1
|
Ravigné V, Rodrigues LR, Charlery de la Masselière M, Facon B, Kuczyński L, Radwan J, Skoracka A, Magalhães S. Understanding the joint evolution of dispersal and host specialisation using phytophagous arthropods as a model group. Biol Rev Camb Philos Soc 2024; 99:219-237. [PMID: 37724465 DOI: 10.1111/brv.13018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Theory generally predicts that host specialisation and dispersal should evolve jointly. Indeed, many models predict that specialists should be poor dispersers to avoid landing on unsuitable hosts while generalists will have high dispersal abilities. Phytophagous arthropods are an excellent group to test this prediction, given extensive variation in their host range and dispersal abilities. Here, we explore the degree to which the empirical literature on this group is in accordance with theoretical predictions. We first briefly outline the theoretical reasons to expect such a correlation. We then report empirical studies that measured both dispersal and the degree of specialisation in phytophagous arthropods. We find a correlation between dispersal and levels of specialisation in some studies, but with wide variation in this result. We then review theoretical attributes of species and environment that may blur this correlation, namely environmental grain, temporal heterogeneity, habitat selection, genetic architecture, and coevolution between plants and herbivores. We argue that theoretical models fail to account for important aspects, such as phenotypic plasticity and the impact of selective forces stemming from other biotic interactions, on both dispersal and specialisation. Next, we review empirical caveats in the study of this interplay. We find that studies use different measures of both dispersal and specialisation, hampering comparisons. Moreover, several studies do not provide independent measures of these two traits. Finally, variation in these traits may occur at scales that are not being considered. We conclude that this correlation is likely not to be expected from large-scale comparative analyses as it is highly context dependent and should not be considered in isolation from the factors that modulate it, such as environmental scale and heterogeneity, intrinsic traits or biotic interactions. A stronger crosstalk between theoretical and empirical studies is needed to understand better the prevalence and basis of the correlation between dispersal and specialisation.
Collapse
Affiliation(s)
- Virginie Ravigné
- CIRAD, UMR PHIM, - PHIM, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, TA A-120/K, Campus international de Baillarguet, avenue du Campus d'Agropolis, Montpellier Cedex 5, 34398, France
| | - Leonor R Rodrigues
- cE3c: Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Departamento Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, edifício C2, Lisboa, 1749-016, Portugal
| | - Maud Charlery de la Masselière
- cE3c: Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Departamento Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, edifício C2, Lisboa, 1749-016, Portugal
| | - Benoît Facon
- CBGP, INRAE, IRD, CIRAD, Institut Agro, University of Montpellier, 755 avenue du Campus Agropolis, CS 34988, Montferrier sur Lez cedex, 30016, France
| | - Lechosław Kuczyński
- Population Ecology Lab, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, Poznań, 61-614, Poland
| | - Jacek Radwan
- Evolutionary Biology Group, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, Poznań, 61-614, Poland
| | - Anna Skoracka
- Population Ecology Lab, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, Poznań, 61-614, Poland
| | - Sara Magalhães
- cE3c: Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Departamento Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, edifício C2, Lisboa, 1749-016, Portugal
| |
Collapse
|
2
|
Zhukovskaya MI, Frolov AN. Alternative evolutionary strategies and tactics used by polyphagous insect to inhabit agricultural environment: Ostrinia nubialis as a case. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1007532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Substantial differentiation was found between Ostrinia populations, adapted to feed on dicotyledonous and monocotyledonous host plants, which results not only in oviposition and larval survival differences but also in formation of ethological premating sex isolation mechanisms. Two strategies are surmised in warmer and colder areas, correspondingly: wide range of host plant species in combination with strict developmental stages of the plant, and alternatively, few host plant are infested during almost all the stages of their development, Inside these strategies, tactics are plastic. They are activated by the sensory stimuli, such as temperature, humidity and odorants. The tactic of dispersal flight before mating could be beneficial when the host plant is abundant, but mating before the flight is a better choice under the situation of sparse cornfields. There are still multiple questions to address for clear understanding of Ostrinia behavior and evolution.
