1
|
Kast RE, Alfieri A, Assi HI, Burns TC, Elyamany AM, Gonzalez-Cao M, Karpel-Massler G, Marosi C, Salacz ME, Sardi I, Van Vlierberghe P, Zaghloul MS, Halatsch ME. MDACT: A New Principle of Adjunctive Cancer Treatment Using Combinations of Multiple Repurposed Drugs, with an Example Regimen. Cancers (Basel) 2022; 14:2563. [PMID: 35626167 PMCID: PMC9140192 DOI: 10.3390/cancers14102563] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 12/12/2022] Open
Abstract
In part one of this two-part paper, we present eight principles that we believe must be considered for more effective treatment of the currently incurable cancers. These are addressed by multidrug adjunctive cancer treatment (MDACT), which uses multiple repurposed non-oncology drugs, not primarily to kill malignant cells, but rather to reduce the malignant cells' growth drives. Previous multidrug regimens have used MDACT principles, e.g., the CUSP9v3 glioblastoma treatment. MDACT is an amalgam of (1) the principle that to be effective in stopping a chain of events leading to an undesired outcome, one must break more than one link; (2) the principle of Palmer et al. of achieving fractional cancer cell killing via multiple drugs with independent mechanisms of action; (3) the principle of shaping versus decisive operations, both being required for successful cancer treatment; (4) an idea adapted from Chow et al., of using multiple cytotoxic medicines at low doses; (5) the idea behind CUSP9v3, using many non-oncology CNS-penetrant drugs from general medical practice, repurposed to block tumor survival paths; (6) the concept from chess that every move creates weaknesses and strengths; (7) the principle of mass-by adding force to a given effort, the chances of achieving the goal increase; and (8) the principle of blocking parallel signaling pathways. Part two gives an example MDACT regimen, gMDACT, which uses six repurposed drugs-celecoxib, dapsone, disulfiram, itraconazole, pyrimethamine, and telmisartan-to interfere with growth-driving elements common to cholangiocarcinoma, colon adenocarcinoma, glioblastoma, and non-small-cell lung cancer. gMDACT is another example of-not a replacement for-previous multidrug regimens already in clinical use, such as CUSP9v3. MDACT regimens are designed as adjuvants to be used with cytotoxic drugs.
Collapse
Affiliation(s)
| | - Alex Alfieri
- Department of Neurosurgery, Cantonal Hospital of Winterthur, 8400 Winterthur, Switzerland; (A.A.); (M.-E.H.)
| | - Hazem I. Assi
- Naef K. Basile Cancer Center, American University of Beirut, Beirut 1100, Lebanon;
| | - Terry C. Burns
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA;
| | - Ashraf M. Elyamany
- Oncology Unit, Hemato-Oncology Department, SECI Assiut University Egypt/King Saud Medical City, Riyadh 7790, Saudi Arabia;
| | - Maria Gonzalez-Cao
- Translational Cancer Research Unit, Dexeus University Hospital, 08028 Barcelona, Spain;
| | | | - Christine Marosi
- Clinical Division of Medical Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
| | - Michael E. Salacz
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA;
| | - Iacopo Sardi
- Department of Pediatric Oncology, Meyer Children’s Hospital, Viale Pieraccini 24, 50139 Florence, Italy;
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium;
| | - Mohamed S. Zaghloul
- Children’s Cancer Hospital & National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Marc-Eric Halatsch
- Department of Neurosurgery, Cantonal Hospital of Winterthur, 8400 Winterthur, Switzerland; (A.A.); (M.-E.H.)
