1
|
Sun J, Wang H, Zhan Y, Zhao T, Li C, Cheng C, Wang Z, Zou A, Chang Y. Identification of Key Genes Correlated with Economic Trait Superiorities and Their SNP Screening Through Transcriptome Comparisons, WGCNA and Pearson Correlation Coefficient in the Sea Cucumber Apostichopus Japonicus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 27:12. [PMID: 39601948 DOI: 10.1007/s10126-024-10384-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024]
Abstract
Variation in morphology-driven economic traits is a common issue hindering the development of the sea cucumber aquaculture industry. In this study, transcriptome comparisons, weighted gene correlation network analysis (WGCNA) and Pearson correlation coefficient (PCC) were first employed to identify key genes correlated with morphological variation in the sea cucumber Apostichopus japonicus, after which the relationship between identified key genes (relative expression and genotype) and economic trait phenotypes was investigated to screen potential biomarker targets for molecular-assisted breeding. The results showed that three genes (putative ficolin-2, fibrinogen c domain-containing protein 1, and angiopoietin-4) were closely associated with economic trait superiorities. Two single nucleotide polymorphisms (SNPs) were identified in the putative ficolin-2 gene as having a strong correlation with body weight and papilla number. The findings from this study will enrich breeding biomarker resources and benefit the development of molecular-assisted breeding techniques in sea cucumber aquaculture.
Collapse
Affiliation(s)
- Jingxian Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, Liaoning, P. R. China
- College of Life Science, Liaoning Normal University, Dalian, 116029, Liaoning, P. R. China
| | - Haolin Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, Liaoning, P. R. China
| | - Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, Liaoning, P. R. China.
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, Liaoning, P. R. China.
| | - Tanjun Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, Liaoning, P. R. China
- College of Life Science, Liaoning Normal University, Dalian, 116029, Liaoning, P. R. China
| | - Chengda Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, Liaoning, P. R. China
| | - Cao Cheng
- Shandong Anyuan Seed Industry Technology Co., Ltd, Yantai, 265617, Shandong, P. R. China
| | - Zengdong Wang
- Shandong Anyuan Seed Industry Technology Co., Ltd, Yantai, 265617, Shandong, P. R. China
| | - Ange Zou
- Shandong Anyuan Seed Industry Technology Co., Ltd, Yantai, 265617, Shandong, P. R. China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, Liaoning, P. R. China.
- College of Life Science, Liaoning Normal University, Dalian, 116029, Liaoning, P. R. China.
| |
Collapse
|
2
|
Sierra NC, Olsman N, Yi L, Pachter L, Goentoro L, Gold DA. A Novel Approach to Comparative RNA-Seq Does Not Support a Conserved Set of Orthologs Underlying Animal Regeneration. Genome Biol Evol 2024; 16:evae120. [PMID: 38922665 PMCID: PMC11214158 DOI: 10.1093/gbe/evae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Molecular studies of animal regeneration typically focus on conserved genes and signaling pathways that underlie morphogenesis. To date, a holistic analysis of gene expression across animals has not been attempted, as it presents a suite of problems related to differences in experimental design and gene homology. By combining orthology analyses with a novel statistical method for testing gene enrichment across large data sets, we are able to test whether tissue regeneration across animals shares transcriptional regulation. We applied this method to a meta-analysis of six publicly available RNA-Seq data sets from diverse examples of animal regeneration. We recovered 160 conserved orthologous gene clusters, which are enriched in structural genes as opposed to those regulating morphogenesis. A breakdown of gene presence/absence provides limited support for the conservation of pathways typically implicated in regeneration, such as Wnt signaling and cell pluripotency pathways. Such pathways are only conserved if we permit large amounts of paralog switching through evolution. Overall, our analysis does not support the hypothesis that a shared set of ancestral genes underlie regeneration mechanisms in animals. After applying the same method to heat shock studies and getting similar results, we raise broader questions about the ability of comparative RNA-Seq to reveal conserved gene pathways across deep evolutionary relationships.
Collapse
Affiliation(s)
- Noémie C Sierra
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Noah Olsman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lynn Yi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lea Goentoro
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - David A Gold
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, CA 95616, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
3
|
Liu R, Ren X, Wang J, Chen T, Sun X, Lin T, Huang J, Guo Z, Luo L, Ren C, Luo P, Hu C, Cao X, Yan A, Yuan L. Transcriptomic analysis reveals the early body wall regeneration mechanism of the sea cucumber Holothuria leucospilota after artificially induced transverse fission. BMC Genomics 2023; 24:766. [PMID: 38087211 PMCID: PMC10714614 DOI: 10.1186/s12864-023-09808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Sea cucumbers exhibit a remarkable ability to regenerate damaged or lost tissues and organs, making them an outstanding model system for investigating processes and mechanisms of regeneration. They can also reproduce asexually by transverse fission, whereby the anterior and posterior bodies can regenerate independently. Despite the recent focus on intestinal regeneration, the molecular mechanisms underlying body wall regeneration in sea cucumbers still remain unclear. RESULTS In this study, transverse fission was induced in the tropical sea cucumber, Holothuria leucospilota, through constrainment using rubber bands. Histological examination revealed the degradation and loosening of collagen fibers on day-3, followed by increased density but disorganization of the connective tissue on day-7 of regeneration. An Illumina transcriptome analysis was performed on the H. leucospilota at 0-, 3- and 7-days after artificially induced fission. The differential expression genes were classified and enriched by GO terms and KEGG database, respectively. An upregulation of genes associated with extracellular matrix remodeling was observed, while a downregulation of pluripotency factors Myc, Klf2 and Oct1 was detected, although Sox2 showed an upregulation in expression. In addition, this study also identified progressively declining expression of transcription factors in the Wnt, Hippo, TGF-β, and MAPK signaling pathways. Moreover, changes in genes related to development, stress response, apoptosis, and cytoskeleton formation were observed. The localization of the related genes was further confirmed through in situ hybridization. CONCLUSION The early regeneration of H. leucospilota body wall is associated with the degradation and subsequent reconstruction of the extracellular matrix. Pluripotency factors participate in the regenerative process. Multiple transcription factors involved in regulating cell proliferation were found to be gradually downregulated, indicating reduced cell proliferation. Moreover, genes related to development, stress response, apoptosis, and cell cytoskeleton formation were also involved in this process. Overall, this study provides new insights into the mechanisms of whole-body regeneration and uncover potential cross-species regenerative-related genes.
Collapse
Affiliation(s)
- Renhui Liu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Xinyue Ren
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Junyan Wang
- School of Medicine, Foshan University, Foshan, 528000, People's Republic of China
| | - Ting Chen
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China
| | - Xinyu Sun
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Tiehao Lin
- Guangdong Institute for Drug Control, Guangzhou, 510301, People's Republic of China
| | - Jiasheng Huang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China
| | - Zhengyan Guo
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Ling Luo
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Chunhua Ren
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China
| | - Peng Luo
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China
| | - Chaoqun Hu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, 530007, People's Republic of China
| | - Xudong Cao
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON, 999040, Canada
| | - Aifen Yan
- School of Medicine, Foshan University, Foshan, 528000, People's Republic of China.
| | - Lihong Yuan
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
4
|
Wang S, Shibata Y, Fu L, Tanizaki Y, Luu N, Bao L, Peng Z, Shi YB. Thyroid hormone receptor knockout prevents the loss of Xenopus tail regeneration capacity at metamorphic climax. Cell Biosci 2023; 13:40. [PMID: 36823612 PMCID: PMC9948486 DOI: 10.1186/s13578-023-00989-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Animal regeneration is the natural process of replacing or restoring damaged or missing cells, tissues, organs, and even entire body to full function. Studies in mammals have revealed that many organs lose regenerative ability soon after birth when thyroid hormone (T3) level is high. This suggests that T3 play an important role in organ regeneration. Intriguingly, plasma T3 level peaks during amphibian metamorphosis, which is very similar to postembryonic development in humans. In addition, many organs, such as heart and tail, also lose their regenerative ability during metamorphosis. These make frogs as a good model to address how the organs gradually lose their regenerative ability during development and what roles T3 may play in this. Early tail regeneration studies have been done mainly in the tetraploid Xenopus laevis (X. laevis), which is difficult for gene knockout studies. Here we use the highly related but diploid anuran X. tropicalis to investigate the role of T3 signaling in tail regeneration with gene knockout approaches. RESULTS We discovered that X. tropicalis tadpoles could regenerate their tail from premetamorphic stages up to the climax stage 59 then lose regenerative capacity as tail resorption begins, just like what observed for X. laevis. To test the hypothesis that T3-induced metamorphic program inhibits tail regeneration, we used TR double knockout (TRDKO) tadpoles lacking both TRα and TRβ, the only two receptor genes in vertebrates, for tail regeneration studies. Our results showed that TRs were not necessary for tail regeneration at all stages. However, unlike wild type tadpoles, TRDKO tadpoles retained regenerative capacity at the climax stages 60/61, likely in part by increasing apoptosis at the early regenerative period and enhancing subsequent cell proliferation. In addition, TRDKO animals had higher levels of amputation-induced expression of many genes implicated to be important for tail regeneration, compared to the non-regenerative wild type tadpoles at stage 61. Finally, the high level of apoptosis in the remaining uncut portion of the tail as wild type tadpoles undergo tail resorption after stage 61 appeared to also contribute to the loss of regenerative ability. CONCLUSIONS Our findings for the first time revealed an evolutionary conservation in the loss of tail regeneration capacity at metamorphic climax between X. laevis and X. tropicalis. Our studies with molecular and genetic approaches demonstrated that TR-mediated, T3-induced gene regulation program is responsible not only for tail resorption but also for the loss of tail regeneration capacity. Further studies by using the model should uncover how T3 modulates the regenerative outcome and offer potential new avenues for regenerative medicines toward human patients.