Collapse
|
3
|
Coates BS, Kozak GM, Seok Kim K, Sun J, Wang Y, Fleischer SJ, Dopman EB, Sappington TW. Influence of host plant, geography and pheromone strain on genomic differentiation in sympatric populations of Ostrinia nubilalis. Mol Ecol 2019; 28:4439-4452. [PMID: 31495004 DOI: 10.1111/mec.15234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/19/2019] [Accepted: 08/05/2019] [Indexed: 12/26/2022]
Abstract
Patterns of mating for the European corn borer (Ostrinia nubilalis) moth depend in part on variation in sex-pheromone blend. The ratio of (E)-11- and (Z)-11-tetradecenyl acetate (E11- and Z11-14:OAc) in the pheromone blend that females produce and males respond to differs between strains of O. nubilalis. Populations also vary in female oviposition preference for and larval performance on maize (C4) and nonmaize (C3) host plants. The relative contributions of sexual and ecological trait variation to the genetic structure of O. nubilalis remains unknown. Host-plant use (13 C/14 C ratios) and genetic differentiation were estimated among sympatric E and Z pheromone strain O. nubilalis males collected in sex-pheromone baited traps at 12 locations in Pennsylvania and New York between 2007 and 2010. Among genotypes at 65 single nucleotide polymorphism marker loci, variance at a position in the pheromone gland fatty acyl-reductase (pgfar) gene at the locus responsible for determining female pheromone ratio (Pher) explained 64% of the total genetic differentiation between males attracted to different pheromones (male response, Resp), providing evidence of sexual inter-selection at these unlinked loci. Principal coordinate, Bayesian clustering, and distance-based redundancy analysis (dbRDA) demonstrate that host plant history or geography does not significantly contribute to population variation or differentiation among males. In contrast, these analyses indicate that pheromone response and pgfar-defined strain contribute significantly to population genetic differentiation. This study suggests that behavioural divergence probably plays a larger role in driving genetic variation compared to host plant-defined ecological adaptation.
Collapse
Affiliation(s)
- Brad S Coates
- Corn Insects & Crop Genetics Research Unit, USDA-ARS, Ames, IA, USA
| | - Genevieve M Kozak
- Department of Biology, University of Massachusetts-Dartmouth, Dartmouth, MA, USA.,Department of Biology, Tufts University, Medford, MA, USA
| | - Kyung Seok Kim
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, USA
| | - Jing Sun
- Department of Entomology, Iowa State University, Ames, IA, USA
| | - Yangzhou Wang
- Jilin Academy of Agricultural Sciences, Changchun, China
| | | | - Erik B Dopman
- Department of Biology, Tufts University, Medford, MA, USA
| | | |
Collapse
|
4
|
Long-Term Population Studies Uncover the Genome Structure and Genetic Basis of Xenobiotic and Host Plant Adaptation in the Herbivore Tetranychus urticae. Genetics 2019; 211:1409-1427. [PMID: 30745439 DOI: 10.1534/genetics.118.301803] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/02/2019] [Indexed: 01/11/2023] Open
Abstract
Pesticide resistance arises rapidly in arthropod herbivores, as can host plant adaptation, and both are significant problems in agriculture. These traits have been challenging to study as both are often polygenic and many arthropods are genetically intractable. Here, we examined the genetic architecture of pesticide resistance and host plant adaptation in the two-spotted spider mite, Tetranychus urticae, a global agricultural pest. We show that the short generation time and high fecundity of T. urticae can be readily exploited in experimental evolution designs for high-resolution mapping of quantitative traits. As revealed by selection with spirodiclofen, an acetyl-CoA carboxylase inhibitor, in populations from a cross between a spirodiclofen-resistant and a spirodiclofen-susceptible strain, and which also differed in performance on tomato, we found that a limited number of loci could explain quantitative resistance to this compound. These were resolved to narrow genomic intervals, suggesting specific candidate genes, including acetyl-CoA carboxylase itself, clustered and copy variable cytochrome P450 genes, and NADPH cytochrome P450 reductase, which encodes a redox partner for cytochrome P450s. For performance on tomato, candidate genomic regions for response to selection were distinct from those responding to the synthetic compound and were consistent with a more polygenic architecture. In accomplishing this work, we exploited the continuous nature of allele frequency changes across experimental populations to resolve the existing fragmented T. urticae draft genome to pseudochromosomes. This improved assembly was indispensable for our analyses, as it will be for future research with this model herbivore that is exceptionally amenable to genetic studies.
