1
|
Identification and Characterization of Sex-Biased miRNAs in the Golden Pompano ( Trachinotus blochii). Animals (Basel) 2022; 12:ani12233342. [PMID: 36496865 PMCID: PMC9739008 DOI: 10.3390/ani12233342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
The golden pompano (Trachinotus blochii) is a marine fish of considerable commercial importance in China. It shows notable sexual size dimorphism; the growth rate of females is faster than that of males. Therefore, sex-biased research is of great importance in T. blochii breeding. However, there have been few studies on sex differentiation and mechanisms underlying sex determination in T. blochii. MicroRNAs (miRNAs) play crucial roles in sex differentiation and determination in animals. However, limited miRNA data are available on fish. In this study, two small RNA libraries prepared from the gonads of T. blochii were constructed and sequenced. The RNA-seq analysis yielded 1366 known and 69 novel miRNAs with 289 significantly differentially expressed miRNAs (p < 0.05). Gene ontology (GO) analysis confirmed that the TFIIA transcription factor complex (GO: 0005672) was the most significantly enriched GO term. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the differentially expressed miRNAs and target genes were mainly related to sex determination and gonadal developmental signaling pathways, specifically the Wnt signaling pathway, MAPK signaling pathway, and steroid biosynthetic pathway. MiRNA-mRNA co-expression network analysis strongly suggested a role for sex-biased miRNAs in sex determination/differentiation and gonadal development. For example, gata4, foxo3, wt1, and sf1 genes were found to be regulated by bta-miR-2898; esr2 and foxo3 by novel_176, and ar by oar-let-7b. Quantitative real-time polymerase chain reaction analysis of selected mRNAs and miRNAs validated the integrated analysis. This study established a set of sex-biased miRNAs that are potential regulatory factors in gonadal development in T. blochii. These results provide new insight into the function of miRNAs in sex differentiation and determination in T. blochii and highlight some key miRNAs for future studies.
Collapse
|
2
|
Salazar C, Galaz M, Ojeda N, Marshall SH. Expression of ssa-miR-155 during ISAV infection in vitro: Putative role as a modulator of the immune response in Salmo salar. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104109. [PMID: 33930457 DOI: 10.1016/j.dci.2021.104109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Multiple cellular components are involved in pathogen-host interaction during viral infection; in this context, the role of miRNAs have become highly relevant. We assessed the expression of selected miRNAs during an in vitro infection of a Salmo salar cell line with Infectious Salmon Anemia Virus (ISAV), the causative agent of a severe disease by the same name. Salmon orthologs for miRNAs that regulate antiviral responses were measured using RT-qPCR in an in vitro time-course assay. We observed a modulation of specific miRNAs expression, where ssa-miR-155-5p was differentially over-expressed. Using in silico analysis, we identified the putative mRNA targets for ssa-miR-155-5p, finding a high prevalence of hosts immune response-related genes; moreover, several mRNAs involved in the viral infective process were also identified as targets for this miRNA. Our results suggest a relevant role for miR-155-5p in Salmo salar during an ISAV infection as a regulator of the immune response to the virus.
Collapse
Affiliation(s)
- Carolina Salazar
- Instituto de Biologia, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile
| | - Martín Galaz
- Instituto de Biologia, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile
| | - Nicolás Ojeda
- Instituto de Biologia, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile
| | - Sergio H Marshall
- Instituto de Biologia, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile.
| |
Collapse
|
3
|
Abo-Al-Ela HG. The emerging regulatory roles of noncoding RNAs in immune function of fish: MicroRNAs versus long noncoding RNAs. Mol Genet Genomics 2021; 296:765-781. [PMID: 33904988 DOI: 10.1007/s00438-021-01786-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
The genome could be considered as raw data expressed in proteins and various types of noncoding RNAs (ncRNAs). However, a large portion of the genome is dedicated to ncRNAs, which in turn represent a considerable amount of the transcriptome. ncRNAs are modulated on levels of type and amount whenever any physiological process occurs or as a response to external modulators. ncRNAs, typically forming complexes with other partners, are key molecules that influence diverse cellular processes. Based on the knowledge of mammalian biology, ncRNAs are known to regulate and control diverse trafficking pathways and cellular activities. Long noncoding RNAs (lncRNAs) notably have diverse and more regulatory roles than microRNAs. Expanding these studies on fish has derived the same conclusion with relevance to other species, including invertebrates, explored the potentials to harness such types of RNA to further understand the biology of such organisms, and opened gates for applying recent technologies, such as RNA interference and delivering micromolecules as microRNAs to living cells and possibly to target organs. These technologies should improve aquaculture productivity and fish health, as well as help understand fish biology.
Collapse
Affiliation(s)
- Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, 43518, Suez, Egypt.
| |
Collapse
|
4
|
Bizuayehu TT, Babiak I. Heterogenic Origin of Micro RNAs in Atlantic Salmon ( Salmo salar) Seminal Plasma. Int J Mol Sci 2020; 21:ijms21082723. [PMID: 32326572 PMCID: PMC7216159 DOI: 10.3390/ijms21082723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 12/21/2022] Open
Abstract
The origin and contribution of seminal plasma RNAs into the whole semen RNA repertoire are poorly known, frequently being overlooked or neglected. In this study, we used high-throughput sequencing and RT-qPCR to profile microRNA (miRNA) constituents in the whole semen, as well as in fractionated spermatozoa and seminal plasma of Atlantic salmon (Salmo salar). We found 85 differentially accumulated miRNAs between spermatozoa and the seminal plasma. We identified a number of seminal plasma-enriched and spermatozoa-enriched miRNAs. We localized the expression of some miRNAs in juvenile and mature testes. Two abundant miRNAs, miR-92a-3p and miR-202-5p, localized to both spermatogonia and somatic supporting cells in immature testis, and they were also highly abundant in somatic cells in mature testis. miR-15c-5p, miR-30d-5p, miR-93a-5p, and miR-730-5p were detected only in mature testis. miRs 92a-3p, 202-5p, 15c-5p, and 30d-5p were also detected in a juvenile ovary. The RT-qPCR experiment demonstrated lack of correlation in miRNA transcript levels in seminal plasma versus blood plasma. Our results indicate that salmon semen is rich in miRNAs, which are present in both spermatozoa and seminal plasma. Testicular-supporting somatic cells are likely the source of seminal plasma enrichment, whereas blood plasma is unlikely to contribute to the seminal plasma miRNA repertoire.