Collapse
Affiliation(s)
- Shouhong Wang
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yuki Shibata
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Biology, Nippon Medical School, Musashino, Tokyo, Japan
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yuta Tanizaki
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Nga Luu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lingyu Bao
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Zhaoyi Peng
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, People's Republic of China
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
5
|
Rennolds CW, Bely AE. Integrative biology of injury in animals. Biol Rev Camb Philos Soc 2023; 98:34-62. [PMID: 36176189 PMCID: PMC10087827 DOI: 10.1111/brv.12894] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 01/12/2023]
Abstract
Mechanical injury is a prevalent challenge in the lives of animals with myriad potential consequences for organisms, including reduced fitness and death. Research on animal injury has focused on many aspects, including the frequency and severity of wounding in wild populations, the short- and long-term consequences of injury at different biological scales, and the variation in the response to injury within or among individuals, species, ontogenies, and environmental contexts. However, relevant research is scattered across diverse biological subdisciplines, and the study of the effects of injury has lacked synthesis and coherence. Furthermore, the depth of knowledge across injury biology is highly uneven in terms of scope and taxonomic coverage: much injury research is biomedical in focus, using mammalian model systems and investigating cellular and molecular processes, while research at organismal and higher scales, research that is explicitly comparative, and research on invertebrate and non-mammalian vertebrate species is less common and often less well integrated into the core body of knowledge about injury. The current state of injury research presents an opportunity to unify conceptually work focusing on a range of relevant questions, to synthesize progress to date, and to identify fruitful avenues for future research. The central aim of this review is to synthesize research concerning the broad range of effects of mechanical injury in animals. We organize reviewed work by four broad and loosely defined levels of biological organization: molecular and cellular effects, physiological and organismal effects, behavioural effects, and ecological and evolutionary effects of injury. Throughout, we highlight the diversity of injury consequences within and among taxonomic groups while emphasizing the gaps in taxonomic coverage, causal understanding, and biological endpoints considered. We additionally discuss the importance of integrating knowledge within and across biological levels, including how initial, localized responses to injury can lead to long-term consequences at the scale of the individual animal and beyond. We also suggest important avenues for future injury biology research, including distinguishing better between related yet distinct injury phenomena, expanding the subjects of injury research to include a greater variety of species, and testing how intrinsic and extrinsic conditions affect the scope and sensitivity of injury responses. It is our hope that this review will not only strengthen understanding of animal injury but will contribute to building a foundation for a more cohesive field of 'injury biology'.
Collapse
|
6
|
Tissue extracellular matrix hydrogels as alternatives to Matrigel for culturing gastrointestinal organoids. Nat Commun 2022; 13:1692. [PMID: 35354790 PMCID: PMC8967832 DOI: 10.1038/s41467-022-29279-4] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/04/2022] [Indexed: 12/16/2022] Open
Abstract
Matrigel, a mouse tumor extracellular matrix protein mixture, is an indispensable component of most organoid tissue culture. However, it has limited the utility of organoids for drug development and regenerative medicine due to its tumor-derived origin, batch-to-batch variation, high cost, and safety issues. Here, we demonstrate that gastrointestinal tissue-derived extracellular matrix hydrogels are suitable substitutes for Matrigel in gastrointestinal organoid culture. We found that the development and function of gastric or intestinal organoids grown in tissue extracellular matrix hydrogels are comparable or often superior to those in Matrigel. In addition, gastrointestinal extracellular matrix hydrogels enabled long-term subculture and transplantation of organoids by providing gastrointestinal tissue-mimetic microenvironments. Tissue-specific and age-related extracellular matrix profiles that affect organoid development were also elucidated through proteomic analysis. Together, our results suggest that extracellular matrix hydrogels derived from decellularized gastrointestinal tissues are effective alternatives to the current gold standard, Matrigel, and produce organoids suitable for gastrointestinal disease modeling, drug development, and tissue regeneration.
Collapse
|
7
|
Medina-Feliciano JG, García-Arrarás JE. Regeneration in Echinoderms: Molecular Advancements. Front Cell Dev Biol 2021; 9:768641. [PMID: 34977019 PMCID: PMC8718600 DOI: 10.3389/fcell.2021.768641] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/01/2021] [Indexed: 12/18/2022] Open
Abstract
Which genes and gene signaling pathways mediate regenerative processes? In recent years, multiple studies, using a variety of animal models, have aimed to answer this question. Some answers have been obtained from transcriptomic and genomic studies where possible gene and gene pathway candidates thought to be involved in tissue and organ regeneration have been identified. Several of these studies have been done in echinoderms, an animal group that forms part of the deuterostomes along with vertebrates. Echinoderms, with their outstanding regenerative abilities, can provide important insights into the molecular basis of regeneration. Here we review the available data to determine the genes and signaling pathways that have been proposed to be involved in regenerative processes. Our analyses provide a curated list of genes and gene signaling pathways and match them with the different cellular processes of the regenerative response. In this way, the molecular basis of echinoderm regenerative potential is revealed, and is available for comparisons with other animal taxa.
Collapse
|
8
|
Kornthong N, Phanaksri T, Saetan J, Duangprom S, Lekskul B, Vivattanasarn T, Songkoomkrong S, Jattujan P, Cummins SF, Sobhon P, Suwansa-ard S. Identification and localization of growth factor genes in the sea cucumber , Holothuria scabra. Heliyon 2021; 7:e08370. [PMID: 34825084 PMCID: PMC8605306 DOI: 10.1016/j.heliyon.2021.e08370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/07/2021] [Accepted: 11/10/2021] [Indexed: 11/23/2022] Open
Abstract
The sea cucumber Holothuria scabra is both an economically important species in Asian countries and an emerging experimental model for research studies in regeneration and medicinal bioactives. Growth factors and their receptors are known to be key components that guide tissue repair and renewal, yet validation of their presence in H. scabra has not been established. We performed a targeted in silico search of H. scabra transcriptome data to elucidate conserved growth factor family and receptor genes. In total, 42 transcripts were identified, of which 9 were validated by gene cloning and sequencing. The H. scabra growth factor genes, such as bone morphogenetic protein 2A (BMP 2A), bone morphogenetic protein 5-like (BMP5-like), neurotrophin (NT) and fibroblast growth factor 18 (FGF18), were selected for further analyses, including phylogenetic comparison and spatial gene expression using RT-PCR and in situ hybridization. Expression of all genes investigated were widespread in multiple tissues. However, BMP 2A, BMP5-like and NT were found extensively in the radial nerve cord cells, while FGF18 was highly expressed in connective tissue layer of the body wall. Our identification and expression analysis of the H. scabra growth factor genes provided the molecular information of growth factors in this species which may ultimately complement the research in regenerative medicine.
Collapse
Affiliation(s)
- Napamanee Kornthong
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathumthani, 12121, Thailand
| | - Teva Phanaksri
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathumthani, 12121, Thailand
| | - Jirawat Saetan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Supawadee Duangprom
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathumthani, 12121, Thailand
| | - Buranee Lekskul
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathumthani, 12121, Thailand
| | - Tipok Vivattanasarn
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathumthani, 12121, Thailand
| | - Sineenart Songkoomkrong
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathumthani, 12121, Thailand
| | - Prapaporn Jattujan
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathumthani, 12121, Thailand
| | - Scott F. Cummins
- GeneCology Research Centre, University of the Sunshine Coast, Maroochydore, Queensland, 4558, Australia
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, 4558, Australia
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Saowaros Suwansa-ard
- GeneCology Research Centre, University of the Sunshine Coast, Maroochydore, Queensland, 4558, Australia
| |
Collapse
|
9
|
Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases in Echinoderms: Structure and Possible Functions. Cells 2021; 10:cells10092331. [PMID: 34571980 PMCID: PMC8467561 DOI: 10.3390/cells10092331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 01/13/2023] Open
Abstract
Echinoderms are one of the most ancient groups of invertebrates. The study of their genomes has made it possible to conclude that these animals have a wide variety of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). The phylogenetic analysis shows that the MMPs and TIMPs underwent repeated duplication and active divergence after the separation of Ambulacraria (Echinodermata+Hemichordata) from the Chordata. In this regard the homology of the proteinases and their inhibitors between these groups of animals cannot be established. However, the MMPs of echinoderms and vertebrates have a similar domain structure. Echinoderm proteinases can be structurally divided into three groups-archetypal MMPs, matrilysins, and furin-activatable MMPs. Gelatinases homologous to those of vertebrates were not found in genomes of studied species and are probably absent in echinoderms. The MMPs of echinoderms possess lytic activity toward collagen type I and gelatin and play an important role in the mechanisms of development, asexual reproduction and regeneration. Echinoderms have a large number of genes encoding TIMPs and TIMP-like proteins. TIMPs of these animals, with a few exceptions, have a structure typical for this class of proteins. They contain an NTR domain and 10-12 conservatively located cysteine residues. Repeated duplication and divergence of TIMP genes of echinoderms was probably associated with an increase in the functional importance of the proteins encoded by them in the physiology of the animals.
