1
|
Grzeczka A, Graczyk S, Kordowitzki P. Involvement of TGF-β, mTOR, and inflammatory mediators in aging alterations during myxomatous mitral valve disease in a canine model. GeroScience 2025:10.1007/s11357-025-01520-0. [PMID: 39865135 DOI: 10.1007/s11357-025-01520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025] Open
Abstract
Inflammaging, a state of chronic low-grade inflammation associated with aging, has been linked to the development and progression of various disorders. Cellular senescence, a state of irreversible growth arrest, is another characteristic of aging that contributes to the pathogenesis of cardiovascular pathology. Senescent cells accumulate in tissues over time and secrete many inflammatory mediators, further exacerbating the inflammatory environment. This senescence-associated secretory phenotype can promote tissue dysfunction and remodeling, ultimately leading to the development of age-related cardiovascular pathologies, such as mitral valve myxomatous degeneration. The species-specific form of canine myxomatous mitral valve disease (MMVD) provides a unique opportunity to investigate the early causes of induction of ECM remodeling in mitral valve leaflets in the human form of MMVD. Studies have shown that in both humans and dogs, the microenvironment of the altered leaflets is inflammatory. More recently, the focus has been on the mechanisms leading to the transformation of resting VICs (qVICs) to myofibroblast-like VICs (aVICs). Cells affected by stress fall into a state of cell cycle arrest and become senescent cells. aVICs, under the influence of TGF-β signaling pathways and the mTOR complex, enhance ECM alteration and accumulation of systemic inflammation. This review aims to create a fresh new view of the complex interaction between aging, inflammation, immunosenescence, and MMVD in a canine model, as the domestic dog is a promising model of human aging and age-related diseases.
Collapse
Affiliation(s)
- Arkadiusz Grzeczka
- Department for Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| | - Szymon Graczyk
- Department for Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| | - Pawel Kordowitzki
- Department for Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland.
| |
Collapse
|
2
|
Guelfi G, Capaccia C, Tedeschi M, Bufalari A, Leonardi L, Cenci-Goga B, Maranesi M. Dog Aging: A Comprehensive Review of Molecular, Cellular, and Physiological Processes. Cells 2024; 13:2101. [PMID: 39768192 PMCID: PMC11675035 DOI: 10.3390/cells13242101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The aging process is a multifactorial biological phenomenon starting at birth and persisting throughout life, characterized by a decline in physiological functions and adaptability. This decline results in the diminished capacity of aging organisms to respond to environmental changes and stressors, leading to reduced efficiency in metabolic, immune, and hormonal functions. As behavioral flexibility wanes, older individuals face longer recovery times and increased vulnerability to diseases. While early research proposed nine core hallmarks of mammalian aging, recent studies have expanded this framework to twelve key characteristics: epigenetic changes, genomic instability, telomere shortening, loss of proteostasis, altered metabolism, mitochondrial dysfunction, cellular senescence, disrupted intercellular communication, stem cell depletion, immune system dysfunction, accumulation of toxic metabolites, and dysbiosis. Given the growing interest in the aging area, we propose to add a new hallmark: impaired water homeostasis. This potential hallmark could play a critical role in aging processes and might open new directions for future research in the field. This review enhances our understanding of the physiological aspects of aging in dogs, suggesting new clinical intervention strategies to prevent and control issues that may arise from the pathological degeneration of these hallmarks.