Collapse
|
5
|
Expanding the miRNA Repertoire in Atlantic Salmon; Discovery of IsomiRs and miRNAs Highly Expressed in Different Tissues and Developmental Stages. Cells 2019; 8:cells8010042. [PMID: 30641951 PMCID: PMC6356880 DOI: 10.3390/cells8010042] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) are important post-transcriptional gene expression regulators. Here, 448 different miRNA genes, including 17 novel miRNAs, encoding for 589 mature Atlantic salmon miRNAs were identified after sequencing 111 samples (fry, pathogen challenged fry, various developmental and adult tissues). This increased the reference miRNAome with almost one hundred genes. Prior to isomiR characterization (mature miRNA variants), the proportion of erroneous sequence variants (ESVs) arising in the analysis pipeline was assessed. The ESVs were biased towards 5’ and 3’ end of reads in unexpectedly high proportions indicating that measurements of ESVs rather than Phred score should be used to avoid misinterpreting ESVs as isomiRs. Forty-three isomiRs were subsequently discovered. The biological effect of the isomiRs measured as increases in target diversity was small (<3%). Five miRNA genes showed allelic variation that had a large impact on target gene diversity if present in the seed. Twenty-one miRNAs were ubiquitously expressed while 31 miRNAs showed predominant expression in one or few tissues, indicating housekeeping or tissue specific functions, respectively. The miR-10 family, known to target Hox genes, were highly expressed in the developmental stages. The proportion of miR-430 family members, participating in maternal RNA clearance, was high at the earliest developmental stage.
Collapse
|
6
|
Zhou Z, Lin Z, Pang X, Shan P, Wang J. MicroRNA regulation of Toll-like receptor signaling pathways in teleost fish. FISH & SHELLFISH IMMUNOLOGY 2018; 75:32-40. [PMID: 29408644 DOI: 10.1016/j.fsi.2018.01.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/12/2018] [Accepted: 01/25/2018] [Indexed: 06/07/2023]
Abstract
The innate immune system is the first line defense mechanism that recognizes, responds to, controls or eliminates invading pathogens. Toll-like receptors (TLRs) are a critical family of pattern recognition receptors (PRRs) tightly regulated by complex mechanisms involving many molecules to ensure a beneficial outcome in response to foreign invaders. MicroRNAs (miRNAs), a transcriptional and posttranscriptional regulator family in a wide range of biological processes, have been identified as new molecules related to the regulation of TLR-signaling pathways in immune responses. To date, at least 22 TLR types have been identified in more than a dozen different fish species. However, the functions and underlying mechanisms of miRNAs in the regulation of inflammatory responses related to the TLR-signaling pathway in fish is lacking. In this review, we summarize the regulation of miRNA expression profiles in the presence of TLR ligands or pathogen infections in teleost fish. We focus on the effects of miRNAs in regulating TLR-signaling pathways by targeting multiple molecules, including TLRs themselves, TLR-associated signaling proteins, and TLR-induced cytokines. An understanding of the relationship between the TLR-signaling pathways and miRNAs may provide new insights for drug intervention to manipulate immune responses in fish.
Collapse
Affiliation(s)
- Zhixia Zhou
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China.
| | - Zhijuan Lin
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China; Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Xin Pang
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Peipei Shan
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Jianxun Wang
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
7
|
Herkenhoff ME, Oliveira AC, Nachtigall PG, Costa JM, Campos VF, Hilsdorf AWS, Pinhal D. Fishing Into the MicroRNA Transcriptome. Front Genet 2018; 9:88. [PMID: 29616080 PMCID: PMC5868305 DOI: 10.3389/fgene.2018.00088] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/02/2018] [Indexed: 01/18/2023] Open
Abstract
In the last decade, several studies have been focused on revealing the microRNA (miRNA) repertoire and determining their functions in farm animals such as poultry, pigs, cattle, and fish. These small non-protein coding RNA molecules (18-25 nucleotides) are capable of controlling gene expression by binding to messenger RNA (mRNA) targets, thus interfering in the final protein output. MiRNAs have been recognized as the main regulators of biological features of economic interest, including body growth, muscle development, fat deposition, and immunology, among other highly valuable traits, in aquatic livestock. Currently, the miRNA repertoire of some farmed fish species has been identified and characterized, bringing insights about miRNA functions, and novel perspectives for improving health and productivity. In this review, we summarize the current advances in miRNA research by examining available data on Neotropical and other key species exploited by fisheries and in aquaculture worldwide and discuss how future studies on Neotropical fish could benefit from this knowledge. We also make a horizontal comparison of major results and discuss forefront strategies for miRNA manipulation in aquaculture focusing on forward-looking ideas for forthcoming research.
Collapse
Affiliation(s)
- Marcos E. Herkenhoff
- Laboratory of Genomics and Molecular Evolution, Department of Genetics, Institute of Biosciences of Botucatu, Sao Paulo State University, Botucatu, Brazil
| | - Arthur C. Oliveira
- Laboratory of Genomics and Molecular Evolution, Department of Genetics, Institute of Biosciences of Botucatu, Sao Paulo State University, Botucatu, Brazil
| | - Pedro G. Nachtigall
- Laboratory of Genomics and Molecular Evolution, Department of Genetics, Institute of Biosciences of Botucatu, Sao Paulo State University, Botucatu, Brazil
| | - Juliana M. Costa
- Laboratory of Genomics and Molecular Evolution, Department of Genetics, Institute of Biosciences of Botucatu, Sao Paulo State University, Botucatu, Brazil
| | - Vinicius F. Campos
- Laboratory of Structural Genomics (GenEstrut), Graduate Program of Biotechnology, Technology Developmental Center, Federal University of Pelotas, Pelotas, Brazil
| | | | - Danillo Pinhal
- Laboratory of Genomics and Molecular Evolution, Department of Genetics, Institute of Biosciences of Botucatu, Sao Paulo State University, Botucatu, Brazil
| |
Collapse
|
8
|
Epigenetics in teleost fish: From molecular mechanisms to physiological phenotypes. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:210-244. [PMID: 29369794 DOI: 10.1016/j.cbpb.2018.01.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 02/07/2023]
Abstract
While the field of epigenetics is increasingly recognized to contribute to the emergence of phenotypes in mammalian research models across different developmental and generational timescales, the comparative biology of epigenetics in the large and physiologically diverse vertebrate infraclass of teleost fish remains comparatively understudied. The cypriniform zebrafish and the salmoniform rainbow trout and Atlantic salmon represent two especially important teleost orders, because they offer the unique possibility to comparatively investigate the role of epigenetic regulation in 3R and 4R duplicated genomes. In addition to their sequenced genomes, these teleost species are well-characterized model species for development and physiology, and therefore allow for an investigation of the role of epigenetic modifications in the emergence of physiological phenotypes during an organism's lifespan and in subsequent generations. This review aims firstly to describe the evolution of the repertoire of genes involved in key molecular epigenetic pathways including histone modifications, DNA methylation and microRNAs in zebrafish, rainbow trout, and Atlantic salmon, and secondly, to discuss recent advances in research highlighting a role for molecular epigenetics in shaping physiological phenotypes in these and other teleost models. Finally, by discussing themes and current limitations of the emerging field of teleost epigenetics from both theoretical and technical points of view, we will highlight future research needs and discuss how epigenetics will not only help address basic research questions in comparative teleost physiology, but also inform translational research including aquaculture, aquatic toxicology, and human disease.
