1
|
Lee H, Kim JH, Kim S, Jang SH, Chang Y, Choi YH. Effect of Chewing Hardness on Cognitive-Associated Brain Regions Activation. Int Dent J 2025; 75:1798-1807. [PMID: 40233624 PMCID: PMC12015711 DOI: 10.1016/j.identj.2025.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 02/20/2025] [Accepted: 03/20/2025] [Indexed: 04/17/2025] Open
Abstract
INTRODUCTION AND AIMS Recent findings suggest a potential correlation between mastication and cognitive processes. However, the comprehensive investigation into the neurobiological mechanisms of masticatory control, such as the impact of chewing hardness, on cognitive function, remains incomplete. This study aims to investigate the impact of chewing hardness, as an aspect of masticatory control, on cognitive function by examining brain activation patterns during hard and soft chewing conditions. METHODS A total of 52 healthy young adults (average age of 21.81 years; 24 men and 28 women) underwent fMRI scanning, during which 27 individuals chewed soft and 25 individual chewed hard material. The functional magnetic resonance imaging (fMRI) was employed to elucidate the overlapping and distinct patterns of activated brain regions associated with soft- and hard-chewing conditions. Subsequently, correlations between these activated brain regions and neuropsychological measures were assessed. RESULTS Conjunction analysis revealed that both soft- and hard-chewing conditions stimulated brain regions directly associated with orofacial movement and spatial information processing. Two-sample t-test result indicated that the hard-chewing group had higher activation mostly in the caudate nucleus and frontal brain regions associated with cognitive function compared with the soft-chewing group. Furthermore, the activation strength of these brain regions positively correlated with neuropsychological measures. CONCLUSION The findings suggest that hard-chewing may be more effective than soft-chewing in stimulating cognition-associated brain regions, potentially enhancing cognitive processing. CLINICAL RELEVANCE Our study shows that hard-chewing activates brain regions linked to cognitive function more than soft-chewing. This suggests that harder chewing could be used as a simple, non-invasive method to enhance cognitive processing. Incorporating harder foods into the diet may offer a practical approach to support cognitive health and improve mental performance.
Collapse
Affiliation(s)
- Hansol Lee
- Department of Medical & Biological Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Ji-Hye Kim
- Department of Preventive Dentistry, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea; Institute for Translational Research in Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Seungho Kim
- Department of Medical & Biological Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Yongmin Chang
- Department of Radiology, Kyungpook National University Hospital, Daegu, Republic of Korea; Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| | - Youn-Hee Choi
- Department of Preventive Dentistry, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea; Institute for Translational Research in Dentistry, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
2
|
Krüger O, Klose U, Hagberg GE, Shiozawa-Bayer T, Evrard H, Meszaros C, Ethofer T, Scheffler K, Ernemann U, Bender B. Fiber architecture in the human ventromedial striatum and its relation with the bed nucleus of the stria terminalis. PLoS One 2025; 20:e0323113. [PMID: 40334005 PMCID: PMC12057886 DOI: 10.1371/journal.pone.0323113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 04/02/2025] [Indexed: 05/09/2025] Open
Abstract
The bed nucleus of the stria terminalis (BST) and the ventromedial striatum (consisting of the head of the caudate nucleus (hCN) and the nucleus accumbens (NAcc)) are both part of complex, foremost limbic networks involved in a variety of neuropsychiatric conditions. However, data on functional or structural connections between the BST and hCN in humans are scarce. In an earlier study using both diffusion tensor magnetic resonance imaging (DTI) and conventional histology we found a pathway from the BST to the orbitofrontal cortex apparently passing directly through the hCN. To confirm this finding, we now examined the hCN in human ex-vivo brain tissue using polarized light microscopy (PLM), a method particularly suitable for depicting myelinated nerve fibers. We further examined whether differences in fiber distribution inside the hCN could be depicted using high-resolution DTI data. PLM revealed different fiber populations inside the hCN and the NAcc. Fibers in the hCN were mostly related to the anterior limb of the internal capsule (ALIC) with some apparently terminating in the hCN while the majority exited the hCN to enter the prefrontal white matter. Fibers originating from the BST were only scarcely seen on this level and appeared to either terminate inside the hCN or join the ALIC. On levels below the anterior commissure, the BST strongly connected 1) to other basal forebrain structures including the NAcc, and 2) with the white matter of the medial prefrontal cortex. Differences in fiber density within the hCN could be reproduced on MRI data but with strong interindividual variation. In summary, PLM revealed a much more complex fiber architecture in the region of interest than suggested by our earlier DTI findings. The study at hand shows that PLM can be a valuable tool for the verification of unclear or ambiguous DTI fiber tracking results.
Collapse
Affiliation(s)
- Oliver Krüger
- Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Uwe Klose
- Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany
| | - Gisela E. Hagberg
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | | | - Henry Evrard
- Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Werner Reichardt Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, United States of America
| | - Cintia Meszaros
- Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany
| | - Thomas Ethofer
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
- Clinic for Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Klaus Scheffler
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Ulrike Ernemann
- Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Tsujimura K, Ortug A, Alatorre Warren JL, Shiohama T, McDougle CJ, Marcus RE, Tseng CEJ, Zürcher NR, Mercaldo ND, Faja S, Maunakea A, Hooker J, Takahashi E. Structural pathways related to the subventricular zone are decreased in volume with altered microstructure in young adult males with autism spectrum disorder. Cereb Cortex 2025; 35:bhaf041. [PMID: 40055911 DOI: 10.1093/cercor/bhaf041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 03/22/2025] Open
Abstract
Autism spectrum disorder is a neurodevelopmental condition characterized by reduced social communication and repetitive behaviors. Altered neurogenesis, including disturbed neuronal migration, has been implicated in autism spectrum disorder. Using diffusion MRI, we previously identified neuronal migration pathways in the human fetal brain and hypothesized that similar pathways persist into adulthood, with differences in volume and microstructural characteristics between individuals with autism spectrum disorder and controls. We analyzed diffusion MRI-based tractography of subventricular zone-related pathways in 15 young adult men with autism spectrum disorder and 18 controls at Massachusetts General Hospital, with validation through the Autism Imaging Data Exchange II dataset. Participants with autism spectrum disorder had reduced subventricular zone pathway volumes and fractional anisotropy compared to controls. Furthermore, subventricular zone pathway volume was positively correlated (r: 0.68; 95% CI: 0.25 to 0.88) with symptom severity, suggesting that individuals with more severe symptoms tended to have larger subventricular zone pathway volumes, normalized by brain size. Analysis of the Autism Imaging Data Exchange cohort confirmed these findings of reduced subventricular zone pathway volumes in autism spectrum disorder. While some of these pathways may potentially include inaccurately disconnected pathways that go through the subventricular zone, our results suggest that diffusion MRI-based tractography pathways anatomically linked to the periventricular region are associated with certain symptom types in adult males with autism spectrum disorder.
Collapse
Affiliation(s)
- Keita Tsujimura
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Group of Brain Function and Development, Neuroscience Institute of the Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Research Unit for Developmental Disorders, Institute for Advanced Research, Nagoya University, Nagoya 464-8601, Aichi, Japan
| | - Alpen Ortug
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - José Luis Alatorre Warren
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo 0317, Norway
| | - Tadashi Shiohama
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | - Christopher J McDougle
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA 02421, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, United States
| | - Rachel E Marcus
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA 02421, United States
| | - Chieh-En Jane Tseng
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Nicole R Zürcher
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA 02421, United States
| | - Nathaniel D Mercaldo
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Susan Faja
- Division of Developmental Medicine, Department of Pediatrics, Harvard School of Medicine, Boston, MA 02215, United States
| | - Alika Maunakea
- Department of Anatomy, Biochemistry, and Physiology (ABP), John A. Burns School of Medicine (JABSOM), University of Hawaii, Manoa, Honolulu, HI 96813, United States
| | - Jacob Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA 02421, United States
| | - Emi Takahashi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| |
Collapse
|
4
|
Payas A, Kocaman H, Yıldırım H, Batın S. Prediction of adolescent idiopathic scoliosis with machine learning algorithms using brain volumetric measurements. JOR Spine 2024; 7:e1355. [PMID: 39011367 PMCID: PMC11247394 DOI: 10.1002/jsp2.1355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/05/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024] Open
Abstract
Background It is known that neuroanatomical and neurofunctional changes observed in the brain, brainstem and cerebellum play a role in the etiology of adolescent idiopathic scoliosis (AIS). This study aimed to investigate whether volumetric measurements of brain regions can be used as predictive indicators for AIS through machine learning techniques. Methods Patients with a severe degree of curvature in AIS (n = 32) and healthy individuals (n = 31) were enrolled in the study. Volumetric data from 169 brain regions, acquired from magnetic resonance imaging (MRI) of these individuals, were utilized as predictive factors. A comprehensive analysis was conducted using the twelve most prevalent machine learning algorithms, encompassing thorough parameter adjustments and cross-validation processes. Furthermore, the findings related to variable significance are presented. Results Among all the algorithms evaluated, the random forest algorithm produced the most favorable results in terms of various classification metrics, including accuracy (0.9083), AUC (0.993), f1-score (0.970), and Brier score (0.1256). Additionally, the most critical variables were identified as the volumetric measurements of the right corticospinal tract, right corpus callosum body, right corpus callosum splenium, right cerebellum, and right pons, respectively. Conclusion The outcomes of this study indicate that volumetric measurements of specific brain regions can serve as reliable indicators of AIS. In conclusion, the developed model and the significant variables discovered hold promise for predicting scoliosis development, particularly in high-risk individuals.