Collapse
|
10
|
Dolmatov IY, Kalacheva NV, Tkacheva ES, Shulga AP, Zavalnaya EG, Shamshurina EV, Girich AS, Boyko AV, Eliseikina MG. Expression of Piwi, MMP, TIMP, and Sox during Gut Regeneration in Holothurian Eupentacta fraudatrix (Holothuroidea, Dendrochirotida). Genes (Basel) 2021; 12:1292. [PMID: 34440466 PMCID: PMC8391186 DOI: 10.3390/genes12081292] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023] Open
Abstract
Mesodermal cells of holothurian Eupentacta fraudatrix can transdifferentiate into enterocytes during the regeneration of the digestive system. In this study, we investigated the expression of several genes involved in gut regeneration in E. fraudatrix. Moreover, the localization of progenitor cells of coelomocytes, juvenile cells, and their participation in the formation of the luminal epithelium of the digestive tube were studied. It was shown that Piwi-positive cells were not involved in the formation of the luminal epithelium of the digestive tube. Ef-72 kDa type IV collagenase and Ef-MMP16 had an individual expression profile and possibly different functions. The Ef-tensilin3 gene exhibited the highest expression and indicates its potential role in regeneration. Ef-Sox9/10 and Ef-Sox17 in E. fraudatrix may participate in the mechanism of transdifferentiation of coelomic epithelial cells. Their transcripts mark the cells that plunge into the connective tissue of the gut anlage and give rise to enterocytes. Ef-Sox9/10 probably controls the switching of mesodermal cells to the enterocyte phenotype, while Ef-Sox17 may be involved in the regulation of the initial stages of transdifferentiation.
Collapse
Affiliation(s)
- Igor Yu. Dolmatov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevsky 17, 690041 Vladivostok, Russia; (N.V.K.); (E.S.T.); (A.P.S.); (E.G.Z.); (E.V.S.); (A.S.G.); (A.V.B.); (M.G.E.)
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Dolmatov IY. Molecular Aspects of Regeneration Mechanisms in Holothurians. Genes (Basel) 2021; 12:250. [PMID: 33578707 PMCID: PMC7916379 DOI: 10.3390/genes12020250] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Holothurians, or sea cucumbers, belong to the phylum Echinodermata. They show good regenerative abilities. The present review provides an analysis of available data on the molecular aspects of regeneration mechanisms in holothurians. The genes and signaling pathways activated during the asexual reproduction and the formation of the anterior and posterior parts of the body, as well as the molecular mechanisms that provide regeneration of the nervous and digestive systems, are considered here. Damage causes a strong stress response, the signs of which are recorded even at late regeneration stages. In holothurian tissues, the concentrations of reactive oxygen species and antioxidant enzymes increase. Furthermore, the cellular and humoral components of the immune system are activated. Extracellular matrix remodeling and Wnt signaling play a major role in the regeneration in holothurians. All available morphological and molecular data show that the dedifferentiation of specialized cells in the remnant of the organ and the epithelial morphogenesis constitute the basis of regeneration in holothurians. However, depending on the type of damage, the mechanisms of regeneration may differ significantly in the spatial organization of regeneration process, the involvement of different cell types, and the depth of reprogramming of their genome (dedifferentiation or transdifferentiation).
Collapse
Affiliation(s)
- Igor Yu Dolmatov
- A.V. Zhirmunsky National Scientifc Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevsky 17, 690041 Vladivostok, Russia
| |
Collapse
|
12
|
Transcriptomic analysis of early stages of intestinal regeneration in Holothuria glaberrima. Sci Rep 2021; 11:346. [PMID: 33431961 PMCID: PMC7801731 DOI: 10.1038/s41598-020-79436-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/04/2020] [Indexed: 01/29/2023] Open
Abstract
Echinoderms comprise a group of animals with impressive regenerative capabilities. They can replace complex internal organs following injury or autotomy. In holothurians or sea cucumbers, cellular processes of intestinal regeneration have been extensively studied. The molecular machinery behind this faculty, however, remains to be understood. Here we assembled and annotated a de novo transcriptome using RNA-seq data consisting of regenerating and non-regenerating intestinal tissues from the sea cucumber Holothuria glaberrima. Comparisons of differential expression were made using the mesentery as a reference against 24 h and 3 days regenerating intestine, revealing a large number of differentially expressed transcripts. Gene ontology and pathway enrichment analysis showed evidence of increasing transcriptional activity. Further analysis of transcripts associated with transcription factors revealed diverse expression patterns with mechanisms involving developmental and cancer-related activity that could be related to the regenerative process. Our study demonstrates the broad and diversified gene expression profile during the early stages of the process using the mesentery as the focal point of intestinal regeneration. It also establishes the genes that are the most important candidates in the cellular processes that underlie regenerative responses.
Collapse
|
13
|
Bidabadi SS, Jain SM. Cellular, Molecular, and Physiological Aspects of In Vitro Plant Regeneration. PLANTS (BASEL, SWITZERLAND) 2020; 9:E702. [PMID: 32492786 PMCID: PMC7356144 DOI: 10.3390/plants9060702] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023]
Abstract
Plants generally have the highest regenerative ability because they show a high degree of developmental plasticity. Although the basic principles of plant regeneration date back many years, understanding the cellular, molecular, and physiological mechanisms based on these principles is currently in progress. In addition to the significant effects of some factors such as medium components, phytohormones, explant type, and light on the regeneration ability of an explant, recent reports evidence the involvement of molecular signals in organogenesis and embryogenesis responses to explant wounding, induced plant cell death, and phytohormones interaction. However, some cellular behaviors such as the occurrence of somaclonal variations and abnormalities during the in vitro plant regeneration process may be associated with adverse effects on the efficacy of plant regeneration. A review of past studies suggests that, in some cases, regeneration in plants involves the reprogramming of distinct somatic cells, while in others, it is induced by the activation of relatively undifferentiated cells in somatic tissues. However, this review covers the most important factors involved in the process of plant regeneration and discusses the mechanisms by which plants monitor this process.
Collapse
Affiliation(s)
- Siamak Shirani Bidabadi
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - S. Mohan Jain
- Department of Agricultural Sciences, University of Helsinki, PL-27 Helsinki, Finland
| |
Collapse
|
14
|
Chen Y, Li Y, Zhan Y, Hu W, Sun J, Zhang W, Song J, Li D, Chang Y. Identification of molecular markers for superior quantitative traits in a novel sea cucumber strain by comparative microRNA-mRNA expression profiling. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 35:100686. [PMID: 32413829 DOI: 10.1016/j.cbd.2020.100686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 01/21/2023]
Abstract
To investigate the adaptability of Apostichopus japonicus (A. japonicus) strain "Anyuan No. 1" in the South China Sea, field monitoring and microRNA-mRNA integrated analyses were conducted between "Anyuan No. 1" and a regular A. japonicus population from Wendeng (Shandong Province, as a control) in the Xiapu farming area in Fujian Province, China. The results showed that "Anyuan No. 1" exhibited greater body weight increase and a higher number of papillae compared to the control during two and a half months of field monitoring. Comparative microRNA (miRNA) and mRNA transcriptome analyses identified 12 differentially expressed miRNAs (DEMs) and 165 differentially expressed genes (DEGs) in "Anyuan No. 1" compared to the control. Long-chain specific acyl-CoA dehydrogenase (ACADL), transmembrane protein 251 (TMEM251), dehydrogenase/reductase SDR family protein 7-like (Dhrs7), insulin-like growth factor-binding protein 7 (IGFBP-7), CDK5 regulatory subunit-associated protein 1 (CDK5RAP1), visual pigment-like receptor peropsin, 39S ribosomal protein, miR-10, miR-153, miR-7, and miR-3529 were identified as gene and miRNA candidates correlated with superior economic traits in "Anyuan No. 1". Collectively, "Anyuan No. 1" is suitable for large-scale cultivation extension due to its better adaptability to the South China Sea area. Furthermore, we identified "miR10-ACADL" as a potential module for further molecular marker-assisted selective breeding of A. japonicus.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Yingying Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China.
| | - Wanbin Hu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Jingxian Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Weijie Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Jian Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Dantong Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China.