Collapse
Affiliation(s)
- Gabriella Guelfi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (C.C.); (M.T.); (L.L.); (B.C.-G.); (M.M.)
| | | | | | - Antonello Bufalari
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (C.C.); (M.T.); (L.L.); (B.C.-G.); (M.M.)
| | | | | | | |
Collapse
|
3
|
McEntire MS, Tang KN, O'Connor MR, Haulena M. THE MANAGEMENT OF LYMPHOPROLIFERATIVE NEOPLASIA IN FOUR NORTHERN SEA OTTERS ( ENHYDRA LUTRIS KENYONI). J Zoo Wildl Med 2024; 55:511-520. [PMID: 38875209 DOI: 10.1638/2022-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 06/16/2024] Open
Abstract
Lymphoproliferative neoplasia has been reported in both free-ranging sea otters and those in managed care, but little information is available on the management of this neoplastic disease in this species. This case series describes clinical lymphoma in four northern sea otters (Enhydra lutris kenyoni) in managed care. Two otters presented with Stage 5 lymphoma with evidence of hematologic spread resulting in leukemia. Two additional otters presented with Stage 3 disease. Immunophenotypes in these cases included disseminated large B-cell lymphoma and lymphoblastic lymphoma of potential T-cell origin. Cases were managed with multiagent chemotherapy protocols including prednisone, L-asparaginase, cyclophosphamide, vincristine, cytosine arabinoside, lomustine, and doxorubicin. Unique approaches included the use of a vascular access port in one case and development of an autologous vaccine in another. Survival time ranged from 81 to 409 days. Diagnosis, staging, and treatment with multiagent protocols is recommended for the management of lymphoma in sea otters.
Collapse
Affiliation(s)
- Michael S McEntire
- John G. Shedd Aquarium, Chicago IL 60605, USA and Vancouver Aquarium, Vancouver BC V6G 3E2, Canada
| | - Karisa N Tang
- John G. Shedd Aquarium, Chicago IL 60605, USA and Vancouver Aquarium, Vancouver BC V6G 3E2, Canada
| | - Matthew R O'Connor
- John G. Shedd Aquarium, Chicago IL 60605, USA and Vancouver Aquarium, Vancouver BC V6G 3E2, Canada
| | - Martin Haulena
- John G. Shedd Aquarium, Chicago IL 60605, USA and Vancouver Aquarium, Vancouver BC V6G 3E2, Canada,
| |
Collapse
|
4
|
Rajković M, Glavinić U, Bogunović D, Vejnović B, Davitkov D, Đelić N, Stanimirović Z. "Slow kill" treatment reduces DNA damage in leukocytes of dogs naturally infected with Dirofilaria immitis. Vet Parasitol 2023; 322:110008. [PMID: 37643566 DOI: 10.1016/j.vetpar.2023.110008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/31/2023]
Abstract
Parasitic diseases are considered to be a cause of oxidative stress which leads to oxidative damage of various molecules including DNA. This can result in mutations, replication errors, and genome instability. Therefore, aim of this study was to measure DNA damage induced by Dirofilaria immitis in the single cells such as dogs' leukocytes using the comet assay. Also, we monitored the effects of antiparasitic treatment on mitigation of sensitivity to DNA damage in leukocytes treated with H2O2 using the in vivo and ex vivo comet assay. The whole blood samples from 34 dogs from Serbia were used, both males and females, from one to 13 years old, both pure and mixed-breeds. A rapid immunochromatographic test (Antigen Rapid Heartworm Ag 2.0 Test Kit, Bionote, Minnesota, USA) was used for the detection of D. immitis antigens. The modified Knott's test and PCR were used in the aim of detecting D. immitis microfilariae in dogs' blood, and evaluating the number of circulating microfilariae during the treatment. The genotoxicity evaluation showed that D. immitis infection resulted in DNA damage in naturally infected dogs, with the highest DNA damage occurring in the group of dogs with severe clinical signs. Treatment with ivermectin and doxycycline decreased DNA damage in leukocytes of dogs in all groups, as the intensity of infection decreased due to applied therapy. Ex vivo comet assay results showed that leukocytes exhibited decreased sensitivity to H2O2-induced DNA damage during treatment. The results of the modified Knott's test and PCR in our study showed that treatment with ivermectin and doxycycline was successful in decreasing the average number of microfilariae during the time and at the end eliminating them from the dogs' blood.