Collapse
Affiliation(s)
- Ahmet Payas
- Faculty of Medicine, Department of Anatomy Amasya University Amasya Turkey
| | - Hikmet Kocaman
- Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation Karamanoglu Mehmetbey University Karaman Turkey
| | - Hasan Yıldırım
- Faculty of Kamil Özdağ Science, Department of Mathematics Karamanoğlu Mehmetbey University Karaman Turkey
| | - Sabri Batın
- Orthopedics and Traumatology Department Kayseri City Education and Training Hospital Kayseri Turkey
| |
Collapse
|
5
|
Foster M, Dwibhashyam S, Patel D, Gupta K, Matz OC, Billings BK, Bitterman K, Bertelson M, Tang CY, Mars RB, Raghanti MA, Hof PR, Sherwood CC, Manger PR, Spocter MA. Comparative anatomy of the caudate nucleus in canids and felids: Associations with brain size, curvature, cross-sectional properties, and behavioral ecology. J Comp Neurol 2024; 532:e25618. [PMID: 38686628 DOI: 10.1002/cne.25618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
The evolutionary history of canids and felids is marked by a deep time separation that has uniquely shaped their behavior and phenotype toward refined predatory abilities. The caudate nucleus is a subcortical brain structure associated with both motor control and cognitive, emotional, and executive functions. We used a combination of three-dimensional imaging, allometric scaling, and structural analyses to compare the size and shape characteristics of the caudate nucleus. The sample consisted of MRI scan data obtained from six canid species (Canis lupus lupus, Canis latrans, Chrysocyon brachyurus, Lycaon pictus, Vulpes vulpes, Vulpes zerda), two canid subspecies (Canis lupus familiaris, Canis lupus dingo), as well as three felids (Panthera tigris, Panthera uncia, Felis silvestris catus). Results revealed marked conservation in the scaling and shape attributes of the caudate nucleus across species, with only slight deviations. We hypothesize that observed differences in caudate nucleus size and structure for the domestic canids are reflective of enhanced cognitive and emotional pathways that possibly emerged during domestication.
Collapse
Affiliation(s)
- Michael Foster
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Sai Dwibhashyam
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Devan Patel
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Kanika Gupta
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Olivia C Matz
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Brendon K Billings
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Kathleen Bitterman
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Mads Bertelson
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Cheuk Y Tang
- Departments of Radiology and Psychiatry, BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Muhammad A Spocter
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
- College of Veterinary Medicine, Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
6
|
Zhang J, Wu X, Si Y, Liu Y, Wang X, Geng Y, Chang Q, Jiang X, Zhang H. Abnormal caudate nucleus activity in patients with depressive disorder: Meta-analysis of task-based functional magnetic resonance imaging studies with behavioral domain. Psychiatry Res Neuroimaging 2024; 338:111769. [PMID: 38141592 DOI: 10.1016/j.pscychresns.2023.111769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 11/17/2023] [Accepted: 11/26/2023] [Indexed: 12/25/2023]
Abstract
During task-based functional magnetic resonance imaging (t-fMRI) patients with depressive disorder (DD) have shown abnormal caudate nucleus activation. There have been no meta-analyses that are conducted on the caudate nucleus using Activation Likelihood Estimation (ALE) in patients with DD, and the relationships between abnormal caudate activity and different behavior domains in patients with DD remain unclear. There were 24 previously published t-fMRI studies included in the study with the caudate nucleus as the region of interest. Meta-analyses were performed using the method of ALE. Included five ALE meta-analyses: (1) the hypoactivated caudate nucleus relative to healthy controls (HCs); (2) the hyper-activated caudate nucleus; (3) the abnormal activation in the caudate nucleus in the emotion domain; (4) the abnormal activation in cognition domain; (5) the abnormal activation in the affective cognition domain. Results revealed that the hypo-/hyper-activity in the caudate subregions is mainly located in the caudate body and head, while the relationships between abnormal caudate subregions and different behavior domains are complex. The hypoactivation of the caudate body and head plays a key role in the emotions which indicates there is a positive relationship between the decreased caudate activity and depressed emotional behaviors in patients with DD.
Collapse
Affiliation(s)
- Jiajia Zhang
- Department of Psychology, Xinxiang Medical University, Henan 453003, PR China; Xinxiang Key Laboratory of Psychopathology and Cognitive Neuroscience, Xinxiang, 453003, PR China; Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, PR China
| | - Xin Wu
- Department of Psychology, Xinxiang Medical University, Henan 453003, PR China; Xinxiang Key Laboratory of Psychopathology and Cognitive Neuroscience, Xinxiang, 453003, PR China
| | - Yajing Si
- Department of Psychology, Xinxiang Medical University, Henan 453003, PR China; Xinxiang Key Laboratory of Psychopathology and Cognitive Neuroscience, Xinxiang, 453003, PR China
| | - Yahui Liu
- Department of Psychology, Xinxiang Medical University, Henan 453003, PR China; Xinxiang Key Laboratory of Psychopathology and Cognitive Neuroscience, Xinxiang, 453003, PR China
| | - Xueke Wang
- Department of Psychology, Xinxiang Medical University, Henan 453003, PR China; Xinxiang Key Laboratory of Psychopathology and Cognitive Neuroscience, Xinxiang, 453003, PR China; Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, PR China
| | - Yibo Geng
- Department of Radiology, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, PR China
| | - Qiaohua Chang
- Department of Nursing, Xinxiang Medical University, Henan 453003, PR China
| | - Xiaoxiao Jiang
- Department of Nursing, Xinxiang Medical University, Henan 453003, PR China
| | - Hongxing Zhang
- Department of Psychology, Xinxiang Medical University, Henan 453003, PR China; Xinxiang Key Laboratory of Psychopathology and Cognitive Neuroscience, Xinxiang, 453003, PR China; Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, PR China.
| |
Collapse
|
7
|
Schwartze M, Kotz SA. Timing Patterns in the Extended Basal Ganglia System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:275-282. [PMID: 38918357 DOI: 10.1007/978-3-031-60183-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The human brain is a constructive organ. It generates predictions to modulate its functioning and continuously adapts to a dynamic environment. Increasingly, the temporal dimension of motor and non-motor behaviour is recognised as a key component of this predictive bias. Nevertheless, the intricate interplay of the neural mechanisms that encode, decode and evaluate temporal information to give rise to a sense of time and control over sensorimotor timing remains largely elusive. Among several brain systems, the basal ganglia have been consistently linked to interval- and beat-based timing operations. Considering the tight embedding of the basal ganglia into multiple complex neurofunctional networks, it is clear that they have to interact with other proximate and distal brain systems. While the primary target of basal ganglia output is the thalamus, many regions connect to the striatum of the basal ganglia, their main input relay. This establishes widespread connectivity, forming the basis for first- and second-order interactions with other systems implicated in timing such as the cerebellum and supplementary motor areas. However, next to this structural interconnectivity, additional functions need to be considered to better understand their contribution to temporally predictive adaptation. To this end, we develop the concept of interval-based patterning, conceived as a temporally explicit hierarchical sequencing operation that underlies motor and non-motor behaviour as a common interpretation of basal ganglia function.
Collapse
Affiliation(s)
- Michael Schwartze
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Sonja A Kotz
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.
| |
Collapse
|
8
|
Cantarella G, Vianello G, Vezzadini G, Frassinetti F, Ciaramelli E, Candini M. Time bisection and reproduction: Evidence for a slowdown of the internal clock in right brain damaged patients. Cortex 2023; 167:303-317. [PMID: 37595392 DOI: 10.1016/j.cortex.2023.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/31/2023] [Accepted: 05/24/2023] [Indexed: 08/20/2023]
Abstract
Previous studies show that the right hemisphere is involved in time processing, and that damage to the right hemisphere is associated with a tendency to perceive time intervals as shorter than they are, and to reproduce time intervals as longer than they are. Whether time processing deficits following right hemisphere damage are related and what is their neurocognitive basis is unclear. In this study, right brain damaged (RBD) patients, left brain damaged (LBD) patients, and healthy controls underwent a time bisection task and a time reproduction task involving time intervals varying between each other by milliseconds (short durations) or seconds (long durations). The results show that in the time bisection task RBD patients underestimated time intervals compared to LBD patients and healthy controls, while they reproduced time intervals as longer than they are. Time underestimation and over-reproduction in RBD patients applied to short but not long time intervals, and were correlated. Voxel-based lesion-symptom mapping (VLSM) showed that time underestimation was associated with lesions to a right cortico-subcortical network involving the insula and inferior frontal gyrus. A small portion of this network was also associated with time over-reproduction. Our findings are consistent with a slowdown of an 'internal clock' timing mechanism following right brain damage, which likely underlies both the underestimation and the over-reproduction of time intervals, and their (overlapping) neural bases.
