1
|
Florini F, Visone JE, Hadjimichael E, Malpotra S, Nötzel C, Kafsack BF, Deitsch KW. Transcriptional plasticity of virulence genes provides malaria parasites with greater adaptive capacity for avoiding host immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584127. [PMID: 38496509 PMCID: PMC10942408 DOI: 10.1101/2024.03.08.584127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Chronic, asymptomatic malaria infections contribute substantially to disease transmission and likely represent the most significant impediment preventing malaria elimination and eradication. Plasmodium falciparum parasites evade antibody recognition through transcriptional switching between members of the var gene family, which encodes the major virulence factor and surface antigen on infected red blood cells. This process can extend infections for up to a year; however, infections have been documented to last for over a decade, constituting an unseen reservoir of parasites that undermine eradication and control efforts. How parasites remain immunologically "invisible" for such lengthy periods is entirely unknown. Here we show that in addition to the accepted paradigm of mono-allelic var gene expression, individual parasites can simultaneously express multiple var genes or enter a state in which little or no var gene expression is detectable. This unappreciated flexibility provides parasites with greater adaptive capacity than previously understood and challenges the dogma of mutually exclusive var gene expression. It also provides an explanation for the antigenically "invisible" parasites observed in chronic asymptomatic infections.
Collapse
Affiliation(s)
| | | | - Evi Hadjimichael
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Shivali Malpotra
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | | | - Björn F.C. Kafsack
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Kirk W. Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
2
|
Tebben K, Yirampo S, Coulibaly D, Koné AK, Laurens MB, Stucke EM, Dembélé A, Tolo Y, Traoré K, Niangaly A, Berry AA, Kouriba B, Plowe CV, Doumbo OK, Lyke KE, Takala-Harrison S, Thera MA, Travassos MA, Serre D. Gene expression analyses reveal differences in children's response to malaria according to their age. Nat Commun 2024; 15:2021. [PMID: 38448421 PMCID: PMC10918175 DOI: 10.1038/s41467-024-46416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
In Bandiagara, Mali, children experience on average two clinical malaria episodes per year. However, even in the same transmission area, the number of uncomplicated symptomatic infections, and their parasitemia, can vary dramatically among children. We simultaneously characterize host and parasite gene expression profiles from 136 Malian children with symptomatic falciparum malaria and examine differences in the relative proportion of immune cells and parasite stages, as well as in gene expression, associated with infection and or patient characteristics. Parasitemia explains much of the variation in host and parasite gene expression, and infections with higher parasitemia display proportionally more neutrophils and fewer T cells, suggesting parasitemia-dependent neutrophil recruitment and/or T cell extravasation to secondary lymphoid organs. The child's age also strongly correlates with variations in gene expression: Plasmodium falciparum genes associated with age suggest that older children carry more male gametocytes, while variations in host gene expression indicate a stronger innate response in younger children and stronger adaptive response in older children. These analyses highlight the variability in host responses and parasite regulation during P. falciparum symptomatic infections and emphasize the importance of considering the children's age when studying and treating malaria infections.
Collapse
Affiliation(s)
- Kieran Tebben
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Salif Yirampo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Drissa Coulibaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Abdoulaye K Koné
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Matthew B Laurens
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emily M Stucke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ahmadou Dembélé
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Youssouf Tolo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Karim Traoré
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Amadou Niangaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Andrea A Berry
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bourema Kouriba
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Christopher V Plowe
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ogobara K Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Kirsten E Lyke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shannon Takala-Harrison
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mahamadou A Thera
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Mark A Travassos
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Andradi-Brown C, Wichers-Misterek JS, von Thien H, Höppner YD, Scholz JAM, Hansson H, Filtenborg Hocke E, Gilberger TW, Duffy MF, Lavstsen T, Baum J, Otto TD, Cunnington AJ, Bachmann A. A novel computational pipeline for var gene expression augments the discovery of changes in the Plasmodium falciparum transcriptome during transition from in vivo to short-term in vitro culture. eLife 2024; 12:RP87726. [PMID: 38270586 PMCID: PMC10945709 DOI: 10.7554/elife.87726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The pathogenesis of severe Plasmodium falciparum malaria involves cytoadhesive microvascular sequestration of infected erythrocytes, mediated by P. falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 variants are encoded by the highly polymorphic family of var genes, the sequences of which are largely unknown in clinical samples. Previously, we published new approaches for var gene profiling and classification of predicted binding phenotypes in clinical P. falciparum isolates (Wichers et al., 2021), which represented a major technical advance. Building on this, we report here a novel method for var gene assembly and multidimensional quantification from RNA-sequencing that outperforms the earlier approach of Wichers et al., 2021, on both laboratory and clinical isolates across a combination of metrics. Importantly, the tool can interrogate the var transcriptome in context with the rest of the transcriptome and can be applied to enhance our understanding of the role of var genes in malaria pathogenesis. We applied this new method to investigate changes in var gene expression through early transition of parasite isolates to in vitro culture, using paired sets of ex vivo samples from our previous study, cultured for up to three generations. In parallel, changes in non-polymorphic core gene expression were investigated. Modest but unpredictable var gene switching and convergence towards var2csa were observed in culture, along with differential expression of 19% of the core transcriptome between paired ex vivo and generation 1 samples. Our results cast doubt on the validity of the common practice of using short-term cultured parasites to make inferences about in vivo phenotype and behaviour.
