1
|
Mbaye EHA, Scott EA, Burke JA. From Edmonton to Lantidra and beyond: immunoengineering islet transplantation to cure type 1 diabetes. FRONTIERS IN TRANSPLANTATION 2025; 4:1514956. [PMID: 40182604 PMCID: PMC11965681 DOI: 10.3389/frtra.2025.1514956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/26/2025] [Indexed: 04/05/2025]
Abstract
Type 1 diabetes (T1D) is characterized by the autoimmune destruction of insulin-producing β cells within pancreatic islets, the specialized endocrine cell clusters of the pancreas. Islet transplantation has emerged as a β cell replacement therapy, involving the infusion of cadaveric islets into a patient's liver through the portal vein. This procedure offers individuals with T1D the potential to restore glucose control, reducing or even eliminating the need for exogenous insulin therapy. However, it does not address the underlying autoimmune condition responsible for T1D. The need for systemic immunosuppression remains the primary barrier to making islet transplantation a more widespread therapy for patients with T1D. Here, we review recent progress in addressing the key limitations of islet transplantation as a viable treatment for T1D. Concerns over systemic immunosuppression arise from its potential to cause severe side effects, including opportunistic infections, malignancies, and toxicity to transplanted islets. Recognizing the risks, the Edmonton protocol (2000) marked a shift away from glucocorticoids to prevent β cell damage specifically. This transition led to the development of combination immunosuppressive therapies and the emergence of less toxic immunosuppressive and anti-inflammatory drugs. More recent advances in islet transplantation derive from islet encapsulation devices, biomaterial platforms releasing immunomodulatory compounds or surface-modified with immune regulating ligands, islet engineering and co-transplantation with accessory cells. While most of the highlighted studies in this review remain at the preclinical stage using mouse and non-human primate models, they hold significant potential for clinical translation if a transdisciplinary research approach is prioritized.
Collapse
Affiliation(s)
- El Hadji Arona Mbaye
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Evan A. Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
- Department of Biomedical Engineering, NanoSTAR Institute, University of Virginia School of Medicine, Charlottesville, VA, United States
| | | |
Collapse
|
2
|
Puga Yung GL, Wakley T, Kouklas A, Seebach JD. Dendritic Cells in Xenotransplantation: Shaping the Cellular Immune Response Toward Tolerance. Xenotransplantation 2025; 32:e70037. [PMID: 40243284 PMCID: PMC12005074 DOI: 10.1111/xen.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 04/18/2025]
Abstract
The molecular barriers that cause acute xenograft rejection have been identified and addressed by generating genetically modified (GM) animals, knocked out for specific xenoantigens (xenoAgs), and expressing regulatory molecules for both complement and coagulation pathways among others. The focus of xenotransplantation research now lies in delayed xenograft rejection. Dendritic cells (DC) are a specific subpopulation of professional antigen-presenting cells (APC) that play a crucial role in the context of organ transplantation. DCs, originating from both the xenograft and the recipient, have the capacity to present xenoAgs to the recipient's immune system via their respective major histocompatibility complex (MHC) molecules leading to rejection. These processes are known as direct and indirect presentation, respectively. However, under certain microenvironmental conditions, DC develops into anti-inflammatory regulatory cells that can induce immunological tolerance. The purpose of this review is to summarize current knowledge on the general characteristics and functions of DC from species relevant to xenotransplantation, specifically humans, non-human primates (NHP), and pigs. It will also cover the process of xenoAg presentation, different methods for generating DC with regulatory properties in vitro, and finally, discuss the current strategies for using regulatory DC to improve xenograft acceptance by inducing tolerance.