Collapse
Affiliation(s)
- Giovanni Cantarella
- Department of Psychology 'Renzo Canestrari', University of Bologna, Bologna, Italy; Center for Studies and Research of Cognitive Neuroscience, University of Bologna, Cesena, Italy
| | - Greta Vianello
- Istituti Clinici Scientifici Maugeri IRCCS, Castel Goffredo, Italy
| | | | - Francesca Frassinetti
- Department of Psychology 'Renzo Canestrari', University of Bologna, Bologna, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Castel Goffredo, Italy
| | - Elisa Ciaramelli
- Department of Psychology 'Renzo Canestrari', University of Bologna, Bologna, Italy; Center for Studies and Research of Cognitive Neuroscience, University of Bologna, Cesena, Italy.
| | - Michela Candini
- Department of Psychology 'Renzo Canestrari', University of Bologna, Bologna, Italy.
| |
Collapse
|
9
|
Murray KD, Tivarus ME, Schifitto G, Uddin MN, Zhong J. Brain iron imaging markers in the presence of white matter hyperintensities. Magn Reson Imaging 2023; 98:115-123. [PMID: 36682396 PMCID: PMC9968496 DOI: 10.1016/j.mri.2023.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
PURPOSE To investigate the relationship between pathological brain iron deposition and white matter hyperintensities (WMHs) in cerebral small vessel disease (CSVD), via Monte Carlo simulations of magnetic susceptibility imaging and the development of a novel imaging marker called the Expected Iron Coefficient (EIC). METHODS A synthetic pathological model of a different number of impenetrable spheres at random locations was employed to represent pathological iron deposition. The diffusion process was simulated with a Monte Carlo method with adjustable parameters to manipulate sphere size, distribution, and extracellular properties. Quantitative susceptibility mapping (QSM) was performed in a clinical dataset to study CSVD to derive and evaluate QSM, R2*, the iron microenvironment coefficient (IMC), and the EIC in the presence of WMHs. RESULTS The simulations show that QSM signals increase in the presence of increased tissue iron, confirming that the EIC increases with pathology. Clinical results demonstrate that while QSM, R2*, and the IMC do not show significant differences in brain iron, the EIC does in the context of CSVD. CONCLUSION The EIC is more sensitive to subtle changes in brain iron deposition caused by pathology, even when QSM, R2*, and the IMC fail.
Collapse
Affiliation(s)
- Kyle D Murray
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, USA
| | - Madalina E Tivarus
- Department of Imaging Sciences, University of Rochester, Rochester, NY, USA; Department of Neuroscience, University of Rochester, Rochester, NY, USA
| | - Giovanni Schifitto
- Department of Imaging Sciences, University of Rochester, Rochester, NY, USA; Department of Neurology, University of Rochester, Rochester, NY, USA; Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA
| | - Md Nasir Uddin
- Department of Neurology, University of Rochester, Rochester, NY, USA
| | - Jianhui Zhong
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, USA; Department of Imaging Sciences, University of Rochester, Rochester, NY, USA; Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
10
|
Differentiating Individuals with and without Alcohol Use Disorder Using Resting-State fMRI Functional Connectivity of Reward Network, Neuropsychological Performance, and Impulsivity Measures. Behav Sci (Basel) 2022; 12:bs12050128. [PMID: 35621425 PMCID: PMC9137599 DOI: 10.3390/bs12050128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/11/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022] Open
Abstract
Individuals with alcohol use disorder (AUD) may manifest an array of neural and behavioral abnormalities, including altered brain networks, impaired neurocognitive functioning, and heightened impulsivity. Using multidomain measures, the current study aimed to identify specific features that can differentiate individuals with AUD from healthy controls (CTL), utilizing a random forests (RF) classification model. Features included fMRI-based resting-state functional connectivity (rsFC) across the reward network, neuropsychological task performance, and behavioral impulsivity scores, collected from thirty abstinent adult males with prior history of AUD and thirty CTL individuals without a history of AUD. It was found that the RF model achieved a classification accuracy of 86.67% (AUC = 93%) and identified key features of FC and impulsivity that significantly contributed to classifying AUD from CTL individuals. Impulsivity scores were the topmost predictors, followed by twelve rsFC features involving seventeen key reward regions in the brain, such as the ventral tegmental area, nucleus accumbens, anterior insula, anterior cingulate cortex, and other cortical and subcortical structures. Individuals with AUD manifested significant differences in impulsivity and alterations in functional connectivity relative to controls. Specifically, AUD showed heightened impulsivity and hypoconnectivity in nine connections across 13 regions and hyperconnectivity in three connections involving six regions. Relative to controls, visuo-spatial short-term working memory was also found to be impaired in AUD. In conclusion, specific multidomain features of brain connectivity, impulsivity, and neuropsychological performance can be used in a machine learning framework to effectively classify AUD individuals from healthy controls.
Collapse
|
11
|
Forstenpointner J, Elman I, Freeman R, Borsook D. The Omnipresence of Autonomic Modulation in Health and Disease. Prog Neurobiol 2022; 210:102218. [PMID: 35033599 DOI: 10.1016/j.pneurobio.2022.102218] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/13/2021] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
Abstract
The Autonomic Nervous System (ANS) is a critical part of the homeostatic machinery with both central and peripheral components. However, little is known about the integration of these components and their joint role in the maintenance of health and in allostatic derailments leading to somatic and/or neuropsychiatric (co)morbidity. Based on a comprehensive literature search on the ANS neuroanatomy we dissect the complex integration of the ANS: (1) First we summarize Stress and Homeostatic Equilibrium - elucidating the responsivity of the ANS to stressors; (2) Second we describe the overall process of how the ANS is involved in Adaptation and Maladaptation to Stress; (3) In the third section the ANS is hierarchically partitioned into the peripheral/spinal, brainstem, subcortical and cortical components of the nervous system. We utilize this anatomical basis to define a model of autonomic integration. (4) Finally, we deploy the model to describe human ANS involvement in (a) Hypofunctional and (b) Hyperfunctional states providing examples in the healthy state and in clinical conditions.
Collapse
Affiliation(s)
- Julia Forstenpointner
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA; Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, SH, Germany.
| | - Igor Elman
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA; Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| | - Roy Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David Borsook
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA; Departments of Psychiatry and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Huang W, Fang X, Li S, Mao R, Ye C, Liu W, Lin G. Preliminary Exploration of the Sequence of Nerve Fiber Bundles Involvement for Idiopathic Normal Pressure Hydrocephalus: A Correlation Analysis Using Diffusion Tensor Imaging. Front Neurosci 2022; 15:794046. [PMID: 34975390 PMCID: PMC8718542 DOI: 10.3389/fnins.2021.794046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/24/2021] [Indexed: 12/21/2022] Open
Abstract
The study preliminarily explored the sequence and difference of involvement in different neuroanatomical structures in idiopathic normal pressure hydrocephalus (INPH). We retrospectively analyzed the differences in diffusion tensor imaging (DTI) parameters in 15 ROIs [including the bilateral centrum semiovale (CS), corpus callosum (CC) (body, genu, and splenium), head of the caudate nucleus (CN), internal capsule (IC) (anterior and posterior limb), thalamus (TH), and the bilateral frontal horn white matter hyperintensity (FHWMH)] between 27 INPH patients and 11 healthy controls and the correlation between DTI indices and clinical symptoms, as evaluated by the INPH grading scale (INPHGS), the Mini-Mental State Examination (MMSE), and the timed up and go test (TUG-t), before and 1 month after shunt surgery. Significant differences were observed in DTI parameters from the CS (pFA1 = 0.004, pADC1 = 0.005) and the genu (pFA2 = 0.022; pADC2 = 0.001) and body (pFA3 = 0.003; pADC3 = 0.002) of the CC between the groups. The DTI parameters from the CS were strongly correlated with the MMSE score both pre-operatively and post-operatively. There was association between apparent diffusion coefficient (ADC) values of anterior and posterior limbs of the IC and MMSE. The DTI parameters of the head of the CN were correlated with motion, and the ADC value was significantly associated with the MMSE score. The FA value from TH correlated with an improvement in urination after shunt surgery. We considered that different neuroanatomical structures are affected differently by disease due to their positions in neural pathways and characteristics, which is further reflected in clinical symptoms and the prognosis of shunt surgery.
