1
|
Zhang Y, Henawy AR, Rehman KU, van Huis A, Cai M, Zheng L, Huang F, Ding X, Lei H, Zhang J. Artificial light source combined with functional microorganism improves reproductive performance of black soldier fly. INSECT SCIENCE 2025. [PMID: 40312979 DOI: 10.1111/1744-7917.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/11/2025] [Accepted: 04/01/2025] [Indexed: 05/03/2025]
Abstract
Black soldier fly (BSF, Hermetia illucens) has been recognized as a promising insect species for sustainable conversion of organic waste into valuable biomass. Many studies have focused on the use of BSF larvae to improve the recycling of organic waste. However, few studies have been conducted on the reproductive efficiency of BSF adults. In particular, the major problems with artificial systems are directed oviposition and the poor oviposition rate due to inadequate sunlight. This study aimed to address the bottleneck by developing an effective artificial source and finding effective attractants. Results showed that our homemade artificial light significantly enhanced the number of BSF eggs and elevated the egg hatching rate compared to commercial artificial light. Simultaneously, the isolated strain of Trichosporon asahii BSFL-2 can induce gravid BSF females to oviposit and the combination of homemade artificial light with BSFL-2 resulted in a notable increase in the number of eggs collected in the BSF adults rearing system. Analysis of the gas chromatography-mass spectrometry results and experimental validation showed that 2,5-dimethylpyrazine produced by BSFL-2 strain was able to attract gravid females to aggregate and oviposit. This study demonstrates that the use of effective artificial light source and attractant is a crucial element in addressing the bottleneck of efficient indoor reproduction of BSF.
Collapse
Affiliation(s)
- Yuanpu Zhang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Ahmed R Henawy
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Department of Microbiology, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Kashif Ur Rehman
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
- Department of Microbiology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Arnold van Huis
- Laboratory of Entomology, Wageningen University & Research, Droevendaalsesteeg, Wageningen, the Netherlands
| | - Minmin Cai
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Longyu Zheng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Feng Huang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xiaomin Ding
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Wuhan Jintai De Biotechnology Co., Ltd, Wuhan, China
| | - Hongsheng Lei
- Wuhan Jintai De Biotechnology Co., Ltd, Wuhan, China
| | - Jibin Zhang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
2
|
Castellan I, Duménil C, Rehermann G, Eisenstecken D, Bianchi F, Robatscher P, Spitaler U, Favaro R, Schmidt S, Becher PG, Angeli S. Chemical and Electrophysiological Characterisation of Headspace Volatiles from Yeasts Attractive to Drosophila suzukii. J Chem Ecol 2024; 50:830-846. [PMID: 38691267 PMCID: PMC11543737 DOI: 10.1007/s10886-024-01494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 05/03/2024]
Abstract
Chemical control of Drosophila suzukii (Diptera: Drosophilidae) based on the use of insecticides is particularly challenging as the insect attacks ripening fruits shortly before harvest. An alternative strategy may rely on the use of yeasts as phagostimulants and baits, applied on canopy as attract-and-kill formulations. The aim of this research was to identify the most attractive among six yeast species for D. suzukii: Saccharomyces cerevisiae, Hanseniaspora uvarum, Clavispora santaluciae, Saccharomycopsis vini, Issatchenkia terricola, and Metschnikowia pulcherrima. The volatile profile of C. santaluciae was described for the first time. Behavioural experiments identified H. uvarum and S. vini as the most attractive yeasts. The characterization of yeast headspace volatiles using direct headspace (DHS) and solid-phase microextraction (SPME) revealed several strain-specific compounds. With DHS injection, 19 volatiles were characterised, while SPME revealed 71 compounds constituting the yeast headspace. Both analyses revealed terpenoids including β-ocimene, citronellol, (Z)-geraniol (nerol), and geranial as distinct constituents of S. vini. H. uvarum and S. vini were further investigated using closed-loop stripping analysis (CSLA) and electroantennography. Out of 14 compounds quantified by CSLA, ethyl acetate, isoamyl acetate, β-myrcene, benzaldehyde and linalool were detected by D. suzukii antennae and might generate the strong attractiveness of S. vini and H. uvarum. Our results highlight a strong attraction of D. suzukii to various yeasts associated with both the flies and their habitat and demonstrate how different sampling methods can impact the results of volatile compound characterization. It remains to be demonstrated whether the distinct attraction is based on special adaptations to certain yeasts and to what extent the metabolites causing attraction are interchangeable.
Collapse
Affiliation(s)
- Irene Castellan
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Claire Duménil
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Guillermo Rehermann
- Department of Plant Protection Biology, Chemical Ecology Horticulture Unit, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Daniela Eisenstecken
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Auer-Ora, Italy
| | - Flavia Bianchi
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Auer-Ora, Italy
| | - Peter Robatscher
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Auer-Ora, Italy
| | - Urban Spitaler
- Entomology Group, Institute for Plant Health, Laimburg Research Centre, Auer-Ora, Italy
| | - Riccardo Favaro
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Silvia Schmidt
- Entomology Group, Institute for Plant Health, Laimburg Research Centre, Auer-Ora, Italy
| | - Paul G Becher
- Department of Plant Protection Biology, Chemical Ecology Horticulture Unit, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sergio Angeli
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy.
- Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bolzano, Italy.
| |
Collapse
|
3
|
Balbuena MS, Buchmann SL, Papaj DR, Raguso RA. Organ-specific volatiles from Sonoran desert Krameria flowers as potential signals for oil-collecting bees. PHYTOCHEMISTRY 2024; 218:113937. [PMID: 38035972 DOI: 10.1016/j.phytochem.2023.113937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
The evolution of flowers that offer oils as rewards and are pollinated by specialized bees represents a distinctive theme in plant-pollinator co-diversification. Some plants that offer acetylated glycerols as floral oils emit diacetin, a volatile by-product of oil metabolism, which is utilized by oil-collecting bees as an index signal for the presence of floral oil. However, floral oils in the genus Krameria (Krameriaceae) contain β-acetoxy-substituted fatty acids instead of acetylated glycerols, making them unlikely to emit diacetin as an oil-bee attractant. We analyzed floral headspace composition from K. bicolor and K. erecta, native to the Sonoran Desert of southwestern North America, in search of alternative candidates for volatile index signals. Using solid-phase microextraction, combined with gas chromatography-mass spectrometry, we identified 26 and 45 floral volatiles, respectively, from whole flowers and dissected flower parts of these two Krameria species. As expected, diacetin was not detected. Instead, β-ionone emerged as a strong candidate for an index signal, as it was uniquely present in dissected oil-producing floral tissues (elaiophores) of K. bicolor, as well as the larval cells and provisions from its oil-bee pollinator, Centris cockerelli. This finding suggests that the floral oil of K. bicolor is perfused with β-ionone in its tissue of origin and retains the distinctive raspberry-like scent of this volatile after being harvested by C. cockerelli bees. In contrast, the elaiophores of K. erecta, which are not thought to be pollinated by C. cockerelli, produced a blend of anise-related oxygenated aromatics not found in the elaiophores of K. bicolor. Our findings suggest that β-ionone has the potential to impact oil-foraging by C. cockerelli bees through several potential mechanisms, including larval imprinting on scented provisions or innate or learned preferences by foraging adults.