Collapse
Affiliation(s)
- Gisella L. Puga Yung
- Division of Immunology and AllergologyDepartment of MedicineUniversity Hospitals GenevaGenevaSwitzerland
- Laboratory of Translational ImmunologyDepartment of MedicineUniversity of GenevaGenevaSwitzerland
| | - Tom Wakley
- Laboratory of Translational ImmunologyDepartment of MedicineUniversity of GenevaGenevaSwitzerland
| | - Athanasios Kouklas
- Laboratory of Translational ImmunologyDepartment of MedicineUniversity of GenevaGenevaSwitzerland
| | - Jörg D. Seebach
- Division of Immunology and AllergologyDepartment of MedicineUniversity Hospitals GenevaGenevaSwitzerland
- Laboratory of Translational ImmunologyDepartment of MedicineUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
3
|
Wang W, Wang Y. Integrative bioinformatics analysis of biomarkers and pathways for exploring the mechanisms and molecular targets associated with pyroptosis in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2023; 14:1207142. [PMID: 38034011 PMCID: PMC10684677 DOI: 10.3389/fendo.2023.1207142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Research has shown that pyroptosis contributes greatly to the progression of diabetes and its complications. However, the exact relationship between this particular cell death process and the pathology of type 2 diabetes mellitus (T2DM) remains unclear. In this study, we used bioinformatic tools to identify the pyroptosis-related genes (PRGs) associated with T2DM and to analyze their roles in the disease pathology. Methods Two microarray datasets, GSE7014 and GSE25724, were obtained from the GEO database and assessed for differentially expressed genes (DEGs). The T2DM-associated DEGs that overlapped with differentially expressed PRGs were noted as T2DM-PRGs. Subsequently, 25 T2DM-PRGs were validated and subjected to functional enrichment analysis through Gene Ontology annotation analysis, Kyoto Encyclopedia of Genes and Genomes pathway analysis, and gene set enrichment analysis (GSEA). The diagnostic and predictive value of the T2DM-PRGs was evaluated using receiver operating characteristic curves (ROC). Additionally, a single-sample GSEA algorithm was applied to study immune infiltration in T2DM and assess immune infiltration levels. Results We identified 25 T2DM-PRGs that were significantly enriched in the nuclear factor-kappa B signaling and prostate cancer pathways. The top five differentially expressed prognostic T2DM-PRGs targeted by miRNAs were PTEN, BRD4, HSP90AB1, VIM, and PKN2. The top five differentially expressed T2DM-PRGs associated with transcription factors were HSP90AB1, VIM, PLCG1, SCAF11, and PTEN. The genes PLCG1, PTEN, TP63, CHI3L1, SDHB, DPP8, BCL2, SERPINB1, ACE2, DRD2, DDX58, and BTK showed excellent diagnostic performance. The immune infiltration analysis revealed notable differences in immune cells between T2DM and normal tissues in both datasets. These findings suggest that T2DM-PRGs play a crucial role in the development and progression of T2DM and could be used as potential diagnostic biomarkers and therapeutic targets. Discussion Investigating the mechanisms and biomarkers associated with pyroptosis may offer valuable insights into the pathophysiology of T2DM and lead to novel therapeutic approaches to treat the disease.
Collapse
Affiliation(s)
- Wei Wang
- Department of Endocrinology, School of Medicine, Zhongda Hospital, Institute of Diabetes, Southeast University, Nanjing, Jiangsu, China
- Department of Endocrinology, First Affiliated Hospital of Baotou Medical Collage, Baotou, China
| | - Yao Wang
- Department of Endocrinology, School of Medicine, Zhongda Hospital, Institute of Diabetes, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Zhang JA, Lu YB, Wang WD, Liu GB, Chen C, Shen L, Luo HL, Xu H, Peng Y, Luo H, Huang GX, Wu DD, Zheng BY, Yi LL, Chen ZW, Xu JF. BTLA-Expressing Dendritic Cells in Patients With Tuberculosis Exhibit Reduced Production of IL-12/IFN-α and Increased Production of IL-4 and TGF-β, Favoring Th2 and Foxp3 + Treg Polarization. Front Immunol 2020; 11:518. [PMID: 32296431 PMCID: PMC7136538 DOI: 10.3389/fimmu.2020.00518] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 03/06/2020] [Indexed: 12/15/2022] Open
Abstract
Little is known about how tuberculosis (TB) impairs dendritic cell (DC) function and anti-TB immune responses. We previously showed that the B and T lymphocyte attenuator (BTLA), an immune inhibitory receptor, is involved in TB pathogenesis. Here, we examined whether BTLA expression in TB affects phenotypic and functional aspects of DCs. Active TB patients exhibited higher expression of BTLA in myeloid dendritic cells (mDCs) and plasmacytoid DCs (pDCs) subsets compared with healthy controls (HCs). BTLA expression was similarly high in untreated TB, TB relapse, and sputum-bacillus positive TB, but anti-TB therapy reduced TB-driven increases in frequencies of BTLA+ DCs. BTLA+ DCs in active TB showed decreased expression of the DC maturation marker CD83, with an increased expression of CCR7 in mDCs. BTLA+ DCs in active TB displayed a decreased ability to express HLA-DR and to uptake foreign antigen, with a reduced expression of the co-stimulatory molecule CD80, but not CD86. Functionally, BTLA+ DCs in active TB showed a decreased production of IL-12 and IFN-α as well as a reduced ability to stimulate allogeneic T-cell proliferative responses. BTLA+ mDCs produced larger amounts of IL-4 and TGF-β than BTLA− mDCs in both HCs and APT patients. BTLA+ DCs from active TB patients showed a reduced ability to stimulate Mtb antigen-driven Th17 and Th22 polarizations as compared to those from HCs. Conversely, these BTLA+ DCs more readily promoted the differentiation of T regulatory cells (Treg) and Th2 than those from HCs. These findings suggest that TB-driven BTLA expression in DCs impairs the expression of functional DC surrogate markers and suppress the ability of DCs to induce anti-TB Th17 and Th22 response while promoting Th2 and Foxp3+ Tregs.