Collapse
Affiliation(s)
- Clare Andradi-Brown
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Department of Life Sciences, Imperial College London, South KensingtonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| | - Jan Stephan Wichers-Misterek
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Heidrun von Thien
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Yannick D Höppner
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Judith AM Scholz
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
| | - Helle Hansson
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of CopenhagenCopenhagenDenmark
- Department of Infectious Diseases, Copenhagen University HospitalCopenhagenDenmark
| | - Emma Filtenborg Hocke
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of CopenhagenCopenhagenDenmark
- Department of Infectious Diseases, Copenhagen University HospitalCopenhagenDenmark
| | - Tim Wolf Gilberger
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Michael F Duffy
- Department of Microbiology and Immunology, University of MelbourneMelbourneAustralia
| | - Thomas Lavstsen
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of CopenhagenCopenhagenDenmark
- Department of Infectious Diseases, Copenhagen University HospitalCopenhagenDenmark
| | - Jake Baum
- Department of Life Sciences, Imperial College London, South KensingtonLondonUnited Kingdom
- School of Biomedical Sciences, Faculty of Medicine & Health, UNSW, KensingtonSydneyUnited Kingdom
| | - Thomas D Otto
- School of Infection & Immunity, MVLS, University of GlasgowGlasgowUnited Kingdom
| | - Aubrey J Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| | - Anna Bachmann
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-RiemsHamburgGermany
| |
Collapse
|
4
|
Tebben K, Yirampo S, Coulibaly D, Koné A, Laurens M, Stucke E, Dembélé A, Tolo Y, Traoré K, Niangaly A, Berry A, Kouriba B, Plowe C, Doumbo O, Lyke K, Takala-Harrison S, Thera M, Travassos M, Serre D. Gene expression analyses reveal differences in children's response to malaria according to their age. RESEARCH SQUARE 2023:rs.3.rs-3487114. [PMID: 37961587 PMCID: PMC10635353 DOI: 10.21203/rs.3.rs-3487114/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In Bandiagara, Mali, children experience on average two clinical malaria episodes per season. However, even in the same transmission area, the number of uncomplicated symptomatic infections, and their parasitemia, vary dramatically among children. To examine the factors contributing to these variations, we simultaneously characterized the host and parasite gene expression profiles from 136 children with symptomatic falciparum malaria and analyzed the expression of 9,205 human and 2,484 Plasmodium genes. We used gene expression deconvolution to estimate the relative proportion of immune cells and parasite stages in each sample and to adjust the differential gene expression analyses. Parasitemia explained much of the variation in both host and parasite gene expression and revealed that infections with higher parasitemia had more neutrophils and fewer T cells, suggesting parasitemia-dependent neutrophil recruitment and/or T cell extravasation to secondary lymphoid organs. The child's age was also strongly correlated with gene expression variations. Plasmodium falciparum genes associated with age suggested that older children carried more male gametocytes, while host genes associated with age indicated a stronger innate response (through TLR and NLR signaling) in younger children and stronger adaptive immunity (through TCR and BCR signaling) in older children. These analyses highlight the variability in host responses and parasite regulation during P. falciparum symptomatic infections and emphasize the importance of considering the children's age when studying and treating malaria infections.
Collapse
Affiliation(s)
| | - Salif Yirampo
- Universite des Sciences des Techniques et des Technologies de Bamako
| | - Drissa Coulibaly
- Universite des Sciences des Techniques et des Technologies de Bamako
| | - Abdoulaye Koné
- Universite des Sciences des Techniques et des Technologies de Bamako
| | | | | | - Ahmadou Dembélé
- Universite des Sciences des Techniques et des Technologies de Bamako
| | - Youssouf Tolo
- Universite des Sciences des Techniques et des Technologies de Bamako
| | - Karim Traoré
- Universite des Sciences des Techniques et des Technologies de Bamako
| | - Ahmadou Niangaly
- Universite des Sciences des Techniques et des Technologies de Bamako
| | | | - Bourema Kouriba
- Universite des Sciences des Techniques et des Technologies de Bamako
| | | | - Ogobara Doumbo
- Universite des Sciences des Techniques et des Technologies de Bamako
| | | | | | - Mahamadou Thera
- Malaria Research and Training Centre-International Center for Excellence in Research (MRTC-ICER)
| | | | | |
Collapse
|
5
|
Tebben K, Yirampo S, Coulibaly D, Koné AK, Laurens MB, Stucke EM, Dembélé A, Tolo Y, Traoré K, Niangaly A, Berry AA, Kouriba B, Plowe CV, Doumbo OK, Lyke KE, Takala-Harrison S, Thera MA, Travassos MA, Serre D. Gene expression analyses reveal differences in children's response to malaria according to their age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563751. [PMID: 37961701 PMCID: PMC10634788 DOI: 10.1101/2023.10.24.563751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In Bandiagara, Mali, children experience on average two clinical malaria episodes per season. However, even in the same transmission area, the number of uncomplicated symptomatic infections, and their parasitemia, vary dramatically among children. To examine the factors contributing to these variations, we simultaneously characterized the host and parasite gene expression profiles from 136 children with symptomatic falciparum malaria and analyzed the expression of 9,205 human and 2,484 Plasmodium genes. We used gene expression deconvolution to estimate the relative proportion of immune cells and parasite stages in each sample and to adjust the differential gene expression analyses. Parasitemia explained much of the variation in both host and parasite gene expression and revealed that infections with higher parasitemia had more neutrophils and fewer T cells, suggesting parasitemia-dependent neutrophil recruitment and/or T cell extravasation to secondary lymphoid organs. The child's age was also strongly correlated with gene expression variations. Plasmodium falciparum genes associated with age suggested that older children carried more male gametocytes, while host genes associated with age indicated a stronger innate response (through TLR and NLR signaling) in younger children and stronger adaptive immunity (through TCR and BCR signaling) in older children. These analyses highlight the variability in host responses and parasite regulation during P. falciparum symptomatic infections and emphasize the importance of considering the children's age when studying and treating malaria infections.
Collapse
Affiliation(s)
- Kieran Tebben
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine; Baltimore, USA
| | - Salif Yirampo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Drissa Coulibaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Abdoulaye K. Koné
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Matthew B. Laurens
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Emily M. Stucke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Ahmadou Dembélé
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Youssouf Tolo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Karim Traoré
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Amadou Niangaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Andrea A. Berry
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Bourema Kouriba
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Christopher V. Plowe
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Ogobara K Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Kirsten E. Lyke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Shannon Takala-Harrison
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Mahamadou A. Thera
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Mark A. Travassos
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine; Baltimore, USA
| |
Collapse
|
6
|
Wichers-Misterek JS, Krumkamp R, Held J, von Thien H, Wittmann I, Höppner YD, Ruge JM, Moser K, Dara A, Strauss J, Esen M, Fendel R, Sulyok Z, Jeninga MD, Kremsner PG, Sim BKL, Hoffman SL, Duffy MF, Otto TD, Gilberger TW, Silva JC, Mordmüller B, Petter M, Bachmann A. The exception that proves the rule: Virulence gene expression at the onset of Plasmodium falciparum blood stage infections. PLoS Pathog 2023; 19:e1011468. [PMID: 37384799 DOI: 10.1371/journal.ppat.1011468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023] Open
Abstract
Controlled human malaria infections (CHMI) are a valuable tool to study parasite gene expression in vivo under defined conditions. In previous studies, virulence gene expression was analyzed in samples from volunteers infected with the Plasmodium falciparum (Pf) NF54 isolate, which is of African origin. Here, we provide an in-depth investigation of parasite virulence gene expression in malaria-naïve European volunteers undergoing CHMI with the genetically distinct Pf 7G8 clone, originating in Brazil. Differential expression of var genes, encoding major virulence factors of Pf, PfEMP1s, was assessed in ex vivo parasite samples as well as in parasites from the in vitro cell bank culture that was used to generate the sporozoites (SPZ) for CHMI (Sanaria PfSPZ Challenge (7G8)). We report broad activation of mainly B-type subtelomeric located var genes at the onset of a 7G8 blood stage infection in naïve volunteers, mirroring the NF54 expression study and suggesting that the expression of virulence-associated genes is generally reset during transmission from the mosquito to the human host. However, in 7G8 parasites, we additionally detected a continuously expressed single C-type variant, Pf7G8_040025600, that was most highly expressed in both pre-mosquito cell bank and volunteer samples, suggesting that 7G8, unlike NF54, maintains expression of some previously expressed var variants during transmission. This suggests that in a new host, the parasite may preferentially express the variants that previously allowed successful infection and transmission. Trial registration: ClinicalTrials.gov - NCT02704533; 2018-004523-36.