| |
Collapse
|
2
|
Lai HC, Lee MS, Lin KT, Chan SM, Chen JY, Lin YT, Wu ZF. Propofol-based total intravenous anesthesia is associated with better survival than desflurane anesthesia in intrahepatic cholangiocarcinoma surgery. Medicine (Baltimore) 2019; 98:e18472. [PMID: 31861027 PMCID: PMC6940153 DOI: 10.1097/md.0000000000018472] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Previous researches have shown that anesthesia can affect the outcomes of many kinds of cancer after surgery. Here, we investigated the association between anesthesia and patient outcomes after elective open intrahepatic cholangiocarcinoma surgery.This was a retrospective cohort study of patients who received elective open intrahepatic cholangiocarcinoma surgery between January 2005 and December 2014. Patients were grouped according to the anesthesia received, that is, propofol or desflurane anesthesia. Kaplan-Meier analysis was performed and survival curves were constructed from the date of surgery to death. After propensity matching, univariable and multivariable Cox regression models were used to compare hazard ratios for death. Subgroup analyses were performed for tumor node metastasis staging and postoperative metastasis and recurrence.A total of 34 patients (21 deaths, 62.0%) with propofol anesthesia and 36 (31 deaths, 86.0%) with desflurane anesthesia were eligible for analysis. After propensity matching, 58 patients remained in each group. In the matched analysis, the propofol anesthesia had a better survival with hazard ratio of 0.51 (95% confidence interval, 0.28-0.94, P = .032) compared with desflurane anesthesia. In addition, subgroup analyses showed that patients under propofol anesthesia had less postoperative metastases (hazard ratio, 0.36; 95% confidence interval, 0.15-0.88; P = .025), but not fewer postoperative recurrence formation (hazard ratio, 1.17; 95% confidence interval 0.46-2.93; P = .746), than those under desflurane anesthesia in the matched groups.In a limited sample size, propofol anesthesia was associated with better survival in open intrahepatic cholangiocarcinoma surgery. Prospective and large sample size researches are necessary to evaluate the effects of propofol anesthesia on the surgical outcomes of intrahepatic cholangiocarcinoma surgery.
Collapse
Affiliation(s)
- Hou-Chuan Lai
- Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center
| | | | - Kuen-Tze Lin
- Department of Radiation Oncology, Tri-Service General Hospital and National Defense Medical Center, Taipei
| | - Shun-Ming Chan
- Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center
| | - Jen-Yin Chen
- Department of Anesthesiology, Chi Mei Medical Center
- Department of the Senior Citizen Service Management, Chia Nan University of Pharmacy and Science, Tainan City, Taiwan, Republic of China
| | - Yao-Tsung Lin
- Department of Anesthesiology, Chi Mei Medical Center
| | - Zhi-Fu Wu
- Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center
- Department of Anesthesiology, Chi Mei Medical Center
| |
Collapse
|
3
|
Hu MH, Huang TT, Chao TI, Chen LJ, Chen YL, Tsai MH, Liu CY, Kao JH, Chen KF. Serine/threonine protein phosphatase 5 is a potential therapeutic target in cholangiocarcinoma. Liver Int 2018; 38:2248-2259. [PMID: 29797403 DOI: 10.1111/liv.13887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 05/20/2018] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Few molecules are currently verified to be actionable drug targets in cholangiocarcinoma (CCA). Serine/threonine protein phosphatase 5 (PP5) dysregulation is related to several malignancies. However, the role of PP5 in CCA is poorly defined. METHODS Colony and tumorsphere formation assays were conducted to establish the role of PP5 in CCA tumorigenesis. Cantharidin (CTD) and norcantharidin (NCTD), both potent PP5 inhibitors, were used in in vitro and in vivo experiments to validate the potential therapeutic role of PP5. RESULTS Increased cell growth, colony formation and tumorsphere formation were observed in PP5-overexpressing CCA cells, whereas PP5 knockdown by shRNA decreased cell growth and colony formation. Tumours from HuCCT1 xenograft-bearing mice treated with PP5-shRNA showed decreased growth and increased AMP-activated protein kinase (AMPK) phosphorylation. Furthermore, CTD treatment decreased cell viability, reduced PP5 activity and enhanced AMPK phosphorylation in CCA cell lines. Overexpressing PP5 or enhancing PP5 activity suppressed AMPK phosphorylation and decreased CTD-induced cell death. Suppressing p-AMPK with siRNA or inhibitors also decreased CTD-induced cell death, suggesting a pivotal role for PP5-AMPK cascades in CCA. Immunoprecipitation revealed that PP5 interacted with AMPK. Importantly, treatment of HuCCT1 xenograft-bearing mice with NCTD, a CTD analogue with a lower systemic toxicity in vivo, suppressed PP5 activity, increased p-AMPK and reduced tumour volume. CONCLUSIONS Protein phosphatase 5 negatively regulates AMPK phosphorylation and contributes to CCA aggressiveness; thus, PP5 may be a potential therapeutic target in CCA.