Collapse
Affiliation(s)
- Jun-Ai Zhang
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Yuan-Bin Lu
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Wan-Dang Wang
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, China.,Department of Clinical Medicine Laboratory, Affiliated Xiaolan Hospital, Southern Medical University, Zhongshan, China
| | - Gan-Bin Liu
- Department of Respiration, Dongguan 6th Hospital, Dongguan, China
| | - Chen Chen
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Ling Shen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, United States
| | - Hou-Long Luo
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Huan Xu
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Ying Peng
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Hong Luo
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Gui-Xian Huang
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Du-Du Wu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Bi-Ying Zheng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Lai-Long Yi
- Department of Respiration, Dongguan 6th Hospital, Dongguan, China
| | - Zheng W Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, United States
| | - Jun-Fa Xu
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| |
Collapse
|
5
|
Madelon N, Montanari E, Gruaz L, Pimenta J, Muller YD, Bühler LH, Puga Yung GL, Seebach JD. Prolongation of rat-to-mouse islets xenograft survival by co-transplantation of autologous IL-10 differentiated murine tolerogenic dendritic cells. Xenotransplantation 2020; 27:e12584. [PMID: 31984564 DOI: 10.1111/xen.12584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/06/2019] [Accepted: 01/05/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Tolerogenic dendritic cells (DCs) represent a promising approach to promote transplantation tolerance. In this study, the potential of autologous bone marrow (BM)-derived murine DC to protect rat-to-mouse islets xenografts was analyzed. METHODS Tolerogenic DCs were generated by differentiating BM cells in the presence of granulocyte-macrophage colony-stimulating factor and interleukin 10 (IL-10, IL-10 DC). The phenotype of IL-10 DC was characterized in vitro by expression of costimulatory/inhibitory molecules (flow cytometry) and cytokines (Luminex and ELISA), their function by phagocytosis and T-cell stimulation assays. To study transplant tolerance in vivo, rat islets were transplanted alone or in combination with autologous murine IL-10 DC under the kidney capsule of streptozotocin-induced diabetic C57BL/6 mice. Xenograft survival was evaluated by monitoring glycemia, cellular infiltration of xenografts by microscopy and flow cytometry 10 days post-transplantation. RESULTS Compared with control DC, IL-10 DC exhibited lower levels of major histocompatibility complex class II, costimulatory molecules (CD40, CD86, CD205), lower production of pro-inflammatory cytokines (IL-12p70, TNF, IL-6), and higher production of IL-10. Phagocytosis of xenogeneic rat splenocytes was not impaired in IL-10 DC, whereas stimulation of T-cell proliferation was reduced in the presence of IL-10 DC. Xenograft survival of rat islets in diabetic mice co-transplanted with autologous murine IL-10 DC was significantly prolonged from 12 to 21 days, without additional immunosuppressive treatment. Overall, infiltration of xenografts by T cells and myeloid cells was not different in IL-10 DC recipient mice, but enriched for CD8+ T cells and myeloid cells with suppressor-associated phenotype. CONCLUSIONS Autologous IL-10-differentiated DC with tolerogenic properties prolong rat-to-mouse islets xenograft survival, potentially by locally inducing immune regulatory cells, indicating their potential for regulatory immune cell therapy in xenotransplantation.