Collapse
Affiliation(s)
- Maria Sol Balbuena
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA.
| | - Stephen L Buchmann
- Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA.
| | - Daniel R Papaj
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA.
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
4
|
Rand MD, Tennessen JM, Mackay TFC, Anholt RRH. Perspectives on the Drosophila melanogaster Model for Advances in Toxicological Science. Curr Protoc 2023; 3:e870. [PMID: 37639638 PMCID: PMC10463236 DOI: 10.1002/cpz1.870] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The use of Drosophila melanogaster for studies of toxicology has grown considerably in the last decade. The Drosophila model has long been appreciated as a versatile and powerful model for developmental biology and genetics because of its ease of handling, short life cycle, low cost of maintenance, molecular genetic accessibility, and availability of a wide range of publicly available strains and data resources. These features, together with recent unique developments in genomics and metabolomics, make the fly model especially relevant and timely for the development of new approach methodologies and movements toward precision toxicology. Here, we offer a perspective on how flies can be leveraged to identify risk factors relevant to environmental exposures and human health. First, we review and discuss fundamental toxicologic principles for experimental design with Drosophila. Next, we describe quantitative and systems genetics approaches to resolve the genetic architecture and candidate pathways controlling susceptibility to toxicants. Finally, we summarize the current state and future promise of the emerging field of Drosophila metabolomics for elaborating toxic mechanisms. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Matthew D. Rand
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | - Trudy F. C. Mackay
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, South Carolina 29646, USA
| | - Robert R. H. Anholt
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, South Carolina 29646, USA
| |
Collapse
|
5
|
Barros KO, Alvarenga FBM, Magni G, Souza GFL, Abegg MA, Palladino F, da Silva SS, Rodrigues RCLB, Sato TK, Hittinger CT, Rosa CA. The Brazilian Amazonian rainforest harbors a high diversity of yeasts associated with rotting wood, including many candidates for new yeast species. Yeast 2023; 40:84-101. [PMID: 36582015 DOI: 10.1002/yea.3837] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
This study investigated the diversity of yeast species associated with rotting wood in Brazilian Amazonian rainforests. A total of 569 yeast strains were isolated from rotting wood samples collected in three Amazonian areas (Universidade Federal do Amazonas-Universidade Federal do Amazonas [UFAM], Piquiá, and Carú) in the municipality of Itacoatiara, Amazon state. The samples were cultured in yeast nitrogen base (YNB)-d-xylose, YNB-xylan, and sugarcane bagasse and corncob hemicellulosic hydrolysates (undiluted and diluted 1:2 and 1:5). Sugiyamaella was the most prevalent genus identified in this work, followed by Kazachstania. The most frequently isolated yeast species were Schwanniomyces polymorphus, Scheffersomyces amazonensis, and Wickerhamomyces sp., respectively. The alpha diversity analyses showed that the dryland forest of UFAM was the most diverse area, while the floodplain forest of Carú was the least. Additionally, the difference in diversity between UFAM and Carú was the highest among the comparisons. Thirty candidates for new yeast species were obtained, representing 36% of the species identified and totaling 101 isolates. Among them were species belonging to the clades Spathaspora, Scheffersomyces, and Sugiyamaella, which are recognized as genera with natural xylose-fermenting yeasts that are often studied for biotechnological and ecological purposes. The results of this work showed that rotting wood collected from the Amazonian rainforest is a tremendous source of diverse yeasts, including candidates for new species.
Collapse
Affiliation(s)
- Katharina O Barros
- Departmento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Flávia B M Alvarenga
- Departmento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Giulia Magni
- Departmento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gisele F L Souza
- Departmento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maxwel A Abegg
- Institute of Exact Sciences and Technology (ICET), Federal University of Amazonas (UFAM), Itacoatiara, Brazil
| | - Fernanda Palladino
- Departmento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sílvio S da Silva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Rita C L B Rodrigues
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Trey K Sato
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Chris Todd Hittinger
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Carlos A Rosa
- Departmento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
6
|
Eisen KE, Powers JM, Raguso RA, Campbell DR. An analytical pipeline to support robust research on the ecology, evolution, and function of floral volatiles. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1006416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Research on floral volatiles has grown substantially in the last 20 years, which has generated insights into their diversity and prevalence. These studies have paved the way for new research that explores the evolutionary origins and ecological consequences of different types of variation in floral scent, including community-level, functional, and environmentally induced variation. However, to address these types of questions, novel approaches are needed that can handle large sample sizes, provide quality control measures, and make volatile research more transparent and accessible, particularly for scientists without prior experience in this field. Drawing upon a literature review and our own experiences, we present a set of best practices for next-generation research in floral scent. We outline methods for data collection (experimental designs, methods for conducting field collections, analytical chemistry, compound identification) and data analysis (statistical analysis, database integration) that will facilitate the generation and interpretation of quality data. For the intermediate step of data processing, we created the R package bouquet, which provides a data analysis pipeline. The package contains functions that enable users to convert chromatographic peak integrations to a filtered data table that can be used in subsequent statistical analyses. This package includes default settings for filtering out non-floral compounds, including background contamination, based on our best-practice guidelines, but functions and workflows can be easily customized as necessary. Next-generation research into the ecology and evolution of floral scent has the potential to generate broadly relevant insights into how complex traits evolve, their genomic architecture, and their consequences for ecological interactions. In order to fulfill this potential, the methodology of floral scent studies needs to become more transparent and reproducible. By outlining best practices throughout the lifecycle of a project, from experimental design to statistical analysis, and providing an R package that standardizes the data processing pipeline, we provide a resource for new and seasoned researchers in this field and in adjacent fields, where high-throughput and multi-dimensional datasets are common.
Collapse
|
7
|
Campbell DR, Bischoff M, Raguso RA, Briggs HM, Sosenski P. Selection of Floral Traits by Pollinators and Seed Predators during Sequential Life History Stages. Am Nat 2022; 199:808-823. [DOI: 10.1086/716740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Diane R. Campbell
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92617
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado 81224
| | - Mascha Bischoff
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado 81224
- Environmental Research Institute, North Highland College, Castle Street, Thurso KW14 7JD, United Kingdom
| | - Robert A. Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853
| | - Heather M. Briggs
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92617
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado 81224
| | - Paula Sosenski
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92617
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado 81224
- Consejo Nacional de Ciencia y Tecnología (CONACYT)–Departamento de Ecología Tropical, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| |
Collapse
|
8
|
Đurović G, Van Neerbos FAC, Bossaert S, Herrera-Malaver B, Steensels J, Arnó J, Wäckers F, Sobhy IS, Verstrepen KJ, Jacquemyn H, Lievens B. The Pupal Parasitoid Trichopria drosophilae Is Attracted to the Same Yeast Volatiles as Its Adult Host. J Chem Ecol 2021; 47:788-798. [PMID: 34269959 DOI: 10.1007/s10886-021-01295-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 10/20/2022]
Abstract
There is increasing evidence that microorganisms, particularly fungi and bacteria, emit volatile compounds that mediate the foraging behaviour of insects and therefore have the potential to affect key ecological relationships. However, to what extent microbial volatiles affect the olfactory response of insects across different trophic levels remains unclear. Adult parasitoids use a variety of chemical stimuli to locate potential hosts, including those emitted by the host's habitat, the host itself, and microorganisms associated with the host. Given the great capacity of parasitoids to utilize and learn odours to increase foraging success, parasitoids of eggs, larvae, or pupae may respond to the same volatiles the adult stage of their hosts use when locating their resources, but compelling evidence is still scarce. In this study, using Saccharomyces cerevisiae we show that Trichopria drosophilae, a pupal parasitoid of Drosophila species, is attracted to the same yeast volatiles as their hosts in the adult stage, i.e. acetate esters. Parasitoids significantly preferred the odour of S. cerevisiae over the blank medium in a Y-tube olfactometer. Deletion of the yeast ATF1 gene, encoding a key acetate ester synthase, decreased attraction of T. drosophilae, while the addition of synthetic acetate esters to the fermentation medium restored parasitoid attraction. Bioassays with individual compounds revealed that the esters alone were not as attractive as the volatile blend of S. cerevisiae, suggesting that other volatile compounds also contribute to the attraction of T. drosophilae. Altogether, our results indicate that pupal parasitoids respond to the same volatiles as the adult stage of their hosts, which may aid them in locating oviposition sites.