Collapse
|
9
|
Gavery MR, Roberts SB. Epigenetic considerations in aquaculture. PeerJ 2017; 5:e4147. [PMID: 29230373 PMCID: PMC5723431 DOI: 10.7717/peerj.4147] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022] Open
Abstract
Epigenetics has attracted considerable attention with respect to its potential value in many areas of agricultural production, particularly under conditions where the environment can be manipulated or natural variation exists. Here we introduce key concepts and definitions of epigenetic mechanisms, including DNA methylation, histone modifications and non-coding RNA, review the current understanding of epigenetics in both fish and shellfish, and propose key areas of aquaculture where epigenetics could be applied. The first key area is environmental manipulation, where the intention is to induce an ‘epigenetic memory’ either within or between generations to produce a desired phenotype. The second key area is epigenetic selection, which, alone or combined with genetic selection, may increase the reliability of producing animals with desired phenotypes. Based on aspects of life history and husbandry practices in aquaculture species, the application of epigenetic knowledge could significantly affect the productivity and sustainability of aquaculture practices. Conversely, clarifying the role of epigenetic mechanisms in aquaculture species may upend traditional assumptions about selection practices. Ultimately, there are still many unanswered questions regarding how epigenetic mechanisms might be leveraged in aquaculture.
Collapse
Affiliation(s)
- Mackenzie R Gavery
- School of Aquatic & Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Steven B Roberts
- School of Aquatic & Fishery Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
10
|
Valenzuela-Miranda D, Valenzuela-Muñoz V, Farlora R, Gallardo-Escárate C. MicroRNA-based transcriptomic responses of Atlantic salmon during infection by the intracellular bacterium Piscirickettsia salmonis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:287-296. [PMID: 28870451 DOI: 10.1016/j.dci.2017.08.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that have emerged as key regulators in diverse biological processes across taxa. However, despite the importance of these transcripts, little is known about their role during the immune response in salmonids. Because of this, we use deep sequencing technologies to explore the microRNA-based transcriptomic response of the Atlantic salmon (Salmo salar) to the intracellular bacteria Piscirickettsia salmonis, one of the main threats to salmon aquaculture in Chile. Hence, 594 different miRNAs were identified from head kidney and spleen transcriptomic data. Among them, miRNA families mir-181, mir-143 and mir-21 were the most abundant in control groups, while after infection with P. salmonis, mir-21, mir-181 and mir-30 were the most predominant families. Furthermore, transcriptional analysis revealed 84 and 25 differentially expressed miRNAs in head kidney and spleen respectively, with an overlapping response of 10 miRNAs between the analyzed tissues. Target prediction, coupled with GO enrichment analysis, revealed that the possible targets of the most regulated miRNAs were genes involved in the immune response, such as cortisol metabolism, chemokine-mediated signaling pathway and neutrophil chemotaxis genes. Among these, predicted putative target genes such as C-C motif chemokine 19-like, stromal cell-derived factor 1-like, myxovirus resistance protein 2 and hepcidin-1 were identified. Overall, our results suggest that miRNA expression in co-modulation with transcription activity of target genes is related to putative roles of non-coding RNAs in the immune response of Atlantic salmon against intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Diego Valenzuela-Miranda
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P. O. Box 160-C, Concepción, Chile
| | - Valentina Valenzuela-Muñoz
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P. O. Box 160-C, Concepción, Chile
| | - Rodolfo Farlora
- Laboratorio de Biotecnología Acuática y Genómica Reproductiva/Instituto de Biología, Facultad de Ciencias Universidad de Valparaíso, Chile
| | - Cristian Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P. O. Box 160-C, Concepción, Chile.
| |
Collapse
|
11
|
Valenzuela-Muñoz V, Novoa B, Figueras A, Gallardo-Escárate C. Modulation of Atlantic salmon miRNome response to sea louse infestation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:380-391. [PMID: 28711463 DOI: 10.1016/j.dci.2017.07.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
MicroRNAs are non-coding RNA that plays a crucial role in post-transcriptional regulation and immune system regulation. On other hand, sea lice are prevalent parasites that affect salmon farming, generating different degrees of immune suppression depending on the salmon and sea louse species. Caligus rogercresseyi for example, which affects the salmon industry in Chile, decreases Th1 response, macrophage activation, TLR-mediated response and iron regulation in infected fish. In this study, we explore Atlantic salmon miRNome during infestation by C. rogercresseyi. Using small RNA sequencing, we annotated 1718 miRNAs for skin and head kidney from infected Atlantic salmon. The most abundant families identified were mir-10, mir-21, mir-30, mir-181 and let7. Significant differences were found between tissue, with 1404 annotated miRNA in head kidney and 529 in skin. Differential analysis of transcript expression indicated that at an early stage of infestation miRNA expression was higher in head kidney than in skin tissue, revealing tissue-specific expression patterns. In parallel, miRNA target prediction using 3'UTRs from highly regulated immune-related genes and iron metabolism showed that mir-140-4 and mir-181a-2-5 modulate the expression of TLR22 and Aminolevulinic acid synthase, respectively. This study contributes knowledge about the immune response of Atlantic salmon during infestation with sea lice.
Collapse
Affiliation(s)
- Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research, Department of Oceanography, University of Concepcion, Barrio Universitario s/n, Concepción, Chile
| | - Beatriz Novoa
- Institute of Marine Research, Spanish National Research Council (CSIC), Eduardo Cabello 6, Vigo, Spain
| | - Antonio Figueras
- Institute of Marine Research, Spanish National Research Council (CSIC), Eduardo Cabello 6, Vigo, Spain
| | - Cristian Gallardo-Escárate
- Interdisciplinary Center for Aquaculture Research, Department of Oceanography, University of Concepcion, Barrio Universitario s/n, Concepción, Chile.