Collapse
Affiliation(s)
- Natacha Madelon
- Laboratory of Translational Immunology, Division of Immunology and Allergology, Department of Medical Specialties, Medical Faculty, Geneva University Hospitals, Geneva, Switzerland
| | - Elisa Montanari
- Department of Surgery, Medical Faculty, Cell Isolation and Transplantation Center, Geneva University Hospitals, Geneva, Switzerland
| | - Lyssia Gruaz
- Laboratory of Translational Immunology, Division of Immunology and Allergology, Department of Medical Specialties, Medical Faculty, Geneva University Hospitals, Geneva, Switzerland
| | - Joel Pimenta
- Department of Surgery, Medical Faculty, Cell Isolation and Transplantation Center, Geneva University Hospitals, Geneva, Switzerland
| | - Yannick D Muller
- Laboratory of Translational Immunology, Division of Immunology and Allergology, Department of Medical Specialties, Medical Faculty, Geneva University Hospitals, Geneva, Switzerland
| | - Leo H Bühler
- Department of Surgery, Medical Faculty, Cell Isolation and Transplantation Center, Geneva University Hospitals, Geneva, Switzerland
| | - Gisella L Puga Yung
- Laboratory of Translational Immunology, Division of Immunology and Allergology, Department of Medical Specialties, Medical Faculty, Geneva University Hospitals, Geneva, Switzerland
| | - Jörg D Seebach
- Laboratory of Translational Immunology, Division of Immunology and Allergology, Department of Medical Specialties, Medical Faculty, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
6
|
Zheng H, Liu T, Lei T, Girani L, Wang Y, Deng S. Promising potentials of Tibetan macaques in xenotransplantation. Xenotransplantation 2019; 26:e12489. [PMID: 30734969 DOI: 10.1111/xen.12489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2019] [Indexed: 02/03/2023]
Abstract
Organ transplantation is a crucial medical procedure, as it is often the only treatment for patients suffering from end-stage organ failure. Unfortunately, the shortage of donor organs limits the number of patients whose lives can be saved. Carrying out research on xenotransplantation with the aim of eventually replacing human organ transplants with those of animals is very promising, as it could effectively bridge the shortfall in donor organs. Thanks to the success of cloned pigs and to the emergence of gene-editing techniques, genetically modified pigs have come to be considered ideal animal donors for human xenotransplantation and have been widely used in basic research. Such research focuses on pig-to-nonhuman primates transplantation, as the recipients are suitable for preclinical studies because both their genes and organ sizes are similar to those of humans. Chinese transplantation scientists have carried out several experiments on Tibetan macaques, including successful preclinical transplants of material from genetically modified pigs, as well as research on such topics as intraocular pressure, Parkinson's disease, advanced cancer, islet transplantation, and liver transplantation. This article reviews basic and applied research on Tibetan macaques in xenotransplantation, as well as the issues of immune rejection and ethical concerns. We aim to demonstrate the various advantages of Tibetan macaques as transplant recipients compared to other nonhuman primate species and to provide a perspective for the future establishment of Tibetan macaques as principal recipients in preclinical studies of xenotransplantation.