Collapse
Affiliation(s)
- Gordana Đurović
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, B-3001, Leuven, Belgium.,Leuven Plant Institute (LPI), KU Leuven, B-3001, Leuven, Belgium.,Research and Innovation Centre, Fondazione Edmund Mach, 38098, San Michele all'Adige, Italy.,Biobest, B-2260, Westerlo, Belgium
| | - Francine A C Van Neerbos
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, B-3001, Leuven, Belgium.,Leuven Plant Institute (LPI), KU Leuven, B-3001, Leuven, Belgium
| | - Sofie Bossaert
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, B-3001, Leuven, Belgium.,Leuven Plant Institute (LPI), KU Leuven, B-3001, Leuven, Belgium
| | - Beatriz Herrera-Malaver
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, B-3001, Leuven, Belgium.,Flanders Institute for Biotechnology (VIB), KU Leuven Center for Microbiology, B-3001, Leuven, Belgium
| | - Jan Steensels
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, B-3001, Leuven, Belgium.,Flanders Institute for Biotechnology (VIB), KU Leuven Center for Microbiology, B-3001, Leuven, Belgium
| | | | - Felix Wäckers
- Biobest, B-2260, Westerlo, Belgium.,Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Islam S Sobhy
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, B-3001, Leuven, Belgium.,Leuven Plant Institute (LPI), KU Leuven, B-3001, Leuven, Belgium.,Department of Plant Protection, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt
| | - Kevin J Verstrepen
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, B-3001, Leuven, Belgium.,Flanders Institute for Biotechnology (VIB), KU Leuven Center for Microbiology, B-3001, Leuven, Belgium
| | - Hans Jacquemyn
- Leuven Plant Institute (LPI), KU Leuven, B-3001, Leuven, Belgium.,Laboratory of Plant Conservation and Population Biology, Biology Department, KU Leuven, B-3001, Leuven, Belgium
| | - Bart Lievens
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, B-3001, Leuven, Belgium. .,Leuven Plant Institute (LPI), KU Leuven, B-3001, Leuven, Belgium.
| |
Collapse
|
9
|
Buser CC, Jokela J, Martin OY. Scent of a killer: How could killer yeast boost its dispersal? Ecol Evol 2021; 11:5809-5814. [PMID: 34141185 PMCID: PMC8207343 DOI: 10.1002/ece3.7534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 01/09/2023] Open
Abstract
Vector-borne parasites often manipulate hosts to attract uninfected vectors. For example, parasites causing malaria alter host odor to attract mosquitoes. Here, we discuss the ecology and evolution of fruit-colonizing yeast in a tripartite symbiosis-the so-called "killer yeast" system. "Killer yeast" consists of Saccharomyces cerevisiae yeast hosting two double-stranded RNA viruses (M satellite dsRNAs, L-A dsRNA helper virus). When both dsRNA viruses occur in a yeast cell, the yeast converts to lethal toxin‑producing "killer yeast" phenotype that kills uninfected yeasts. Yeasts on ephemeral fruits attract insect vectors to colonize new habitats. As the viruses have no extracellular stage, they depend on the same insect vectors as yeast for their dispersal. Viruses also benefit from yeast dispersal as this promotes yeast to reproduce sexually, which is how viruses can transmit to uninfected yeast strains. We tested whether insect vectors are more attracted to killer yeasts than to non‑killer yeasts. In our field experiment, we found that killer yeasts were more attractive to Drosophila than non-killer yeasts. This suggests that vectors foraging on yeast are more likely to transmit yeast with a killer phenotype, allowing the viruses to colonize those uninfected yeast strains that engage in sexual reproduction with the killer yeast. Beyond insights into the basic ecology of the killer yeast system, our results suggest that viruses could increase transmission success by manipulating the insect vectors of their host.
Collapse
Affiliation(s)
- Claudia C. Buser
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
- Department of Aquatic EcologyEawagDübendorfSwitzerland
| | - Jukka Jokela
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
- Department of Aquatic EcologyEawagDübendorfSwitzerland
| | - Oliver Y. Martin
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
- Department of BiologyETH ZürichZürichSwitzerland
| |
Collapse
|
10
|
Ðurović G, Alawamleh A, Carlin S, Maddalena G, Guzzon R, Mazzoni V, Dalton DT, Walton VM, Suckling DM, Butler RC, Angeli S, De Cristofaro A, Anfora G. Liquid Baits with Oenococcus oeni Increase Captures of Drosophila suzukii. INSECTS 2021; 12:insects12010066. [PMID: 33450937 PMCID: PMC7828427 DOI: 10.3390/insects12010066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 11/17/2022]
Abstract
Simple Summary Among the challenges arising from climate change and the transformation of agroecosystems is that agricultural production is heavily affected by invasive insect species. Invasive insects can establish in new areas where their development can progress due to a suitable climate and lack of natural enemies. Farmers have few options to mitigate those insects’ attacks. Current control tactics using pesticides must be replaced with more sustainable methods to counter invasive insect species. We approached the control of the invasive spotted-wing drosophila Drosophila suzukii, using a baiting system that manipulates insect behavior without use of toxic or non-sustainable chemicals. The results of our work are utilized for the monitoring and mass trapping of this devastating invasive species. In our innovative smart-design trap system, we use odors that attract flies and decrease damage in open field scenarios. Our trapping system can efficiently detect the first spring arrival of D. suzukii in agricultural fields and as a such, represents a good early monitoring tool. We conducted four years of laboratory and open-field trials in different berry crops. As a source of odor attraction, we used a mixture of wine, apple cider vinegar, and different commercially available strains of lactic acid bacteria. Abstract The spotted-wing drosophila (SWD), Drosophila suzukii Matsumura (Diptera: Drosophilidae), native to Eastern Asia, is an invasive alien species in Europe and the Americas, where it is a severe pest of horticultural crops, including soft fruits and wine grapes. The conventional approach to controlling infestations of SWD involves the use of insecticides, but the frequency of application for population management is undesirable. Consequently, alternative strategies are urgently needed. Effective and improved trapping is important as an early risk detection tool. This study aimed to improve Droskidrink® (DD), a commercially available attractant for SWD. We focused on the chemical and behavioral effects of adding the bacterium Oenococcus oeni (Garvie) to DD and used a new trap design to enhance the effects of attractive lures. We demonstrate that microbial volatile compounds produced by O. oeni are responsible for the increase in the attractiveness of the bait and could be later utilized for the development of a better trapping system. Our results showed that the attractiveness of DD was increased up to two-fold by the addition of commercially available O. oeni when combined with an innovative trap design. The new trap-bait combination increased the number of male and especially female catches at low population densities.