Collapse
Affiliation(s)
- Wenjun Huang
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Xuhao Fang
- Department of Neurosurgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Shihong Li
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Renling Mao
- Department of Neurosurgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Chuntao Ye
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Wei Liu
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Guangwu Lin
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
13
|
Robert C, Patel R, Blostein N, Steele CJ, Chakravarty MM. Analyses of microstructural variation in the human striatum using non-negative matrix factorization. Neuroimage 2021; 246:118744. [PMID: 34848302 DOI: 10.1016/j.neuroimage.2021.118744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
The striatum is a major subcortical connection hub that has been heavily implicated in a wide array of motor and cognitive functions. Here, we developed a normative multimodal, data-driven microstructural parcellation of the striatum using non-negative matrix factorization (NMF) based on multiple magnetic resonance imaging-based metrics (mean diffusivity, fractional anisotropy, and the ratio between T1- and T2-weighted structural scans) from the Human Connectome Project Young Adult dataset (n = 329 unrelated participants, age range: 22-35, F/M: 185/144). We further explored the biological and functional relationships of this parcellation by relating our findings to motor and cognitive performance in tasks known to involve the striatum as well as demographics. We identified 5 spatially distinct striatal components for each hemisphere. We also show the gain in component stability when using multimodal versus unimodal metrics. Our findings suggest distinct microstructural patterns in the human striatum that are largely symmetric and that relate mostly to age and sex. Our work also highlights the putative functional relevance of these striatal components to different designations based on a Neurosynth meta-analysis.
Collapse
Affiliation(s)
- Corinne Robert
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, QC, Canada.
| | - Raihaan Patel
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, QC, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Nadia Blostein
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Chrisopher J Steele
- Department of Psychology, Concordia University, Montreal, QC, Canada; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
14
|
Votinov M, Myznikov A, Zheltyakova M, Masharipov R, Korotkov A, Cherednichenko D, Habel U, Kireev M. The Interaction Between Caudate Nucleus and Regions Within the Theory of Mind Network as a Neural Basis for Social Intelligence. Front Neural Circuits 2021; 15:727960. [PMID: 34720887 PMCID: PMC8552029 DOI: 10.3389/fncir.2021.727960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/27/2021] [Indexed: 12/04/2022] Open
Abstract
The organization of socio-cognitive processes is a multifaceted problem for which many sophisticated concepts have been proposed. One of these concepts is social intelligence (SI), i.e., the set of abilities that allow successful interaction with other people. The theory of mind (ToM) human brain network is a good candidate for the neural substrate underlying SI since it is involved in inferring the mental states of others and ourselves and predicting or explaining others’ actions. However, the relationship of ToM to SI remains poorly explored. Our recent research revealed an association between the gray matter volume of the caudate nucleus and the degree of SI as measured by the Guilford-Sullivan test. It led us to question whether this structural peculiarity is reflected in changes to the integration of the caudate with other areas of the brain associated with socio-cognitive processes, including the ToM system. We conducted seed-based functional connectivity (FC) analysis of resting-state fMRI data for 42 subjects with the caudate as a region of interest. We found that the scores of the Guilford-Sullivan test were positively correlated with the FC between seeds in the right caudate head and two clusters located within the right superior temporal gyrus and bilateral precuneus. Both regions are known to be nodes of the ToM network. Thus, the current study demonstrates that the SI level is associated with the degree of functional integration between the ToM network and the caudate nuclei.
Collapse
Affiliation(s)
- Mikhail Votinov
- N.P. Bechtereva Institute of Human Brain, Russian Academy of Science, Saint Petersburg, Russia.,Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich, Germany.,Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Artem Myznikov
- N.P. Bechtereva Institute of Human Brain, Russian Academy of Science, Saint Petersburg, Russia
| | - Maya Zheltyakova
- N.P. Bechtereva Institute of Human Brain, Russian Academy of Science, Saint Petersburg, Russia
| | - Ruslan Masharipov
- N.P. Bechtereva Institute of Human Brain, Russian Academy of Science, Saint Petersburg, Russia
| | - Alexander Korotkov
- N.P. Bechtereva Institute of Human Brain, Russian Academy of Science, Saint Petersburg, Russia
| | - Denis Cherednichenko
- N.P. Bechtereva Institute of Human Brain, Russian Academy of Science, Saint Petersburg, Russia
| | - Ute Habel
- Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich, Germany.,Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Maxim Kireev
- N.P. Bechtereva Institute of Human Brain, Russian Academy of Science, Saint Petersburg, Russia.,Institute for Cognitive Studies, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
15
|
Lu Y, Zhu S, Zou Z, He Z, Yang H. [Modulatory effect of 2-arachidonoylglycerol on voltage-gated sodium currents in rat caudate nucleus neurons with kainic acid-induced injury]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1150-1157. [PMID: 34549704 DOI: 10.12122/j.issn.1673-4254.2021.08.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the modulatory effect of 2-arachidonoylglycerol (2-AG) on voltage-gated sodium currents(VGSCs) in rat caudate nucleus (CN) neurons with kainic acid (KA)-induced injury and explore the molecular mechanism underlying the neuroprotective effect of 2-AG. METHODS Primary cultures of CN neurons isolated from neonatal SD rats were treated with KA, 2-AG+KA, RIM (a CB1 receptor antagonist) +2-AG+KA, or vehicle only (as control).After 7 days in primary culture, the neurons were treated with corresponding agents for 12 h (RIM and 2-AG were added at the same time; KA was added 30 min later) before recording of current density changes, current-voltage characteristics, activation and inactivation kinetics of VGSCs (INa) using whole-cell patch clamp technique. RESULTS In cultured CN neurons, KA significantly increased current density of VGSCs (P=0.009) as compared with vehicle treatment.KA also produced a hyperpolarizing shift in the activation curve of INa and significantly increased the absolute value of V1/2 for activation (P=0.008).Addition of 2-AG in the culture medium obviously prevented KA-induced increase of INa (P=0.009) and hyperpolarizing shift in the activation curve of INa, and significantly reduced the value of V1/2 for activation(P=0.009)in a CB1 receptor-dependent manner.2-AG alone did not affect the density, activation or deactivation of VGSCs in rat CN neurons. CONCLUSION In excitotoxic events, endogenous 2-AG can offer neuroprotection by modulating VGSCs in the CN neurons through a CB1 receptor-dependent pathway.
Collapse
Affiliation(s)
- Y Lu
- Department of Functional Sciences, College of Medical Science, China Three Gorges University, Yichang 443002, China.,Institute of Brain Grand Diseases, China Three Gorges University, Yichang 443002, China
| | - S Zhu
- Department of Functional Sciences, College of Medical Science, China Three Gorges University, Yichang 443002, China.,Department of Neurology, People's Hospital of China Three Gorges University, Yichang 443002, China
| | - Z Zou
- Department of Neurology, Changjiang Shipping General Hospital, Wuhan 430010, China
| | - Z He
- Department of Functional Sciences, College of Medical Science, China Three Gorges University, Yichang 443002, China.,Institute of Brain Grand Diseases, China Three Gorges University, Yichang 443002, China
| | - H Yang
- Department of Functional Sciences, College of Medical Science, China Three Gorges University, Yichang 443002, China.,Institute of Brain Grand Diseases, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
16
|
Bao L, Xiong C, Wei W, Chen Z, van Zijl PCM, Li X. Diffusion-regularized susceptibility tensor imaging (DRSTI) of tissue microstructures in the human brain. Med Image Anal 2020; 67:101827. [PMID: 33166777 DOI: 10.1016/j.media.2020.101827] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 08/19/2020] [Accepted: 08/31/2020] [Indexed: 10/23/2022]
Abstract
Susceptibility tensor imaging (STI) has been proposed as an alternative to diffusion tensor imaging (DTI) for non-invasive in vivo characterization of brain tissue microstructure and white matter fiber architecture, potentially benefitting from its high spatial resolution. In spite of different biophysical mechanisms, animal studies have demonstrated white matter fiber directions measured using STI to be reasonably consistent with those from diffusion tensor imaging (DTI). However, human brain STI is hampered by its requirement of acquiring data at more than 10 head rotations and a complicated processing pipeline. In this paper, we propose a diffusion-regularized STI method (DRSTI) that employs a tensor spectral decomposition constraint to regularize the STI solution using the fiber directions estimated by DTI as a priori. We then explore the high-resolution DRSTI with MR phase images acquired at only 6 head orientations. Compared to other STI approaches, the DRSTI generated susceptibility tensor components, mean magnetic susceptibility (MMS), magnetic susceptibility anisotropy (MSA) and fiber direction maps with fewer artifacts, especially in regions with large susceptibility variations, and with less erroneous quantifications. In addition, the DRSTI method allows us to distinguish more structural features that could not be identified in DTI, especially in deep gray matters. DRSTI enables a more accurate susceptibility tensor estimation with a reduced number of sampling orientations, and achieves better tracking of fiber pathways than previous STI attempts on in vivo human brain.