Collapse
Affiliation(s)
- Ming-Hung Hu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Hematology and Oncology, Department of Medicine, Cardinal Tien Hospital, New Taipei City, Taiwan.,School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Tzu-Ting Huang
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Tzu-I Chao
- Transplant Medicine & Surgery Research Centre, Changhua Christian Hospital, Changhua, Taiwan
| | - Li-Ju Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Lin Chen
- Department of Pathology, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Ming-Hsien Tsai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Yu Liu
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei City, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jia-Horng Kao
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
4
|
Lee SH, Park SW. [Inflammation and Cancer Development in Pancreatic and Biliary Tract Cancer]. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2016; 66:325-39. [PMID: 26691190 DOI: 10.4166/kjg.2015.66.6.325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic inflammation has been known to be a risk for many kinds of cancers, including pancreatic and biliary tract cancer. Recently, inflammatory process has emerged as a key mediator of cancer development and progression. Many efforts with experimental results have been given to identify the underlying mechanisms that contribute to inflammation-induced tumorigenesis. Diverse inflammatory pathways have been investigated and inhibitors for inflammation-related signaling pathways have been developed for cancer treatment. This review will summarize recent outcomes about this distinctive process in pancreatic and biliary tract cancer. Taking this evidence into consideration, modulation of inflammatory process will provide useful options for pancreatic and biliary tract cancer treatment.
Collapse
Affiliation(s)
- Sang Hoon Lee
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.,Pancreatobiliary Cancer Center, Yonsei Cancer Hospital, Seoul, Korea
| | - Seung Woo Park
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.,Pancreatobiliary Cancer Center, Yonsei Cancer Hospital, Seoul, Korea
| |
Collapse
|
5
|
Banales JM, Cardinale V, Carpino G, Marzioni M, Andersen JB, Invernizzi P, Lind GE, Folseraas T, Forbes SJ, Fouassier L, Geier A, Calvisi DF, Mertens JC, Trauner M, Benedetti A, Maroni L, Vaquero J, Macias RIR, Raggi C, Perugorria MJ, Gaudio E, Boberg KM, Marin JJG, Alvaro D. Expert consensus document: Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol 2016; 13:261-80. [PMID: 27095655 DOI: 10.1038/nrgastro.2016.51] [Citation(s) in RCA: 942] [Impact Index Per Article: 104.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cholangiocarcinoma (CCA) is a heterogeneous group of malignancies with features of biliary tract differentiation. CCA is the second most common primary liver tumour and the incidence is increasing worldwide. CCA has high mortality owing to its aggressiveness, late diagnosis and refractory nature. In May 2015, the "European Network for the Study of Cholangiocarcinoma" (ENS-CCA: www.enscca.org or www.cholangiocarcinoma.eu) was created to promote and boost international research collaboration on the study of CCA at basic, translational and clinical level. In this Consensus Statement, we aim to provide valuable information on classifications, pathological features, risk factors, cells of origin, genetic and epigenetic modifications and current therapies available for this cancer. Moreover, future directions on basic and clinical investigations and plans for the ENS-CCA are highlighted.