Collapse
Affiliation(s)
- Gordana Ðurović
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (G.Ð.); (S.C.); (V.M.); (G.A.)
- Biobest Group NV, Ilse Velden, 2260 Westerlo, Belgium;
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy;
| | - Amani Alawamleh
- Biobest Group NV, Ilse Velden, 2260 Westerlo, Belgium;
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy;
| | - Silvia Carlin
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (G.Ð.); (S.C.); (V.M.); (G.A.)
| | - Giuseppe Maddalena
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy;
| | - Raffaele Guzzon
- Technology Transfer Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (R.G.); (D.M.S.)
| | - Valerio Mazzoni
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (G.Ð.); (S.C.); (V.M.); (G.A.)
| | - Daniel T. Dalton
- Department of Horticulture, Oregon State University, 4017 Ag and Life Sciences Bldg., Corvallis, OR 97331, USA; (D.T.D.); (V.M.W.)
| | - Vaughn M. Walton
- Department of Horticulture, Oregon State University, 4017 Ag and Life Sciences Bldg., Corvallis, OR 97331, USA; (D.T.D.); (V.M.W.)
| | - David M. Suckling
- Technology Transfer Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (R.G.); (D.M.S.)
- Biosecurity Group, The New Zealand Institute for Plant and Food Research Limited, PB 4704, Christchurch 8140, New Zealand;
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Ruth C. Butler
- Biosecurity Group, The New Zealand Institute for Plant and Food Research Limited, PB 4704, Christchurch 8140, New Zealand;
| | - Sergio Angeli
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bozen-Bolzano, Italy;
| | - Antonio De Cristofaro
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy;
- Correspondence:
| | - Gianfranco Anfora
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (G.Ð.); (S.C.); (V.M.); (G.A.)
- Centre Agriculture Food Environment (C3A), University of Trento, 38100 San Michele all’Adige, Italy
| |
Collapse
|
11
|
Interpopulational Variations of Odorant-Binding Protein Expression in the Black Cutworm Moth, Agrotis ipsilon. INSECTS 2020; 11:insects11110798. [PMID: 33202803 PMCID: PMC7696954 DOI: 10.3390/insects11110798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 11/28/2022]
Abstract
Simple Summary Odorant-binding proteins (OBPs) are small soluble transporter proteins that are believed to play a key role in insect olfaction. However, there is an emerging set of data that shows a role in insecticide resistance for similar families of binding proteins. The black cutworm Agrotis ipsilon is a migrant species of moth known to feed on multiple types of crops (polyphagous) worldwide. It is therefore likely that the olfactory system of this species can be modulated to adapt to different environments. We compared gene expression between American and European continental populations of the moth. We found continental-specific expression of antennal binding protein X (ABPX) and general odorant-binding protein 2 (GOBP2), suggesting a function of these proteins in migration, environment recognition, crop change and adaptation that are required for a polyphagous species such as A. ipsilon. Abstract A long-range migrant species of moth (Agrotis ipsilon) has served as a model to compare the expression profiles of antennal proteins between different continental populations. Our results showed that the American and French populations of the black cutworm moth, A. ipsilon, expressed the same odorant-binding proteins (OBPs), but apparently in different levels. Electrophoretic analysis of antennal protein profiles and reverse transcription polymerase chain reaction using RNA as a template showed significant differences between the two populations in the expression of antennal binding protein-X (ABPX) and general odorant-binding protein-2 (GOBP2). However, the two A. ipsilon populations showed no differences in RNA levels coding for pheromone binding proteins (PBPs), suggesting that the expression of generalist OBPs is population-specific and could be affected by specific odor and/or chemical changes in external environmental conditions. To support the role of ABPX and GOBP2 with expression, the role of ABPX and GOBP2 is discussed in regard to odor detection, memorization and/or degradation of toxic chemical insecticides.
Collapse
|
12
|
McMullen JG, Peters-Schulze G, Cai J, Patterson AD, Douglas AE. How gut microbiome interactions affect nutritional traits of Drosophila melanogaster. ACTA ACUST UNITED AC 2020; 223:223/19/jeb227843. [PMID: 33051361 DOI: 10.1242/jeb.227843] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022]
Abstract
Most research on the impact of the gut microbiome on animal nutrition is designed to identify the effects of single microbial taxa and single metabolites of microbial origin, without considering the potentially complex network of interactions among co-occurring microorganisms. Here, we investigated how different microbial associations and their fermentation products affect host nutrition, using Drosophila melanogaster colonized with three gut microorganisms (the bacteria Acetobacter fabarum and Lactobacillus brevis, and the yeast Hanseniaspora uvarum) in all seven possible combinations. Some microbial effects on host traits could be attributed to single taxa (e.g. yeast-mediated reduction of insect development time), while other effects were sex specific and driven by among-microbe interactions (e.g. male lipid content determined by interactions between the yeast and both bacteria). Parallel analysis of nutritional indices of microbe-free flies administered different microbial fermentation products (acetic acid, acetoin, ethanol and lactic acid) revealed a single consistent effect: that the lipid content of both male and female flies is reduced by acetic acid. This effect was recapitulated in male flies colonized with both yeast and A. fabarum, but not for any microbial treatment in females or males with other microbial complements. These data suggest that the effect of microbial fermentation products on host nutritional status is strongly context dependent, with respect to both the combination of associated microorganisms and host sex. Taken together, our findings demonstrate that among-microbe interactions can play a critically important role in determining the physiological outcome of host-microbiome interactions in Drosophila and, likely, in other animal hosts.