Collapse
|
5
|
Orsucci M, Audiot P, Dorkeld F, Pommier A, Vabre M, Gschloessl B, Rialle S, Severac D, Bourguet D, Streiff R. Larval transcriptomic response to host plants in two related phytophagous lepidopteran species: implications for host specialization and species divergence. BMC Genomics 2018; 19:265. [PMID: 29669517 PMCID: PMC5907310 DOI: 10.1186/s12864-018-4589-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/08/2018] [Indexed: 11/17/2022] Open
Abstract
Background Most phytophagous insects have morphological, behavioral and physiological adaptations allowing them to specialize on one or a few plant species. Identifying the mechanisms involved in host plant specialization is crucial to understand the role of divergent selection between different environments in species diversification, and to identify sustainable targets for the management of insect pest species. In the present study, we measured larval phenotypic and transcriptomic responses to host plants in two related phytophagous lepidopteran species: the European corn borer (ECB), a worldwide pest of maize, and the adzuki bean borer (ABB), which feeds of various dicotyledons. Our aim was to identify the genes and functions underlying host specialization and/or divergence between ECB and ABB. Results At the phenotypic level, we observed contrasted patterns of survival, weight gain and developmental time between ECB and ABB, and within ECB and ABB reared on two different host plants. At the transcriptomic level, around 8% of the genes were differentially expressed (DE) between species and/or host plant. 70% of these DE genes displayed a divergent pattern of expression between ECB and ABB, regardless of the host, while the remaining 30% were involved in the plastic response between hosts. We further categorized plastic DE genes according to their parallel or opposite pattern between ECB and ABB to specifically identify candidate genes involved in the species divergence by host specialization. These candidates highlighted a comprehensive response, involving functions related to plant recognition, digestion, detoxification, immunity and development. Last, we detected viral, bacterial, and yeast genes whose incidence contrasted ECB and ABB samples, and maize and mugwort conditions. We suggest that these microorganism communities might influence the survival, metabolism and defense patterns observed in ECB and ABB larvae. Conclusions The comprehensive approach developed in the present study allowed to identify phenotypic specialization patterns and underlying candidate molecular mechanisms, and highlighted the putative role of microorganisms in the insect-host plant interaction. These findings offer the opportunity to pinpoint specific and sustainable molecular or physiological targets for the regulation of ECB pest populations. Electronic supplementary material The online version of this article (10.1186/s12864-018-4589-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M Orsucci
- CBGP UMR 1062, INRA-IRD-CIRAD-Montpellier SupAgro, Montferrier sur Lez, Montpellier, France. .,DGIMI UMR 1333, INRA-Université de Montpellier, Montpellier, France. .,Present address: Department of Ecology and Genetics, EBC, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden.