Collapse
Affiliation(s)
- Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, Ikerbasque, CIBERehd, Paseo del Dr. Begiristain s/n, E-20014, San Sebastian, Spain
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Viale dell'Università 37, 00185, Rome, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis 6, 00135, Rome, Italy
| | - Marco Marzioni
- Department of Clinic and Molecular Sciences, Polytechnic University of Marche, Via Tronto 10, 60020, Ancona, Italy
| | - Jesper B Andersen
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Pietro Invernizzi
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089, Milan, Italy
- Program for Autoimmune Liver Diseases, International Center for Digestive Health, Department of Medicine and Surgery, University of Milan-Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Guro E Lind
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Montebello, 0310, Oslo, Norway
| | - Trine Folseraas
- Department of Transplantation Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Pb. 4950 Nydalen, N-0424, Oslo, Norway
| | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, 49 Little France Crescent, EH16 4SB, Edinburgh, United Kingdom
| | - Laura Fouassier
- INSERM UMR S938, Centre de Recherche Saint-Antoine, 184 rue du Faubourg Saint-Antoine, 75571, Paris cedex 12, Fondation ARC, 9 rue Guy Môquet 94803 Villejuif, France
| | - Andreas Geier
- Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacherstrasse 6, D-97080, Würzburg, Germany
| | - Diego F Calvisi
- Institute of Pathology, Universitätsmedizin Greifswald, Friedrich-Löffler-Strasse 23e, 17489, Greifswald, Germany
| | - Joachim C Mertens
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Antonio Benedetti
- Department of Clinic and Molecular Sciences, Polytechnic University of Marche, Via Tronto 10, 60020, Ancona, Italy
| | - Luca Maroni
- Department of Clinic and Molecular Sciences, Polytechnic University of Marche, Via Tronto 10, 60020, Ancona, Italy
| | - Javier Vaquero
- INSERM UMR S938, Centre de Recherche Saint-Antoine, 184 rue du Faubourg Saint-Antoine, 75571, Paris cedex 12, Fondation ARC, 9 rue Guy Môquet 94803 Villejuif, France
| | - Rocio I R Macias
- Department of Physiology and Pharmacology, Experimental Hepatology and Drug Targeting (HEVEFARM), Campus Miguel de Unamuno, E.I.D. S-09, University of Salamanca, IBSAL, CIBERehd, 37007, Salamanca, Spain
| | - Chiara Raggi
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, Ikerbasque, CIBERehd, Paseo del Dr. Begiristain s/n, E-20014, San Sebastian, Spain
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via Alfonso Borelli 50, 00161, Rome, Italy
| | - Kirsten M Boberg
- Department of Transplantation Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Pb. 4950 Nydalen, N-0424, Oslo, Norway
| | - Jose J G Marin
- Department of Physiology and Pharmacology, Experimental Hepatology and Drug Targeting (HEVEFARM), Campus Miguel de Unamuno, E.I.D. S-09, University of Salamanca, IBSAL, CIBERehd, 37007, Salamanca, Spain
| | - Domenico Alvaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Viale dell'Università 37, 00185, Rome, Italy
| |
Collapse
|
6
|
Synthesis and Biological Evaluation of an (18)Fluorine-Labeled COX Inhibitor--[(18)F]Fluorooctyl Fenbufen Amide--For Imaging of Brain Tumors. Molecules 2016; 21:387. [PMID: 27007363 PMCID: PMC6273898 DOI: 10.3390/molecules21030387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 12/14/2022] Open
Abstract
Molecular imaging of brain tumors remains a great challenge, despite the advances made in imaging technology. An anti-inflammatory compound may be a useful tool for this purpose because there is evidence of inflammatory processes in brain tumor micro-environments. Fluorooctylfenbufen amide (FOFA) was prepared from 8-chlorooctanol via treatment with potassium phthalimide, tosylation with Ts2O, fluorination with KF under phase transfer catalyzed conditions, deprotection using aqueous hydrazine, and coupling with fenbufen. The corresponding radiofluoro product [18F]FOFA, had a final radiochemical yield of 2.81 mCi and was prepared from activated [18F]F− (212 mCi) via HPLC purification and concentration. The radiochemical purity was determined to be 99%, and the specific activity was shown to exceed 22 GBq/μmol (EOS) based on decay-corrected calculations. Ex-vivo analysis of [18F]FOFA in plasma using HPLC showed that the agent had a half-life of 15 min. PET scanning showed significant accumulation of [18F]FOFA over tumor loci with reasonable contrast in C6-glioma bearing rats. These results suggest that this molecule is a promising agent for the visualization of brain tumors. Further investigations should focus on tumor micro-environments.