| |
Collapse
|
12
|
Skaftnesmo KO, Edvardsen RB, Furmanek T, Crespo D, Andersson E, Kleppe L, Taranger GL, Bogerd J, Schulz RW, Wargelius A. Integrative testis transcriptome analysis reveals differentially expressed miRNAs and their mRNA targets during early puberty in Atlantic salmon. BMC Genomics 2017; 18:801. [PMID: 29047327 PMCID: PMC5648517 DOI: 10.1186/s12864-017-4205-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Our understanding of the molecular mechanisms implementing pubertal maturation of the testis in vertebrates is incomplete. This topic is relevant in Atlantic salmon aquaculture, since precocious male puberty negatively impacts animal welfare and growth. We hypothesize that certain miRNAs modulate mRNAs relevant for the initiation of puberty. To explore which miRNAs regulate mRNAs during initiation of puberty in salmon, we performed an integrated transcriptome analysis (miRNA and mRNA-seq) of salmon testis at three stages of development: an immature, long-term quiescent stage, a prepubertal stage just before, and a pubertal stage just after the onset of single cell proliferation activity in the testis. RESULTS Differentially expressed miRNAs clustered into 5 distinct expression profiles related to the immature, prepubertal and pubertal salmon testis. Potential mRNA targets of these miRNAs were predicted with miRmap and filtered for mRNAs displaying negatively correlated expression patterns. In summary, this analysis revealed miRNAs previously known to be regulated in immature vertebrate testis (miR-101, miR-137, miR-92b, miR-18a, miR-20a), but also miRNAs first reported here as regulated in the testis (miR-new289, miR-30c, miR-724, miR-26b, miR-new271, miR-217, miR-216a, miR-135a, miR-new194 and the novel predicted n268). By KEGG enrichment analysis, progesterone signaling and cell cycle pathway genes were found regulated by these differentially expressed miRNAs. During the transition into puberty we found differential expression of miRNAs previously associated (let7a/b/c), or newly associated (miR-15c, miR-2184, miR-145 and the novel predicted n7a and b) with this stage. KEGG enrichment analysis revealed that mRNAs of the Wnt, Hedgehog and Apelin signaling pathways were potential regulated targets during the transition into puberty. Likewise, several regulated miRNAs in the pubertal stage had earlier been associated (miR-20a, miR-25, miR-181a, miR-202, let7c/d/a, miR-125b, miR-222a/b, miR-190a) or have now been found connected (miR-2188, miR-144, miR-731, miR-8157 and the novel n2) to the initiation of puberty. CONCLUSIONS This study has - for the first time - linked testis maturation to specific miRNAs and their inversely correlated expressed targets in Atlantic salmon. The study indicates a broad functional conservation of already known miRNAs and associated pathways involved in the transition into puberty in vertebrates. The analysis also reveals miRNAs not previously associated with testis tissue or its maturation, which calls for further functional studies in the testis.
Collapse
Affiliation(s)
- K O Skaftnesmo
- Institute of Marine Research, Postboks 1870 Nordnes, 5817, Bergen, Norway.
| | - R B Edvardsen
- Institute of Marine Research, Postboks 1870 Nordnes, 5817, Bergen, Norway
| | - T Furmanek
- Institute of Marine Research, Postboks 1870 Nordnes, 5817, Bergen, Norway
| | - D Crespo
- Reproductive Biology group, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - E Andersson
- Institute of Marine Research, Postboks 1870 Nordnes, 5817, Bergen, Norway
| | - L Kleppe
- Institute of Marine Research, Postboks 1870 Nordnes, 5817, Bergen, Norway
| | - G L Taranger
- Institute of Marine Research, Postboks 1870 Nordnes, 5817, Bergen, Norway
| | - J Bogerd
- Reproductive Biology group, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - R W Schulz
- Institute of Marine Research, Postboks 1870 Nordnes, 5817, Bergen, Norway.,Reproductive Biology group, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - A Wargelius
- Institute of Marine Research, Postboks 1870 Nordnes, 5817, Bergen, Norway
| |
Collapse
|
13
|
Andreassen R, Woldemariam NT, Egeland IØ, Agafonov O, Sindre H, Høyheim B. Identification of differentially expressed Atlantic salmon miRNAs responding to salmonid alphavirus (SAV) infection. BMC Genomics 2017; 18:349. [PMID: 28472924 PMCID: PMC5418855 DOI: 10.1186/s12864-017-3741-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Background MicroRNAs (miRNAs) control multiple biological processes including the innate immune responses by negative post-transcriptional regulation of gene expression. As there were no studies on the role(s) of miRNAs in viral diseases in Atlantic salmon, we aimed to identify miRNAs responding to salmonid alphavirus (SAV) infection. Their expression were studied at different time points post infection with SAV isolates associated with different mortalities. Furthermore, the genome sequences of the identified miRNAs were analysed to reveal putative cis-regulatory elements, and, finally, their putative target genes were predicted. Results Twenty differentially expressed miRNAs (DE miRNAs) were identified. The expression of the majority of these increased post infection with maximum levels reached after the viral load were stabilized or decreasing. On the other hand, some miRNAs (e.g. the miRNA-21 family) showed decreased expression at the early time points post infection. There were significant differences in the temporal expression of individual miRNA associated with different SAV isolates. Target gene prediction in SAV responsive immune network genes showed that seventeen of the DE miRNAs could target 24 genes (e.g. IRF3, IRF7). Applying the Atlantic salmon transcriptome as input 28 more immune network genes were revealed as putative targets (e.g. IRF5, IRF4). The majority of the predicted target genes promote inflammatory response. The upstream sequences of the miRNA genes revealed a high density of cis-regulatory sequences known as binding sites for immune network transcription factors (TFs). A high expression in the late phase could therefore be due to increased transcription promoted by immune response activated TFs. Based on the in silico target predictions, we discuss their putative roles as early promotors or late inhibitors of inflammation. We propose that the differences in expressions associated with different SAV isolates could contribute to their differences in mortality rates. Conclusions This study represents the first steps in exploring miRNAs important in viral-host interaction in Atlantic salmon. We identified several miRNAs responding to SAV infection. Some likely to prohibit harmful inflammation while other may promote an early immune response. Their predicted functions need to be validated and further studied in functional assays to fully understand their roles in immune homeostasis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3741-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rune Andreassen
- Department of Pharmacy and Biomedical and Laboratory Sciences, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, Pilestredet 50, N-0130, Oslo, Norway.