Collapse
Affiliation(s)
- Milan Rajković
- Department of Parasitology, University of Belgrade - Faculty of Veterinary Medicine, Belgrade 11000, Serbia
| | - Uroš Glavinić
- Department of Biology, University of Belgrade - Faculty of Veterinary Medicine, Belgrade 11000, Serbia
| | - Danica Bogunović
- Department of Parasitology, University of Belgrade - Faculty of Veterinary Medicine, Belgrade 11000, Serbia
| | - Branislav Vejnović
- Department of Economics and Statistics, University of Belgrade - Faculty of Veterinary Medicine, Belgrade 11000, Serbia.
| | - Darko Davitkov
- Department of Equine, Small Animal, Poultry and Wild Animal Diseases, University of Belgrade - Faculty of Veterinary Medicine, Belgrade 11000, Serbia
| | - Ninoslav Đelić
- Department of Biology, University of Belgrade - Faculty of Veterinary Medicine, Belgrade 11000, Serbia
| | - Zoran Stanimirović
- Department of Biology, University of Belgrade - Faculty of Veterinary Medicine, Belgrade 11000, Serbia
| |
Collapse
|
5
|
Simpson S, Rizvanov AA, Jeyapalan JN, de Brot S, Rutland CS. Canine osteosarcoma in comparative oncology: Molecular mechanisms through to treatment discovery. Front Vet Sci 2022; 9:965391. [PMID: 36570509 PMCID: PMC9773846 DOI: 10.3389/fvets.2022.965391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Cancer is a leading cause of non-communicable morbidity and mortality throughout the world, similarly, in dogs, the most frequent cause of mortality is tumors. Some types of cancer, including osteosarcoma (OSA), occur at much higher rates in dogs than people. Dogs therefore not only require treatment themselves but can also act as an effective parallel patient population for the human disease equivalent. It should be noted that although there are many similarities between canine and human OSA, there are also key differences and it is important to research and highlight these features. Despite progress using chorioallantoic membrane models, 2D and 3D in vitro models, and rodent OSA models, many more insights into the molecular and cellular mechanisms, drug development, and treatment are being discovered in a variety of canine OSA patient populations.
Collapse
Affiliation(s)
- Siobhan Simpson
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Albert A. Rizvanov
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Jennie N. Jeyapalan
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
- Faculty of Medicine and Health Science, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Simone de Brot
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
- Comparative Pathology Platform (COMPATH), Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Catrin S. Rutland
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
6
|
Hernández-Suárez B, Gillespie DA, Pawlak A. DNA Damage Response (DDR) proteins in canine cancer as potential research targets in comparative oncology. Vet Comp Oncol 2021; 20:347-361. [PMID: 34923737 PMCID: PMC9304296 DOI: 10.1111/vco.12795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
The DNA damage response (DDR) is a complex signal transduction network that is activated when endogenous or exogenous genotoxins damage or interfere with the replication of genomic DNA. Under such conditions, the DDR promotes DNA repair and ensures accurate replication and division of the genome. High levels of genomic instability are frequently observed in cancers and can stem from germline loss‐of‐function mutations in certain DDR genes, such as BRCA1, BRCA2, and p53, that form the basis of human cancer predisposition syndromes. In addition, mutation and/or aberrant expression of multiple DDR genes are frequently observed in sporadic human cancers. As a result, the DDR is considered to represent a viable target for cancer therapy in humans and a variety of strategies are under investigation. Cancer is also a significant cause of mortality in dogs, a species that offers certain advantages for experimental oncology. Domestic dogs present numerous inbred lines, many of which display predisposition to specific forms of cancer and the study of which may provide insight into the biological basis of this susceptibility. In addition, clinical trials are possible in dogs and may lead to therapeutic insights that could ultimately be extended to humans. Here we review what is known specifically about the DDR in dogs and discuss how this knowledge could be extended and exploited to advance experimental oncology in this species.