| |
Collapse
|
15
|
Zhang H, Wang Q, Liu S, Huo D, Zhao J, Zhang L, Zhao Y, Sun L, Yang H. Genomic and Metagenomic Insights Into the Microbial Community in the Regenerating Intestine of the Sea Cucumber Apostichopus japonicus. Front Microbiol 2019; 10:1165. [PMID: 31214136 PMCID: PMC6558059 DOI: 10.3389/fmicb.2019.01165] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/07/2019] [Indexed: 12/15/2022] Open
Abstract
Host-intestine microbiota interactions have been widely studied in aquatic animals, but these interactions in the intestine regeneration process of the sea cucumber Apostichopus japonicus have been rarely investigated. To understand how intestine regeneration impacts the developing intestinal microbiome composition and function, we performed a case study to characterize the intestinal microbial composition and functional genes of A. japonicus during intestine regeneration stages. High-throughput 16S rRNA gene sequencing revealed significantly different intestine microbiota compositions in different regeneration stages. The phylogenetic diversity and composition of the intestinal microbiota changed significantly in the early regeneration stage and tended to recover in the end stage. During the regeneration process, the abundance of Bacteroidetes and Rhodobacterales increased significantly. A network analysis revealed that Rhodobacteraceae and Flavobacteriaceae may function as keystone taxa in the intestinal microbial community of A. japonicus during intestine regeneration. Metagenomic analyses of representative samples revealed that the microbiomes of regenerating intestines were enriched in genes facilitating cell proliferation, digestion and immunity. The increased abundance of Bacteroidetes elevated the enrichment of genes associated with carbohydrate utilization. Some functional features in the subsystem category changed in a pattern that was consistent with the changing pattern of microbiota composition during intestine regeneration. Our results revealed that seemingly regular alterations in the intestinal microbiome composition and function are associated with intestine regeneration stages. Intestinal microbiota can increase the abundance of beneficial bacterial members and upregulate related functional genes to adapt to intestine regeneration and reconstruct a stable community structure. This study provides a new insight into the mechanism of the host-microbiota interaction response to organ regeneration.
Collapse
Affiliation(s)
- Hongxia Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (CAS), Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
| | - Qing Wang
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Yantai, China
| | - Shilin Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (CAS), Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
| | - Da Huo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (CAS), Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianmin Zhao
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Yantai, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (CAS), Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ye Zhao
- Ocean School, Yantai University, Yantai, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (CAS), Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (CAS), Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Shabelnikov SV, Bobkov DE, Sharlaimova NS, Petukhova OA. Injury affects coelomic fluid proteome of the common starfish, Asterias rubens. ACTA ACUST UNITED AC 2019; 222:jeb.198556. [PMID: 30877231 DOI: 10.1242/jeb.198556] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/11/2019] [Indexed: 01/04/2023]
Abstract
Echinoderms, possessing outstanding regenerative capabilities, provide a unique model system for the study of response to injury. However, little is known about the proteomic composition of coelomic fluid, an important biofluid circulating throughout the animal's body and reflecting the overall biological status of the organism. In this study, we used LC-MALDI tandem mass spectrometry to characterize the proteome of the cell-free coelomic fluid of the starfish Asterias rubens and to follow the changes occurring in response to puncture wound and blood loss. In total, 91 proteins were identified, of which 61 were extracellular soluble and 16 were bound to the plasma membrane. The most represented functional terms were 'pattern recognition receptor activity' and 'peptidase inhibitor activity'. A series of candidate proteins involved in early response to injury was revealed. Ependymin, β-microseminoprotein, serum amyloid A and avidin-like proteins, which are known to be involved in intestinal regeneration in the sea cucumber, were also identified as injury-responsive proteins. Our results expand the list of proteins potentially involved in defense and regeneration in echinoderms and demonstrate dramatic effects of injury on the coelomic fluid proteome.
Collapse
Affiliation(s)
- Sergey V Shabelnikov
- Laboratory of Regulation of Gene Expression, Institute of Cytology, Russian Academy of Sciences, 194064 St Petersburg, Russia
| | - Danila E Bobkov
- Department of Cell Cultures, Institute of Cytology, Russian Academy of Sciences, 194064 St Petersburg, Russia
| | - Natalia S Sharlaimova
- Department of Cell Cultures, Institute of Cytology, Russian Academy of Sciences, 194064 St Petersburg, Russia
| | - Olga A Petukhova
- Department of Cell Cultures, Institute of Cytology, Russian Academy of Sciences, 194064 St Petersburg, Russia
| |
Collapse
|
17
|
Cary GA, Wolff A, Zueva O, Pattinato J, Hinman VF. Analysis of sea star larval regeneration reveals conserved processes of whole-body regeneration across the metazoa. BMC Biol 2019; 17:16. [PMID: 30795750 PMCID: PMC6385403 DOI: 10.1186/s12915-019-0633-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/04/2019] [Indexed: 12/16/2022] Open
Abstract
Background Metazoan lineages exhibit a wide range of regenerative capabilities that vary among developmental stage and tissue type. The most robust regenerative abilities are apparent in the phyla Cnidaria, Platyhelminthes, and Echinodermata, whose members are capable of whole-body regeneration (WBR). This phenomenon has been well characterized in planarian and hydra models, but the molecular mechanisms of WBR are less established within echinoderms, or any other deuterostome system. Thus, it is not clear to what degree aspects of this regenerative ability are shared among metazoa. Results We characterize regeneration in the larval stage of the Bat Star (Patiria miniata). Following bisection along the anterior-posterior axis, larvae progress through phases of wound healing and re-proportioning of larval tissues. The overall number of proliferating cells is reduced following bisection, and we find evidence for a re-deployment of genes with known roles in embryonic axial patterning. Following axial respecification, we observe a significant localization of proliferating cells to the wound region. Analyses of transcriptome data highlight the molecular signatures of functions that are common to regeneration, including specific signaling pathways and cell cycle controls. Notably, we find evidence for temporal similarities among orthologous genes involved in regeneration from published Platyhelminth and Cnidarian regeneration datasets. Conclusions These analyses show that sea star larval regeneration includes phases of wound response, axis respecification, and wound-proximal proliferation. Commonalities of the overall process of regeneration, as well as gene usage between this deuterostome and other species with divergent evolutionary origins reveal a deep similarity of whole-body regeneration among the metazoa. Electronic supplementary material The online version of this article (10.1186/s12915-019-0633-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gregory A Cary
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Andrew Wolff
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Olga Zueva
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Joseph Pattinato
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
18
|
Boyko AV, Girich AS, Eliseikina MG, Maslennikov SI, Dolmatov IY. Reference assembly and gene expression analysis of Apostichopus japonicus larval development. Sci Rep 2019; 9:1131. [PMID: 30718912 PMCID: PMC6362246 DOI: 10.1038/s41598-018-37755-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 12/13/2018] [Indexed: 01/31/2023] Open
Abstract
The transcriptome of the holothurian Apostichopus japonicus was sequenced at four developmental stages-blastula, gastrula, auricularia, pentactula-on an Illumina sequencer. Based on our RNA-seq data and the paired-end reads from 16 libraries obtained by other researchers earlier, we have achieved the currently most complete transcriptome assembly for A. japonicus with the best basic statistical parameters. An analysis of the obtained transcriptome has revealed 174 differentially expressed transcription factors, as well as stage-specific transcription factors that are most promising for further study. In addition, a total of 1,174,999 high-quality single nucleotide polymorphisms have been identified, including 58,932 indels. A GO enrichment analysis of contigs containing polymorphic loci shows the predominance of GO terms associated with immune response. The data obtained by us provide an additional basis for a deeper study of the mechanisms of the planktotrophic-type development in holothurians and can be used in commercial sea cucumber breeding programs.
Collapse
Affiliation(s)
- Alexey V Boyko
- National Scientific Centre of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo 17, Vladivostok, 690041, Russia.
- Far Eastern Federal University, Sukhanova 8, Vladivostok, 690950, Russia.
| | - Alexander S Girich
- National Scientific Centre of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo 17, Vladivostok, 690041, Russia
- Far Eastern Federal University, Sukhanova 8, Vladivostok, 690950, Russia
| | - Marina G Eliseikina
- National Scientific Centre of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo 17, Vladivostok, 690041, Russia
| | - Sergey I Maslennikov
- National Scientific Centre of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo 17, Vladivostok, 690041, Russia
- Far Eastern Federal University, Sukhanova 8, Vladivostok, 690950, Russia
| | - Igor Yu Dolmatov
- National Scientific Centre of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo 17, Vladivostok, 690041, Russia
- Far Eastern Federal University, Sukhanova 8, Vladivostok, 690950, Russia
| |
Collapse
|
19
|
Zhang C, Su S, Li X, Li B, Yang B, Zhu J, Wang W. Comparative transcriptomics identifies genes differentially expressed in the intestine of a new fast-growing strain of common carp with higher unsaturated fatty acid content in muscle. PLoS One 2018; 13:e0206615. [PMID: 30395585 PMCID: PMC6218049 DOI: 10.1371/journal.pone.0206615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/16/2018] [Indexed: 01/01/2023] Open
Abstract
We have created a new, fast-growing strain of common carp with higher unsaturated fatty acid content in muscle. To better understand the impacts of gene regulation in intestinal tissue on growth and unsaturated fatty acid content, we conducted a comparative RNA-Seq transcriptome analysis between intestine samples of Selected and Control groups (and corroborated selected results by PCR). After eight weeks of cage culture, weight gain of the Selected group was 20.84% higher. In muscles of the control group, monounsaturated fatty acids (FAs) were more abundant, whereas polyunsaturated FAs were more abundant in muscles of the Selected group. In total, we found 106 differentially expressed genes (DEGs) between the two groups. Only the endocytosis pathway was significantly enriched in DEGs, with two upregulated genes: il2rb and ehd1. The latter is involved in the growth hormone/insulin-like growth factor (Gh/Igf) axis, which plays a key role in the regulation of growth in animals. tll2, which is known to be associated with intestinal regeneration, was extremely highly upregulated in both transcriptomic (infinite) and qPCR (610.70) analyses. Two of the upregulated genes are associated with the fatty acid metabolism, several genes are likely to be indicators of heightened transcription levels, several are associated with metabolic and developmental roles, several with neuronal functions (including two with vision), several with the immune system, and two downregulated genes with the development of vasculature. The higher growth rate of the Selected group is likely to be at least partially attributed to increased endocytosis efficiency and genetically-driven behavioural differences (higher aggression levels). There are some indications that this new strain might have slightly impaired immune responses, and a higher propensity for inherited diseases leading to sight impairment, as well for neurodegenerative diseases in general, but these indications still need to be confirmed.