| | - Nardos Tesfaye Woldemariam
- Department of Pharmacy and Biomedical and Laboratory Sciences, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, Pilestredet 50, N-0130, Oslo, Norway
| | - Ine Østråt Egeland
- Department of Pharmacy and Biomedical and Laboratory Sciences, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, Pilestredet 50, N-0130, Oslo, Norway
| | - Oleg Agafonov
- Bioinformatics Core Facility, Department of Core Facilities, Institute of Cancer Research, Radium hospital, part of Oslo University Hospital, Oslo, Norway
| | - Hilde Sindre
- Norwegian Veterinary Institute, PB 750 Sentrum, N-106, Oslo, Norway
| | - Bjørn Høyheim
- Department of Basic Sciences and Aquatic Medicine, School of Veterinary Medicine, Norwegian University of Life Sciences, Ullevålsveien 72, 0454, Oslo, Norway
| |
Collapse
|
14
|
Abdelrahman H, ElHady M, Alcivar-Warren A, Allen S, Al-Tobasei R, Bao L, Beck B, Blackburn H, Bosworth B, Buchanan J, Chappell J, Daniels W, Dong S, Dunham R, Durland E, Elaswad A, Gomez-Chiarri M, Gosh K, Guo X, Hackett P, Hanson T, Hedgecock D, Howard T, Holland L, Jackson M, Jin Y, Khalil K, Kocher T, Leeds T, Li N, Lindsey L, Liu S, Liu Z, Martin K, Novriadi R, Odin R, Palti Y, Peatman E, Proestou D, Qin G, Reading B, Rexroad C, Roberts S, Salem M, Severin A, Shi H, Shoemaker C, Stiles S, Tan S, Tang KFJ, Thongda W, Tiersch T, Tomasso J, Prabowo WT, Vallejo R, van der Steen H, Vo K, Waldbieser G, Wang H, Wang X, Xiang J, Yang Y, Yant R, Yuan Z, Zeng Q, Zhou T. Aquaculture genomics, genetics and breeding in the United States: current status, challenges, and priorities for future research. BMC Genomics 2017; 18:191. [PMID: 28219347 PMCID: PMC5319170 DOI: 10.1186/s12864-017-3557-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/06/2017] [Indexed: 12/31/2022] Open
Abstract
Advancing the production efficiency and profitability of aquaculture is dependent upon the ability to utilize a diverse array of genetic resources. The ultimate goals of aquaculture genomics, genetics and breeding research are to enhance aquaculture production efficiency, sustainability, product quality, and profitability in support of the commercial sector and for the benefit of consumers. In order to achieve these goals, it is important to understand the genomic structure and organization of aquaculture species, and their genomic and phenomic variations, as well as the genetic basis of traits and their interrelationships. In addition, it is also important to understand the mechanisms of regulation and evolutionary conservation at the levels of genome, transcriptome, proteome, epigenome, and systems biology. With genomic information and information between the genomes and phenomes, technologies for marker/causal mutation-assisted selection, genome selection, and genome editing can be developed for applications in aquaculture. A set of genomic tools and resources must be made available including reference genome sequences and their annotations (including coding and non-coding regulatory elements), genome-wide polymorphic markers, efficient genotyping platforms, high-density and high-resolution linkage maps, and transcriptome resources including non-coding transcripts. Genomic and genetic control of important performance and production traits, such as disease resistance, feed conversion efficiency, growth rate, processing yield, behaviour, reproductive characteristics, and tolerance to environmental stressors like low dissolved oxygen, high or low water temperature and salinity, must be understood. QTL need to be identified, validated across strains, lines and populations, and their mechanisms of control understood. Causal gene(s) need to be identified. Genetic and epigenetic regulation of important aquaculture traits need to be determined, and technologies for marker-assisted selection, causal gene/mutation-assisted selection, genome selection, and genome editing using CRISPR and other technologies must be developed, demonstrated with applicability, and application to aquaculture industries.Major progress has been made in aquaculture genomics for dozens of fish and shellfish species including the development of genetic linkage maps, physical maps, microarrays, single nucleotide polymorphism (SNP) arrays, transcriptome databases and various stages of genome reference sequences. This paper provides a general review of the current status, challenges and future research needs of aquaculture genomics, genetics, and breeding, with a focus on major aquaculture species in the United States: catfish, rainbow trout, Atlantic salmon, tilapia, striped bass, oysters, and shrimp. While the overall research priorities and the practical goals are similar across various aquaculture species, the current status in each species should dictate the next priority areas within the species. This paper is an output of the USDA Workshop for Aquaculture Genomics, Genetics, and Breeding held in late March 2016 in Auburn, Alabama, with participants from all parts of the United States.
Collapse
Affiliation(s)
- Hisham Abdelrahman
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Mohamed ElHady
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | | | - Standish Allen
- Aquaculture Genetics & Breeding Technology Center, Virginia Institute of Marine Science, Gloucester Point, VA, 23062, USA
| | - Rafet Al-Tobasei
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Lisui Bao
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ben Beck
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL, 36832, USA
| | - Harvey Blackburn
- USDA-ARS-NL Wheat & Corn Collections at a Glance GRP, National Animal Germplasm Program, 1111 S. Mason St., Fort Collins, CO, 80521-4500, USA
| | - Brian Bosworth
- USDA-ARS/CGRU, 141 Experimental Station Road, Stoneville, MS, 38701, USA
| | - John Buchanan
- Center for Aquaculture Technologies, 8395 Camino Santa Fe, Suite E, San Diego, CA, 92121, USA
| | - Jesse Chappell
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - William Daniels
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Sheng Dong
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Rex Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Evan Durland
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, 97331, USA
| | - Ahmed Elaswad
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Marta Gomez-Chiarri
- Department of Fisheries, Animal & Veterinary Science, 134 Woodward Hall, 9 East Alumni Avenue, Kingston, RI, 02881, USA
| | - Kamal Gosh
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, 6959 Miller Avenue, Port Norris, NJ, 08349, USA
| | - Perry Hackett
- Department of Genetics, Cell Biology and Development, 5-108 MCB, 420 Washington Avenue SE, Minneapolis, MN, 55455, USA
| | - Terry Hanson
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dennis Hedgecock
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-0371, USA
| | - Tiffany Howard
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Leigh Holland
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Molly Jackson
- Taylor Shellfish Farms, 130 SE Lynch RD, Shelton, WA, 98584, USA
| | - Yulin Jin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Karim Khalil
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Thomas Kocher
- Department of Biology, University of Maryland, 2132 Biosciences Research Building, College Park, MD, 20742, USA
| | - Tim Leeds
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, 25430, USA
| | - Ning Li
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Lauren Lindsey
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Shikai Liu
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhanjiang Liu
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| | - Kyle Martin
- Troutlodge, 27090 Us Highway 12, Naches, WA, 98937, USA
| | - Romi Novriadi
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ramjie Odin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yniv Palti
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, 25430, USA
| | - Eric Peatman
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dina Proestou
- USDA ARS NEA NCWMAC Shellfish Genetics at the University Rhode Island, 469 CBLS, 120 Flagg Road, Kingston, RI, 02881, USA
| | - Guyu Qin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Benjamin Reading
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695-7617, USA
| | - Caird Rexroad
- USDA ARS Office of National Programs, George Washington Carver Center Room 4-2106, 5601 Sunnyside Avenue, Beltsville, MD, 20705, USA
| | - Steven Roberts
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98105, USA
| | - Mohamed Salem
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Andrew Severin
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames, IA, 50011, USA