Collapse
Affiliation(s)
- John G McMullen
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | | | - Jingwei Cai
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA .,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
13
|
Yeast Volatomes Differentially Affect Larval Feeding in an Insect Herbivore. Appl Environ Microbiol 2019; 85:AEM.01761-19. [PMID: 31444202 PMCID: PMC6803314 DOI: 10.1128/aem.01761-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/18/2019] [Indexed: 01/25/2023] Open
Abstract
Yeasts interface insect herbivores with their food plants. Communication depends on volatile metabolites, and decoding this chemical dialogue is key to understanding the ecology of insect-yeast interactions. This study explores the volatomes of eight yeast species which have been isolated from foliage, from flowers or fruit, and from plant-feeding insects. These yeasts each release a rich bouquet of volatile metabolites, including a suite of known insect attractants from plant and floral scent. This overlap underlines the phylogenetic dimension of insect-yeast associations, which according to the fossil record long predate the appearance of flowering plants. Volatome composition is characteristic for each species, aligns with yeast taxonomy, and is further reflected by a differential behavioral response of cotton leafworm larvae, which naturally feed on foliage of a wide spectrum of broad-leaved plants. Larval discrimination may establish and maintain associations with yeasts and is also a substrate for designing sustainable insect management techniques. Yeasts form mutualistic interactions with insects. Hallmarks of this interaction include provision of essential nutrients, while insects facilitate yeast dispersal and growth on plant substrates. A phylogenetically ancient chemical dialogue coordinates this interaction, where the vocabulary, the volatile chemicals that mediate the insect response, remains largely unknown. Here, we used gas chromatography-mass spectrometry, followed by hierarchical cluster and orthogonal partial least-squares discriminant analyses, to profile the volatomes of six Metschnikowia spp., Cryptococcus nemorosus, and brewer’s yeast (Saccharomyces cerevisiae). The yeasts, which are all found in association with insects feeding on foliage or fruit, emit characteristic, species-specific volatile blends that reflect the phylogenetic context. Species specificity of these volatome profiles aligned with differential feeding of cotton leafworm (Spodoptera littoralis) larvae on these yeasts. Bioactivity correlates with yeast ecology; phylloplane species elicited a stronger response than fruit yeasts, and larval discrimination may provide a mechanism for establishment of insect-yeast associations. The yeast volatomes contained a suite of insect attractants known from plant and especially floral headspace, including (Z)-hexenyl acetate, ethyl (2E,4Z)-deca-2,4-dienoate (pear ester), (3E)-4,8-dimethylnona-1,3,7-triene (DMNT), linalool, α-terpineol, β-myrcene, or (E,E)-α-farnesene. A wide overlap of yeast and plant volatiles, notably floral scents, further emphasizes the prominent role of yeasts in plant-microbe-insect relationships, including pollination. The knowledge of insect-yeast interactions can be readily brought to practical application, as live yeasts or yeast metabolites mediating insect attraction provide an ample toolbox for the development of sustainable insect management. IMPORTANCE Yeasts interface insect herbivores with their food plants. Communication depends on volatile metabolites, and decoding this chemical dialogue is key to understanding the ecology of insect-yeast interactions. This study explores the volatomes of eight yeast species which have been isolated from foliage, from flowers or fruit, and from plant-feeding insects. These yeasts each release a rich bouquet of volatile metabolites, including a suite of known insect attractants from plant and floral scent. This overlap underlines the phylogenetic dimension of insect-yeast associations, which according to the fossil record long predate the appearance of flowering plants. Volatome composition is characteristic for each species, aligns with yeast taxonomy, and is further reflected by a differential behavioral response of cotton leafworm larvae, which naturally feed on foliage of a wide spectrum of broad-leaved plants. Larval discrimination may establish and maintain associations with yeasts and is also a substrate for designing sustainable insect management techniques.
Collapse
|
14
|
Mozūraitis R, Aleknavičius D, Vepštaitė-Monstavičė I, Stanevičienė R, Emami SN, Apšegaitė V, Radžiutė S, Blažytė-Čereškienė L, Servienė E, Būda V. Hippophae rhamnoides berry related Pichia kudriavzevii yeast volatiles modify behaviour of Rhagoletis batava flies. J Adv Res 2019; 21:71-77. [PMID: 32071775 PMCID: PMC7015468 DOI: 10.1016/j.jare.2019.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/15/2019] [Accepted: 08/03/2019] [Indexed: 02/07/2023] Open
Abstract
Pichia kudriavzevii yeasts were isolated from ripe Hippophae rhamnoides berries. Thirty-five yeast volatiles were identified from the headspace of P. kudriavzevii. Esters and alcohols contributed by 32% and 66% to the total blend amount. Ten of those volatiles elicited antenna responses of Rhagoletis batava flies. Mixture of synthetic olfactory active compounds attracted R. batava males and females.
Olfactory cues have a large impact on insect behaviour and fitness consequently showing potential in pest management. Yeast released volatiles are used by insects as olfactory cues for finding feeding and oviposition sites. The yeast strain SB-16-15 was isolated from spontaneous fermentation of Hippophae rhamnoides berries and identified as Pichia kudriavzevii. Thirty-nine volatiles were sampled from the headspace of P. kudriavzevii yeasts by solid phase micro extraction and identified by gas chromatography and mass spectrometry techniques. Ten of those volatiles elicited antennal responses of Rhagoletis batava flies, one of the most serious pest of H. rhamnoides berries. In the two-choice experiments, R. batava flies preferred the mixture composed of nine synthetic compounds analogous to electroanntenographic active volatiles released by the yeasts compare to the solvent control. Female flies were significantly attracted to the mixture at the concentration 0.1 µL mL−1 and showed no preference to the mixture at the concentration 1 µL mL−1 versus control while males reacted positively to the synthetic blend at the concentration 1 µL mL−1. Herein, for the first time, behaviour modifying effect of H. rhamnoides berry related yeast volatiles was shown suggesting these semiochemicals have potential in use for monitoring R. batava flies.
Collapse
Affiliation(s)
- Raimondas Mozūraitis
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Dominykas Aleknavičius
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Iglė Vepštaitė-Monstavičė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Ramunė Stanevičienė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Seyedeh Noushin Emami
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, SE 106 91 Stockholm, Sweden
| | - Violeta Apšegaitė
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Sandra Radžiutė
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Laima Blažytė-Čereškienė
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Elena Servienė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Vincas Būda
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| |
Collapse
|
15
|
Günther CS, Knight SJ, Jones R, Goddard MR. Are Drosophila preferences for yeasts stable or contextual? Ecol Evol 2019; 9:8075-8086. [PMID: 31380072 PMCID: PMC6662392 DOI: 10.1002/ece3.5366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 01/12/2023] Open
Abstract
Whether there are general mechanisms, driving interspecific chemical communication is uncertain. Saccharomycetaceae yeast and Drosophila fruit flies, both extensively studied research models, share the same fruit habitat, and it has been suggested their interaction comprises a facultative mutualism that is instigated and maintained by yeast volatiles. Using choice tests, experimental evolution, and volatile analyses, we investigate the maintenance of this relationship and reveal little consistency between behavioral responses of two isolates of sympatric Drosophila species. While D. melanogaster was attracted to a range of different Saccharomycetaceae yeasts and this was independent of fruit type, D. simulans preference appeared specific to a particular S. cerevisiae genotype isolated from a vineyard fly population. This response, however, was not consistent across fruit types and is therefore context-dependent. In addition, D. simulans attraction to an individual S. cerevisiae isolate was pliable over ecological timescales. Volatile candidates were analyzed to identify a common signal for yeast attraction, and while D. melanogaster generally responded to fermentation profiles, D. simulans preference was more discerning and likely threshold-dependent. Overall, there is no strong evidence to support the idea of bespoke interactions with specific yeasts for either of these Drosophila genotypes. Rather the data support the idea Drosophila are generally adapted to sense and locate fruits infested by a range of fungal microbes and/or that yeast-Drosophila interactions may evolve rapidly.