Collapse
Affiliation(s)
- Chengfeng Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
| | - Shengyan Su
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, PR China
| | - Xinyuan Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, PR China
| | - Bing Li
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
| | - Baojuan Yang
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
| | - Jian Zhu
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
- * E-mail: (JZ); (WW)
| | - Weimin Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, PR China
- * E-mail: (JZ); (WW)
| |
Collapse
|
20
|
García-Arrarás JE, Bello SA, Malavez S. The mesentery as the epicenter for intestinal regeneration. Semin Cell Dev Biol 2018; 92:45-54. [PMID: 30193995 DOI: 10.1016/j.semcdb.2018.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 09/01/2018] [Accepted: 09/02/2018] [Indexed: 01/17/2023]
Abstract
The mesentery, a newly minted organ, plays various anatomical and physiological roles during animal development. In echinoderms, and particularly in members of the class Holothuroidea (sea cucumbers) the mesentery plays an additional unique role: it is crucial for the process of intestinal regeneration. In these organisms, a complete intestine can form from cells that originate in the mesentery. In this review, we focus on what is known about the changes that take place in the mesentery and what has been documented on the cellular and molecular mechanisms involved. We describe how the events that unfold in the mesentery result in the formation of a new intestine.
Collapse
Affiliation(s)
| | - Samir A Bello
- Biology Department, University of Puerto Rico, Puerto Rico.
| | - Sonya Malavez
- Biology Department, University of Puerto Rico, Puerto Rico.
| |
Collapse
|
21
|
Sun L, Lin C, Li X, Xing L, Huo D, Sun J, Zhang L, Yang H. Comparative Phospho- and Acetyl Proteomics Analysis of Posttranslational Modifications Regulating Intestine Regeneration in Sea Cucumbers. Front Physiol 2018; 9:836. [PMID: 30018572 PMCID: PMC6037860 DOI: 10.3389/fphys.2018.00836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/14/2018] [Indexed: 12/29/2022] Open
Abstract
Sea cucumbers exposed to stressful circumstances eviscerate most internal organs, and then regenerate them rapidly under favorable environments. Reversible protein phosphorylation and acetylation are major modifications regulating protein function. Herein, for the first time, we perform quantitative phospho- and acetyl proteomics analyses of intestine regeneration in a sea cucumber species Apostichopus japonicus. We identified 1,862 phosphorylation sites in 1,169 proteins, and 712 acetylation sites in 470 proteins. Of the 147 and 251 proteins differentially modified by phosphorylation and acetylation, respectively, most were related to cytoskeleton biogenesis, protein synthesis and modification, signal recognition and transduction, energy production and conversion, or substance transport and metabolism. Phosphorylation appears to play a more important role in signal recognition and transduction than acetylation, while acetylation is of greater importance in posttranslational modification, protein turnover, chaperones; energy production and conversion; amino acid and lipid transport and metabolism. These results expanded our understanding of the regulatory mechanisms of posttranslational modifications in intestine regeneration of sea cucumbers after evisceration.
Collapse
Affiliation(s)
- Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chenggang Lin
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaoni Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lili Xing
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Da Huo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jingchun Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
22
|
Regeneration in distantly related species: common strategies and pathways. NPJ Syst Biol Appl 2018; 4:5. [PMID: 29354283 PMCID: PMC5764997 DOI: 10.1038/s41540-017-0042-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/27/2017] [Accepted: 12/05/2017] [Indexed: 01/28/2023] Open
Abstract
While almost all animals are able to at least partially replace some lost parts, regeneration abilities vary considerably across species. Here we study gene expression patterns in distantly related species to investigate conserved regeneration strategies. To this end, we collect from the literature transcriptomic data obtained during the regeneration of three species (Hydra magnipapillata, Schmidtea mediterranea, and Apostichopus japonicus), and compare them with gene expression during regeneration in vertebrates and mammals. This allows us to identify a common set of differentially expressed genes and relevant shared pathways that are conserved across species during the early stage of the regeneration process. We also find a set of differentially expressed genes that in mammals are associated to the presence of macrophages and to the epithelial–mesenchymal transition. This suggests that features of the sophisticated wound healing strategy of mammals are already observable in earlier emerging metazoans. All animals capable of regenerating a lost body part, from an organ or a limb to the whole organism, use a common set of genes. This is the striking discovery of a team of researchers from the Center for Complexity and Biosystems of the University of Milan, led by Caterina La Porta. They analyzed the genetic activity in regenerating tissues from widely different species—from hydra to mice. They found that some of the genes active at the beginning of the regeneration process are the same in very different species, including mammals which have lost this function during evolution, except for the restoration of the liver. The discovery of this shared genetic signature is of great importance to understand how regeneration evolved and could be useful for future regeneration therapies.
Collapse
|
23
|
García-Arrarás JE, Lázaro-Peña MI, Díaz-Balzac CA. Holothurians as a Model System to Study Regeneration. Results Probl Cell Differ 2018; 65:255-283. [PMID: 30083924 DOI: 10.1007/978-3-319-92486-1_13] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Echinoderms possess an incredible regenerative capacity. Within this phylum, holothurians, better known as sea cucumbers, can regenerate most of their internal and external organs. While regeneration has been studied in several species, the most recent and extensive studies have been done in the species Holothuria glaberrima, the focus of most of our discussion. This chapter presents the model system and integrates the work that has been done to determine the major steps that take place, during regeneration of the intestinal and nervous system, from wound healing to the reestablishment of original function. We describe the cellular and molecular events associated with the regeneration processes and also describe the techniques that have been used, discuss the results, and explain the gaps in our knowledge that remain. We expect that the information provided here paves the road for new and young investigators to continue the study of the amazing potential of regeneration in members of the Echinodermata and how these studies will shed some light into the mechanisms that are common to many regenerative processes.
Collapse
Affiliation(s)
- José E García-Arrarás
- Department of Biology, University of Puerto Rico - Río Piedras Campus, San Juan, Puerto Rico.
| | - María I Lázaro-Peña
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Carlos A Díaz-Balzac
- Department of Medicine, University of Rochester Medical Center, Strong Memorial Hospital, Rochester, NY, USA
| |
Collapse
|
24
|
Zhou X, Chang Y, Zhan Y, Wang X, Lin K. Integrative mRNA-miRNA interaction analysis associate with immune response of sea cucumber Apostichopus japonicus based on transcriptome database. FISH & SHELLFISH IMMUNOLOGY 2018; 72:69-76. [PMID: 29054825 DOI: 10.1016/j.fsi.2017.10.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
MicroRNAs (miRNAs) constitute a family of endogenous non-coding small RNAs that have been demonstrated to be the key effectors in mediating host-pathogen interactions. Additionally, high-throughput sequencing provides unexampled opportunities to identify the pathogenic mechanism underlying miRNAs. In the present study, the target genes of immune-related miRNAs (miR-31, miR-2008, miR-92a, miR-210 and miR-7) and specific miRNAs (miR-2004) in Echinodermata were predicted in silico and validated. Gene ontology (GO) analysis of the target genes of these six miRNAs were conducted to further understand the regulatory function in the host immunity of Apostichopus japonicus (A. japonicus). Among the putative target genes of the six miRNAs, various immune-related targets were annotated, such as Nephl, SEC14Ll, p105, GL2, LYS, FNIAL, mTOR, LITAF, SLC44, TLR3, Apaf-1, and CNTN4. This work will provide valuable genetic resources to understand the interaction of multiple mRNA-miRNAs and the regulation mechanism in the anti-bacterial process in the sea cucumber.