Collapse
Affiliation(s)
- Jan Stephan Wichers-Misterek
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Ralf Krumkamp
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Hamburg/Borstel/Lübeck/Riems, Germany
| | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Heidrun von Thien
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Irene Wittmann
- Institute of Microbiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Yannick Daniel Höppner
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Hamburg/Borstel/Lübeck/Riems, Germany
| | - Julia M Ruge
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Hamburg/Borstel/Lübeck/Riems, Germany
| | - Kara Moser
- Institute for Genome Sciences, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
| | - Antoine Dara
- Institute for Genome Sciences, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
| | - Jan Strauss
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Meral Esen
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tübingen, Germany
| | - Rolf Fendel
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Zita Sulyok
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Myriam D Jeninga
- Institute of Microbiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Peter G Kremsner
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - B Kim Lee Sim
- Sanaria Inc., Rockville, Maryland, United States of America
| | | | - Michael F Duffy
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas D Otto
- School of Infection & Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Tim-Wolf Gilberger
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisboa, Portugal
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Michaela Petter
- Institute of Microbiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Anna Bachmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Hamburg/Borstel/Lübeck/Riems, Germany
| |
Collapse
|
7
|
Zhang X, Deitsch KW. The mystery of persistent, asymptomatic Plasmodium falciparum infections. Curr Opin Microbiol 2022; 70:102231. [PMID: 36327690 PMCID: PMC10500611 DOI: 10.1016/j.mib.2022.102231] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/31/2022] [Accepted: 10/12/2022] [Indexed: 01/25/2023]
Abstract
Plasmodium falciparum causes millions of malaria infections and hundreds of thousands of deaths annually. These parasites avoid the adaptive immune response by systematically cycling through a limited repertoire of variant surface antigens after which the number of circulating parasites drops to extremely low levels, coinciding with a loss of symptoms and eventual clearance of the infection. However, in regions with extended dry seasons or in individuals who no longer reside in endemic areas, asymptomatic infections have been observed to persist for many months or years, potentially serving as reservoirs for transmission. Recent work suggests the possibility that parasites can assume a state in which no variant surface antigens are expressed, thus rendering them virtually invisible to the immune system and enabling them to persist at low levels indefinitely.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Kirk W Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
8
|
Andisi KC, Abdi AI. Analysis of var Gene Transcription Pattern Using DBLα Tags. Methods Mol Biol 2022; 2470:173-184. [PMID: 35881346 PMCID: PMC7613572 DOI: 10.1007/978-1-0716-2189-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
AbstractThe Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) antigens, which are encoded by a multigene family called var genes, are exported and inserted onto the surface of the infected erythrocytes. PfEMP1 plays a key role in the pathogenesis of severe malaria and are major targets of naturally acquired immunity. Studying the expression pattern of var genes in P. falciparum clinical isolates is crucial for understanding disease mechanism and immunity to malaria. However, var genes are highly variable, which makes it difficult to study their expression in clinical isolates obtained directly from malaria patients. In this chapter, we describe an approach for analysis of var gene expression that targets a region referred to as DBLα tag, which is relatively conserved in all var genes.
Collapse
|
9
|
Morang'a CM, Amenga-Etego L, Bah SY, Appiah V, Amuzu DSY, Amoako N, Abugri J, Oduro AR, Cunnington AJ, Awandare GA, Otto TD. Machine learning approaches classify clinical malaria outcomes based on haematological parameters. BMC Med 2020; 18:375. [PMID: 33250058 PMCID: PMC7702702 DOI: 10.1186/s12916-020-01823-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Malaria is still a major global health burden, with more than 3.2 billion people in 91 countries remaining at risk of the disease. Accurately distinguishing malaria from other diseases, especially uncomplicated malaria (UM) from non-malarial infections (nMI), remains a challenge. Furthermore, the success of rapid diagnostic tests (RDTs) is threatened by Pfhrp2/3 deletions and decreased sensitivity at low parasitaemia. Analysis of haematological indices can be used to support the identification of possible malaria cases for further diagnosis, especially in travellers returning from endemic areas. As a new application for precision medicine, we aimed to evaluate machine learning (ML) approaches that can accurately classify nMI, UM, and severe malaria (SM) using haematological parameters. METHODS We obtained haematological data from 2,207 participants collected in Ghana: nMI (n = 978), SM (n = 526), and UM (n = 703). Six different ML approaches were tested, to select the best approach. An artificial neural network (ANN) with three hidden layers was used for multi-classification of UM, SM, and uMI. Binary classifiers were developed to further identify the parameters that can distinguish UM or SM from nMI. Local interpretable model-agnostic explanations (LIME) were used to explain the binary classifiers. RESULTS The multi-classification model had greater than 85% training and testing accuracy to distinguish clinical malaria from nMI. To distinguish UM from nMI, our approach identified platelet counts, red blood cell (RBC) counts, lymphocyte counts, and percentages as the top classifiers of UM with 0.801 test accuracy (AUC = 0.866 and F1 score = 0.747). To distinguish SM from nMI, the classifier had a test accuracy of 0.96 (AUC = 0.983 and F1 score = 0.944) with mean platelet volume and mean cell volume being the unique classifiers of SM. Random forest was used to confirm the classifications, and it showed that platelet and RBC counts were the major classifiers of UM, regardless of possible confounders such as patient age and sampling location. CONCLUSION The study provides proof of concept methods that classify UM and SM from nMI, showing that the ML approach is a feasible tool for clinical decision support. In the future, ML approaches could be incorporated into clinical decision-support algorithms for the diagnosis of acute febrile illness and monitoring response to acute SM treatment particularly in endemic settings.
Collapse
Affiliation(s)
- Collins M Morang'a
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Lucas Amenga-Etego
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana.
| | - Saikou Y Bah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana.,Florey Institute, Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Vincent Appiah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Dominic S Y Amuzu
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Nicholas Amoako
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - James Abugri
- Department of Applied Chemistry and Biochemistry, C. K Tedam University of Technology and Applied Sciences, Navrongo, Ghana
| | - Abraham R Oduro
- Ministry of Health, Navrongo Health Research Centre (NHRC), Navrongo, Ghana
| | - Aubrey J Cunnington
- Section of Pediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Thomas D Otto
- Institute of Infection, Immunity & Inflammation, MVLS, University of Glasgow, Glasgow, UK.
| |
Collapse
|
10
|
Nyarko PB, Claessens A. Understanding Host-Pathogen-Vector Interactions with Chronic Asymptomatic Malaria Infections. Trends Parasitol 2020; 37:195-204. [PMID: 33127332 DOI: 10.1016/j.pt.2020.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 01/06/2023]
Abstract
The last malaria parasite standing will display effective adaptations to selective forces. While substantial progress has been made in reducing malaria mortality, eradication will require elimination of all Plasmodium parasites, including those in asymptomatic infections. These typically chronic, low-density infections are difficult to detect, yet can persist for months. We argue that asymptomatic infection is the parasite's best asset for survival but it can be exploited if studied as a new model for host-pathogen-vector interactions. Regular sampling from cohorts of asymptomatic individuals can provide a means to investigate continuous parasite development within its natural host. State-of-the-art techniques can now be applied to such infections. This approach may reveal key molecular drivers of chronic infections - a critical step for malaria eradication.