| | - P Audiot
- CBGP UMR 1062, INRA-IRD-CIRAD-Montpellier SupAgro, Montferrier sur Lez, Montpellier, France
| | - F Dorkeld
- CBGP UMR 1062, INRA-IRD-CIRAD-Montpellier SupAgro, Montferrier sur Lez, Montpellier, France
| | - A Pommier
- CBGP UMR 1062, INRA-IRD-CIRAD-Montpellier SupAgro, Montferrier sur Lez, Montpellier, France
| | - M Vabre
- MELGUEIL DIASCOPE UE 0398, INRA, Mauguio, France
| | - B Gschloessl
- CBGP UMR 1062, INRA-IRD-CIRAD-Montpellier SupAgro, Montferrier sur Lez, Montpellier, France
| | - S Rialle
- MGX-Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, Montpellier, France
| | - D Severac
- MGX-Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, Montpellier, France
| | - D Bourguet
- CBGP UMR 1062, INRA-IRD-CIRAD-Montpellier SupAgro, Montferrier sur Lez, Montpellier, France
| | - R Streiff
- CBGP UMR 1062, INRA-IRD-CIRAD-Montpellier SupAgro, Montferrier sur Lez, Montpellier, France.,DGIMI UMR 1333, INRA-Université de Montpellier, Montpellier, France
| |
Collapse
|
6
|
Gschloessl B, Dorkeld F, Audiot P, Bretaudeau A, Kerdelhué C, Streiff R. De novo genome and transcriptome resources of the Adzuki bean borer Ostrinia scapulalis (Lepidoptera: Crambidae). Data Brief 2018; 17:781-787. [PMID: 29785409 PMCID: PMC5958680 DOI: 10.1016/j.dib.2018.01.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 11/25/2022] Open
Abstract
We present a draft genome assembly with a de novo prediction and automated functional annotation of coding genes, and a reference transcriptome of the Adzuki bean borer, Ostrinia scapulalis, based on RNA sequencing of various tissues and developmental stages. The genome assembly spans 419 Mb, has a GC content of 37.4% and includes 26,120 predicted coding genes. The reference transcriptome holds 33,080 unigenes and contains a high proportion of a set of genes conserved in eukaryotes and arthropods, used as quality assessment of the reconstructed transcripts. The new genomic and transcriptomic data presented here significantly enrich the public sequence databases for the Crambidae and Lepidoptera, and represent useful resources for future researches related to the evolution and the adaptation of phytophagous moths. The genome and transcriptome assemblies have been deposited and made accessible via a NCBI BioProject (id PRJNA390510) and the LepidoDB database (http://bipaa.genouest.org/sp/ostrinia_scapulalis/).
Collapse
Affiliation(s)
- B Gschloessl
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - F Dorkeld
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - P Audiot
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - A Bretaudeau
- INRA, UMR Institut de Génétique, Environnement et Protection des Plantes (IGEPP), BioInformatics Platform for Agroecosystems Arthropods (BIPAA), Campus Beaulieu, Rennes, France.,INRIA, IRISA, GenOuest Core Facility, Campus de Beaulieu, Rennes, France
| | - C Kerdelhué
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - R Streiff
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| |
Collapse
|
7
|
Calcagno V, Mitoyen C, Audiot P, Ponsard S, Gao G, Lu Z, Wang Z, He K, Bourguet D. Parallel evolution of behaviour during independent host-shifts following maize introduction into Asia and Europe. Evol Appl 2017; 10:881-889. [PMID: 29151879 PMCID: PMC5680425 DOI: 10.1111/eva.12481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/07/2017] [Indexed: 11/30/2022] Open
Abstract
Maize was introduced into opposite sides of Eurasia 500 years ago, in Western Europe and in Asia. This caused two host-shifts in the phytophagous genus Ostrinia; O. nubilalis (the European corn borer; ECB) and O. furnacalis (the Asian corn borer; ACB) are now major pests of maize worldwide. They originated independently from Dicot-feeding ancestors, similar to O. scapulalis (the Adzuki bean borer; ABB). Unlike other host-plants, maize is yearly harvested, and harvesting practices impose severe mortality on larvae found above the cut-off line. Positive geotaxis in the ECB has been proposed as a behavioural adaptation to harvesting practices, allowing larvae to move below the cut-off line and thus escape harvest mortality. Here, we test whether the same behavioural adaptation evolved independently in Europe and in Asia. We sampled eight genetically differentiated ECB, ACB and ABB populations in France and China and monitored geotaxis through the entire larval development in artificial stacks mimicking maize stems. We find that all ECB and ACB populations show a similar tendency to move down during the latest larval stages, a behaviour not observed in any European or Asian ABB population. The behaviour is robustly expressed regardless of larval density, development mode or environmental conditions. Our results indicate that maize introduction triggered parallel behavioural adaptations in Europe and Asia, harvest selection presumably being the main driver.