Collapse
Affiliation(s)
- Hanrui Zheng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ting Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tiantian Lei
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lea Girani
- Organ Transplant and Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Academy of an Transplant Science & Sichuan Provincial People's Hospital, Chengdu, China
| | - Yi Wang
- Health Management Center, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Shaoping Deng
- Organ Transplant and Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Huang C, Zhang L, Ling F, Wen S, Luo Y, Liu H, Liu J, Zheng W, Liang M, Sun J, Lin YK. Effect of immune tolerance induced by immature dendritic cells and CTLA4-Ig on systemic lupus erythematosus: An in vivo study. Exp Ther Med 2018; 15:2499-2506. [PMID: 29456655 DOI: 10.3892/etm.2018.5697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 07/27/2017] [Indexed: 11/06/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multi-organ autoimmune disease in which tissue damage is caused by autoantibodies. The induction of specific immune tolerance, including the utilization of immune regulatory cells, may enhance the therapeutic effects of organ transplantation in patients with SLE. Furthermore, inhibiting immune responses has been reported to be an effective treatment for SLE. However, few studies have explored the association between an increased immune tolerance and a decreased immune response in SLE treatment. Dendritic cells (DCs), which are highly efficient antigen-presenting cells, are able to induce specific tolerance, while cytotoxic T lymphocyte antigen 4-immunoglobulin (CTLA4-Ig) inhibits the immune response. In the present study, interleukin (IL)-10-treated DCs and CTLA4-Ig were administered to mice with SLE alone or in combination and the therapeutic effects were investigated. IL-10 was added into the culture medium of bone marrow-derived DCs to prevent them from differentiating into mature cells. Low levels of major histocompatibility complex II, cluster of differentiation (CD)40, CD80 and CD86 were detected, which indicated that the immature state of DCs was maintained. IL-10-treated DCs were subsequently injected into the caudal vein of B6.MRL-Faslpr/J lupus mice, which are an established animal model of SLE. To amplify the tolerance effect, mice were simultaneously injected with CTLA4-Ig. Compared with the IL-10-treated DC and CTLA4-Ig groups, combined treatment with IL-10-treated DCs and CTLA4-Ig strongly induced immune tolerance in mice with SLE, as indicated by the significantly reduced levels of urine protein, anti-nuclear antibody, double-stranded DNA and IL-17A. A significant decrease in the proportion of T helper cells and an increase in the proportion of CD4+ forkhead box protein P3+ Treg cells was also observed, further confirming the induction of immune tolerance. These results suggest that combined treatment with IL-10-DCs and CTLA4-Ig may be a promising novel therapeutic strategy for the treatment of SLE.
Collapse
Affiliation(s)
- Cuili Huang
- Department of Dermatology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Lidan Zhang
- Department of Dermatology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Fang Ling
- Department of Cell Biology and Genetics, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Sijian Wen
- Department of Dermatology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yanyan Luo
- Department of Dermatology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hui Liu
- Department of Dermatology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jingping Liu
- Department of Dermatology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wenjun Zheng
- Department of Dermatology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ming Liang
- Department of Dermatology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jian Sun
- Department of Cell Biology and Genetics, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - You-Kun Lin
- Department of Dermatology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
8
|
Long G, Zhang G, Zhang F, Li M, Ye D, Yang D, Yang Y. Cotransplantation of Mesenchymal Stem Cells and Immature Dendritic Cells Potentiates the Blood Glucose Control of Islet Allografts. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4107943. [PMID: 29410963 PMCID: PMC5749219 DOI: 10.1155/2017/4107943] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/23/2017] [Accepted: 11/21/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Transplantation of islets is a promising alternative to treat type 1 diabetes (T1D), but graft rejection is the major obstacle to its application in clinical practice. We evaluated the effects of mesenchymal stem cells (MSCs) and immature dendritic cells (imDCs) on islet transplantation in diabetic model. METHODS The streptozotocin T1D model was established in BABL/c mice. Rat islets were isolated and identified with dithizone (DTZ) staining. MSCs and imDCs were isolated from bone marrow of syngenic mice. Islets, alone or along with MSCs and/or imDCs, were transplanted to the left kidney capsule of diabetic mice. The blood glucose levels and glycosylated hemoglobin levels after transplantation were monitored. RESULTS Cotransplantation significantly decreased blood glucose and glycosylated hemoglobin levels in the diabetes mice. Transplantation of 200 islets + 2 × 105 MSCs + 2 × 105 imDCs could not only restore normal blood glucose levels, but also significantly prolong graft survival for 12.6 ± 3.48 days. CONCLUSIONS Cotransplantation of allogenic islets with imDCs and/or MSCs can significantly promote graft survival, reverse hyperglycemia, and effectively control the glycosylated hemoglobin levels.