Collapse
Affiliation(s)
- Prince B Nyarko
- Laboratory of Pathogen-Host Interaction (LPHI), CNRS, University of Montpellier, France
| | | |
Collapse
|
11
|
Björkman A, Morris U. Why Asymptomatic Plasmodium falciparum Infections Are Common in Low-Transmission Settings. Trends Parasitol 2020; 36:898-905. [PMID: 32855077 DOI: 10.1016/j.pt.2020.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/18/2020] [Accepted: 07/18/2020] [Indexed: 12/22/2022]
Abstract
Plasmodium falciparum infections in low-transmission settings are often asymptomatic with low parasite densities despite low herd immunity. Based on studies in Zanzibar, this may be due to parasitic (nonvirulence) rather than host (immunity) factors. In high-transmission settings, high replication rate and virulence represents a competitive advantage, whereas in low-transmission settings nonvirulent parasites escape both competition and treatment. Such parasites also survive longer in low-transmission settings due to lower host immunity response and less frequent indirect drug exposure. This has major implications for optimal malaria control and elimination strategies.
Collapse
|
12
|
Kivisi CA, Muthui M, Hunt M, Fegan G, Otto TD, Githinji G, Warimwe GM, Rance R, Marsh K, Bull PC, Abdi AI. Exploring Plasmodium falciparum Var Gene Expression to Assess Host Selection Pressure on Parasites During Infancy. Front Immunol 2019; 10:2328. [PMID: 31681266 PMCID: PMC6798654 DOI: 10.3389/fimmu.2019.02328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/16/2019] [Indexed: 11/13/2022] Open
Abstract
In sub-Saharan Africa, children below 5 years bear the greatest burden of severe malaria because they lack naturally acquired immunity that develops following repeated exposure to infections by Plasmodium falciparum. Antibodies to the surface of P. falciparum infected erythrocytes (IE) play an important role in this immunity. In children under the age of 6 months, relative protection from severe malaria is observed and this is thought to be partly due to trans-placental acquired protective maternal antibodies. However, the protective effect of maternal antibodies has not been fully established, especially the role of antibodies to variant surface antigens (VSA) expressed on IE. Here, we assessed the immune pressure on parasites infecting infants using markers associated with the acquisition of naturally acquired immunity to surface antigens. We hypothesized that, if maternal antibodies to VSA imposed a selection pressure on parasites, then the expression of a relatively conserved subset of var genes called group A var genes in infants should change with waning maternal antibodies. To test this, we compared their expression in parasites from children between 0 and 12 months and above 12 months of age. The transcript quantity and the proportional expression of group A var subgroup, including those containing domain cassette 13, were positively associated with age during the first year of life, which contrasts with above 12 months. This was accompanied by a decline in infected erythrocyte surface antibodies and an increase in parasitemia during this period. The observed increase in group A var gene expression with age in the first year of life, when the maternal antibodies are waning and before acquisition of naturally acquired antibodies with repeated exposure, is consistent with the idea that maternally acquired antibodies impose a selection pressure on parasites that infect infants and may play a role in protecting these infants against severe malaria.
Collapse
Affiliation(s)
- Cheryl A Kivisi
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya.,Pwani University Biosciences Research Centre, Pwani University, Kilifi, Kenya.,Department of Biological Sciences, Pwani University, Kilifi, Kenya
| | | | - Martin Hunt
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Greg Fegan
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | | | | | - George M Warimwe
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Richard Rance
- Pwani University Biosciences Research Centre, Pwani University, Kilifi, Kenya
| | - Kevin Marsh
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Peter C Bull
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Abdirahman I Abdi
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya.,Pwani University Biosciences Research Centre, Pwani University, Kilifi, Kenya
| |
Collapse
|
13
|
Stucke EM, Niangaly A, Berry AA, Bailey JA, Coulibaly D, Ouattara A, Lyke KE, Laurens MB, Dara A, Adams M, Pablo J, Jasinskas A, Nakajima R, Zhou AE, Agrawal S, Friedman-Klabanoff DJ, Takala-Harrison S, Kouriba B, Kone AK, Rowe JA, Doumbo OK, Felgner PL, Thera MA, Plowe CV, Travassos MA. Serologic responses to the PfEMP1 DBL-CIDR head structure may be a better indicator of malaria exposure than those to the DBL-α tag. Malar J 2019; 18:273. [PMID: 31409360 PMCID: PMC6692945 DOI: 10.1186/s12936-019-2905-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/05/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP1) antigens play a critical role in host immune evasion. Serologic responses to these antigens have been associated with protection from clinical malaria, suggesting that antibodies to PfEMP1 antigens may contribute to natural immunity. The first N-terminal constitutive domain in a PfEMP1 is the Duffy binding-like alpha (DBL-α) domain, which contains a 300 to 400 base pair region unique to each particular protein (the DBL-α "tag"). This DBL-α tag has been used as a marker of PfEMP1 diversity and serologic responses in malaria-exposed populations. In this study, using sera from a malaria-endemic region, responses to DBL-α tags were compared to responses to the corresponding entire DBL-α domain (or "parent" domain) coupled with the succeeding cysteine-rich interdomain region (CIDR). METHODS A protein microarray populated with DBL-α tags, the parent DBL-CIDR head structures, and downstream PfEMP1 protein fragments was probed with sera from Malian children (aged 1 to 6 years) and adults from the control arms of apical membrane antigen 1 (AMA1) vaccine clinical trials before and during a malaria transmission season. Serological responses to the DBL-α tag and the DBL-CIDR head structure were measured and compared in children and adults, and throughout the season. RESULTS Malian serologic responses to a PfEMP1's DBL-α tag region did not correlate with seasonal malaria exposure, or with responses to the parent DBL-CIDR head structure in either children or adults. Parent DBL-CIDR head structures were better indicators of malaria exposure. CONCLUSIONS Larger PfEMP1 domains may be better indicators of malaria exposure than short, variable PfEMP1 fragments such as DBL-α tags. PfEMP1 head structures that include conserved sequences appear particularly well suited for study as serologic predictors of malaria exposure.