Collapse
Affiliation(s)
- Xiaoxu Zhou
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China.
| | - Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Xiuli Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Kai Lin
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
25
|
Li Y, Kikuchi M, Li X, Gao Q, Xiong Z, Ren Y, Zhao R, Mao B, Kondo M, Irie N, Wang W. Weighted gene co-expression network analysis reveals potential genes involved in early metamorphosis process in sea cucumber Apostichopus japonicus. Biochem Biophys Res Commun 2017; 495:1395-1402. [PMID: 29180012 DOI: 10.1016/j.bbrc.2017.11.154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/22/2017] [Indexed: 11/15/2022]
Abstract
Sea cucumbers, one main class of Echinoderms, have a very fast and drastic metamorphosis process during their development. However, the molecular basis under this process remains largely unknown. Here we systematically examined the gene expression profiles of Japanese common sea cucumber (Apostichopus japonicus) for the first time by RNA sequencing across 16 developmental time points from fertilized egg to juvenile stage. Based on the weighted gene co-expression network analysis (WGCNA), we identified 21 modules. Among them, MEdarkmagenta was highly expressed and correlated with the early metamorphosis process from late auricularia to doliolaria larva. Furthermore, gene enrichment and differentially expressed gene analysis identified several genes in the module that may play key roles in the metamorphosis process. Our results not only provide a molecular basis for experimentally studying the development and morphological complexity of sea cucumber, but also lay a foundation for improving its emergence rate.
Collapse
Affiliation(s)
- Yongxin Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650203, China
| | - Mani Kikuchi
- Department of Cell Biological Science, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Xueyan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Qionghua Gao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Zijun Xiong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; China National GeneBank, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yandong Ren
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650203, China
| | - Ruoping Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Mariko Kondo
- Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo, Kanagawa 238-0225, Japan
| | - Naoki Irie
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
26
|
The sea cucumber genome provides insights into morphological evolution and visceral regeneration. PLoS Biol 2017; 15:e2003790. [PMID: 29023486 PMCID: PMC5638244 DOI: 10.1371/journal.pbio.2003790] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/11/2017] [Indexed: 11/25/2022] Open
Abstract
Apart from sharing common ancestry with chordates, sea cucumbers exhibit a unique morphology and exceptional regenerative capacity. Here we present the complete genome sequence of an economically important sea cucumber, A. japonicus, generated using Illumina and PacBio platforms, to achieve an assembly of approximately 805 Mb (contig N50 of 190 Kb and scaffold N50 of 486 Kb), with 30,350 protein-coding genes and high continuity. We used this resource to explore key genetic mechanisms behind the unique biological characters of sea cucumbers. Phylogenetic and comparative genomic analyses revealed the presence of marker genes associated with notochord and gill slits, suggesting that these chordate features were present in ancestral echinoderms. The unique shape and weak mineralization of the sea cucumber adult body were also preliminarily explained by the contraction of biomineralization genes. Genome, transcriptome, and proteome analyses of organ regrowth after induced evisceration provided insight into the molecular underpinnings of visceral regeneration, including a specific tandem-duplicated prostatic secretory protein of 94 amino acids (PSP94)-like gene family and a significantly expanded fibrinogen-related protein (FREP) gene family. This high-quality genome resource will provide a useful framework for future research into biological processes and evolution in deuterostomes, including remarkable regenerative abilities that could have medical applications. Moreover, the multiomics data will be of prime value for commercial sea cucumber breeding programs. Echinoderms, ubiquitous in the marine environment, are important from evolutionary, ecological, and socioeconomic perspectives. Together with chordates and hemichordates, they form the deuterostome clade, making them a crucial node in the study of chordate ancestry. Within echinoderms, class Holothuroidea is unique; its members (the sea cucumbers) display remarkable regenerative abilities and play key roles as sediment bioturbators and symbiotic hosts, and many are prized in the seafood and pharmaceutical industries. The sea cucumber genome therefore has the potential to significantly contribute to our understanding of important evolutionary and biological processes and help enhance aquaculture programs. Here we present a high-quality genome sequence for the economically important species Apostichopus japonicus. Through comparative analyses, we identified 763 echinoderm-specific gene families enriched in genes encoding membrane proteins, ion channels, and signal transduction proteins. Marker genes associated with the notochord and gill slits were also found, providing valuable insight into the origin of chordates. The reduced number and low expression levels of biomineralization genes reflect the skeletal degeneration seen in sea cucumbers. Importantly, 2 gene families appeared to be expanded in A. japonicus and may play crucial roles in its heightened regenerative potential. Together, findings from the sea cucumber genome provide important and novel insights into echinoderm and deuterostome biology.
Collapse
|
27
|
Miao T, Wan Z, Sun L, Li X, Xing L, Bai Y, Wang F, Yang H. Extracellular matrix remodeling and matrix metalloproteinases (ajMMP-2 like and ajMMP-16 like) characterization during intestine regeneration of sea cucumber Apostichopus japonicus. Comp Biochem Physiol B Biochem Mol Biol 2017; 212:12-23. [PMID: 28687360 DOI: 10.1016/j.cbpb.2017.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/18/2017] [Accepted: 06/26/2017] [Indexed: 10/19/2022]
Abstract
Remodeling of extracellular matrix (ECM) regulated by matrix metalloproteinases (MMPs) is essential for tissue regeneration. In the present study, we used immunohistochemistry (IHC) techniques against ECM components to reveal changes of ECM during intestine regeneration of Apostichopus japonicus. The expression of collagen I and laminin reduced apparently from the eviscerated intestine, while fibronectin exhibited continuous expression in all regeneration stages observed. Meanwhile, we cloned two MMP genes from A. japonicus by RACE PCR. The full-length cDNA of ajMMP-2 like is 2733bp and contains a predicted open reading frame (ORF) of 1716bp encoding 572 amino acids. The full-length cDNA of ajMMP-16 like is 2705bp and contains an ORF of 1452bp encoding 484 amino acids. The predicted protein sequences of each MMP contain two conserved domains, ZnMc_MMP and HX. Homology and phylogenetic analysis revealed that ajMMP-2 like and ajMMP-16 like share high sequence similarity with MMP-2 and MMP-16 from Strongylocentrotus purpuratus, respectively. Then we investigated spatio-temporal expression of ajMMP-2 like and ajMMP-16 like during different regeneration stages by qRT-PCR and IHC. The expression pattern of them showed a roughly opposite trend from that of ECM components. According to our results, a fibronectin-dominate temporary matrix is created in intestine regeneration, and it might provide structural integrity for matrix and promote cell movement. We also hypothesize that ajMMP-2 like and ajMMP-16 like could accelerate cell migration and regulate interaction between ECM components and growth factors. This work provides new evidence of ECM and MMPs involvement in sea cucumber regeneration.
Collapse
Affiliation(s)
- Ting Miao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Zixuan Wan
- Wyoming Seminary College Preparatory School, Kingston, PA 18704, USA
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Xiaoni Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Lili Xing
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Yucen Bai
- China Rural Technology Development Center, Beijing 100045, China
| | - Fang Wang
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
28
|
Developmental transcriptome analysis and identification of genes involved in formation of intestinal air-breathing function of Dojo loach, Misgurnus anguillicaudatus. Sci Rep 2016; 6:31845. [PMID: 27545457 PMCID: PMC4992823 DOI: 10.1038/srep31845] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/26/2016] [Indexed: 11/17/2022] Open
Abstract
Dojo loach, Misgurnus anguillicaudatus is a freshwater fish species of the loach family Cobitidae, using its posterior intestine as an accessory air-breathing organ. Little is known about the molecular regulatory mechanisms in the formation of intestinal air-breathing function of M. anguillicaudatus. Here high-throughput sequencing of mRNAs was performed from six developmental stages of posterior intestine of M. anguillicaudatus: 4-Dph (days post hatch) group, 8-Dph group, 12-Dph group, 20-Dph group, 40-Dph group and Oyd (one-year-old) group. These six libraries were assembled into 81300 unigenes. Totally 40757 unigenes were annotated. Subsequently, 35291 differentially expressed genes (DEGs) were scanned among different developmental stages and clustered into 20 gene expression profiles. Finally, 15 key pathways and 25 key genes were mined, providing potential targets for candidate gene selection involved in formation of intestinal air-breathing function in M. anguillicaudatus. This is the first report of developmental transcriptome of posterior intestine in M. anguillicaudatus, offering a substantial contribution to the sequence resources for this species and providing a deep insight into the formation mechanism of its intestinal air-breathing function. This report demonstrates that M. anguillicaudatus is a good model for studies to identify and characterize the molecular basis of accessory air-breathing organ development in fish.