Collapse
Affiliation(s)
- Guanghui Long
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Guangtao Zhang
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Fangting Zhang
- Center Laboratory, Peking University Shenzhen Hospital, Shenzhen, China
| | - Minghua Li
- Center Laboratory, Peking University Shenzhen Hospital, Shenzhen, China
| | - Dongshuo Ye
- Shenzhen BioScien Pharmaceuticals Co. LTD, Shenzhen, China
| | - Dengke Yang
- Shenzhen BioScien Pharmaceuticals Co. LTD, Shenzhen, China
| | - Yinke Yang
- Shenzhen BioScien Pharmaceuticals Co. LTD, Shenzhen, China
| |
Collapse
|
9
|
|
10
|
Ubiquitous LEA29Y Expression Blocks T Cell Co-Stimulation but Permits Sexual Reproduction in Genetically Modified Pigs. PLoS One 2016; 11:e0155676. [PMID: 27175998 PMCID: PMC4866763 DOI: 10.1371/journal.pone.0155676] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/03/2016] [Indexed: 12/15/2022] Open
Abstract
We have successfully established and characterized a genetically modified pig line with ubiquitous expression of LEA29Y, a human CTLA4-Ig derivate. LEA29Y binds human B7.1/CD80 and B7.2/CD86 with high affinity and is thus a potent inhibitor of T cell co-stimulation via this pathway. We have characterized the expression pattern and the biological function of the transgene as well as its impact on the porcine immune system and have evaluated the potential of these transgenic pigs to propagate via assisted breeding methods. The analysis of LEA29Y expression in serum and multiple organs of CAG-LEA transgenic pigs revealed that these animals produce a biologically active transgenic product at a considerable level. They present with an immune system affected by transgene expression, but can be maintained until sexual maturity and propagated by assisted reproduction techniques. Based on previous experience with pancreatic islets expressing LEA29Y, tissues from CAG-LEA29Y transgenic pigs should be protected against rejection by human T cells. Furthermore, their immune-compromised phenotype makes CAG-LEA29Y transgenic pigs an interesting large animal model for testing human cell therapies and will provide an important tool for further clarifying the LEA29Y mode of action.
Collapse
|
11
|
Zhu H, Yu L, He Y, Lyu Y, Wang B. Microencapsulated Pig Islet Xenotransplantation as an Alternative Treatment of Diabetes. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:474-89. [PMID: 26028249 DOI: 10.1089/ten.teb.2014.0499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Haitao Zhu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, China
- Heart Center, Northwest Women's and Children's Hospital, Xi'an, China
| | - Liang Yu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Yayi He
- Department of Endocrinology, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Yi Lyu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, China
- Institute of Advanced Surgical Technology and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Bo Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, China
- Institute of Advanced Surgical Technology and Engineering, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
12
|
Han FF, Fan H, Wang ZH, Li GR, Lv YL, Gong LL, Liu H, He Q, Liu LH. Association between co-stimulatory molecule gene polymorphism and acute rejection of allograft. Transpl Immunol 2014; 31:81-6. [PMID: 24952299 DOI: 10.1016/j.trim.2014.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/09/2014] [Accepted: 06/11/2014] [Indexed: 01/13/2023]
Abstract
Co-stimulatory molecules play important roles in T cell-mediated immune response and transplantation. Numerous epidemiological studies have evaluated the association between CD28, CTLA-4 gene variant and allograft rejection. However, the results of these studies on the association remain conflicting. The main purpose of this study was to integrate previous results and explore whether the CD28 IVS3 +17T/C variant, CTLA-4, CD86 and PDCD1 gene polymorphisms were associated with allograft rejection susceptibility. PubMed and Embase (before 2014-3-25), were searched for studies on the relationship of CD28, CTLA-4, CD86 and PDCD1 gene polymorphisms and the incidence of allograft rejection susceptibility. Eligible articles were included for data extraction. The main outcome was the frequency of co-stimulate molecule gene polymorphisms between rejection and non-rejection populations. Comparison of the distribution of SNP was mainly performed using Review Manager 5.0. The odds ratio (OR) and its 95% confidence interval (95% CI) were used to assess the strength of association. Significant associations of the CD28 IVS3 +17T/C variant with acute allograft rejection susceptibility were found (CC +CT/TT OR, 1.45; 95% CI, 1.08-1.94; P=0.01). Also we found an association of the CD28 IVS3 +17T/C variant with kidney allograft rejection cases (CC +CT/TT OR, 1.72; 95% CI, 1.19-2.49; P=0.004) and (C allele OR, 1.74; 95% CI, 1.11-2.75; P=0.02), but not established for liver allograft rejection cases (CC +CT/TT OR, 1.19; 95% CI, 0.47-2.98; P=0.72) and (C allele OR, 0.96; 95% CI, 0.67-1.39; P=0.84). And we found an association of the CD86 +1057G/A variant with non-allograft rejection cases (AA +AG/GG OR, 0.35; 95% CI, 0.14-0.85; P=0.02). This meta-analysis demonstrates that the CD28 IVS3 +17T/C variant might increase acute allograft rejection risk in kidney transplant but not in liver transplant, and there was an association between CD86 +1057G/A variant and reduced acute rejection risk. Further studies will be needed to confirm our findings.