Collapse
Affiliation(s)
- Lijun Bao
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361000, China.
| | - Congcong Xiong
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361000, China
| | - Wenping Wei
- Medical Imaging Diagnostic Center, First Affiliated Hospital of Xiamen University, Xiamen 361000, China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361000, China
| | - Peter C M van Zijl
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Xu Li
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| |
Collapse
|
17
|
Hörtnagl H, Pifl C, Hörtnagl E, Reiner A, Sperk G. Distinct gradients of various neurotransmitter markers in caudate nucleus and putamen of the human brain. J Neurochem 2019; 152:650-662. [PMID: 31608979 PMCID: PMC7078952 DOI: 10.1111/jnc.14897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 01/23/2023]
Abstract
The caudate nucleus (CN) and the putamen (PUT) as parts of the human striatum are distinguished by a marked heterogeneity in functional, anatomical, and neurochemical patterns. Our study aimed to document in detail the regional diversity in the distribution of dopamine (DA), serotonin, γ‐aminobuturic acid, and choline acetyltransferase within the CN and PUT. For this purpose we dissected the CN as well as the PUT of 12 post‐mortem brains of human subjects with no evidence of neurological and psychiatric disorders (38–81 years old) into about 80 tissue parts. We then investigated rostro‐caudal, dorso‐ventral, and medio‐lateral gradients of these neurotransmitter markers. All parameters revealed higher levels, turnover rates, or activities in the PUT than in the CN. Within the PUT, DA levels increased continuously from rostral to caudal. In contrast, the lowest molar ratio of homovanillic acid to DA, a marker of DA turnover, coincided with highest DA levels in the caudal PUT, the part of the striatum with the highest loss of DA in Parkinson’s disease (N. Engl. J. Med., 318, 1988, 876). Highest DA concentrations were found in the most central areas both in the PUT and CN. We observed an age‐dependent loss of DA in the PUT and CN that did not correspond to the loss described for Parkinson’s disease indicating different mechanisms inducing the deficit of DA. Our data demonstrate a marked heterogeneity in the anatomical distribution of neurotransmitter markers in the human dorsal striatum indicating anatomical and functional diversity within this brain structure. ![]()
Collapse
Affiliation(s)
- Heide Hörtnagl
- Department of Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | - Christian Pifl
- Centre for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Erik Hörtnagl
- ipsum, interkultureller Kunstverein, Müllerstr. 28, Innsbruck, Austria
| | | | - Günther Sperk
- Department of Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
18
|
Spanò B, Giulietti G, Pisani V, Morreale M, Tuzzi E, Nocentini U, Francia A, Caltagirone C, Bozzali M, Cercignani M. Disruption of neurite morphology parallels MS progression. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2018; 5:e502. [PMID: 30345330 PMCID: PMC6192688 DOI: 10.1212/nxi.0000000000000502] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022]
Abstract
Objectives To apply advanced diffusion MRI methods to the study of normal-appearing brain tissue in MS and examine their correlation with measures of clinical disability. Methods A multi-compartment model of diffusion MRI called neurite orientation dispersion and density imaging (NODDI) was used to study 20 patients with relapsing-remitting MS (RRMS), 15 with secondary progressive MS (SPMS), and 20 healthy controls. Maps of NODDI were analyzed voxel-wise to assess the presence of abnormalities within the normal-appearing brain tissue and the association with disease severity. Standard diffusion tensor imaging (DTI) parameters were also computed for comparing the 2 techniques. Results Patients with MS showed reduced neurite density index (NDI) and increased orientation dispersion index (ODI) compared with controls in several brain areas (p < 0.05), with patients with SPMS having more widespread abnormalities. DTI indices were also sensitive to some changes. In addition, patients with SPMS showed reduced ODI in the thalamus and caudate nucleus. These abnormalities were associated with scores of disease severity (p < 0.05). The association with the MS functional composite score was higher in patients with SPMS compared with patients with RRMS. Conclusions NODDI and DTI findings are largely overlapping. Nevertheless, NODDI helps interpret previous findings of increased anisotropy in the thalamus of patients with MS and are consistent with the degeneration of selective axon populations.
Collapse
Affiliation(s)
- Barbara Spanò
- Neuroimaging Laboratory (B.S., G.G., M.B., M.C.), Santa Lucia Foundation, IRCCS; Department of Clinical and Behavioural Neurology (V.P., U.N., C.C.), Santa Lucia Foundation, IRCCS; Neurovascular Diagnosis Unit (M.M.), Department of Medical and Surgical Sciences and Biotechnology, Section of Neurology, Sapienza, University of Rome; Department of Neurology and Psychiatry (M.M., A.F.), Multiple Sclerosis Center, Sapienza, University of Rome, Italy; High Field Magnetic Resonance (E.T.), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany; Department of System Medicine (U.N., C.C.), University of Rome "Tor Vergata," Italy; and Department of Neuroscience (M.B., M.C.), Brighton & Sussex Medical School, Falmer, United Kingdom
| | - Giovanni Giulietti
- Neuroimaging Laboratory (B.S., G.G., M.B., M.C.), Santa Lucia Foundation, IRCCS; Department of Clinical and Behavioural Neurology (V.P., U.N., C.C.), Santa Lucia Foundation, IRCCS; Neurovascular Diagnosis Unit (M.M.), Department of Medical and Surgical Sciences and Biotechnology, Section of Neurology, Sapienza, University of Rome; Department of Neurology and Psychiatry (M.M., A.F.), Multiple Sclerosis Center, Sapienza, University of Rome, Italy; High Field Magnetic Resonance (E.T.), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany; Department of System Medicine (U.N., C.C.), University of Rome "Tor Vergata," Italy; and Department of Neuroscience (M.B., M.C.), Brighton & Sussex Medical School, Falmer, United Kingdom
| | - Valerio Pisani
- Neuroimaging Laboratory (B.S., G.G., M.B., M.C.), Santa Lucia Foundation, IRCCS; Department of Clinical and Behavioural Neurology (V.P., U.N., C.C.), Santa Lucia Foundation, IRCCS; Neurovascular Diagnosis Unit (M.M.), Department of Medical and Surgical Sciences and Biotechnology, Section of Neurology, Sapienza, University of Rome; Department of Neurology and Psychiatry (M.M., A.F.), Multiple Sclerosis Center, Sapienza, University of Rome, Italy; High Field Magnetic Resonance (E.T.), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany; Department of System Medicine (U.N., C.C.), University of Rome "Tor Vergata," Italy; and Department of Neuroscience (M.B., M.C.), Brighton & Sussex Medical School, Falmer, United Kingdom
| | - Manuela Morreale
- Neuroimaging Laboratory (B.S., G.G., M.B., M.C.), Santa Lucia Foundation, IRCCS; Department of Clinical and Behavioural Neurology (V.P., U.N., C.C.), Santa Lucia Foundation, IRCCS; Neurovascular Diagnosis Unit (M.M.), Department of Medical and Surgical Sciences and Biotechnology, Section of Neurology, Sapienza, University of Rome; Department of Neurology and Psychiatry (M.M., A.F.), Multiple Sclerosis Center, Sapienza, University of Rome, Italy; High Field Magnetic Resonance (E.T.), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany; Department of System Medicine (U.N., C.C.), University of Rome "Tor Vergata," Italy; and Department of Neuroscience (M.B., M.C.), Brighton & Sussex Medical School, Falmer, United Kingdom
| | - Elisa Tuzzi
- Neuroimaging Laboratory (B.S., G.G., M.B., M.C.), Santa Lucia Foundation, IRCCS; Department of Clinical and Behavioural Neurology (V.P., U.N., C.C.), Santa Lucia Foundation, IRCCS; Neurovascular Diagnosis Unit (M.M.), Department of Medical and Surgical Sciences and Biotechnology, Section of Neurology, Sapienza, University of Rome; Department of Neurology and Psychiatry (M.M., A.F.), Multiple Sclerosis Center, Sapienza, University of Rome, Italy; High Field Magnetic Resonance (E.T.), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany; Department of System Medicine (U.N., C.C.), University of Rome "Tor Vergata," Italy; and Department of Neuroscience (M.B., M.C.), Brighton & Sussex Medical School, Falmer, United Kingdom