Collapse
Affiliation(s)
- Catrin S. Günther
- Joseph Banks Laboratories, School of Life SciencesUniversity of LincolnLincolnUK
| | - Sarah J. Knight
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
| | - Rory Jones
- Joseph Banks Laboratories, School of Life SciencesUniversity of LincolnLincolnUK
| | - Matthew R. Goddard
- Joseph Banks Laboratories, School of Life SciencesUniversity of LincolnLincolnUK
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
| |
Collapse
|
16
|
|
17
|
Becher PG, Hagman A, Verschut V, Chakraborty A, Rozpędowska E, Lebreton S, Bengtsson M, Flick G, Witzgall P, Piškur J. Chemical signaling and insect attraction is a conserved trait in yeasts. Ecol Evol 2018; 8:2962-2974. [PMID: 29531709 PMCID: PMC5838033 DOI: 10.1002/ece3.3905] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/22/2017] [Accepted: 01/07/2018] [Indexed: 01/24/2023] Open
Abstract
Yeast volatiles attract insects, which apparently is of mutual benefit, for both yeasts and insects. However, it is unknown whether biosynthesis of metabolites that attract insects is a basic and general trait, or if it is specific for yeasts that live in close association with insects. Our goal was to study chemical insect attractants produced by yeasts that span more than 250 million years of evolutionary history and vastly differ in their metabolism and lifestyle. We bioassayed attraction of the vinegar fly Drosophila melanogaster to odors of phylogenetically and ecologically distinct yeasts grown under controlled conditions. Baker's yeast Saccharomyces cerevisiae, the insect-associated species Candida californica, Pichia kluyveri and Metschnikowia andauensis, wine yeast Dekkera bruxellensis, milk yeast Kluyveromyces lactis, the vertebrate pathogens Candida albicans and Candida glabrata, and oleophilic Yarrowia lipolytica were screened for fly attraction in a wind tunnel. Yeast headspace was chemically analyzed, and co-occurrence of insect attractants in yeasts and flowering plants was investigated through a database search. In yeasts with known genomes, we investigated the occurrence of genes involved in the synthesis of key aroma compounds. Flies were attracted to all nine yeasts studied. The behavioral response to baker's yeast was independent of its growth stage. In addition to Drosophila, we tested the basal hexapod Folsomia candida (Collembola) in a Y-tube assay to the most ancient yeast, Y. lipolytica, which proved that early yeast signals also function on clades older than neopteran insects. Behavioral and chemical data and a search for selected genes of volatile metabolites underline that biosynthesis of chemical signals is found throughout the yeast clade and has been conserved during the evolution of yeast lifestyles. Literature and database reviews corroborate that yeast signals mediate mutualistic interactions between insects and yeasts. Moreover, volatiles emitted by yeasts are commonly found also in flowers and attract many insect species. The collective evidence suggests that the release of volatile signals by yeasts is a widespread and phylogenetically ancient trait, and that insect-yeast communication evolved prior to the emergence of flowering plants. Co-occurrence of the same attractant signals in yeast and flowers suggests that yeast-insect communication may have contributed to the evolution of insect-mediated pollination in flowers.
Collapse
Affiliation(s)
- Paul G. Becher
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Arne Hagman
- Department of BiologyLund UniversityLundSweden
| | - Vasiliki Verschut
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Amrita Chakraborty
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Elżbieta Rozpędowska
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Sébastien Lebreton
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Marie Bengtsson
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Gerhard Flick
- Department of Agriculture and Food ScienceUniversity of Applied SciencesNeubrandenburgGermany
| | - Peter Witzgall
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Jure Piškur
- Department of BiologyLund UniversityLundSweden
| |
Collapse
|
18
|
Giacomuzzi V, Mattheis JP, Basoalto E, Angeli S, Knight AL. Survey of conspecific herbivore-induced volatiles from apple as possible attractants for Pandemis pyrusana (Lepidoptera: Tortricidae). PEST MANAGEMENT SCIENCE 2017; 73:1837-1845. [PMID: 28195388 DOI: 10.1002/ps.4548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/24/2017] [Accepted: 02/02/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND Studies were conducted to identify volatiles released by apple foliage untreated or sprayed with a yeast and from untreated and sprayed foliage with actively feeding larvae of Pandemis pyrusana Kearfott. Field studies then evaluated various combinations of these volatiles when paired with acetic acid as possible adult attractants. RESULTS The most abundant volatiles released following herbivore feeding were four green leaf volatiles (GLVs) and acetic acid. Nineteen volatiles were found to be released in significantly higher amounts from foliage with herbivore damage than from intact leaves. The combination of yeast followed by herbivore injury increased the levels of methyl salicylate and phenylacetonitrile compared with herbivory alone. Levels of acetic acid released were not significantly different among the four treatments. Only phenylacetonitrile and 2-phenylethanol with acetic acid caught similar and significantly more total and female moths than acetic acid alone. Moth catches with 12 other volatiles plus acetic acid were not significantly higher than with acetic acid alone, and were lower than with acetic acid and 2-phenylethanol. CONCLUSION These data show that herbivore injury does not create a unique chemical signal for adults to locate oviposition or rendezvous sites. Instead, moths may cue to the aromatic-acetic acid combination as a nutritional cue to locate sugary resources. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Valentino Giacomuzzi
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - James P Mattheis
- Tree Fruit Research Laboratory, Agricultural Research Service, USDA, Wenatchee, WA, USA
| | - Esteban Basoalto
- Instituto de Producción y Sanidad Vegetal, Facultad de Ciencias Agrarias, Universidad Austral de Chile, Valdivia, Chile
| | - Sergio Angeli
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Alan L Knight
- Yakima Agricultural Research Laboratory, Agricultural Research Service, USDA, Wapato, WA, USA
| |
Collapse
|
19
|
Cha DH, Landolt PJ, Adams TB. Effect of Chemical Ratios of a Microbial-Based Feeding Attractant on Trap Catch of Drosophila suzukii (Diptera: Drosophilidae). ENVIRONMENTAL ENTOMOLOGY 2017; 46:907-915. [PMID: 28531323 DOI: 10.1093/ee/nvx079] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Indexed: 06/07/2023]
Abstract
Drosophila suzukii Matsumura, spotted wing drosophila, can be trapped with a feeding attractant based on wine and vinegar volatiles and consisting of acetic acid, ethanol, acetoin, and methionol. Using that four-component blend, we found that the catch of spotted wing drosophila increased with increases in the release rate of acetoin (from 0.5 mg/d to 34 mg/d) from polyethylene sachet dispensers, and with increases in the concentrations of acetic acid (from 0.25% to 4%) or ethanol (from 0.08% to 2%) when dispensed in the trap drowning solution. However, we saw no increase in spotted wing drosophila trapped with increase of the methionol release rate from 0.4 mg/d to 4.9 mg/d or from 0.19 mg/d to 0.8 mg/d, from sachets. A new formulation based on optimized amounts of these four chemicals yielded a doubling of spotted wing drosophila trapped compared to a previously reported formulation. Further field testing confirmed that the simultaneous increases in the release rate of acetoin from a dispenser and the amount of acetic acid in the trap drowning solution provided the increased spotted wing drosophila trap response to the new formulation. These findings provide a practical means to improve the power of this lure to detect and monitor D. suzukii.