Collapse
Affiliation(s)
- Emily M Stucke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amadou Niangaly
- Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Andrea A Berry
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Drissa Coulibaly
- Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Amed Ouattara
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kirsten E Lyke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew B Laurens
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Antoine Dara
- Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Matthew Adams
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jozelyn Pablo
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, CA, USA
| | - Algis Jasinskas
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, CA, USA
| | - Rie Nakajima
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, CA, USA
| | - Albert E Zhou
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sonia Agrawal
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - DeAnna J Friedman-Klabanoff
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shannon Takala-Harrison
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bourema Kouriba
- Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Abdoulaye K Kone
- Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - J Alexandra Rowe
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Ogobara K Doumbo
- Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Philip L Felgner
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, CA, USA
| | - Mahamadou A Thera
- Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | | | - Mark A Travassos
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
14
|
Abstract
Human malaria is a complex disease that can show a wide array of clinical outcomes, from asymptomatic carriage and chronic infection to acute disease presenting various life-threatening pathologies. The specific outcome of an infection is believed to be determined by a multifactorial interplay between the host and the parasite but with a general trend toward disease attenuation with increasing prior exposure. Therefore, the main burden of malaria in a population can be understood as a function of transmission intensity, which itself is intricately linked to the prevalence of infected hosts and mosquito vectors, the distribution of infection outcomes, and the parasite population diversity. Predicting the long-term impact of malaria intervention measures therefore requires an in-depth understanding of how the parasite causes disease, how this relates to previous exposures, and how different infection pathologies contribute to parasite transmission. Here, we provide a brief overview of recent advances in the molecular epidemiology of clinical malaria and how these might prove to be influential in our fight against this important disease.
Collapse
Affiliation(s)
- Mario Recker
- Centre for Mathematics and the Environment, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK
| | - Peter C Bull
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Caroline O Buckee
- Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| |
Collapse
|
15
|
Galinski MR, Lapp SA, Peterson MS, Ay F, Joyner CJ, LE Roch KG, Fonseca LL, Voit EO. Plasmodium knowlesi: a superb in vivo nonhuman primate model of antigenic variation in malaria. Parasitology 2018; 145:85-100. [PMID: 28712361 PMCID: PMC5798396 DOI: 10.1017/s0031182017001135] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/03/2017] [Accepted: 06/06/2017] [Indexed: 02/08/2023]
Abstract
Antigenic variation in malaria was discovered in Plasmodium knowlesi studies involving longitudinal infections of rhesus macaques (M. mulatta). The variant proteins, known as the P. knowlesi Schizont Infected Cell Agglutination (SICA) antigens and the P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1) antigens, expressed by the SICAvar and var multigene families, respectively, have been studied for over 30 years. Expression of the SICA antigens in P. knowlesi requires a splenic component, and specific antibodies are necessary for variant antigen switch events in vivo. Outstanding questions revolve around the role of the spleen and the mechanisms by which the expression of these variant antigen families are regulated. Importantly, the longitudinal dynamics and molecular mechanisms that govern variant antigen expression can be studied with P. knowlesi infection of its mammalian and vector hosts. Synchronous infections can be initiated with established clones and studied at multi-omic levels, with the benefit of computational tools from systems biology that permit the integration of datasets and the design of explanatory, predictive mathematical models. Here we provide an historical account of this topic, while highlighting the potential for maximizing the use of P. knowlesi - macaque model systems and summarizing exciting new progress in this area of research.
Collapse
Affiliation(s)
- M R Galinski
- Emory Vaccine Center,Yerkes National Primate Research Center,Emory University,Atlanta,GA,USA
| | - S A Lapp
- Emory Vaccine Center,Yerkes National Primate Research Center,Emory University,Atlanta,GA,USA
| | - M S Peterson
- Emory Vaccine Center,Yerkes National Primate Research Center,Emory University,Atlanta,GA,USA
| | - F Ay
- La Jolla Institute for Allergy and Immunology,La Jolla,CA 92037,USA
| | - C J Joyner
- Emory Vaccine Center,Yerkes National Primate Research Center,Emory University,Atlanta,GA,USA
| | - K G LE Roch
- Department of Cell Biology & Neuroscience,Center for Disease and Vector Research,Institute for Integrative Genome Biology,University of California Riverside,CA 92521,USA
| | - L L Fonseca
- The Wallace H. Coulter Department of Biomedical Engineering,Georgia Institute of Technology and Emory University,Atlanta,Georgia,30332-2000,USA
| | - E O Voit
- The Wallace H. Coulter Department of Biomedical Engineering,Georgia Institute of Technology and Emory University,Atlanta,Georgia,30332-2000,USA
| |
Collapse
|
16
|
Schieck E, Poole EJ, Rippert A, Peshu J, Sasi P, Borrmann S, Bull PC. Plasmodium falciparum variant erythrocyte surface antigens: a pilot study of antibody acquisition in recurrent natural infections. Malar J 2017; 16:450. [PMID: 29115961 PMCID: PMC5678811 DOI: 10.1186/s12936-017-2097-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/28/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During intra-erythrocytic replication Plasmodium falciparum escapes the human host immune system by switching expression of variant surface antigens (VSA). Piecemeal acquisition of variant specific antibody responses to these antigens as a result of exposure to multiple re-infections has been proposed to play a role in acquisition of naturally acquired immunity. METHODS Immunofluorescence was used to explore the dynamics of anti-VSA IgG responses generated by children to (i) primary malaria episodes and (ii) recurrent P. falciparum infections. RESULTS Consistent with previous studies on anti-VSA responses, sera from each child taken at the time of recovery from their respective primary infection tended to recognize their own secondary parasites poorly. Additionally, compared to patients with reinfections by parasites of new merozoite surface protein 2 (MSP2) genotypes, baseline sera sampled from patients with persistent infections (recrudescence) tended to have higher recognition of heterologous parasites. This is consistent with the prediction that anti-VSA IgG responses may play a role in promoting chronic asymptomatic infections. CONCLUSIONS This pilot study validates the utility of recurrent natural malaria infections as a functional readout for examining the incremental acquisition of immunity to malaria.