Collapse
Affiliation(s)
- Beatriz Hernández-Suárez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Poland
| | - David A Gillespie
- Instituto de Tecnologías Biomédicas, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, La Laguna 38071, Tenerife, Spain
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Poland
| |
Collapse
|
7
|
Craun K, Ekena J, Sacco J, Jiang T, Motsinger‐Reif A, Trepanier LA. Genetic and environmental risk for lymphoma in boxer dogs. J Vet Intern Med 2020; 34:2068-2077. [PMID: 32667715 PMCID: PMC7517848 DOI: 10.1111/jvim.15849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Non-Hodgkin lymphoma in humans is associated with environmental chemical exposures, and risk is enhanced by genetic variants in glutathione S-transferases (GST) enzymes. OBJECTIVE We hypothesized that boxer dogs, a breed at risk for lymphoma, would have a higher prevalence of GST variants with predicted low activity, and greater accumulated DNA damage, compared to other breeds. We also hypothesized that lymphoma in boxers would be associated with specific environmental exposures and a higher prevalence of canine GST variants. ANIMALS Fifty-four healthy boxers and 56 age-matched nonboxer controls; 63 boxers with lymphoma and 89 unaffected boxers ≥10 years old. METHODS We resequenced variant loci in canine GSTT1, GSTT5, GSTM1, and GSTP1 and compared endogenous DNA damage in peripheral leukocytes of boxers and nonboxers using the comet assay. We also compared GST variants and questionnaire-based environmental exposures in boxers with and without lymphoma. RESULTS Endogenous DNA damage did not differ between boxers and nonboxers. Boxers with lymphoma were more likely to live within 10 miles of a nuclear power plant and within 2 miles of a chemical supplier or crematorium. Lymphoma risk was not modulated by known canine GST variants. CONCLUSIONS AND CLINICAL IMPORTANCE Proximity to nuclear power plants, chemical suppliers, and crematoria were significant risk factors for lymphoma in this population of boxers. These results support the hypothesis that aggregate exposures to environmental chemicals and industrial waste may contribute to lymphoma risk in dogs.
Collapse
Affiliation(s)
- Kaitlyn Craun
- Department of Medical Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Joanne Ekena
- Department of Medical Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - James Sacco
- Drake University College of Pharmacy and Health SciencesDes MoinesIowaUSA
| | - Tao Jiang
- Department of StatisticsNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Alison Motsinger‐Reif
- Biostatistics & Computational Biology Branch, NIEHSDurhamNorth CarolinaUSA
- Department of StatisticsNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Lauren A. Trepanier
- Department of Medical Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
8
|
Sándor S, Kubinyi E. Genetic Pathways of Aging and Their Relevance in the Dog as a Natural Model of Human Aging. Front Genet 2019; 10:948. [PMID: 31681409 PMCID: PMC6813227 DOI: 10.3389/fgene.2019.00948] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022] Open
Abstract
Aging research has experienced a burst of scientific efforts in the last decades as the growing ratio of elderly people has begun to pose an increased burden on the healthcare and pension systems of developed countries. Although many breakthroughs have been reported in understanding the cellular mechanisms of aging, the intrinsic and extrinsic factors that contribute to senescence on higher biological levels are still barely understood. The dog, Canis familiaris, has already served as a valuable model of human physiology and disease. The possible role the dog could play in aging research is still an open question, although utilization of dogs may hold great promises as they naturally develop age-related cognitive decline, with behavioral and histological characteristics very similar to those of humans. In this regard, family dogs may possess unmatched potentials as models for investigations on the complex interactions between environmental, behavioral, and genetic factors that determine the course of aging. In this review, we summarize the known genetic pathways in aging and their relevance in dogs, putting emphasis on the yet barely described nature of certain aging pathways in canines. Reasons for highlighting the dog as a future aging and gerontology model are also discussed, ranging from its unique evolutionary path shared with humans, its social skills, and the fact that family dogs live together with their owners, and are being exposed to the same environmental effects.