Collapse
Affiliation(s)
- Dong H Cha
- USDA-ARS, US Pacific Basin Agricultural Research Center, 64 Nowelo St., Hilo, HA 96720
| | - Peter J Landolt
- USDA, ARS Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Rd., Wapato, WA 98951
| | - Todd B Adams
- Oregon Department of Agriculture, Salem, OR 97301
| |
Collapse
|
20
|
Maternally-transmitted microbiota affects odor emission and preference in Drosophila larva. Sci Rep 2017; 7:6062. [PMID: 28729609 PMCID: PMC5519639 DOI: 10.1038/s41598-017-04922-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/22/2017] [Indexed: 12/13/2022] Open
Abstract
Experimental studies show that early sensory experience often affects subsequent sensory preference, suggesting that the heterogeneity of sensory cues in nature could induce significant inter-individual behavioral variation, potentially contributing to maintain intraspecific diversity. To test this hypothesis, we explored the behavioral effect induced by variation in the levels of a self-produced chemical, acetoin, and its link with intraspecific diversity. Acetoin is a pheromone-like substance produced by gut-associated microorganisms in Drosophila. Using wild-type Drosophila melanogaster populations producing variable acetoin levels, we (i) characterized factors involved in this variation and (ii) manipulated some of these factors to affect acetoin responses in larvae. We found that increased and decreased variations in acetoin levels were caused by microorganisms associated with the outside and inside of the egg, respectively. Wild-type larvae preferred acetoin-rich food only when they both produced and were exposed to substantial amounts of acetoin. The removal of the outside of the egg or the genetic alteration of olfaction abolished this preference. In contrast, larvae exposed to high doses of synthetic acetoin were repulsed by acetoin. The similar effects obtained with freshly caught wild-type lines suggest that this acetoin "production-preference" link underlies the diversity of acetoin-producing microorganisms among natural D. melanogaster populations.
Collapse
|
21
|
Policha T, Davis A, Barnadas M, Dentinger BTM, Raguso RA, Roy BA. Disentangling visual and olfactory signals in mushroom-mimicking Dracula orchids using realistic three-dimensional printed flowers. THE NEW PHYTOLOGIST 2016; 210:1058-1071. [PMID: 26877229 DOI: 10.1111/nph.13855] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/01/2015] [Indexed: 06/05/2023]
Abstract
Flowers use olfactory and visual signals to communicate with pollinators. Disentangling the relative contributions and potential synergies between signals remains a challenge. Understanding the perceptual biases exploited by floral mimicry illuminates the evolution of these signals. Here, we disentangle the olfactory and visual components of Dracula lafleurii, which mimics mushrooms in size, shape, color and scent, and is pollinated by mushroom-associated flies. To decouple signals, we used three-dimensional printing to produce realistic artificial flower molds that were color matched and cast using scent-free surgical silicone, to which we could add scent. We used GC-MS to measure scents in co-occurring mushrooms, and related orchids, and used these scents in field experiments. By combining silicone flower parts with real floral organs, we created chimeras that identified the mushroom-like labellum as a source of volatile attraction. In addition, we showed remarkable overlap in the volatile chemistry between D. lafleurii and co-occurring mushrooms. The characters defining the genus Dracula - a mushroom-like, 'gilled' labellum and a showy, patterned calyx - enhance pollinator attraction by exploiting the visual and chemosensory perceptual biases of drosophilid flies. Our techniques for the manipulation of complex traits in a nonmodel system not conducive to gene silencing or selective breeding are useful for other systems.
Collapse
Affiliation(s)
- Tobias Policha
- Institute of Ecology & Evolution, 5289 University of Oregon, Eugene, OR, 97403, USA
| | - Aleah Davis
- Institute of Ecology & Evolution, 5289 University of Oregon, Eugene, OR, 97403, USA
| | - Melinda Barnadas
- Department of Visual Arts, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
- Magpie Studio: Fabrication for Art and Science, La Jolla, CA, 92092, USA
| | - Bryn T M Dentinger
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Cledwyn Building, Penglais, Aberystwyth, Ceredigion, SY23 3DD, UK
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Bitty A Roy
- Institute of Ecology & Evolution, 5289 University of Oregon, Eugene, OR, 97403, USA
| |
Collapse
|
22
|
Scheidler NH, Liu C, Hamby KA, Zalom FG, Syed Z. Volatile codes: Correlation of olfactory signals and reception in Drosophila-yeast chemical communication. Sci Rep 2015; 5:14059. [PMID: 26391997 PMCID: PMC4585764 DOI: 10.1038/srep14059] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/17/2015] [Indexed: 12/03/2022] Open
Abstract
Drosophila have evolved strong mutualistic associations with yeast communities that best support their growth and survival, resulting in the development of novel niches. It has been suggested that flies recognize their cognate yeasts primarily based on the rich repertoire of volatile organic compounds (VOCs) derived from the yeasts. Thus, it remained an exciting avenue to study whether fly spp. detect and discriminate yeast strains based on odor alone, and if so, how such resolution is achieved by the olfactory system in flies. We used two fly species known to exploit different niches and harboring different yeasts, D. suzukii (a pest of fresh fruit) and D. melanogaster (a saprophytic fly and a neurogenetic model organism). We initially established the behavioral preference of both fly species to six Drosophila-associated yeasts; then chemically analyzed the VOC profile of each yeast which revealed quantitative and qualitative differences; and finally isolated and identified the physiologically active constituents from yeast VOCs for each drosophilid that potentially define attraction. By employing chemical, behavioral, and electrophysiological analyses, we provide a comprehensive portrait of the olfactory neuroethological correlates underlying fly-yeast coadaptation in two drosophilids with distinct habitats.
Collapse
Affiliation(s)
- Nicole H Scheidler
- Department of Biological Sciences &Eck Institute for Global Health University of Notre Dame, Notre Dame, IN 46556, USA
| | - Cheng Liu
- Center for Research Computing, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kelly A Hamby
- Entomology Department, University of Maryland, College Park, MD 20742, USA
| | - Frank G Zalom
- Entomology and Nematology Department, University of California, Davis, CA 95616, USA
| | - Zainulabeuddin Syed
- Department of Biological Sciences &Eck Institute for Global Health University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
23
|
Hoel DF, Dunford JC, Kline DL, Irish SR, Weber M, Richardson AG, Doud CW, Wirtz RA. A Comparison of Carbon Dioxide Sources for Mosquito Capture in Centers for Disease Control and Prevention Light Traps on the Florida Gulf Coast (1). JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2015; 31:248-257. [PMID: 26375906 DOI: 10.2987/8756-971x-31.3.248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Traditional sources of carbon dioxide (CO₂), dry ice, and compressed gas, were tested against 3 combinations of food-grade reagents known to generate CO₂using a compact, lightweight generator delivery system with Centers for Disease Control and Prevention light traps. Three 6 × 6 Latin square trials were completed near the Florida Gulf Coast in the Lower Suwannee Wildlife Refuge during the summer of 2013, collecting a total of 31,632 female mosquitoes. Treatments included dry ice, compressed CO₂gas, a control trap (no CO₂), citric acid + sodium bicarbonate, vinegar + sodium bicarbonate, and yeast + sugar. Decreasing order of trap collections (treatment mean number of mosquitoes per trap night ± standard error) were dry ice 773.5 (± 110.1) > compressed gas 440.7 (± 42.3) > citric acid + sodium bicarbonate 197.6 (± 30.4), yeast + sugar 153.6 (± 27.4) > vinegar + sodium bicarbonate 109.6 (± 16.2) > control 82.4 (± 14.0). A 2-way Kruskal-Wallis analysis by treatment, site, and treatment × site interaction identified significant differences between all treatments. Although dry ice and compressed CO₂gas collected significantly more mosquitoes than other combinations (P < 0.05), use of citric acid and sodium bicarbonate or yeast and sugar greatly outperformed unbaited traps and offer a good alternative to dry ice and compressed gas in areas where these agents are not readily available or are difficult to obtain due to logistical constraints. An inexpensive, portable CO₂generator for use with food-grade reagents is described.
