RESULTS Dietary supplementation of BCAAem was able to prevent the structural and functional alterations of muscle induced by Rvs in young mice. Rvs-increased plasma 3-methylhistidine (a marker of muscular protein degradation) was prevented by BCAAem. This was obtained without changes of Rvs ability to reduce cholesterol and triglyceride levels in blood. Rather, BCAAem promotes de novo protein synthesis and reduces proteolysis in cultured myotubes. Morphological alterations of C2C12 cells induced by statin were counteracted by amino acids, as were the Rvs-increased atrogin-1 mRNA and protein levels. Moreover, BCAAem maintained mitochondrial mass and density and citrate synthase activity in skeletal muscle of Rvs-treated mice beside oxygen consumption and ATP levels in C2C12 cells exposed to statin. Notably, BCAAem assisted Rvs to reduce oxidative stress and to increase the anti-reactive oxygen species (ROS) defense system in skeletal muscle. Innovation and Conclusions: The complex interplay between proteostasis and antioxidant properties may underlie the mechanism by which a specific amino acid formula preserves mitochondrial efficiency and muscle health in Rvs-treated mice. Strategies aimed at promoting protein balance and controlling mitochondrial ROS level may be used as therapeutics for the treatment of muscular diseases involving mitochondrial dysfunction, such as statin myopathy. Antioxid. Redox Signal. 25, 595-608.
Collapse
Affiliation(s)
- Giuseppe D'Antona
- 1 Department of Public Health, Experimental and Forensic Medicine, Pavia University , Pavia, Italy
| | - Laura Tedesco
- 2 Department of Medical Biotechnology and Translational Medicine, Center for Study and Research on Obesity, Milan University , Milan, Italy
| | - Chiara Ruocco
- 2 Department of Medical Biotechnology and Translational Medicine, Center for Study and Research on Obesity, Milan University , Milan, Italy
| | - Giovanni Corsetti
- 3 Department of Clinical and Experimental Sciences, Brescia University , Brescia, Italy
| | - Maurizio Ragni
- 2 Department of Medical Biotechnology and Translational Medicine, Center for Study and Research on Obesity, Milan University , Milan, Italy
| | - Andrea Fossati
- 2 Department of Medical Biotechnology and Translational Medicine, Center for Study and Research on Obesity, Milan University , Milan, Italy
| | - Elisa Saba
- 4 Department of Molecular and Translational Medicine, Brescia University , Brescia, Italy
| | - Francesca Fenaroli
- 4 Department of Molecular and Translational Medicine, Brescia University , Brescia, Italy
| | - Mery Montinaro
- 4 Department of Molecular and Translational Medicine, Brescia University , Brescia, Italy
| | - Michele O Carruba
- 2 Department of Medical Biotechnology and Translational Medicine, Center for Study and Research on Obesity, Milan University , Milan, Italy
| | - Alessandra Valerio
- 4 Department of Molecular and Translational Medicine, Brescia University , Brescia, Italy
| | - Enzo Nisoli
- 2 Department of Medical Biotechnology and Translational Medicine, Center for Study and Research on Obesity, Milan University , Milan, Italy
| |
Collapse
|
9
|
Determination of the anti-inflammatory and cytoprotective effects of l-glutamine and l-alanine, or dipeptide, supplementation in rats submitted to resistance exercise. Br J Nutr 2016; 116:470-9. [PMID: 27215379 DOI: 10.1017/s0007114516001999] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We evaluated the effects of chronic oral supplementation with l-glutamine and l-alanine in their free form or as the dipeptide l-alanyl-l-glutamine (DIP) on muscle damage, inflammation and cytoprotection, in rats submitted to progressive resistance exercise (RE). Wistar rats (n 8/group) were submitted to 8-week RE, which consisted of climbing a ladder with progressive loads. In the final 21 d before euthanasia, supplements were delivered in a 4 % solution in drinking water. Glutamine, creatine kinase (CK), lactate dehydrogenase (LDH), TNF-α, specific IL (IL-1β, IL-6 and IL-10) and monocyte chemoattractant protein-1 (MCP-1) levels were evaluated in plasma. The concentrations of glutamine, TNF-α, IL-6 and IL-10, as well as NF-κB activation, were determined in extensor digitorum longus (EDL) skeletal muscle. HSP70 level was assayed in EDL and peripheral blood mononuclear cells (PBMC). RE reduced glutamine concentration in plasma and EDL (P<0·05 v. sedentary group). However, l-glutamine supplements (l-alanine plus l-glutamine (GLN+ALA) and DIP groups) restored glutamine levels in plasma (by 40 and 58 %, respectively) and muscle (by 93 and 105 %, respectively). GLN+ALA and DIP groups also exhibited increased level of HSP70 in EDL and PBMC, consistent with the reduction of NF-κB p65 activation and cytokines in EDL. Muscle protection was also indicated by attenuation in plasma levels of CK, LDH, TNF-α and IL-1β, as well as an increase in IL-6, IL-10 and MCP-1. Our study demonstrates that chronic oral l-glutamine treatment (given with l-alanine or as dipeptide) following progressive RE induces cyprotective effects mediated by HSP70-associated responses to muscle damage and inflammation.