Collapse
|
29
|
Yang A, Zhou Z, Pan Y, Jiang J, Dong Y, Guan X, Sun H, Gao S, Chen Z. RNA sequencing analysis to capture the transcriptome landscape during skin ulceration syndrome progression in sea cucumber Apostichopus japonicus. BMC Genomics 2016; 17:459. [PMID: 27296384 PMCID: PMC4906609 DOI: 10.1186/s12864-016-2810-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 06/02/2016] [Indexed: 12/14/2022] Open
Abstract
Background Sea cucumber Apostichopus japonicus is an important economic species in China, which is affected by various diseases; skin ulceration syndrome (SUS) is the most serious. In this study, we characterized the transcriptomes in A. japonicus challenged with Vibrio splendidus to elucidate the changes in gene expression throughout the three stages of SUS progression. Results RNA sequencing of 21 cDNA libraries from various tissues and developmental stages of SUS-affected A. japonicus yielded 553 million raw reads, of which 542 million high-quality reads were generated by deep-sequencing using the Illumina HiSeq™ 2000 platform. The reference transcriptome comprised a combination of the Illumina reads, 454 sequencing data and Sanger sequences obtained from the public database to generate 93,163 unigenes (average length, 1,052 bp; N50 = 1,575 bp); 33,860 were annotated. Transcriptome comparisons between healthy and SUS-affected A. japonicus revealed greater differences in gene expression profiles in the body walls (BW) than in the intestines (Int), respiratory trees (RT) and coelomocytes (C). Clustering of expression models revealed stable up-regulation as the main pattern occurring in the BW throughout the three stages of SUS progression. Significantly affected pathways were associated with signal transduction, immune system, cellular processes, development and metabolism. Ninety-two differentially expressed genes (DEGs) were divided into four functional categories: attachment/pathogen recognition (17), inflammatory reactions (38), oxidative stress response (7) and apoptosis (30). Using quantitative real-time PCR, twenty representative DEGs were selected to validate the sequencing results. The Pearson’s correlation coefficient (R) of the 20 DEGs ranged from 0.811 to 0.999, which confirmed the consistency and accuracy between these two approaches. Conclusions Dynamic changes in global gene expression occur during SUS progression in A. japonicus. Elucidation of these changes is important in clarifying the molecular mechanisms associated with the development of SUS in sea cucumber. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2810-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aifu Yang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, Peoples' Republic of China
| | - Zunchun Zhou
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, Peoples' Republic of China.
| | - Yongjia Pan
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, Peoples' Republic of China
| | - Jingwei Jiang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, Peoples' Republic of China
| | - Ying Dong
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, Peoples' Republic of China
| | - Xiaoyan Guan
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, Peoples' Republic of China
| | - Hongjuan Sun
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, Peoples' Republic of China
| | - Shan Gao
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, Peoples' Republic of China
| | - Zhong Chen
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, Peoples' Republic of China
| |
Collapse
|
30
|
Zhou X, Cui J, Liu S, Kong D, Sun H, Gu C, Wang H, Qiu X, Chang Y, Liu Z, Wang X. Comparative transcriptome analysis of papilla and skin in the sea cucumber, Apostichopus japonicus. PeerJ 2016; 4:e1779. [PMID: 26989617 PMCID: PMC4793329 DOI: 10.7717/peerj.1779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/17/2016] [Indexed: 01/02/2023] Open
Abstract
Papilla and skin are two important organs of the sea cucumber. Both tissues have ectodermic origin, but they are morphologically and functionally very different. In the present study, we performed comparative transcriptome analysis of the papilla and skin from the sea cucumber (Apostichopus japonicus) in order to identify and characterize gene expression profiles by using RNA-Seq technology. We generated 30.6 and 36.4 million clean reads from the papilla and skin and de novo assembled in 156,501 transcripts. The Gene Ontology (GO) analysis indicated that cell part, metabolic process and catalytic activity were the most abundant GO category in cell component, biological process and molecular funcation, respectively. Comparative transcriptome analysis between the papilla and skin allowed the identification of 1,059 differentially expressed genes, of which 739 genes were expressed at higher levels in papilla, while 320 were expressed at higher levels in skin. In addition, 236 differentially expressed unigenes were not annotated with any database, 160 of which were apparently expressed at higher levels in papilla, 76 were expressed at higher levels in skin. We identified a total of 288 papilla-specific genes, 171 skin-specific genes and 600 co-expressed genes. Also, 40 genes in papilla-specific were not annotated with any database, 2 in skin-specific. Development-related genes were also enriched, such as fibroblast growth factor, transforming growth factor-β, collagen-α2 and Integrin-α2, which may be related to the formation of the papilla and skin in sea cucumber. Further pathway analysis identified ten KEGG pathways that were differently enriched between the papilla and skin. The findings on expression profiles between two key organs of the sea cucumber should be valuable to reveal molecular mechanisms involved in the development of organs that are related but with morphological differences in the sea cucumber.
Collapse
Affiliation(s)
- Xiaoxu Zhou
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Jun Cui
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama, United States
| | - Derong Kong
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - He Sun
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Chenlei Gu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Hongdi Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Xuemei Qiu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama, United States
| | - Xiuli Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| |
Collapse
|
31
|
Hui RK, Leung FC. Differential Expression Profile of Chicken Embryo Fibroblast DF-1 Cells Infected with Cell-Adapted Infectious Bursal Disease Virus. PLoS One 2015; 10:e0111771. [PMID: 26053856 PMCID: PMC4460012 DOI: 10.1371/journal.pone.0111771] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 10/01/2014] [Indexed: 12/17/2022] Open
Abstract
RNA-Seq was used to unveil the transcriptional profile of DF-1 cells at the early stage of caIBDV infection. Total RNAs were extracted from virus-infected cells at 0, 6 and 12 hpi. RNA-Seq datasets of respective samples mapped to 56.5–57.6% of isoforms in the reference genome Galgal4.73. At 6 hpi, 23 isoforms underwent an elevated expression, while 128 isoforms were up-regulated and 5 were down-regulated at 12 hpi in the virus-infected group. Besides, 10 isoforms were exclusively expressed in the virus-infected cells. Though no significant change was detected in cytokine and interferon expression levels at the first 12 hours of infection, modulations of the upstream regulators were observed. In addition to the reported regulatory factors including EIF2AK2, MX, OAS*A, GBP7 and IFIT, IBDV infection also triggered a IFIT5-IRF1/3-RSAD5 pathway in the DF-1 cells which potentially restricted the viral replication cycle in the early infection stage. Over-expression of LIPA and CH25H, together with the suppression of STARD4, LSS and AACS genes implied a modulation of membrane fluidity and lipid raft arrangement in the infected cells. Alternative splicing of the EFR3 homolog A gene was also through to be involved in the lipid membrane regulation, and these cumulative responses projected an inhibition of viral endocytosis. Recognition of viral RNA genomes and intermediates was presumably enhanced by the elevated levels of IFIH1, DHX58 and TRIM25 genes which possess properties on detecting viral dsRNA. On the other hand, the caIBDV arrested the host's apoptotic process by inducing the expression of apoptosis inhibitors including NFKBIA/Z, TNFAIP2/3 and ITA at the first 12 hours of infection. In conclusion, the differential expression landscape demonstrated with RNA-Seq provides a comprehensive picture on the molecular interactions between host cells and virus at the early stage of infection.
Collapse
Affiliation(s)
- Raymond K. Hui
- School of Biological Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Frederick C. Leung
- School of Biological Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China
- Bioinformatics Center, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
32
|
Gut-spilling in chordates: evisceration in the tropical ascidian Polycarpa mytiligera. Sci Rep 2015; 5:9614. [PMID: 25880620 PMCID: PMC5381747 DOI: 10.1038/srep09614] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/09/2015] [Indexed: 01/09/2023] Open
Abstract
The ejection of internal organs, i.e., evisceration, is a well-known phenomenon in sea-cucumbers. We report the ability of a member of the Chordate phyla, the tropical ascidian Polycarpa mytiligera, to eviscerate and regenerate its gut within 12 days, and to rebuild its branchial sac within 19 days. Evisceration occurred within 4–43 seconds of gentle mechanical pressure exerted on the tunic in 47% of the tested P. mytiligera. Individuals were able to discard up to 3/4 of their digestive tract via the incurrent siphon by rupture of the branchial sac in this area. Although chemical analysis revealed no significant levels of toxic compounds, the eviscerated guts were unpalatable to the triggerfish and pufferfish on which they were tested, suggesting evisceration as a defense mechanism. Given the close affinity of ascidians to vertebrates, the regeneration pathway of the viscera and branchial sac of ascidians suggests its potential beneficial application in soft tissue regeneration research.
Collapse
|
33
|
RNA-Seq analysis and gene discovery of Andrias davidianus using Illumina short read sequencing. PLoS One 2015; 10:e0123730. [PMID: 25874626 PMCID: PMC4395309 DOI: 10.1371/journal.pone.0123730] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 03/05/2015] [Indexed: 11/19/2022] Open
Abstract
The Chinese giant salamander, Andrias davidianus, is an important species in the course of evolution; however, there is insufficient genomic data in public databases for understanding its immunologic mechanisms. High-throughput transcriptome sequencing is necessary to generate an enormous number of transcript sequences from A. davidianus for gene discovery. In this study, we generated more than 40 million reads from samples of spleen and skin tissue using the Illumina paired-end sequencing technology. De novo assembly yielded 87,297 transcripts with a mean length of 734 base pairs (bp). Based on the sequence similarities, searching with known proteins, 38,916 genes were identified. Gene enrichment analysis determined that 981 transcripts were assigned to the immune system. Tissue-specific expression analysis indicated that 443 of transcripts were specifically expressed in the spleen and skin. Among these transcripts, 147 transcripts were found to be involved in immune responses and inflammatory reactions, such as fucolectin, β-defensins and lymphotoxin beta. Eight tissue-specific genes were selected for validation using real time reverse transcription quantitative PCR (qRT-PCR). The results showed that these genes were significantly more expressed in spleen and skin than in other tissues, suggesting that these genes have vital roles in the immune response. This work provides a comprehensive genomic sequence resource for A. davidianus and lays the foundation for future research on the immunologic and disease resistance mechanisms of A. davidianus and other amphibians.