Collapse
|
7
|
Liu R, Li X, Qiang X, Luo L, Hylemon PB, Jiang Z, Zhang L, Zhou H. Taurocholate Induces Cyclooxygenase-2 Expression via the Sphingosine 1-phosphate Receptor 2 in a Human Cholangiocarcinoma Cell Line. J Biol Chem 2015; 290:30988-1002. [PMID: 26518876 DOI: 10.1074/jbc.m115.668277] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 11/06/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a rare, but highly malignant primary hepatobiliary cancer with a very poor prognosis and limited treatment options. Our recent studies reported that conjugated bile acids (CBAs) promote the invasive growth of CCA via activation of sphingosine 1-phosphate receptor 2 (S1PR2). Cyclooxygenase-2 (COX-2)-derived prostaglandin E2 (PGE2) is the most abundant prostaglandin in various human malignancies including CCA. Previous studies have indicated that COX-2 was highly expressed in CCA tissues, and the survival rate of CCA patients was negatively associated with high COX-2 expression levels. It has also been reported that CBAs induce COX-2 expression, whereas free bile acids inhibit COX-2 expression in CCA mouse models. However, the underlying cellular mechanisms and connection between S1PR2 and COX-2 expression in CCA cells have still not been fully elucidated. In the current study, we examined the role of S1PR2 in conjugated bile acid (taurocholate, (TCA))-induced COX-2 expression in a human HuCCT1 CCA cell line and further identified the potential underlying cellular mechanisms. The results indicated that TCA-induced invasive growth of human CCA cells was correlated with S1PR2-medated up-regulation of COX-2 expression and PGE2 production. Inhibition of S1PR2 activation with chemical antagonist (JTE-013) or down-regulation of S1PR2 expression with gene-specific shRNA not only reduced COX-2 expression, but also inhibited TCA-induced activation of EGFR and the ERK1/2/Akt-NF-κB signaling cascade. In conclusion, S1PR2 plays a critical role in TCA-induced COX-2 expression and CCA growth and may represent a novel therapeutic target for CCA.
Collapse
Affiliation(s)
- Runping Liu
- From the Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009, China, the Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Xiaojiaoyang Li
- From the Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Xiaoyan Qiang
- From the Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009, China, the Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Lan Luo
- the Jiangsu Center for Pharmacodynamics Research and Evaluation, Nanjing, Jiangsu 210009, China, and
| | - Phillip B Hylemon
- the Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia 23298, the McGuire Veterans Affairs Medical Center, Richmond, Virginia 23298
| | - Zhenzhou Jiang
- From the Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009, China, the Jiangsu Center for Pharmacodynamics Research and Evaluation, Nanjing, Jiangsu 210009, China, and
| | - Luyong Zhang
- From the Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009, China, the Jiangsu Center for Pharmacodynamics Research and Evaluation, Nanjing, Jiangsu 210009, China, and
| | - Huiping Zhou
- the Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia 23298, the McGuire Veterans Affairs Medical Center, Richmond, Virginia 23298
| |
Collapse
|
8
|
Mathema VB, Na-Bangchang K. Current Insights on Cholangiocarcinoma Research: a Brief Review. Asian Pac J Cancer Prev 2015; 16:1307-13. [DOI: 10.7314/apjcp.2015.16.4.1307] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
9
|
Kitasato A, Kuroki T, Adachi T, Ono S, Tanaka T, Tsuneoka N, Hirabaru M, Takatsuki M, Eguchi S. A Selective Cyclooxygenase-2 Inhibitor (Etodolac) Prevents Spontaneous Biliary Tumorigenesis in a Hamster Bilioenterostomy Model. Eur Surg Res 2014; 52:73-82. [DOI: 10.1159/000362542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 03/27/2014] [Indexed: 01/30/2023]
|
10
|
Cholangiocarcinoma: Biology, Clinical Management, and Pharmacological Perspectives. ISRN HEPATOLOGY 2014; 2014:828074. [PMID: 27335842 PMCID: PMC4890896 DOI: 10.1155/2014/828074] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/02/2014] [Indexed: 12/14/2022]
Abstract
Cholangiocarcinoma (CCA), or tumor of the biliary tree, is a rare and heterogeneous group of malignancies associated with a very poor prognosis. Depending on their localization along the biliary tree, CCAs are classified as intrahepatic, perihilar, and distal, and these subtypes are now considered different entities that differ in tumor biology, the staging system, management, and prognosis. When diagnosed, an evaluation by a multidisciplinary team is essential; the team must decide on the best therapeutic option. Surgical resection of tumors with negative margins is the best option for all subtypes of CCA, although this is only achieved in less than 50% of cases. Five-year survival rates have increased in the recent past owing to improvements in imaging techniques, which permits resectability to be predicted more accurately, and in surgery. Chemotherapy and radiotherapy are relatively ineffective in treating nonoperable tumors and the resistance of CCA to these therapies is a major problem. Although the combination of gemcitabine plus platinum derivatives is the pharmacological treatment most widely used, to date there is no standard chemotherapy, and new combinations with targeted drugs are currently being tested in ongoing clinical trials. This review summarizes the biology, clinical management, and pharmacological perspectives of these complex tumors.
Collapse
|