| | - Huitong Shi
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Craig Shoemaker
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL, 36832, USA
| | - Sheila Stiles
- USDOC/NOAA, National Marine Fisheries Service, NEFSC, Milford Laboratory, Milford, Connectcut, 06460, USA
| | - Suxu Tan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Kathy F J Tang
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Wilawan Thongda
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Terrence Tiersch
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, 70820, USA
| | - Joseph Tomasso
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Wendy Tri Prabowo
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Roger Vallejo
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, 25430, USA
| | | | - Khoi Vo
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Geoff Waldbieser
- USDA-ARS/CGRU, 141 Experimental Station Road, Stoneville, MS, 38701, USA
| | - Hanping Wang
- Aquaculture Genetics and Breeding Laboratory, The Ohio State University South Centers, Piketon, OH, 45661, USA
| | - Xiaozhu Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yujia Yang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Roger Yant
- Hybrid Catfish Company, 1233 Montgomery Drive, Inverness, MS, 38753, USA
| | - Zihao Yuan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Qifan Zeng
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tao Zhou
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
15
|
Agarwal S, Nagpure NS, Srivastava P, Kumar R, Pandey M, Srivastava S, Jena JK, Das P, Kushwaha B. In Silico Mining of Conserved miRNAs of Indian Catfish Clarias batrachus (Linnaeus, 1758) from the Contigs, ESTs, and BAC End Sequences. Appl Biochem Biotechnol 2016; 182:956-966. [DOI: 10.1007/s12010-016-2373-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022]
|
16
|
Integrated analysis of miRNA and mRNA expression profiles in tilapia gonads at an early stage of sex differentiation. BMC Genomics 2016; 17:328. [PMID: 27142172 PMCID: PMC4855716 DOI: 10.1186/s12864-016-2636-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/22/2016] [Indexed: 12/21/2022] Open
Abstract
Background MicroRNAs (miRNAs) represent a second regulatory network that has important effects on gene expression and protein translation during biological process. However, the possible role of miRNAs in the early stages of fish sex differentiation is not well understood. In this study, we carried an integrated analysis of miRNA and mRNA expression profiles to explore their possibly regulatory patterns at the critical stage of sex differentiation in tilapia. Results We identified 279 pre-miRNA genes in tilapia genome, which were highly conserved in other fish species. Based on small RNA library sequencing, we identified 635 mature miRNAs in tilapia gonads, in which 62 and 49 miRNAs showed higher expression in XX and XY gonads, respectively. The predicted targets of these sex-biased miRNAs (e.g., miR-9, miR-21, miR-30a, miR-96, miR-200b, miR-212 and miR-7977) included genes encoding key enzymes in steroidogenic pathways (Cyp11a1, Hsd3b, Cyp19a1a, Hsd11b) and key molecules involved in vertebrate sex differentiation (Foxl2, Amh, Star1, Sf1, Dmrt1, and Gsdf). These genes also showed sex-biased expression in tilapia gonads at 5 dah. Some miRNAs (e.g., miR-96 and miR-737) targeted multiple genes involved in steroid synthesis, suggesting a complex miRNA regulatory network during early sex differentiation in this fish. Conclusions The sequence and expression patterns of most miRNAs in tilapia are conserved in fishes, indicating the basic functions of vertebrate miRNAs might share a common evolutionary origin. This comprehensive analysis of miRNA and mRNA at the early stage of molecular sex differentiation in tilapia XX and XY gonads lead to the discovery of differentially expressed miRNAs and their putative targets, which will facilitate studies of the regulatory network of molecular sex determination and differentiation in fishes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2636-z) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Juanchich A, Bardou P, Rué O, Gabillard JC, Gaspin C, Bobe J, Guiguen Y. Characterization of an extensive rainbow trout miRNA transcriptome by next generation sequencing. BMC Genomics 2016; 17:164. [PMID: 26931235 PMCID: PMC4774146 DOI: 10.1186/s12864-016-2505-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/19/2016] [Indexed: 01/08/2023] Open
Abstract
Background MicroRNAs (miRNAs) have emerged as important post-transcriptional regulators of gene expression in a wide variety of physiological processes. They can control both temporal and spatial gene expression and are believed to regulate 30 to 70 % of the genes. Data are however limited for fish species, with only 9 out of the 30,000 fish species present in miRBase. The aim of the current study was to discover and characterize rainbow trout (Oncorhynchus mykiss) miRNAs in a large number of tissues using next-generation sequencing in order to provide an extensive repertoire of rainbow trout miRNAs. Results A total of 38 different samples corresponding to 16 different tissues or organs were individually sequenced and analyzed independently in order to identify a large number of miRNAs with high confidence. This led to the identification of 2946 miRNA loci in the rainbow trout genome, including 445 already known miRNAs. Differential expression analysis was performed in order to identify miRNAs exhibiting specific or preferential expression among the 16 analyzed tissues. In most cases, miRNAs exhibit a specific pattern of expression in only a few tissues. The expression data from sRNA sequencing were confirmed by RT-qPCR. In addition, novel miRNAs are described in rainbow trout that had not been previously reported in other species. Conclusion This study represents the first characterization of rainbow trout miRNA transcriptome from a wide variety of tissue and sets an extensive repertoire of rainbow trout miRNAs. It provides a starting point for future studies aimed at understanding the roles of miRNAs in major physiological process such as growth, reproduction or adaptation to stress. These rainbow trout miRNAs repertoire provide a novel resource to advance genomic research in salmonid species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2505-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Philippe Bardou
- INRA, UMR1388, Plate-forme SIGENAE/GenPhySE, Chemin de Borde Rouge, Auzeville CS 52627, F-31326, Castanet-Tolosan, France.
| | - Olivier Rué
- INRA, UR875 Plate-forme GenoToul Bioinfo, Chemin de Borde Rouge, Auzeville CS 52627, F-31326, Castanet-Tolosan, France.
| | | | - Christine Gaspin
- INRA, UR875 Plate-forme GenoToul Bioinfo, Chemin de Borde Rouge, Auzeville CS 52627, F-31326, Castanet-Tolosan, France.
| | - Julien Bobe
- INRA, UR1037 LPGP, Campus de Beaulieu, F-35000, Rennes, France.
| | - Yann Guiguen
- INRA, UR1037 LPGP, Campus de Beaulieu, F-35000, Rennes, France.
| |
Collapse
|
18
|
Mennigen JA. Micromanaging metabolism-a role for miRNAs in teleost energy metabolism. Comp Biochem Physiol B Biochem Mol Biol 2015; 199:115-125. [PMID: 26384523 DOI: 10.1016/j.cbpb.2015.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/08/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
Abstract
MicroRNAs (miRNAs) are small, non-protein coding RNA sequences, which are found in most eukaryotes. Since their initial discovery, miRNAs have emerged as important regulators of many biological processes. One of the most important processes profoundly regulated by miRNAs is energy metabolism. Traditionally, metabolic functions of miRNAs have been studied in genome-sequenced mammalian organisms, especially the mouse model. However, partially driven by commercial interest in aquaculture, increasingly feasible large-scale molecular techniques have resulted in the characterization of miRNA repertoires, and importantly, several genome sequences of several (commercially important) teleost species, which also hold important roles as research models in the comparative physiology of energy metabolism. This review aims to introduce the recent advances in miRNA research in teleost fish and to describe the current knowledge of miRNA function in teleost energy metabolism. The most pressing research needs and questions to determine metabolic roles of miRNAs in teleost models are presented, as well as applicable technical approaches and current bottlenecks. Rainbow trout, which possess the advantages of newly available molecular tools and a long history as comparative research model in teleost energy metabolism, are discussed as a promising research model to address these questions.