Collapse
Affiliation(s)
- Elise Schieck
- Kenya Medical Research Institute/Wellcome Trust Research Programme, Center for Geographic Medicine Research-Coast, P. O. Box 428, Kilifi, 80108, Kenya. .,Institute of Hygiene, University of Heidelberg School of Medicine, 69120, Heidelberg, Germany. .,International Livestock Research Institute, Old Naivasha Road, P.O. Box 30709, Nairobi, 00100, Kenya.
| | - E Jane Poole
- International Livestock Research Institute, Old Naivasha Road, Nairobi, Kenya
| | - Anja Rippert
- Institute of Hygiene, University of Heidelberg School of Medicine, 69120, Heidelberg, Germany.,Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Judy Peshu
- Kenya Medical Research Institute/Wellcome Trust Research Programme, Center for Geographic Medicine Research-Coast, P. O. Box 428, Kilifi, 80108, Kenya
| | - Philip Sasi
- Department of Clinical Pharmacology, School of Medicine, Muhimbili University of Health and Allied Sciences, P.O. Box 65010, Dar es Salaam, Tanzania
| | - Steffen Borrmann
- Kenya Medical Research Institute/Wellcome Trust Research Programme, Center for Geographic Medicine Research-Coast, P. O. Box 428, Kilifi, 80108, Kenya.,German Center for Infection Research (DZIF), Wilhelmstraße 27, 72074, Tübingen, Germany.,Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Peter C Bull
- Kenya Medical Research Institute/Wellcome Trust Research Programme, Center for Geographic Medicine Research-Coast, P. O. Box 428, Kilifi, 80108, Kenya.,Nuffield Department of Medicine, Centre for Tropical Medicine, Oxford University, Oxford, OX3 7LJ, UK.,Department of Pathology, Cambridge University, Tennis Court Road, Cambridge, CB2 1QP, UK
| |
Collapse
|
17
|
Rougeron V, Tiedje KE, Chen DS, Rask TS, Gamboa D, Maestre A, Musset L, Legrand E, Noya O, Yalcindag E, Renaud F, Prugnolle F, Day KP. Evolutionary structure of Plasmodium falciparum major variant surface antigen genes in South America: Implications for epidemic transmission and surveillance. Ecol Evol 2017; 7:9376-9390. [PMID: 29187975 PMCID: PMC5696401 DOI: 10.1002/ece3.3425] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 07/07/2017] [Accepted: 08/19/2017] [Indexed: 11/11/2022] Open
Abstract
Strong founder effects resulting from human migration out of Africa have led to geographic variation in single nucleotide polymorphisms (SNPs) and microsatellites (MS) of the malaria parasite, Plasmodium falciparum. This is particularly striking in South America where two major founder populations of P. falciparum have been identified that are presumed to have arisen from the transatlantic slave trade. Given the importance of the major variant surface antigen of the blood stages of P. falciparum as both a virulence factor and target of immunity, we decided to investigate the population genetics of the genes encoding “Plasmodium falciparum Erythrocyte Membrane Protein 1” (PfEMP1) among several countries in South America, in order to evaluate the transmission patterns of malaria in this continent. Deep sequencing of the DBLα domain of var genes from 128 P. falciparum isolates from five locations in South America was completed using a 454 high throughput sequencing protocol. Striking geographic variation in var DBLα sequences, similar to that seen for SNPs and MS markers, was observed. Colombia and French Guiana had distinct var DBLα sequences, whereas Peru and Venezuela showed an admixture. The importance of such geographic variation to herd immunity and malaria vaccination is discussed.
Collapse
Affiliation(s)
- Virginie Rougeron
- Department of Microbiology Division of Parasitology New York University School of Medicine New York NY USA.,MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle), UMR CNRS 5290/IRD 224 Université Montpellier 1 Université Montpellier 2 Montpellier France
| | - Kathryn E Tiedje
- Department of Microbiology Division of Parasitology New York University School of Medicine New York NY USA.,School of BioSciences Bio21 Institute/University of Melbourne Parkville Vic. Australia
| | - Donald S Chen
- Department of Microbiology Division of Parasitology New York University School of Medicine New York NY USA
| | - Thomas S Rask
- Department of Microbiology Division of Parasitology New York University School of Medicine New York NY USA.,School of BioSciences Bio21 Institute/University of Melbourne Parkville Vic. Australia
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander Von Humboldt and Departamento de Ciencias Celulares y Moleculares Facultad de Ciencias y Filosofia Universidad Peruana Cayetano Heredia Lima Peru
| | - Amanda Maestre
- Grupo Salud y Comunidad Facultad de Medicina Universidad de Antioquía Medellín Colombia
| | - Lise Musset
- Parasitology UnitInstitut Pasteur de Guyane Cayenne Cedex French Guiana
| | - Eric Legrand
- Parasitology UnitInstitut Pasteur de Guyane Cayenne Cedex French Guiana.,Unit of Genetics and Genomics on Insect Vectors Institut Pasteur Paris France
| | - Oscar Noya
- Centro para Estudios Sobre Malaria Instituto de Altos Estudios en Salud "Dr. Arnoldo Gabaldón" Ministerio del Poder Popular para la Salud and Instituto de Medicina Tropical Universidad Central de Venezuela Caracas Venezuela
| | - Erhan Yalcindag
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle), UMR CNRS 5290/IRD 224 Université Montpellier 1 Université Montpellier 2 Montpellier France
| | - François Renaud
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle), UMR CNRS 5290/IRD 224 Université Montpellier 1 Université Montpellier 2 Montpellier France
| | - Franck Prugnolle
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle), UMR CNRS 5290/IRD 224 Université Montpellier 1 Université Montpellier 2 Montpellier France
| | - Karen P Day
- Department of Microbiology Division of Parasitology New York University School of Medicine New York NY USA.,School of BioSciences Bio21 Institute/University of Melbourne Parkville Vic. Australia
| |
Collapse
|
18
|
Holding T, Recker M. Maintenance of phenotypic diversity within a set of virulence encoding genes of the malaria parasite Plasmodium falciparum. J R Soc Interface 2016; 12:20150848. [PMID: 26674193 PMCID: PMC4707858 DOI: 10.1098/rsif.2015.0848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Infection by the human malaria parasite Plasmodium falciparum results in a broad spectrum of clinical outcomes, ranging from severe and potentially life-threatening malaria to asymptomatic carriage. In a process of naturally acquired immunity, individuals living in malaria-endemic regions build up a level of clinical protection, which attenuates infection severity in an exposure-dependent manner. Underlying this shift in the immunoepidemiology as well as the observed range in malaria pathogenesis is the var multigene family and the phenotypic diversity embedded within. The var gene-encoded surface proteins Plasmodium falciparum erythrocyte membrane protein 1 mediate variant-specific binding of infected red blood cells to a diverse set of host receptors that has been linked to specific disease manifestations, including cerebral and pregnancy-associated malaria. Here, we show that cross-reactive immune responses, which minimize the within-host benefit of each additionally expressed gene during infection, can cause selection for maximum phenotypic diversity at the genome level. We further show that differential functional constraints on protein diversification stably maintain uneven ratios between phenotypic groups, in line with empirical observation. Our results thus suggest that the maintenance of phenotypic diversity within P. falciparum is driven by an evolutionary trade-off that optimizes between within-host parasite fitness and between-host selection pressure.