| | - Ugo Nocentini
- Neuroimaging Laboratory (B.S., G.G., M.B., M.C.), Santa Lucia Foundation, IRCCS; Department of Clinical and Behavioural Neurology (V.P., U.N., C.C.), Santa Lucia Foundation, IRCCS; Neurovascular Diagnosis Unit (M.M.), Department of Medical and Surgical Sciences and Biotechnology, Section of Neurology, Sapienza, University of Rome; Department of Neurology and Psychiatry (M.M., A.F.), Multiple Sclerosis Center, Sapienza, University of Rome, Italy; High Field Magnetic Resonance (E.T.), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany; Department of System Medicine (U.N., C.C.), University of Rome "Tor Vergata," Italy; and Department of Neuroscience (M.B., M.C.), Brighton & Sussex Medical School, Falmer, United Kingdom
| | - Ada Francia
- Neuroimaging Laboratory (B.S., G.G., M.B., M.C.), Santa Lucia Foundation, IRCCS; Department of Clinical and Behavioural Neurology (V.P., U.N., C.C.), Santa Lucia Foundation, IRCCS; Neurovascular Diagnosis Unit (M.M.), Department of Medical and Surgical Sciences and Biotechnology, Section of Neurology, Sapienza, University of Rome; Department of Neurology and Psychiatry (M.M., A.F.), Multiple Sclerosis Center, Sapienza, University of Rome, Italy; High Field Magnetic Resonance (E.T.), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany; Department of System Medicine (U.N., C.C.), University of Rome "Tor Vergata," Italy; and Department of Neuroscience (M.B., M.C.), Brighton & Sussex Medical School, Falmer, United Kingdom
| | - Carlo Caltagirone
- Neuroimaging Laboratory (B.S., G.G., M.B., M.C.), Santa Lucia Foundation, IRCCS; Department of Clinical and Behavioural Neurology (V.P., U.N., C.C.), Santa Lucia Foundation, IRCCS; Neurovascular Diagnosis Unit (M.M.), Department of Medical and Surgical Sciences and Biotechnology, Section of Neurology, Sapienza, University of Rome; Department of Neurology and Psychiatry (M.M., A.F.), Multiple Sclerosis Center, Sapienza, University of Rome, Italy; High Field Magnetic Resonance (E.T.), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany; Department of System Medicine (U.N., C.C.), University of Rome "Tor Vergata," Italy; and Department of Neuroscience (M.B., M.C.), Brighton & Sussex Medical School, Falmer, United Kingdom
| | - Marco Bozzali
- Neuroimaging Laboratory (B.S., G.G., M.B., M.C.), Santa Lucia Foundation, IRCCS; Department of Clinical and Behavioural Neurology (V.P., U.N., C.C.), Santa Lucia Foundation, IRCCS; Neurovascular Diagnosis Unit (M.M.), Department of Medical and Surgical Sciences and Biotechnology, Section of Neurology, Sapienza, University of Rome; Department of Neurology and Psychiatry (M.M., A.F.), Multiple Sclerosis Center, Sapienza, University of Rome, Italy; High Field Magnetic Resonance (E.T.), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany; Department of System Medicine (U.N., C.C.), University of Rome "Tor Vergata," Italy; and Department of Neuroscience (M.B., M.C.), Brighton & Sussex Medical School, Falmer, United Kingdom
| | - Mara Cercignani
- Neuroimaging Laboratory (B.S., G.G., M.B., M.C.), Santa Lucia Foundation, IRCCS; Department of Clinical and Behavioural Neurology (V.P., U.N., C.C.), Santa Lucia Foundation, IRCCS; Neurovascular Diagnosis Unit (M.M.), Department of Medical and Surgical Sciences and Biotechnology, Section of Neurology, Sapienza, University of Rome; Department of Neurology and Psychiatry (M.M., A.F.), Multiple Sclerosis Center, Sapienza, University of Rome, Italy; High Field Magnetic Resonance (E.T.), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany; Department of System Medicine (U.N., C.C.), University of Rome "Tor Vergata," Italy; and Department of Neuroscience (M.B., M.C.), Brighton & Sussex Medical School, Falmer, United Kingdom
| |
Collapse
|
19
|
Bot M, van den Munckhof P, Schmand BA, de Bie RMA, Schuurman PR. Electrode Penetration of the Caudate Nucleus in Deep Brain Stimulation Surgery for Parkinson's Disease. Stereotact Funct Neurosurg 2018; 96:223-230. [PMID: 30176664 DOI: 10.1159/000489944] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 05/10/2018] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To evaluate the possible influence of electrode trajectories penetrating the caudate nucleus (CN) on cognitive outcomes in deep brain stimulation (DBS) surgery for Parkinson's disease (PD). BACKGROUND It is currently unclear how mandatory CN avoidance during trajectory planning is. DESIGN/METHODS Electrode trajectories were determined to be inside, outside, or in border region of the CN. Pre- and postoperative neuropsychological tests of each trajectory group were compared in order to evaluate possible differences in cognitive outcomes 12 months after bilateral STN DBS. RESULTS One hundred six electrode tracks in 53 patients were evaluated. Bilateral penetration of the CN occurred in 15 (28%) patients, while unilateral penetration occurred in 28 (53%). In 19 (36%) patients tracks were located in the border region of the CN. There was no electrode penetration of the CN in 10 (19%) patients. No difference in cognitive outcomes was found between the different groups. CONCLUSION Cognitive outcome was not influenced by DBS electrode tracks penetrating the CN. It is both feasible and sensible to avoid electrode tracks through the CN when possible, considering its function and anatomical position. However, penetration of the CN can be considered without major concerns regarding cognitive decline when this facilitates optimal trajectory planning due to specific individual anatomical variations.
Collapse
Affiliation(s)
- Maarten Bot
- Department of Neurosurgery, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Ben A Schmand
- Department of Psychology, Academic Medical Center, Amsterdam, the Netherlands
| | - Rob M A de Bie
- Department of Neurology, Academic Medical Center, Amsterdam, the Netherlands
| | - P Richard Schuurman
- Department of Neurosurgery, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
20
|
Kennedy JT, Collins PF, Luciana M. Higher Adolescent Body Mass Index Is Associated with Lower Regional Gray and White Matter Volumes and Lower Levels of Positive Emotionality. Front Neurosci 2016; 10:413. [PMID: 27660604 PMCID: PMC5015489 DOI: 10.3389/fnins.2016.00413] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/25/2016] [Indexed: 12/14/2022] Open
Abstract
Adolescent obesity is associated with an increased chance of developing serious health risks later in life. Identifying the neurobiological and personality factors related to increases in adiposity is important to understanding what drives maladaptive consummatory and exercise behaviors that result in obesity. Previous research has largely focused on adults with few findings published on interactions among adiposity, brain structure, and personality. In this study, Voxel Based Morphometry (VBM) was used to identify associations between gray and white matter volumes and increasing adiposity, as measured by Body Mass Index percentile (BMI%), in 137 adolescents (age range: 9–20 years, BMI% range: 5.16–99.56). Variations in gray and white matter volume and BMI% were then linked to individual differences in personality measures from the Multidimensional Personality Questionnaire (MPQ). After controlling for age and other covariates, BMI% correlated negatively with gray matter volume in the bilateral caudate (right: partial r = −0.338, left: r = −0.404), medial prefrontal cortex (partial r = −0.339), anterior cingulate (partial r = −0.312), bilateral frontal pole (right: partial r = −0.368, left: r = −0.316), and uncus (partial r = −0.475) as well as white matter volume bilaterally in the anterior limb of the internal capsule (right: partial r = −0.34, left: r = −0.386), extending to the left middle frontal subgyral white matter. Agentic Positive Emotionality (PEM-AG) was correlated negatively with BMI% (partial r = −0.384). PEM-AG was correlated positively with gray matter volume in the right uncus (partial r = 0.329). These results suggest that higher levels of adiposity in adolescents are associated with lower trait levels in reward-related personality domains, as well as structural variations in brain regions associated with reward processing, control, and sensory integration.