Collapse
Affiliation(s)
- David F Hoel
- 2 Navy and Marine Corps Public Health Center Detachment, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329
- 3 Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814
| | - James C Dunford
- 4 US Navy Environmental and Preventive Medicine Unit Two, 1285 West D Street, Bldg. U 238, Norfolk, VA 23511
| | - Daniel L Kline
- 5 Center for Medical, Agricultural and Veterinary Entomology, USDA/ARS, 1600 SW 23rd Drive, Gainesville, FL 32608
| | - Seth R Irish
- 6 Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329
| | - Michael Weber
- 7 onVector Technology, 825 La Crosse Court, Sunnyvale, CA 94087
| | - Alec G Richardson
- 8 Navy Entomology Center of Excellence, Bldg. 937, Naval Air Station Jacksonville, Jacksonville, FL 32212
| | - Carl W Doud
- 8 Navy Entomology Center of Excellence, Bldg. 937, Naval Air Station Jacksonville, Jacksonville, FL 32212
| | - Robert A Wirtz
- 6 Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329
| |
Collapse
|
24
|
Martos F, Cariou ML, Pailler T, Fournel J, Bytebier B, Johnson SD. Chemical and morphological filters in a specialized floral mimicry system. THE NEW PHYTOLOGIST 2015; 207:225-234. [PMID: 25704464 DOI: 10.1111/nph.13350] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 01/28/2015] [Indexed: 06/04/2023]
Abstract
Many plant species attract insect pollinators through chemical mimicry of their oviposition sites, often detaining them in a trap chamber that ensures pollen transfer. These plant mimics are considered to be unspecialized at the pollinator species level, yet field observations of a mycoheterotrophic rainforest orchid (Gastrodia similis), which emits an odour reminiscent of rotting fruit, indicate that it is pollinated by a single drosophilid fly species (Scaptodrosophila bangi). We investigated the roles of floral volatiles and the dimensions of the trap chamber in enforcing this specialization, using gas chromatography-mass spectrometry analyses, bioassays and scanning electron microscopy. We showed that G. similis flowers predominantly emit three fatty-acid esters (ethyl acetate, ethyl isobutyrate and methyl isobutyrate) that were shown in experiments to attract only Scaptodrosophila flies. We additionally showed that the trap chamber, which flies enter into via a touch-sensitive 'trapdoor', closely matches the body size of the pollinator species S. bangi and plays a key role in pollen transfer. Our study demonstrates that specialization in oviposition site mimicry is due primarily to volatile chemistry and is reflected in the dimensions of the trapping apparatus. It also indicates that mycoheterotrophic plants can be specialized both on mycorrhizal fungi and insect pollinators.
Collapse
Affiliation(s)
- Florent Martos
- School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa
| | - Marie-Louise Cariou
- Evolution, Génomes et Spéciation, UPR 9034, CNRS, Avenue de la Terrasse, Bâtiment 13, BP1, 91198, Gif-sur-Yvette Cedex, France
| | - Thierry Pailler
- Peuplements Végétaux et Bio agresseurs en Milieu Tropical, UMR C53, Université de La Réunion, Avenue René Cassin, 97715, Saint Denis Cedex, La Réunion
| | - Jacques Fournel
- Peuplements Végétaux et Bio agresseurs en Milieu Tropical, UMR C53, Université de La Réunion, Avenue René Cassin, 97715, Saint Denis Cedex, La Réunion
| | - Benny Bytebier
- School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa
| | - Steven D Johnson
- School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
25
|
Evolution of herbivory in Drosophilidae linked to loss of behaviors, antennal responses, odorant receptors, and ancestral diet. Proc Natl Acad Sci U S A 2015; 112:3026-31. [PMID: 25624509 DOI: 10.1073/pnas.1424656112] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Herbivory is a key innovation in insects, yet has only evolved in one-third of living orders. The evolution of herbivory likely involves major behavioral changes mediated by remodeling of canonical chemosensory modules. Herbivorous flies in the genus Scaptomyza (Drosophilidae) are compelling species in which to study the genomic architecture linked to the transition to herbivory because they recently evolved from microbe-feeding ancestors and are closely related to Drosophila melanogaster. We found that Scaptomyza flava, a leaf-mining specialist on plants in the family (Brassicaceae), was not attracted to yeast volatiles in a four-field olfactometer assay, whereas D. melanogaster was strongly attracted to these volatiles. Yeast-associated volatiles, especially short-chain aliphatic esters, elicited strong antennal responses in D. melanogaster, but weak antennal responses in electroantennographic recordings from S. flava. We sequenced the genome of S. flava and characterized this species' odorant receptor repertoire. Orthologs of odorant receptors, which detect yeast volatiles in D. melanogaster and mediate critical host-choice behavior, were deleted or pseudogenized in the genome of S. flava. These genes were lost step-wise during the evolution of Scaptomyza. Additionally, Scaptomyza has experienced gene duplication and likely positive selection in paralogs of Or67b in D. melanogaster. Olfactory sensory neurons expressing Or67b are sensitive to green-leaf volatiles. Major trophic shifts in insects are associated with chemoreceptor gene loss as recently evolved ecologies shape sensory repertoires.
Collapse
|
26
|
Schiabor KM, Quan AS, Eisen MB. Saccharomyces cerevisiae mitochondria are required for optimal attractiveness to Drosophila melanogaster. PLoS One 2014; 9:e113899. [PMID: 25462617 PMCID: PMC4252075 DOI: 10.1371/journal.pone.0113899] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 11/02/2014] [Indexed: 11/18/2022] Open
Abstract
While screening a large collection of wild and laboratory yeast strains for their ability to attract Drosophila melanogaster adults, we noticed a large difference in fly preference for two nearly isogenic strains of Saccharomyces cerevisiae, BY4741 and BY4742. Using standard genetic analyses, we tracked the preference difference to the lack of mitochondria in the BY4742 strain used in the initial experiment. We used gas chromatography coupled with mass spectroscopy to examine the volatile compounds produced by BY4741 and the mitochondria-deficient BY4742, and found that they differed significantly. We observed that several ethyl esters are present at much higher levels in strains with mitochondria, even in fermentative conditions. We found that nitrogen levels in the substrate affect the production of these compounds, and that they are produced at the highest level by strains with mitochondria when fermenting natural fruit substrates. Collectively these observations demonstrate that core metabolic processes mediate the interaction between yeasts and insect vectors, and highlight the importance mitochondrial functions in yeast ecology.
Collapse
Affiliation(s)
- Kelly M. Schiabor
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States of America
| | - Allison S. Quan
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States of America
| | - Michael B. Eisen
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States of America
- Department of Integrative Biology, University of California, Berkeley, California 94720, United States of America
- QB3 Institute, University of California, Berkeley, California 94720, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States of America
- * E-mail:
| |
Collapse
|