Collapse
Affiliation(s)
| | - Clémentine Mitoyen
- INRAUMR Centre de Biologie pour la Gestion des Populations (CBGP)Montferrier‐sur‐LezFrance
| | - Philippe Audiot
- INRAUMR Centre de Biologie pour la Gestion des Populations (CBGP)Montferrier‐sur‐LezFrance
| | - Sergine Ponsard
- UMR5174 EDB (Laboratoire Évolution & Diversité Biologique)CNRSENFAUniversité Toulouse 3 Paul SabatierToulouseFrance
- CNRSUMR5174 EDBToulouseFrance
| | - Gui‐Zhen Gao
- Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiChina
- College of Forestry and HorticultureXinjiang Agricultural UniversityUrumqiChina
| | - Zhao‐Zhi Lu
- Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiChina
| | - Zhen‐Ying Wang
- State Key Laboratory for the Biology of the Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Kang‐Lai He
- State Key Laboratory for the Biology of the Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Denis Bourguet
- INRAUMR Centre de Biologie pour la Gestion des Populations (CBGP)Montferrier‐sur‐LezFrance
| |
Collapse
|
8
|
Orsucci M, Audiot P, Pommier A, Raynaud C, Ramora B, Zanetto A, Bourguet D, Streiff R. Host specialization involving attraction, avoidance and performance, in two phytophagous moth species. J Evol Biol 2015; 29:114-25. [PMID: 26406269 DOI: 10.1111/jeb.12766] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/11/2015] [Accepted: 09/18/2015] [Indexed: 11/29/2022]
Abstract
Host specialization plays a key role in the extreme diversification of phytophagous insects. Whereas proximate mechanisms of specialization have been studied extensively, their consequences for species divergence remain unclear. Preference for, and performance on hosts are thought to be a major source of divergence in phytophagous insects. We assessed these major components of specialization in two moth species, the European corn borer (ECB) and the Adzuki bean borer (ABB), by testing their oviposition behaviour in different conditions (choice or no-choice set-ups) and their performances, by reciprocal transplant at the larval stage on the usual host and an alternative host plant. We demonstrated that both ABB and ECB have a strong preference for their host plants for oviposition, but that relative larval performances on the usual host and an alternative host differed according to the experiment and the trait considered (weight or survival). Finally, we show for the first time that the preference for maize in ECB conceals a strong avoidance of mugwort. The differences in performance, attraction and avoidance between ECB and ABB are discussed in the light of the underlying mechanisms and divergence process.
Collapse
Affiliation(s)
- M Orsucci
- CBGP UMR 1062, INRA-IRD-CIRAD-Montpellier SupAgro, Montferrier sur Lez, France.,DGIMI UMR 1333, INRA-Université de Montpellier, Montpellier, France
| | - P Audiot
- CBGP UMR 1062, INRA-IRD-CIRAD-Montpellier SupAgro, Montferrier sur Lez, France
| | - A Pommier
- CBGP UMR 1062, INRA-IRD-CIRAD-Montpellier SupAgro, Montferrier sur Lez, France
| | - C Raynaud
- MELGUEIL DIASCOPE UE 0398, INRA, Mauguio, France
| | - B Ramora
- MELGUEIL DIASCOPE UE 0398, INRA, Mauguio, France
| | - A Zanetto
- MELGUEIL DIASCOPE UE 0398, INRA, Mauguio, France
| | - D Bourguet
- CBGP UMR 1062, INRA-IRD-CIRAD-Montpellier SupAgro, Montferrier sur Lez, France
| | - R Streiff
- CBGP UMR 1062, INRA-IRD-CIRAD-Montpellier SupAgro, Montferrier sur Lez, France.,DGIMI UMR 1333, INRA-Université de Montpellier, Montpellier, France
| |
Collapse
|
9
|
Bourguet D, Ponsard S, Streiff R, Meusnier S, Audiot P, Li J, Wang ZY. 'Becoming a species by becoming a pest' or how two maize pests of the genus Ostrinia possibly evolved through parallel ecological speciation events. Mol Ecol 2015; 23:325-42. [PMID: 24289254 DOI: 10.1111/mec.12608] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/15/2013] [Accepted: 11/19/2013] [Indexed: 11/26/2022]