Collapse
Affiliation(s)
- Sára Sándor
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | | |
Collapse
|
9
|
Van Rooyen LJ, Hooijberg E, Reyers F. Breed prevalence of canine lymphoma in South Africa. J S Afr Vet Assoc 2018; 89:e1-e11. [PMID: 29781671 PMCID: PMC6138093 DOI: 10.4102/jsava.v89i0.1530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 10/31/2017] [Accepted: 12/12/2017] [Indexed: 12/31/2022] Open
Abstract
Lymphoma is a common haematopoietic neoplasm in dogs. Several breeds have been shown to have a predisposition to lymphoma; however, very little information exists regarding the South African dog population. This study assessed whether any breed had increased odds of developing lymphoma compared with others, and also investigated the effects of age, sex and neutering status on disease prevalence. Two study populations and their corresponding reference populations were studied retrospectively. Odds ratios (ORs) for lymphoma in 49 dog breeds, together with their 95% confidence intervals (CI), were calculated. Age effect was assessed by calculating ORs for different age categories in one of the populations. The chi-square test was used to evaluate differences in the prevalence of the various sex and neutering categories in one lymphoma population compared with its reference population. Fourteen breeds had significantly increased odds of developing lymphoma, and one breed had significantly decreased odds (p < 0.050). The median ages of the two lymphoma populations were 6.5 and 8.0 years, with the 6.1-9.0 year category having significantly increased odds of developing lymphoma (OR 1.61, CI 1.2-2.16, p = 0.002). In one of the lymphoma populations, higher proportions of males (p = 0.033) and neutered females (p = 0.006) were found when compared with the reference population. These findings suggest that certain breeds in South Africa have a higher risk of developing lymphoma, and that sex hormones may play a role in lymphoma pathogenesis. The findings may provide useful information for pet owners and veterinarians.
Collapse
Affiliation(s)
- Liesl J Van Rooyen
- Department of Companion Animal Clinical Studies, University of Pretoria, South Africa; IDEXX Laboratories (Pty) Ltd, Johannesburg.
| | | | | |
Collapse
|
10
|
Craft S, Ekena J, Mayer B, Thamm DH, Saba C, Chun R, Trepanier LA. Characterization of a low expression haplotype in canine glutathione S-transferase (GSTT1) and its prevalence in golden retrievers. Vet Comp Oncol 2017; 16:E61-E67. [PMID: 28840668 DOI: 10.1111/vco.12333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/05/2017] [Accepted: 06/11/2017] [Indexed: 12/12/2022]
Abstract
Glutathione S-transferase-theta (GSTT1) is a carcinogen detoxification enzyme, and low activity variants are associated with lymphoma in humans. We recently found a variant in the 3' untranslated region (UTR) of canine GSTT1, *101_102insT, which was predicted to change miRNA binding and was found in 5 of 17 golden retriever (GR) dogs with lymphoma but none of 14 healthy GRs. The aim of this study was to determine whether this variant led to decreased GSTT1 expression and was a discernible risk factor for lymphoma within the GR breed. On resequencing, *101_102insT appeared to be in complete linkage disequilibrium with 3 additional 3'UTR variants, leading to the inferred haplotype *3T>C; *101_102insT; *190C>A; *203T>C. In canine livers that were heterozygous for this variant haplotype, GSTT1 protein expression was significantly lower compared to the reference haplotype (densitometry .40 vs .64, P = .022), and GSTT1 transcript levels by qPCR were also significantly lower (fold difference .52, P = .012), without evidence of substantial allelic expression imbalance. The variant haplotype led to >50% decrease in expression in vitro (.31 ± .07 vs .64 ± .19; P = .019). We found no significant difference in minor allele frequencies between 71 GR dogs with lymphoma (MAF .162) and 33 healthy age-matched controls (MAF .136, P = .69). Our results indicate that the variant GSTT1 3'UTR haplotype containing *101_102insT reduces gene expression, which could lead to impaired carcinogen detoxification, but was not a detectable risk factor for lymphoma in GR dogs.