Collapse
Affiliation(s)
- Jan A Mennigen
- College of Pharmacy, Department of Toxicology and Pharmacology, University of Austin at Texas, 107 W Dean Keeton, Austin, TX 78712, USA
| |
Collapse
|
19
|
Kaitetzidou E, Xiang J, Antonopoulou E, Tsigenopoulos CS, Sarropoulou E. Dynamics of gene expression patterns during early development of the European seabass (Dicentrarchus labrax). Physiol Genomics 2015; 47:158-69. [DOI: 10.1152/physiolgenomics.00001.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/23/2015] [Indexed: 01/06/2023] Open
Abstract
Larval and embryonic stages are the most critical period in the life cycle of marine fish. Key developmental events occur early in development and are influenced by external parameters like stress, temperature, salinity, and photoperiodism. Any failure may cause malformations, developmental delays, poor growth, and massive mortalities. Advanced understanding of molecular processes underlying marine larval development may lead to superior larval rearing conditions. Today, the new sequencing and bioinformatic methods allow transcriptome screens comprising messenger (mRNA) and microRNA (miRNA) with the scope of detecting differential expression for any species of interest. In the present study, we applied Illumina technology to investigate the transcriptome of early developmental stages of the European seabass ( Dicentrarchus labrax). The European seabass, in its natural environment, is a euryhaline species and has shown high adaptation processes in early life phases. During its embryonic and larval phases the European seabass lives in a marine environment and as a juvenile it migrates to coastal zones, estuaries, and lagoons. Investigating the dynamics of gene expression in its early development may shed light on factors promoting phenotypic plasticity and may also contribute to the improvement and advancement of rearing methods of the European seabass, a species of high economic importance in European and Mediterranean aquaculture. We present the identification, characterization, and expression of mRNA and miRNA, comprising paralogous genes and differentially spliced transcripts from early developmental stages of the European seabass. We further investigated the detection of possible interactions of miRNA with mRNA.
Collapse
Affiliation(s)
- E. Kaitetzidou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Greece
- School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Greece; and
| | - J. Xiang
- Genomics Resources Core Facility, Weill Cornell Medical College, New York, New York
| | - E. Antonopoulou
- School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Greece; and
| | - C. S. Tsigenopoulos
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Greece
| | - E. Sarropoulou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Greece
| |
Collapse
|
20
|
Bizuayehu TT, Johansen SD, Puvanendran V, Toften H, Babiak I. Temperature during early development has long-term effects on microRNA expression in Atlantic cod. BMC Genomics 2015; 16:305. [PMID: 25881242 PMCID: PMC4403832 DOI: 10.1186/s12864-015-1503-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 03/27/2015] [Indexed: 12/22/2022] Open
Abstract
Background Environmental temperature has serious implications in life cycle of aquatic ectotherms. Understanding the molecular mechanisms of temperature acclimation and adaptation of marine organisms is of the uttermost importance for ecology, fisheries, and aquaculture, as it allows modeling the effects of global warming on population dynamics. Regulatory molecules are major modulators of acclimation and adaptation; among them, microRNAs (miRNAs) are versatile and substantial contributors to regulatory networks of development and adaptive plasticity. However, their role in thermal plasticity is poorly known. We have asked whether the temperature and its shift during the early ontogeny (embryonic and larval development) affect the miRNA repertoire of Atlantic cod (Gadus morhua), and if thermal experience has long-term consequences in the miRNA profile. Results We characterized miRNA during different developmental stages and in juvenile tissues using next generation sequencing. We identified 389 putative miRNA precursor loci, 120 novel precursor miRNAs, and 281 mature miRNAs. Some miRNAs showed stage- or tissue-enriched expression and miRNAs, such as the miR-17 ~ 92 cluster, myomiRs (miR-206), neuromiRs (miR-9, miR-124), miR-130b, and miR-430 showed differential expression in different temperature regimes. Long-term effect of embryonic incubation temperature was revealed on expression of some miRNAs in juvenile pituitary (miR-449), gonad (miR-27c, miR-30c, and miR-200a), and liver (let-7 h, miR-7a, miR-22, miR-34c, miR-132a, miR-192, miR-221, miR-451, miR-2188, and miR-7550), but not in brain. Some of differentially expressed miRNAs in the liver were confirmed using LNA-based rt-qPCR. The effect of temperature on methylation status of selected miRNA promoter regions was mostly inconclusive. Conclusions Temperature elevation by several degrees during embryonic and larval developmental stages significantly alters the miRNA profile, both short-term and long-term. Our results suggest that a further rise in seas temperature might affect life history of Atlantic cod. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1503-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Steinar D Johansen
- University of Nordland, Faculty of Biosciences and Aquaculture, Post Box 1490, 8049, Bodø, Norway. .,Arctic University of Norway, FHS, RNA Lab, Dept Med Biol, N-9037, Tromsø, Norway.
| | | | - Hilde Toften
- Nofima AS, Muninbakken 9-13, P.O. box 6122, NO, 9291, Tromsø, Norway.
| | - Igor Babiak
- University of Nordland, Faculty of Biosciences and Aquaculture, Post Box 1490, 8049, Bodø, Norway.
| |
Collapse
|
21
|
Johansen I, Andreassen R. Validation of miRNA genes suitable as reference genes in qPCR analyses of miRNA gene expression in Atlantic salmon (Salmo salar). BMC Res Notes 2014; 8:945. [PMID: 25533334 PMCID: PMC4308020 DOI: 10.1186/1756-0500-7-945] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 12/21/2022] Open
Abstract
Background MicroRNAs (miRNAs) are an abundant class of endogenous small RNA molecules that downregulate gene expression at the post-transcriptional level. They play important roles by regulating genes that control multiple biological processes, and recent years there has been an increased interest in studying miRNA genes and miRNA gene expression. The most common method applied to study gene expression of single genes is quantitative PCR (qPCR). However, before expression of mature miRNAs can be studied robust qPCR methods (miRNA-qPCR) must be developed. This includes identification and validation of suitable reference genes. We are particularly interested in Atlantic salmon (Salmo salar). This is an economically important aquaculture species, but no reference genes dedicated for use in miRNA-qPCR methods has been validated for this species. Our aim was, therefore, to identify suitable reference genes for miRNA-qPCR methods in Salmo salar. Results We used a systematic approach where we utilized similar studies in other species, some biological criteria, results from deep sequencing of small RNAs and, finally, experimental validation of candidate reference genes by qPCR to identify the most suitable reference genes. Ssa-miR-25-3p was identified as most suitable single reference gene. The best combinations of two reference genes were ssa-miR-25-3p and ssa-miR-455-5p. These two genes were constitutively and stably expressed across many different tissues. Furthermore, infectious salmon anaemia did not seem to affect their expression levels. These genes were amplified with high specificity, good efficiency and the qPCR assays showed a good linearity when applying a simple cybergreen miRNA-PCR method using miRNA gene specific forward primers. Conclusions We have identified suitable reference genes for miRNA-qPCR in Atlantic salmon. These results will greatly facilitate further studies on miRNA genes in this species. The reference genes identified are conserved genes that are identical in their mature sequence in many aquaculture species. Therefore, they may also be suitable as reference genes in other teleosts. Finally, the systematic approach used in our study successfully identified suitable reference genes, suggesting that this may be a useful strategy to apply in similar validation studies in other aquaculture species. Electronic supplementary material The online version of this article (doi:10.1186/1756-0500-7-945) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Rune Andreassen
- Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, Oslo, Norway.