Collapse
Affiliation(s)
- Fei-Fei Han
- Pharmacy Department of Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Hua Fan
- Hepatobiliary Surgery Department of Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Zi-Hui Wang
- Pharmacy Department of Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Guang-Run Li
- Pharmacy Department of Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Ya-Li Lv
- Pharmacy Department of Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Li-Li Gong
- Pharmacy Department of Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - He Liu
- Pharmacy Department of Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Qiang He
- Hepatobiliary Surgery Department of Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Li-Hong Liu
- Pharmacy Department of Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
13
|
Zhu HT, Wang WL, Yu L, Wang B. Pig-islet xenotransplantation: recent progress and current perspectives. Front Surg 2014; 1:7. [PMID: 25593932 PMCID: PMC4287008 DOI: 10.3389/fsurg.2014.00007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/07/2014] [Indexed: 01/23/2023] Open
Abstract
Islet xenotransplantation is one prospective treatment to bridge the gap between available human cells and needs of patients with diabetes. Pig represents an ideal candidate for obtaining such available cells. However, potential clinical application of pig islet still faces obstacles including inadequate yield of high-quality functional islets and xenorejection of the transplants. Adequate amounts of available islets can be obtained by selection of a suitable pathogen-free source herd and the development of isolation and purification method. Several studies demonstrated the feasibility of successful preclinical pig-islet xenotransplantation and provided insights and possible mechanisms of xenogeneic immune recognition and rejection. Particularly promising is the achievement of long-term insulin independence in diabetic models by means of distinct islet products and novel immunotherapeutic strategies. Nonetheless, further efforts are needed to obtain much more safety and efficacy data to translate these findings into clinic.
Collapse
Affiliation(s)
- Hai-Tao Zhu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi’an Jiaotong University, Xi’an, China
| | - Wan-Li Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi’an Jiaotong University, Xi’an, China
| | - Liang Yu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi’an Jiaotong University, Xi’an, China
| | - Bo Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
14
|
Haque MR, Lee DY, Ahn CH, Jeong JH, Byun Y. Local co-delivery of pancreatic islets and liposomal clodronate using injectable hydrogel to prevent acute immune reactions in a type 1 diabetes. Pharm Res 2014; 31:2453-62. [PMID: 24633416 DOI: 10.1007/s11095-014-1340-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/13/2014] [Indexed: 12/20/2022]
Abstract
PURPOSE The purpose of this study was to investigate the effect of locally delivered pancreatic islet with liposomal clodronate (Clodrosome®) as an immunoprotection agent for the treatment of type 1 diabetes. METHOD The bio-distribution of liposomal clodronate in matrigel was checked by imaging analyzer. To verify the therapeutic efficacy of locally delivered islet with liposomal clodronate using injectable hydrogel, four groups of islet transplanted mice (n = 6 in each group) were prepared: 1) the islet group, 2) the islet-Clodrosome group, 3) the islet-Matrigel group, and 4) the islet-Matrigel-Clodrosome group. Immune cell migration and activation, and pro-inflammatory cytokine secretion was evaluated by immunohistochemistry staining and ELISA assay. RESULTS Cy5.5 labeled liposomes remained in the matrigel for over 7 days. The median survival time of transplanted islets (Islet-Matrigel-Clodrosome group) was significantly increased (>60 days), compared to other groups. Locally delivered liposomal clodronate in matrigel effectively inhibited the activation of macrophages, immune cell migration and activation, and pro-inflammatory cytokine secretion from macrophages. CONCLUSIONS Locally co-delivered pancreatic islets and liposomal clodronate using injectable hydrogel effectively cured type 1 diabetes. Especially, the inhibition of macrophage attack in the early stage after local delivery of islets was very important for the successful long-term survival of delivered islets.