Collapse
Affiliation(s)
- Thomas Holding
- Centre for Mathematics and the Environment, University of Exeter, Penryn Campus, Penryn TR10 9EZ, UK
| | - Mario Recker
- Centre for Mathematics and the Environment, University of Exeter, Penryn Campus, Penryn TR10 9EZ, UK
| |
Collapse
|
19
|
Mosquito Passage Dramatically Changes var Gene Expression in Controlled Human Plasmodium falciparum Infections. PLoS Pathog 2016; 12:e1005538. [PMID: 27070311 PMCID: PMC4829248 DOI: 10.1371/journal.ppat.1005538] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/10/2016] [Indexed: 11/19/2022] Open
Abstract
Virulence of the most deadly malaria parasite Plasmodium falciparum is linked to the variant surface antigen PfEMP1, which is encoded by about 60 var genes per parasite genome. Although the expression of particular variants has been associated with different clinical outcomes, little is known about var gene expression at the onset of infection. By analyzing controlled human malaria infections via quantitative real-time PCR, we show that parasite populations from 18 volunteers expressed virtually identical transcript patterns that were dominated by the subtelomeric var gene group B and, to a lesser extent, group A. Furthermore, major changes in composition and frequency of var gene transcripts were detected between the parental parasite culture that was used to infect mosquitoes and Plasmodia recovered from infected volunteers, suggesting that P. falciparum resets its var gene expression during mosquito passage and starts with the broad expression of a specific subset of var genes when entering the human blood phase.
Collapse
|
20
|
Global selection of Plasmodium falciparum virulence antigen expression by host antibodies. Sci Rep 2016; 6:19882. [PMID: 26804201 PMCID: PMC4726288 DOI: 10.1038/srep19882] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 12/21/2015] [Indexed: 12/22/2022] Open
Abstract
Parasite proteins called PfEMP1 that are inserted on the surface of infected erythrocytes, play a key role in the severe pathology associated with infection by the Plasmodium falciparum malaria parasite. These proteins mediate binding of infected cells to the endothelial lining of blood vessels as a strategy to avoid clearance by the spleen and are major targets of naturally acquired immunity. PfEMP1 is encoded by a large multi-gene family called var. Mutually-exclusive transcriptional switching between var genes allows parasites to escape host antibodies. This study examined in detail the patterns of expression of var in a well-characterized sample of parasites from Kenyan Children. Instead of observing clear inverse relationships between the expression of broad sub-classes of PfEMP1, we found that expression of different PfEMP1 groups vary relatively independently. Parasite adaptation to host antibodies also appears to involve a general reduction in detectable var gene expression. We suggest that parasites switch both between different PfEMP1 variants and between high and low expression states. Such a strategy could provide a means of avoiding immunological detection and promoting survival under high levels of host immunity.
Collapse
|
21
|
Abstract
The Plasmodium falciparum erythrocyte membrane protein 1 antigens that are inserted onto the surface of P. falciparum infected erythrocytes play a key role both in the pathology of severe malaria and as targets of naturally acquired immunity. They might be considered unlikely vaccine targets because they are extremely diverse. However, several lines of evidence suggest that underneath this molecular diversity there are a restricted set of epitopes which may act as effective targets for a vaccine against severe malaria. Here we review some of the recent developments in this area of research, focusing on work that has assessed the potential of these molecules as possible vaccine targets.
Collapse
|
22
|
Galatas B, Bassat Q, Mayor A. Malaria Parasites in the Asymptomatic: Looking for the Hay in the Haystack. Trends Parasitol 2015; 32:296-308. [PMID: 26708404 DOI: 10.1016/j.pt.2015.11.015] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/21/2015] [Accepted: 11/24/2015] [Indexed: 12/11/2022]
Abstract
With malaria elimination back on the international agenda, programs face the challenge of targeting all Plasmodium infections, not only symptomatic cases. As asymptomatic individuals are unlikely to seek treatment, they are missed by passive surveillance while remaining infectious to mosquitoes, thus acting as silent reservoirs of transmission. To estimate the risk of asymptomatic infections in various phases of malaria elimination, we need a deeper understanding of the underlying mechanisms favoring carriage over disease, which may involve both pathogen and host factors. Here we review our current knowledge on the determinants leading to Plasmodium falciparum symptomless infections. Understanding the host-pathogen interactions that are most likely to affect transitions between malaria disease states could guide the development of tools to tackle asymptomatic carriers in elimination settings.
Collapse
Affiliation(s)
- Beatriz Galatas
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Quique Bassat
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Alfredo Mayor
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.
| |
Collapse
|
23
|
From within host dynamics to the epidemiology of infectious disease: Scientific overview and challenges. Math Biosci 2015; 270:143-55. [PMID: 26474512 DOI: 10.1016/j.mbs.2015.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since their earliest days, humans have been struggling with infectious diseases. Caused by viruses, bacteria, protozoa, or even higher organisms like worms, these diseases depend critically on numerous intricate interactions between parasites and hosts, and while we have learned much about these interactions, many details are still obscure. It is evident that the combined host-parasite dynamics constitutes a complex system that involves components and processes at multiple scales of time, space, and biological organization. At one end of this hierarchy we know of individual molecules that play crucial roles for the survival of a parasite or for the response and survival of its host. At the other end, one realizes that the spread of infectious diseases by far exceeds specific locales and, due to today's easy travel of hosts carrying a multitude of organisms, can quickly reach global proportions. The community of mathematical modelers has been addressing specific aspects of infectious diseases for a long time. Most of these efforts have focused on one or two select scales of a multi-level disease and used quite different computational approaches. This restriction to a molecular, physiological, or epidemiological level was prudent, as it has produced solid pillars of a foundation from which it might eventually be possible to launch comprehensive, multi-scale modeling efforts that make full use of the recent advances in biology and, in particular, the various high-throughput methodologies accompanying the emerging -omics revolution. This special issue contains contributions from biologists and modelers, most of whom presented and discussed their work at the workshop From within Host Dynamics to the Epidemiology of Infectious Disease, which was held at the Mathematical Biosciences Institute at Ohio State University in April 2014. These contributions highlight some of the forays into a deeper understanding of the dynamics between parasites and their hosts, and the consequences of this dynamics for the spread and treatment of infectious diseases.
Collapse
|
24
|
Childs LM, Buckee CO. Dissecting the determinants of malaria chronicity: why within-host models struggle to reproduce infection dynamics. J R Soc Interface 2015; 12:20141379. [PMID: 25673299 PMCID: PMC4345506 DOI: 10.1098/rsif.2014.1379] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The duration of infection is fundamental to the epidemiological behaviour of any infectious disease, but remains one of the most poorly understood aspects of malaria. In endemic areas, the malaria parasite Plasmodium falciparum can cause both acute, severe infections and asymptomatic, chronic infections through its interaction with the host immune system. Frequent superinfection and massive parasite genetic diversity make it extremely difficult to accurately measure the distribution of infection lengths, complicating the estimation of basic epidemiological parameters and the prediction of the impact of interventions. Mathematical models have qualitatively reproduced parasite dynamics early during infection, but reproducing long-lived chronic infections remains much more challenging. Here, we construct a model of infection dynamics to examine the consequences of common biological assumptions for the generation of chronicity and the impact of co-infection. We find that although a combination of host and parasite heterogeneities are capable of generating chronic infections, they do so only under restricted parameter choices. Furthermore, under biologically plausible assumptions, co-infection of parasite genotypes can alter the course of infection of both the resident and co-infecting strain in complex non-intuitive ways. We outline the most important puzzles for within-host models of malaria arising from our analysis, and their implications for malaria epidemiology and control.