Collapse
Affiliation(s)
- James T Kennedy
- Department of Psychology, University of Minnesota Minneapolis, MN, USA
| | - Paul F Collins
- Department of Psychology, University of MinnesotaMinneapolis, MN, USA; Center for Neurobehavioral Development, University of MinnesotaMinneapolis, MN, USA
| | - Monica Luciana
- Department of Psychology, University of MinnesotaMinneapolis, MN, USA; Center for Neurobehavioral Development, University of MinnesotaMinneapolis, MN, USA
| |
Collapse
|
21
|
Abstract
Unidirectional connections from the cortex to the matrix of the corpus striatum initiate the cortico-basal ganglia (BG)-thalamocortical loop, thought to be important in momentary action selection and in longer-term fine tuning of behavioural repertoire; a discrete set of striatal compartments, striosomes, has the complementary role of registering or anticipating reward that shapes corticostriatal plasticity. Re-entrant signals traversing the cortico-BG loop impact predominantly frontal cortices, conveyed through topographically ordered output channels; by contrast, striatal input signals originate from a far broader span of cortex, and are far more divergent in their termination. The term 'disclosed loop' is introduced to describe this organisation: a closed circuit that is open to outside influence at the initial stage of cortical input. The closed circuit component of corticostriatal afferents is newly dubbed 'operative', as it is proposed to establish the bid for action selection on the part of an incipient cortical action plan; the broader set of converging corticostriatal afferents is described as contextual. A corollary of this proposal is that every unit of the striatal volume, including the long, C-shaped tail of the caudate nucleus, should receive a mandatory component of operative input, and hence include at least one area of BG-recipient cortex amongst the sources of its corticostriatal afferents. Individual operative afferents contact twin classes of GABAergic striatal projection neuron (SPN), distinguished by their neurochemical character, and onward circuitry. This is the basis of the classic direct and indirect pathway model of the cortico-BG loop. Each pathway utilises a serial chain of inhibition, with two such links, or three, providing positive and negative feedback, respectively. Operative co-activation of direct and indirect SPNs is, therefore, pictured to simultaneously promote action, and to restrain it. The balance of this rival activity is determined by the contextual inputs, which summarise the external and internal sensory environment, and the state of ongoing behavioural priorities. Notably, the distributed sources of contextual convergence upon a striatal locus mirror the transcortical network harnessed by the origin of the operative input to that locus, thereby capturing a similar set of contingencies relevant to determining action. The disclosed loop formulation of corticostriatal and subsequent BG loop circuitry, as advanced here, refines the operating rationale of the classic model and allows the integration of more recent anatomical and physiological data, some of which can appear at variance with the classic model. Equally, it provides a lucid functional context for continuing cellular studies of SPN biophysics and mechanisms of synaptic plasticity.
Collapse
|
22
|
Pujol J, Fenoll R, Macià D, Martínez-Vilavella G, Alvarez-Pedrerol M, Rivas I, Forns J, Deus J, Blanco-Hinojo L, Querol X, Sunyer J. Airborne copper exposure in school environments associated with poorer motor performance and altered basal ganglia. Brain Behav 2016; 6:e00467. [PMID: 27134768 PMCID: PMC4842931 DOI: 10.1002/brb3.467] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 03/02/2016] [Accepted: 03/09/2016] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Children are more vulnerable to the effects of environmental elements. A variety of air pollutants are among the identified factors causing neural damage at toxic concentrations. It is not obvious, however, to what extent the tolerated high levels of air pollutants are able to alter brain development. We have specifically investigated the neurotoxic effects of airborne copper exposure in school environments. METHODS Speed and consistency of motor response were assessed in 2836 children aged from 8 to 12 years. Anatomical MRI, diffusion tensor imaging, and functional MRI were used to directly test the brain repercussions in a subgroup of 263 children. RESULTS Higher copper exposure was associated with poorer motor performance and altered structure of the basal ganglia. Specifically, the architecture of the caudate nucleus region was less complete in terms of both tissue composition and neural track water diffusion. Functional MRI consistently showed a reciprocal connectivity reduction between the caudate nucleus and the frontal cortex. CONCLUSIONS The results establish an association between environmental copper exposure in children and alterations of basal ganglia structure and function.
Collapse
Affiliation(s)
- Jesus Pujol
- MRI Research Unit Hospital del Mar Barcelona Spain; Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM G21 Barcelona Spain
| | | | - Dídac Macià
- MRI Research Unit Hospital del Mar Barcelona Spain
| | | | - Mar Alvarez-Pedrerol
- Centre for Research in Environmental Epidemiology (CREAL) Barcelona Catalonia Spain; Pompeu Fabra University Barcelona Catalonia Spain; Ciber on Epidemiology and Public Health (CIBERESP) Barcelona Spain
| | - Ioar Rivas
- Centre for Research in Environmental Epidemiology (CREAL) Barcelona Catalonia Spain; Pompeu Fabra University Barcelona Catalonia Spain; Ciber on Epidemiology and Public Health (CIBERESP) Barcelona Spain; Institute of Environmental Assessment and Water Research (IDAEA-CSIC) Barcelona Catalonia Spain
| | - Joan Forns
- Centre for Research in Environmental Epidemiology (CREAL) Barcelona Catalonia Spain; Pompeu Fabra University Barcelona Catalonia Spain; Ciber on Epidemiology and Public Health (CIBERESP) Barcelona Spain
| | - Joan Deus
- MRI Research Unit Hospital del Mar Barcelona Spain; Department of Clinical and Health Psychology Autonomous University of Barcelona Barcelona Spain
| | | | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC) Barcelona Catalonia Spain
| | - Jordi Sunyer
- Centre for Research in Environmental Epidemiology (CREAL) Barcelona Catalonia Spain; Pompeu Fabra University Barcelona Catalonia Spain; Ciber on Epidemiology and Public Health (CIBERESP) Barcelona Spain; IMIM (Hospital del Mar Medical Research Institute) Barcelona Catalonia Spain
| |
Collapse
|
23
|
Uncertainty and expectancy deviations require cortico-subcortical cooperation. Neuroimage 2016; 144:23-34. [PMID: 27261161 DOI: 10.1016/j.neuroimage.2016.05.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/29/2016] [Accepted: 05/27/2016] [Indexed: 01/26/2023] Open
Abstract
In a dynamic and uncertain environment it is beneficial to learn the causal structure of the environment in order to minimize uncertainty. This requires determining estimates of probable outcomes, which will guide expectations about incoming information. One key factor in this learning process is to detect whether an unexpected event constitutes a low probability, but valid outcome, or an outright error. The present 7T-fMRI study investigated the role of subcortical structures in regulating this probabilistic inferential learning process. A new task was designed, in which participants learned to calculate the value, and therefore to anticipate the outcome of different visual sequences. Three types of sequences provided unambiguous, ambiguous, and incongruent contextual evidence and each sequence had two outcomes, which differed in their probability of occurrence. We hypothesized that subcortical regions are necessary when expectations are violated, and that their involvement will depend on the nature of the unexpected event. The results show increased dorsomedial striatal and thalamic activation for less probable sequences; in addition, ambiguous sequences also display larger activation in the red nuclei. Incongruent sequences displayed a pattern of subcortical activation restricted to the dorsolateral and the posterior dorsomedial striatum. These results confirm that different subcortical structures regulate uncertainty and expectancy deviations; this is crucial not only for learning to predict events in the environment, but also for flexible cognitive control in general.
Collapse
|
24
|
Zou Z, Lu Y, Zha Y, Yang H. Endocannabinoid 2-Arachidonoylglycerol Suppresses LPS-Induced Inhibition of A-Type Potassium Channel Currents in Caudate Nucleus Neurons Through CB1 Receptor. J Mol Neurosci 2016; 59:493-503. [PMID: 27129498 DOI: 10.1007/s12031-016-0761-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/22/2016] [Indexed: 01/29/2023]
Abstract
Inflammation plays a pivotal role in the pathogenesis of many diseases in the central nervous system. Caudate nucleus (CN), the largest nucleus in the brain, is also implicated in many neurological disorders. 2-Arachidonoylglycerol (2-AG), the most abundant endogenous cannabinoid, has been shown to exhibit neuroprotective effects through its anti-inflammatory action from some proinflammatory stimuli. However, the neuroprotective mechanism of 2-AG is complex and has not been fully understood. A-type K(+) channels critically regulate neuronal excitability and have been demonstrated to be associated with some nervous system diseases. The aim of this study was to explore whether A-type K(+) channels were involved in neurotoxicity of lipopolysaccharides (LPS) and the neuroprotective mechanism of 2-AG in CN neurons. Whole cell patch clamp recording was used to investigate the influence of LPS on the function of A-type K(+) channels and its modulation by 2-AG in primary cultured rat CN neurons. Our findings showed that in cultured CN neurons, LPS significantly decreased the A-type potassium currents (I A) in a voltage-insensitive way. The further data demonstrated that an elevation of 2-AG levels by directly applying exogenous 2-AG or inhibiting monoacylglycerol lipase (MAGL) to prevent 2-AG hydrolysis was capable of suppressing the LPS-induced inhibition of IA and the action of 2-AG is mediated through CB1 receptor-dependant way. The study provides a better understanding of inflammation-related neurological disorders and suggests the therapeutic potential for 2-AG for the treatment of these diseases.