Collapse
Affiliation(s)
- Muhammad R Haque
- Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul, 151-742, Republic of Korea
| | | | | | | | | |
Collapse
|
15
|
Effect of bone marrow-derived CD11b(+)F4/80 (+) immature dendritic cells on the balance between pro-inflammatory and anti-inflammatory cytokines in DBA/1 mice with collagen-induced arthritis. Inflamm Res 2014; 63:357-67. [PMID: 24458308 DOI: 10.1007/s00011-014-0707-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/28/2013] [Accepted: 01/05/2014] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To explore the effect of bone marrow-derived CD11b(+)F4/80(+) immature dendritic cells (BM CD11b(+)F4/80(+)iDC) on the balance between pro-inflammatory and anti-inflammatory cytokines in DBA/1 mice with collagen-induced arthritis (CIA). METHODS BM CD11b(+)F4/80(+)iDC were induced with rmGM-CSF and rmIL-4, and were identified by the expressions of toll-like receptor 2 (TLR-2), indoleamine 2,3-deoxygenase (IDO), interleukin (IL)-10, transforming growth factor (TGF)-β1 and mixed leukocyte reaction (MLR). CIA was established in DBA/1 mice by immunization with type II collagen. CIA mice were injected intravenously with BM CD11b(+)F4/80(+)iDC three times after immunization. The effect of BM CD11b(+)F4/80(+)iDC on CIA was evaluated by the arthritis index, joint histopathology, body weight, thymus index, thymocytes proliferation, IL-1β, tumor necrosis factor (TNF)-α, IL-17, IL-10 and TGF-β1 levels. RESULTS BM CD11b(+)F4/80(+)iDC induced with rmGM-CSF and rmIL-4 expressed high levels of TLR-2, IDO, IL-10 and TGF-β1. Infusion of BM CD11b(+)F4/80(+)iDC in CIA mice significantly reduced the arthritis index and pathological scores of joints, recovered the weight, decreased the thymus index and inhibited thymocyte proliferation. Levels of IL-1β, TNF-α and IL-17 were decreased in BM CD11b(+)F4/80(+)iDC-treated mice. CONCLUSIONS BM CD11b(+)F4/80(+)iDC can be induced successfully with rmGM-CSF and rmIL-4. BM CD11b(+)F4/80(+)iDC treatment can ameliorate the development and severity of CIA by regulating the balance between pro-inflammatory cytokines and anti-inflammatory cytokines.
Collapse
|
16
|
Zhu H, Yu L, He Y, Wang B. Nonhuman primate models of type 1 diabetes mellitus for islet transplantation. J Diabetes Res 2014; 2014:785948. [PMID: 25389531 PMCID: PMC4217338 DOI: 10.1155/2014/785948] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/02/2014] [Accepted: 10/07/2014] [Indexed: 12/19/2022] Open
Abstract
Islet transplantation is an attractive treatment of type 1 diabetes mellitus (T1DM). Animal models of diabetes mellitus (DM) contribute a lot to the experimental studies of islet transplantation and to evaluations of isolated islet grafts for future clinical applications. Diabetic nonhuman primates (NHPs) represent the suitable models of DMs to better evaluate the effectiveness of islet transplantation, to assess new strategies for controlling blood glucose (BG), relieving immune rejection, or prolonging islet survival, and eventually to translate the preclinical data into tangible clinical practice. This review introduces some NHP models of DM, clarifies why and how the models should be used, and elucidates the usefulness and limitations of the models in islet transplantation.
Collapse
Affiliation(s)
- Haitao Zhu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an 710061, China
| | - Liang Yu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yayi He
- Department of Endocrinology, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an 710061, China
| | - Bo Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an 710061, China
- *Bo Wang:
| |
Collapse
|
17
|
Schneider MKJ, Seebach JD. Xenotransplantation literature update, September-October 2013. Xenotransplantation 2013; 20:481-6. [PMID: 24289471 DOI: 10.1111/xen.12076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Mårten K J Schneider
- Laboratory of Vascular Immunology, Division of Internal Medicine, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|