Collapse
|
34
|
Ba H, Yao F, Yang L, Qin T, Luan H, Li Z, Zou X, Hou L. Identification and expression patterns of extracellular matrix-associated genes fibropellin-ia and tenascin involved in regeneration of sea cucumber Apostichopus japonicus. Gene 2015; 565:96-105. [PMID: 25841990 DOI: 10.1016/j.gene.2015.03.071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 11/18/2022]
Abstract
Sea cucumbers have a strong regenerative capacity. Many important genes involved in the molecular mechanism of regeneration and associated with intercellular signaling pathways of regeneration have been identified. The product of the fibropellin-ia gene forms a layer known as the apical lamina that surrounds the sea cucumber embryo throughout development. Meanwhile, the tenascin gene displays highly restricted and dynamic patterns of expression in the embryo and is expressed in the adult during normal processes such as wound healing, nerve regeneration and tissue involution. In this study, we cloned for the first time full-length cDNAs of fibropellin-ia (1390 bp, encoding a 199 amino acid protein) and tenascin (1366 bp, encoding a 179 amino acid protein) from Apostichopus japonicus (designated Aj-fnia and Aj-tenascin, respectively) using rapid amplification of cDNA ends. The structures and characteristics of these two genes were analyzed bioinformatically, and their expression patterns associated with extracellular matrix remodeling in regeneration of A. japonicus were investigated by real-time PCR and in situ hybridization (ISH). Expression levels of Aj-fnia and Aj-tenascin in the regeneration tissues were higher than those in normal tissues. The highest expression levels of Aj-fnia and Aj-tenascin were shown in the intestine and respiratory tree on the 15th and 20th days after sea cucumbers were eviscerated. In the body wall, the highest expression levels of Aj-fnia and Aj-tenascin occurred at 35 and 45 min during early regeneration and then emerged between 5 and 7 days again during late regeneration after the body wall was injured. ISH analysis revealed expression of these genes in the body wall, longitudinal muscle, intestine and respiratory tree. These findings suggest that Aj-fnia and Aj-tenascin are crucial genes that play important roles in the regeneration of the sea cucumber.
Collapse
Affiliation(s)
- Huazhong Ba
- College of Life Sciences, Liaoning Normal University, 1, Liushu South Street, Ganjingzi District, Dalian 116081, People's Republic of China
| | - Feng Yao
- College of Life Sciences, Liaoning Normal University, 1, Liushu South Street, Ganjingzi District, Dalian 116081, People's Republic of China
| | - Lei Yang
- College of Life Sciences, Liaoning Normal University, 1, Liushu South Street, Ganjingzi District, Dalian 116081, People's Republic of China
| | - Tong Qin
- College of Life Sciences, Liaoning Normal University, 1, Liushu South Street, Ganjingzi District, Dalian 116081, People's Republic of China
| | - Hong Luan
- College of Life Sciences, Liaoning Normal University, 1, Liushu South Street, Ganjingzi District, Dalian 116081, People's Republic of China
| | - Zhengmin Li
- College of Life Sciences, Liaoning Normal University, 1, Liushu South Street, Ganjingzi District, Dalian 116081, People's Republic of China
| | - Xiangyang Zou
- Department of Biology, Dalian Medical University, Dalian 116044, People's Republic of China.
| | - Lin Hou
- College of Life Sciences, Liaoning Normal University, 1, Liushu South Street, Ganjingzi District, Dalian 116081, People's Republic of China.
| |
Collapse
|
35
|
Abstract
Recent studies in Drosophila, Hydra, planarians, zebrafish, mice, indicate that cell death can open paths to regeneration in adult animals. Indeed injury can induce cell death, itself triggering regeneration following an immediate instructive mechanism, whereby the dying cells release signals that induce cellular responses over short and/or long-range distances. Cell death can also provoke a sustained derepressing response through the elimination of cells that suppress regeneration in homeostatic conditions. Whether common properties support what we name "regenerative cell death," is currently unclear. As key parameters, we review here the injury proapoptotic signals, the signals released by the dying cells, the cellular responses, and their respective timing. ROS appears as a common signal triggering cell death through MAPK and/or JNK pathway activation. But the modes of ROS production vary, from a brief pulse upon wounding, to repeated waves as observed in the zebrafish fin where ROS supports two peaks of cell death. Indeed regenerative cell death can be restricted to the injury phase, as in Hydra, Drosophila, or biphasic, immediate, and delayed, as in planarians and zebrafish. The dying cells release in a caspase-dependent manner a variety of signaling molecules, cytokines, growth factors, but also prostaglandins or ATP as recorded in Drosophila, Hydra, mice, and zebrafish, respectively. Interestingly, the ROS-producing cells often resist to cell death, implying a complex paracrine mode of signaling to launch regeneration, involving ROS-producing cells, ROS-sensing cells that release signaling molecules upon caspase activation, and effector cells that respond to these signals by proliferating, migrating, and/or differentiating.
Collapse
Affiliation(s)
- Sophie Vriz
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris, France; University Paris-Diderot, Paris, France
| | - Silke Reiter
- Department of Genetics and Evolution, University of Geneva, Switzerland
| | - Brigitte Galliot
- Department of Genetics and Evolution, University of Geneva, Switzerland.
| |
Collapse
|
36
|
Fischer AHL, Mozzherin D, Eren AM, Lans KD, Wilson N, Cosentino C, Smith J. SeaBase: a multispecies transcriptomic resource and platform for gene network inference. Integr Comp Biol 2014; 54:250-63. [PMID: 24907201 DOI: 10.1093/icb/icu065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Marine and aquatic animals are extraordinarily useful as models for identifying mechanisms of development and evolution, regeneration, resistance to cancer, longevity and symbiosis, among many other areas of research. This is due to the great diversity of these organisms and their wide-ranging capabilities. Genomics tools are essential for taking advantage of these "free lessons" of nature. However, genomics and transcriptomics are challenging in emerging model systems. Here, we present SeaBase, a tool for helping to meet these needs. Specifically, SeaBase provides a platform for sharing and searching transcriptome data. More importantly, SeaBase will support a growing number of tools for inferring gene network mechanisms. The first dataset available on SeaBase is a developmental transcriptomic profile of the sea anemone Nematostella vectensis (Anthozoa, Cnidaria). Additional datasets are currently being prepared and we are aiming to expand SeaBase to include user-supplied data for any number of marine and aquatic organisms, thereby supporting many potentially new models for gene network studies. SeaBase can be accessed online at: http://seabase.core.cli.mbl.edu.
Collapse
Affiliation(s)
- Antje H L Fischer
- *Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy*Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Dmitry Mozzherin
- *Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy
| | - A Murat Eren
- *Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Kristen D Lans
- *Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Nathan Wilson
- *Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Carlo Cosentino
- *Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Joel Smith
- *Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy
| |
Collapse
|
37
|
Zhao Y, Yang H, Storey KB, Chen M. RNA-seq dependent transcriptional analysis unveils gene expression profile in the intestine of sea cucumber Apostichopus japonicus during aestivation. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2014; 10:30-43. [PMID: 24713300 DOI: 10.1016/j.cbd.2014.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/25/2014] [Accepted: 02/28/2014] [Indexed: 10/25/2022]
Abstract
The seasonal marine, the sea cucumber Apostichopus japonicus (Selenka, 1867), cycles annually between periods of torpor when water temperature is above about 25°C in summer and active life when temperature is below about 18°C. This species is a good candidate model organism for studies of environmentally-induced aestivation in marine invertebrates. Previous studies have examined various aspects of aestivation of A. japonicus, however, knowledge of the molecular regulation underpinning these events is still fragmentary. In the present study, we constructed a global gene expression profile of the intestine tissue of A. japonicus using RNA-seq to identify transcriptional responses associated with transitions between different states: non-aestivation (NA), deep-aestivation (DA), and arousal from aestivation (AA). The analysis identified 1245 differentially expressed genes (DEGs) between DA vs. NA states, 1338 DEGs between AA vs. DA, and 1321 DEGs between AA vs. NA using the criteria |Log2Ratio|≥1 and FDR≤0.001. Of these, 25 of the most significant DEGs were verified by real-time PCR, showing trends in expression patterns that were almost in full concordance between the two techniques. GO analysis revealed that for DA vs. NA, 24 metabolic associated processes were highly enriched (corrected p value<0.05) whereas for AA vs. NA, 12 transport and metabolism associated processes were significantly enriched (corrected p value<0.05). Pathways associated with aestivation were also mined, and indicated that most DEGs were enriched in metabolic and signal transduction pathways in the deep aestivation stage. Two up pathways were significantly enriched at the arousal stage (ribosome and metabolism of xenobiotics by cytochrome P450 pathway). A set of key DEGs was identified that may play vital roles in aestivation; these involved metabolism, detoxification and tissue protection, and energy-expensive processes. Our work presents an overview of dynamic gene expression in torpor-arousal cycles during aestivation of A. japonicus and identifies a series of candidate genes and pathways for further research on the molecular mechanisms of aestivation.
Collapse
Affiliation(s)
- Ye Zhao
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hongsheng Yang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Muyan Chen
- Fisheries College, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|