Collapse
Affiliation(s)
- Ziliang Zou
- Department of Physiology and Pathophysiology, College of Medical Sciences, China Three Gorges University, 8 University Road, 443002, Yichang, Hubei, People's Republic of China
| | - Yongli Lu
- Department of Physiology and Pathophysiology, College of Medical Sciences, China Three Gorges University, 8 University Road, 443002, Yichang, Hubei, People's Republic of China.,Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, Yichang, Hubei, People's Republic of China
| | - Yunhong Zha
- Department of Neurology, The First Hospital of Yichang, Institute of Translational Neuroscience, Three Gorges University College of Medicine, 443000, Yichang, Hubei, People's Republic of China
| | - Hongwei Yang
- Department of Physiology and Pathophysiology, College of Medical Sciences, China Three Gorges University, 8 University Road, 443002, Yichang, Hubei, People's Republic of China. .,Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, Yichang, Hubei, People's Republic of China.
| |
Collapse
|
25
|
Kotz SA, Brown RM, Schwartze M. Cortico-striatal circuits and the timing of action and perception. Curr Opin Behav Sci 2016. [DOI: 10.1016/j.cobeha.2016.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Zou Z, Lu Y, Dong M, Yang H. Effect of Homocysteine on Voltage-Gated Sodium Channel Currents in Primary Cultured Rat Caudate Nucleus Neurons and Its Modulation by 2-Arachidonylglycerol. J Mol Neurosci 2015; 57:477-85. [PMID: 26179279 DOI: 10.1007/s12031-015-0616-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 07/01/2015] [Indexed: 12/20/2022]
Abstract
Homocysteine (Hcy) is an important risk factor for Alzheimer's disease (AD) and other neurodegenerative diseases. Caudate nucleus (CN), the largest nucleus in the brain, is also implicated in many neurological disorders. 2-Arachidonoylglycerol (2-AG), the most abundant endogenous cannabinoid, has been shown to exhibit neuroprotective effects from many stimuli in the central nervous system (CNS). Furthermore, it has been reported that voltage-gated sodium channels (VGSCs) are the common targets of many neuronal damages and drugs. However, it is still not clear whether VGSCs are involved in the neurotoxicity of Hcy and the neuroprotective effect of 2-AG in CN neurons. In the present study, whole-cell patch clamp recording was used to invest the action of Hcy on sodium currents in primary cultured rat CN neurons and its modulation by 2-AG. The results showed that in cultured CN neurons, pathological concentration of Hcy (100 μM) significantly increased the voltage-gated sodium currents (I(Na)) and produced a hyperpolarizing shift in the activation-voltage curve of I(Na). The further data demonstrated 2-AG is capable of suppressing elevation of Hcy-induced increase in I(Na) and hyperpolarizing shift of activation curves most partly through CB1 receptor-dependent way. Our study provides a better understanding of Hcy-associated neurological disorders and suggests the therapeutic potential for 2-AG for the treatment of these diseases.
Collapse
Affiliation(s)
- Ziliang Zou
- Department of Physiology and Pathophysiology, College of Medical Sciences, China Three Gorges University, 8 University Road, 443002, Yichang, Hubei,, People's Republic of China
| | - Yongli Lu
- Department of Physiology and Pathophysiology, College of Medical Sciences, China Three Gorges University, 8 University Road, 443002, Yichang, Hubei,, People's Republic of China.,Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, Yichang, Hubei,, People's Republic of China
| | - Manman Dong
- Department of Physiology and Pathophysiology, College of Medical Sciences, China Three Gorges University, 8 University Road, 443002, Yichang, Hubei,, People's Republic of China
| | - Hongwei Yang
- Department of Physiology and Pathophysiology, College of Medical Sciences, China Three Gorges University, 8 University Road, 443002, Yichang, Hubei,, People's Republic of China. .,Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, Yichang, Hubei,, People's Republic of China.
| |
Collapse
|
27
|
Three distinct fiber pathways of the bed nucleus of the stria terminalis to the amygdala and prefrontal cortex. Cortex 2015; 66:60-8. [DOI: 10.1016/j.cortex.2015.02.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/29/2015] [Accepted: 02/18/2015] [Indexed: 11/20/2022]
|
28
|
Functional network mirrored in the prefrontal cortex, caudate nucleus, and thalamus: high-resolution functional imaging and structural connectivity. J Neurosci 2014; 34:9202-12. [PMID: 25009254 DOI: 10.1523/jneurosci.0228-14.2014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite myriads of studies on a parallel organization of cortico-striatal-thalamo-cortical loops, direct evidence of this has been lacking for the healthy human brain. Here, we scrutinize the functional specificity of the cortico-subcortical loops depending on varying levels of cognitive hierarchy as well as their structural connectivity with high-resolution fMRI and diffusion-weighted MRI (dMRI) at 7 tesla. Three levels of cognitive hierarchy were implemented in two domains: second language and nonlanguage. In fMRI, for the higher level, activations were found in the ventroanterior portion of the prefrontal cortex (PFC), the head of the caudate nucleus (CN), and the ventral anterior nucleus (VA) in the thalamus. Conversely, for the lower level, activations were located in the posterior region of the PFC, the body of the CN, and the medial dorsal nucleus (MD) in the thalamus. This gradient pattern of activations was furthermore shown to be tenable by the parallel connectivity in dMRI tractography connecting the anterior regions of the PFC with the head of the CN and the VA in the thalamus, whereas the posterior activations of the PFC were linked to the body of the CN and the MD in the thalamus. This is the first human in vivo study combining fMRI and dMRI showing that the functional specificity is mirrored within the cortico-subcortical loop substantiated by parallel networks.
Collapse
|
29
|
Lacey S, Stilla R, Sreenivasan K, Deshpande G, Sathian K. Spatial imagery in haptic shape perception. Neuropsychologia 2014; 60:144-58. [PMID: 25017050 DOI: 10.1016/j.neuropsychologia.2014.05.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/27/2014] [Accepted: 05/13/2014] [Indexed: 12/14/2022]
Abstract
We have proposed that haptic activation of the shape-selective lateral occipital complex (LOC) reflects a model of multisensory object representation in which the role of visual imagery is modulated by object familiarity. Supporting this, a previous functional magnetic resonance imaging (fMRI) study from our laboratory used inter-task correlations of blood oxygenation level-dependent (BOLD) signal magnitude and effective connectivity (EC) patterns based on the BOLD signals to show that the neural processes underlying visual object imagery (objIMG) are more similar to those mediating haptic perception of familiar (fHS) than unfamiliar (uHS) shapes. Here we employed fMRI to test a further hypothesis derived from our model, that spatial imagery (spIMG) would evoke activation and effective connectivity patterns more related to uHS than fHS. We found that few of the regions conjointly activated by spIMG and either fHS or uHS showed inter-task correlations of BOLD signal magnitudes, with parietal foci featuring in both sets of correlations. This may indicate some involvement of spIMG in HS regardless of object familiarity, contrary to our hypothesis, although we cannot rule out alternative explanations for the commonalities between the networks, such as generic imagery or spatial processes. EC analyses, based on inferred neuronal time series obtained by deconvolution of the hemodynamic response function from the measured BOLD time series, showed that spIMG shared more common paths with uHS than fHS. Re-analysis of our previous data, using the same EC methods as those used here, showed that, by contrast, objIMG shared more common paths with fHS than uHS. Thus, although our model requires some refinement, its basic architecture is supported: a stronger relationship between spIMG and uHS compared to fHS, and a stronger relationship between objIMG and fHS compared to uHS.
Collapse
Affiliation(s)
- Simon Lacey
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Randall Stilla
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Karthik Sreenivasan
- AU MRI Research Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, AL, USA
| | - Gopikrishna Deshpande
- AU MRI Research Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, AL, USA; Department of Psychology, Auburn University, Auburn, AL, USA
| | - K Sathian
- Department of Neurology, Emory University, Atlanta, GA, USA; Department of Rehabilitation Medicine, Emory University, Atlanta, GA, USA; Department of Psychology, Emory University, Atlanta, GA, USA; Rehabilitation R&D Center of Excellence, Atlanta VAMC, Decatur, GA, USA.
| |
Collapse
|
30
|
Endocannabinoid 2-arachidonylglycerol protects primary cultured neurons against LPS-induced impairments in rat caudate nucleus. J Mol Neurosci 2014; 54:49-58. [PMID: 24510751 DOI: 10.1007/s12031-014-0246-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/21/2014] [Indexed: 10/25/2022]
Abstract
Inflammation plays a pivotal role in the pathogenesis of many diseases in the central nervous system. Caudate nucleus (CN), the largest nucleus in the brain, is also implicated in many neurological disorders. 2-Arachidonoylglycerol (2-AG), the most abundant endogenous cannabinoid and the true natural ligand for CB1 receptors, has been shown to exhibit neuroprotective effects through its anti-inflammatory action from proinflammatory stimuli in hippocampus. However, it is still not clear whether 2-AG is also able to protect CN neurons from proinflammation stimuli. In the present study, we discovered that 2-AG significantly protects CN neurons in culture against lipopolysaccharide (LPS)-induced inflammatory response. 2-AG is capable of suppressing elevation of LPS-induced cyclooxygenase-2 expression associated with ERK/p38MAPK/NF-κB signaling pathway in CB1 receptor-dependant manner in primary cultured CN neurons. Moreover, 2-AG inhibits LPS-induced increase in voltage-gated sodium channel currents and hyperpolarizing shift of activation curves through CB1 receptor-dependant pathway. Our study suggests the therapeutic potential of 2-AG for the treatment of some inflammation-induced neurological disorders and pain.
Collapse
|