| |
Collapse
|
22
|
Kapralova KH, Franzdóttir SR, Jónsson H, Snorrason SS, Jónsson ZO. Patterns of miRNA expression in Arctic charr development. PLoS One 2014; 9:e106084. [PMID: 25170615 PMCID: PMC4149506 DOI: 10.1371/journal.pone.0106084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 08/01/2014] [Indexed: 11/18/2022] Open
Abstract
Micro-RNAs (miRNAs) are now recognized as a major class of developmental regulators. Sequences of many miRNAs are highly conserved, yet they often exhibit temporal and spatial heterogeneity in expression among species and have been proposed as an important reservoir for adaptive evolution and divergence. With this in mind we studied miRNA expression during embryonic development of offspring from two contrasting morphs of the highly polymorphic salmonid Arctic charr (Salvelinus alpinus), a small benthic morph from Lake Thingvallavatn (SB) and an aquaculture stock (AC). These morphs differ extensively in morphology and adult body size. We established offspring groups of the two morphs and sampled at several time points during development. Four time points (3 embryonic and one just before first feeding) were selected for high-throughput small-RNA sequencing. We identified a total of 326 conserved and 427 novel miRNA candidates in Arctic charr, of which 51 conserved and 6 novel miRNA candidates were differentially expressed among developmental stages. Furthermore, 53 known and 19 novel miRNAs showed significantly different levels of expression in the two contrasting morphs. Hierarchical clustering of the 53 conserved miRNAs revealed that the expression differences are confined to the embryonic stages, where miRNAs such as sal-miR-130, 30, 451, 133, 26 and 199a were highly expressed in AC, whereas sal-miR-146, 183, 206 and 196a were highly expressed in SB embryos. The majority of these miRNAs have previously been found to be involved in key developmental processes in other species such as development of brain and sensory epithelia, skeletogenesis and myogenesis. Four of the novel miRNA candidates were only detected in either AC or SB. miRNA candidates identified in this study will be combined with available mRNA expression data to identify potential targets and involvement in developmental regulation.
Collapse
Affiliation(s)
- Kalina H. Kapralova
- Institute of Life- and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | | | - Hákon Jónsson
- Institute of Life- and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | - Sigurður S. Snorrason
- Institute of Life- and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | - Zophonías O. Jónsson
- Institute of Life- and Environmental Sciences, University of Iceland, Reykjavík, Iceland
- * E-mail:
| |
Collapse
|
23
|
Abstract
MicroRNAs (miRNAs) are transcriptional and posttranscriptional regulators involved in nearly all known biological processes in distant eukaryotic clades. Their discovery and functional characterization have broadened our understanding of biological regulatory mechanisms in animals and plants. They show both evolutionary conserved and unique features across Metazoa. Here, we present the current status of the knowledge about the role of miRNA in development, growth, and physiology of teleost fishes, in comparison to other vertebrates. Infraclass Teleostei is the most abundant group among vertebrate lineage. Fish are an important component of aquatic ecosystems and human life, being the prolific source of animal proteins worldwide and a vertebrate model for biomedical research. We review miRNA biogenesis, regulation, modifications, and mechanisms of action. Specific sections are devoted to the role of miRNA in teleost development, organogenesis, tissue differentiation, growth, regeneration, reproduction, endocrine system, and responses to environmental stimuli. Each section discusses gaps in the current knowledge and pinpoints the future directions of research on miRNA in teleosts.
Collapse
Affiliation(s)
| | - Igor Babiak
- Faculty of Aquaculture and Biosciences, University of Nordland, Bodø, Norway
| |
Collapse
|
24
|
Sha Z, Gong G, Wang S, Lu Y, Wang L, Wang Q, Chen S. Identification and characterization of Cynoglossus semilaevis microRNA response to Vibrio anguillarum infection through high-throughput sequencing. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:59-69. [PMID: 24296438 DOI: 10.1016/j.dci.2013.11.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 06/02/2023]
Abstract
MicroRNAs (miRNA) play key regulatory roles in diverse biological processes. Cynoglossus semilaevis is an important commercial mariculture fish species in China. To identify miRNAs and investigate immune-related miRNAs of C. semilaevis, we performed high-throughput sequencing on three small RNA libraries prepared from C. semilaevis immune tissues (liver, head kidney, spleen, and intestine). One library was prepared under normal conditions (control, CG); two were prepared during Vibrio anguillarum infection, where vibriosis symptoms were obvious and non-obvious (HOSG and NOSG, respectively). We obtained 11,216,875, 12,313,404, and 11,398,695 clean reads per library, respectively. Bioinformatic analysis identified 452 miRNAs, including 24 putative novel miRNAs. We analyzed differentially expressed miRNAs between two libraries using pairwise comparison. For NOSG-CG, there was significant differential expression of 175 (38.72%) miRNAs. There was significant differential expression of 215 (47.57%) miRNAs between HOSG and CG. Compared with CG, The HOSG-NOSG comparison revealed significantly different expression of 122 (26.99%) miRNAs respectively. Real-time quantitative PCR (RT-qPCR) experiments were performed for 10 miRNAs of the three samples, and agreement was found between the sequencing and RT-qPCR data. For miRNAs that were significantly differentially expressed, functional annotation of target genes by Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that a set of miRNAs that were expressed highly abundantly and significantly differentially were might involved in immune system development and immune response. To our understanding, this is the first report of comprehensive identification of C. semilaevis miRNAs being differentially regulated in immune tissues (liver, head kidney, spleen, and intestine) in normal conditions relating to V. anguillarum infection. Many miRNAs were differentially regulated upon pathogen exposure. This work provides an opportunity for further understanding of the molecular mechanisms of miRNA regulation in C. semilaevis host-pathogen interactions.
Collapse
Affiliation(s)
- Zhenxia Sha
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China.
| | - Guangye Gong
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, PR China
| | - Shaolin Wang
- Department of Psychiatry & Neurobiology Science, University of Virginia, VA 22911, USA
| | - Yang Lu
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, PR China
| | - Lei Wang
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Qilong Wang
- Tengzhou Fisheries Service Center, Tengzhou 277500, PR China
| | - Songlin Chen
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China.
| |
Collapse
|
25
|
Mennigen JA, Plagnes-Juan E, Figueredo-Silva CA, Seiliez I, Panserat S, Skiba-Cassy S. Acute endocrine and nutritional co-regulation of the hepatic omy-miRNA-122b and the lipogenic gene fas in rainbow trout, Oncorhynchus mykiss. Comp Biochem Physiol B Biochem Mol Biol 2014; 169:16-24. [DOI: 10.1016/j.cbpb.2013.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/23/2013] [Accepted: 12/04/2013] [Indexed: 12/25/2022]
|