Collapse
|
10
|
Nogiec C, Burkart A, Dreyfuss JM, Lerin C, Kasif S, Patti ME. Metabolic modeling of muscle metabolism identifies key reactions linked to insulin resistance phenotypes. Mol Metab 2015; 4:151-63. [PMID: 25737951 PMCID: PMC4338313 DOI: 10.1016/j.molmet.2014.12.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 12/18/2014] [Accepted: 12/23/2014] [Indexed: 12/31/2022] Open
Abstract
Objective Dysregulated muscle metabolism is a cardinal feature of human insulin resistance (IR) and associated diseases, including type 2 diabetes (T2D). However, specific reactions contributing to abnormal energetics and metabolic inflexibility in IR are unknown. Methods We utilize flux balance computational modeling to develop the first systems-level analysis of IR metabolism in fasted and fed states, and varying nutrient conditions. We systematically perturb the metabolic network to identify reactions that reproduce key features of IR-linked metabolism. Results While reduced glucose uptake is a major hallmark of IR, model-based reductions in either extracellular glucose availability or uptake do not alter metabolic flexibility, and thus are not sufficient to fully recapitulate IR-linked metabolism. Moreover, experimentally-reduced flux through single reactions does not reproduce key features of IR-linked metabolism. However, dual knockdowns of pyruvate dehydrogenase (PDH), in combination with reduced lipid uptake or lipid/amino acid oxidation (ETFDH), does reduce ATP synthesis, TCA cycle flux, and metabolic flexibility. Experimental validation demonstrates robust impact of dual knockdowns in PDH/ETFDH on cellular energetics and TCA cycle flux in cultured myocytes. Parallel analysis of transcriptomic and metabolomics data in humans with IR and T2D demonstrates downregulation of PDH subunits and upregulation of its inhibitory kinase PDK4, both of which would be predicted to decrease PDH flux, concordant with the model. Conclusions Our results indicate that complex interactions between multiple biochemical reactions contribute to metabolic perturbations observed in human IR, and that the PDH complex plays a key role in these metabolic phenotypes.
Collapse
Affiliation(s)
| | - Alison Burkart
- Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, MA, USA
| | - Jonathan M Dreyfuss
- Research Division, Joslin Diabetes Center, and Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Carles Lerin
- Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - Simon Kasif
- Biomedical Engineering, Boston University, Boston, MA, USA ; Research Division, Joslin Diabetes Center and Children's Hospital Informatics Program, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Mary-Elizabeth Patti
- Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Cruzat VF, Krause M, Newsholme P. Amino acid supplementation and impact on immune function in the context of exercise. J Int Soc Sports Nutr 2014; 11:61. [PMID: 25530736 PMCID: PMC4272512 DOI: 10.1186/s12970-014-0061-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 12/04/2014] [Indexed: 01/16/2023] Open
Abstract
Moderate and chronic bouts of exercise may lead to positive metabolic, molecular, and morphological adaptations, improving health. Although exercise training stimulates the production of reactive oxygen species (ROS), their overall intracellular concentration may not reach damaging levels due to enhancement of antioxidant responses. However, inadequate exercise training (i.e., single bout of high-intensity or excessive exercise) may result in oxidative stress, muscle fatigue and muscle injury. Moreover, during the recovery period, impaired immunity has been reported, for example; excessive-inflammation and compensatory immunosuppression. Nutritional supplements, sometimes referred to as immuno-nutrients, may be required to reduce immunosuppression and excessive inflammation. Herein, we discuss the action and the possible targets of key immuno-nutrients such as L-glutamine, L-arginine, branched chain amino acids (BCAA) and whey protein.
Collapse
Affiliation(s)
- Vinicius Fernandes Cruzat
- CHIRI Biosciences Research Precinct, Faculty of Health Sciences, School of Biomedical Sciences, Curtin University, GPO Box U1987, Perth, Western Australia Australia
| | - Maurício Krause
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Philip Newsholme
- CHIRI Biosciences Research Precinct, Faculty of Health Sciences, School of Biomedical Sciences, Curtin University, GPO Box U1987, Perth, Western Australia Australia
| |
Collapse
|