Abstract
New agricultural pest species attacking introduced crops may evolve from pre-existing local herbivores by ecological speciation, thereby becoming a species by becoming a pest. We compare the evolutionary pathways by which two maize pests (the Asian and the European corn borers, ACB and ECB) in the genus Ostrinia (Lepidoptera, Crambidae) probably diverged from an ancestral species close to the current Adzuki bean borer (ABB). We typed larval Ostrinia populations collected on maize and dicotyledons across China and eastern Siberia, at microsatellite and mitochondrial loci. We found only two clusters: one on maize (as expected) and a single one on dicotyledons despite differences in male mid-tibia morphology, suggesting that all individuals from dicotyledons belonged to the ABB. We found evidence for migrants and hybrids on both host plant types. Hybrids suggest that field reproductive isolation is incomplete between ACB and ABB. Interestingly, a few individuals with an 'ABB-like' microsatellite profile collected on dicotyledons had 'ACB' mtDNA rather than 'ABB-like' mtDNA, whereas the reverse was never found on maize. This suggests asymmetrical gene flow directed from the ACB towards the ABB. Hybrids and backcrosses in all directions were obtained in no-choice tests. In laboratory conditions, they survived as well as parental strain individuals. In Xinjiang, we found ACB and ECB in sympatry, but no hybrids. Altogether, our results suggest that reproductive isolation between ACB and ABB is incomplete and mostly prezygotic. This points to ecological speciation as a possible evolutionary scenario, as previously found for ECB and ABB in Europe.
Collapse
Affiliation(s)
- Denis Bourguet
- Centre de Biologie pour la Gestion des Populations (CBGP), UMR INRA-IRD-CIRAD-Montpellier SupAgro, Campus International de Baillarguet, 34988, Montferrier-sur-Lez Cedex, France
| | - Sergine Ponsard
- UMR 5174 EDB (Laboratoire Evolution & Diversité Biologique), Université de Toulouse, ENFA, 118 route de Narbonne, F-31062, Toulouse, France.,UMR 5174 EDB, CNRS, Université Paul Sabatier, F-31062, Toulouse, France.,State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 West Yuanmingyuan Road, Beijing, 100193, China.,UMR 5175, CNRS, Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), 1919 route de Mende, Montpellier Cedex 05, 34293, Montpellier, France
| | - Rejane Streiff
- Centre de Biologie pour la Gestion des Populations (CBGP), UMR INRA-IRD-CIRAD-Montpellier SupAgro, Campus International de Baillarguet, 34988, Montferrier-sur-Lez Cedex, France
| | - Serge Meusnier
- Centre de Biologie pour la Gestion des Populations (CBGP), UMR INRA-IRD-CIRAD-Montpellier SupAgro, Campus International de Baillarguet, 34988, Montferrier-sur-Lez Cedex, France
| | - Philippe Audiot
- Centre de Biologie pour la Gestion des Populations (CBGP), UMR INRA-IRD-CIRAD-Montpellier SupAgro, Campus International de Baillarguet, 34988, Montferrier-sur-Lez Cedex, France
| | - Jing Li
- UMR 5174 EDB (Laboratoire Evolution & Diversité Biologique), Université de Toulouse, ENFA, 118 route de Narbonne, F-31062, Toulouse, France.,UMR 5174 EDB, CNRS, Université Paul Sabatier, F-31062, Toulouse, France.,State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 West Yuanmingyuan Road, Beijing, 100193, China.,School of biological technology, Xi'an University of Arts and Science, No.168 South Taibai Road, Xi'an, Shaanxi Province, 710065, China
| | - Zhen-Ying Wang
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 West Yuanmingyuan Road, Beijing, 100193, China
| |
Collapse
|
10
|
Simon JC, d'Alencon E, Guy E, Jacquin-Joly E, Jaquiery J, Nouhaud P, Peccoud J, Sugio A, Streiff R. Genomics of adaptation to host-plants in herbivorous insects. Brief Funct Genomics 2015; 14:413-23. [DOI: 10.1093/bfgp/elv015] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|