Collapse
Affiliation(s)
- S Craft
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - J Ekena
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - B Mayer
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - D H Thamm
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| | - C Saba
- Department of Small Animal Medicine and Surgery, University of Georgia, Athens, Georgia
| | - R Chun
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - L A Trepanier
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
11
|
|
12
|
Klopfleisch R, Kohn B, Gruber AD. Mechanisms of tumour resistance against chemotherapeutic agents in veterinary oncology. Vet J 2015; 207:63-72. [PMID: 26526523 DOI: 10.1016/j.tvjl.2015.06.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 06/23/2015] [Accepted: 06/30/2015] [Indexed: 12/17/2022]
Abstract
Several classes of chemotherapy drugs are used as first line or adjuvant treatment of the majority of tumour types in veterinary oncology. However, some types of tumour are intrinsically resistant to several anti-cancer drugs, and others, while initially sensitive, acquire resistance during treatment. Chemotherapy often significantly prolongs survival or disease free interval, but is not curative. The exact mechanisms behind intrinsic and acquired chemotherapy resistance are unknown for most animal tumours, but there is increasing knowledge on the mechanisms of drug resistance in humans and a few reports on molecular changes in resistant canine tumours have emerged. In addition, approaches to overcome or prevent chemotherapy resistance are becoming available in humans and, given the overlaps in molecular alterations between human and animal tumours, these may also be relevant in veterinary oncology. This review provides an overview of the current state of research on general chemotherapy resistance mechanisms, including drug efflux, DNA repair, apoptosis evasion and tumour stem cells. The known resistance mechanisms in animal tumours and the potential of these findings for improving treatment efficacy in veterinary oncology are also explored.
Collapse
Affiliation(s)
- R Klopfleisch
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Straße 15, 14163 Berlin, Germany.
| | - B Kohn
- Small Animal Clinic, Freie Universität Berlin, Oertzenweg 19 b, 14163 Berlin, Germany
| | - A D Gruber
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Straße 15, 14163 Berlin, Germany
| |
Collapse
|
13
|
Cannon CM. Cats, Cancer and Comparative Oncology. Vet Sci 2015; 2:111-126. [PMID: 29061935 PMCID: PMC5644631 DOI: 10.3390/vetsci2030111] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 06/17/2015] [Accepted: 06/24/2015] [Indexed: 12/18/2022] Open
Abstract
Naturally occurring tumors in dogs are well-established models for several human cancers. Domestic cats share many of the benefits of dogs as a model (spontaneous cancers developing in an immunocompetent animal sharing the same environment as humans, shorter lifespan allowing more rapid trial completion and data collection, lack of standard of care for many cancers allowing evaluation of therapies in treatment-naïve populations), but have not been utilized to the same degree in the One Medicine approach to cancer. There are both challenges and opportunities in feline compared to canine models. This review will discuss three specific tumor types where cats may offer insights into human cancers. Feline oral squamous cell carcinoma is common, shares both clinical and molecular features with human head and neck cancer and is an attractive model for evaluating new therapies. Feline mammary tumors are usually malignant and aggressive, with the ‘triple-negative’ phenotype being more common than in humans, offering an enriched population in which to examine potential targets and treatments. Finally, although there is not an exact corollary in humans, feline injection site sarcoma may be a model for inflammation-driven tumorigenesis, offering opportunities for studying variations in individual susceptibility as well as preventative and therapeutic strategies.
Collapse
Affiliation(s)
- Claire M Cannon
- University of Tennessee College of Veterinary Medicine, 2407 River Drive, Knoxville, TN 37996, USA.
| |
Collapse
|