Collapse
Affiliation(s)
- Lauren M Childs
- Center for Communicable Disease Dynamics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Caroline O Buckee
- Center for Communicable Disease Dynamics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
25
|
Gutierrez JB, Galinski MR, Cantrell S, Voit EO. WITHDRAWN: From within host dynamics to the epidemiology of infectious disease: Scientific overview and challenges. Math Biosci 2015:S0025-5564(15)00085-1. [PMID: 25890102 DOI: 10.1016/j.mbs.2015.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Juan B Gutierrez
- Department of Mathematics, Institute of Bioinformatics, University of Georgia, Athens, GA 30602, United States .
| | - Mary R Galinski
- Emory University School of Medicine, Division of Infectious Diseases, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, United States .
| | - Stephen Cantrell
- Department of Mathematics, University of Miami, Coral Gables, FL 33124, United States .
| | - Eberhard O Voit
- Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Suite 4103, Atlanta, GA 30332-0535, United States .
| |
Collapse
|
26
|
Tembo DL, Nyoni B, Murikoli RV, Mukaka M, Milner DA, Berriman M, Rogerson SJ, Taylor TE, Molyneux ME, Mandala WL, Craig AG, Montgomery J. Differential PfEMP1 expression is associated with cerebral malaria pathology. PLoS Pathog 2014; 10:e1004537. [PMID: 25473835 PMCID: PMC4256257 DOI: 10.1371/journal.ppat.1004537] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 10/23/2014] [Indexed: 11/23/2022] Open
Abstract
Plasmodium falciparum is unique among human malarias in its ability to sequester in post-capillary venules of host organs. The main variant antigens implicated are the P. falciparum erythrocyte membrane protein 1 (PfEMP1), which can be divided into three major groups (A–C). Our study was a unique examination of sequestered populations of parasites for genetic background and expression of PfEMP1 groups. We collected post-mortem tissue from twenty paediatric hosts with pathologically different forms of cerebral malaria (CM1 and CM2) and parasitaemic controls (PC) to directly examine sequestered populations of parasites in the brain, heart and gut. Use of two different techniques to investigate this question produced divergent results. By quantitative PCR, group A var genes were upregulated in all three organs of CM2 and PC cases. In contrast, in CM1 infections displaying high levels of sequestration but negligible vascular pathology, there was high expression of group B var. Cloning and sequencing of var transcript tags from the same samples indicated a uniformly low expression of group A-like var. Generally, within an organ sample, 1–2 sequences were expressed at dominant levels. 23% of var tags were detected in multiple patients despite the P. falciparum infections being genetically distinct, and two tags were observed in up to seven hosts each with high expression in the brains of 3–4 patients. This study is a novel examination of the sequestered parasites responsible for fatal cerebral malaria and describes expression patterns of the major cytoadherence ligand in three organ-derived populations and three pathological states. One of the most severe forms of malarial disease is cerebral malaria, which disproportionally affects young children. In this disease, the parasite places proteins on the red blood cell surface, providing a “smokescreen” by which they evade host immunity and hide in organ blood vessels, blocking them and causing tissue damage. It is impossible to study parasites in the organs during life and autopsy studies on children with malaria are exceedingly rare. In Malawi, we examined parasites from the brain, heart and intestine of twenty cases of fatal malaria including controls with low numbers of malaria parasites but another identified cause of death. We found little difference in the category of proteins the parasites used in controls and cerebral malaria, although a small number of specific proteins were detected in multiple infections. In an alternative form of malaria in which the brain is heavily infected but shows no evidence of damage, we found a different set of proteins at high proportion. However, as these children were typically older and most were infected with HIV, we could not determine which of these factors was most important. Interactions between host and parasite have the potential to influence disease outcomes.
Collapse
Affiliation(s)
- Dumizulu L. Tembo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, Blantyre, Malawi
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Benjamin Nyoni
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, Blantyre, Malawi
| | - Rekah V. Murikoli
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, Blantyre, Malawi
| | - Mavuto Mukaka
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, Blantyre, Malawi
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Danny A. Milner
- Blantyre Malaria Project, College of Medicine, Blantyre, Malawi
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Disease, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Matthew Berriman
- Pathogen Sequencing Unit, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | - Terrie E. Taylor
- Blantyre Malaria Project, College of Medicine, Blantyre, Malawi
- College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Malcolm E. Molyneux
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, Blantyre, Malawi
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Wilson L. Mandala
- Department of Basic Medical Sciences, College of Medicine, Blantyre, Malawi
| | - Alister G. Craig
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jacqui Montgomery
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, Blantyre, Malawi
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Zhang Y, Jiang N, Chang Z, Wang H, Lu H, Wahlgren M, Chen Q. The var3 genes of Plasmodium falciparum 3D7 strain are differentially expressed in infected erythrocytes. ACTA ACUST UNITED AC 2014; 21:19. [PMID: 24759654 PMCID: PMC3996964 DOI: 10.1051/parasite/2014019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/08/2014] [Indexed: 11/14/2022]
Abstract
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is an important virulence factor encoded by a family of 59 var genes, including 56 var genes plus 3 small var3 genes. The var genes are among the most diverse sequences in the P. falciparum genome, but the var3 genes are found conserved in most P. falciparum strains. Previous studies have been mainly focused on the typical var genes, while the biological characteristics of the var3 genes remain unknown. In this study, the three var3 genes, PF3D7_0100300, PF3D7_0600400, and PF3D7_0937600, were found to be transcribed in the erythrocytic stages of P. falciparum, with a peak in the transcription level at 16 h post-invasion, but terminated immediately after 16 h post-invasion. The encoded protein of PF3D7_0600400 could be detected in both the late trophozoite stage and schizont stage, while the encoded proteins of PF3D7_0100300 and PF3D7_0937600 could only be detected in the late trophozoite stage and schizont stage, respectively. Thus, the var3 genes of the P. falciparum 3D7 strain were differentially expressed during the erythrocytic development of the parasite.
Collapse
Affiliation(s)
- Yana Zhang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, PR China
| | - Ning Jiang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, PR China
| | - Zhiguang Chang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, PR China
| | - Henan Wang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, PR China
| | - Huijun Lu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, PR China
| | - Mats Wahlgren
- Department of Microbiology, Tumour- and Cellular Biology, Karolinska Institutet, S-171 71, Stockholm, Sweden
| | - Qijun Chen
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, PR China - Department of Microbiology, Tumour- and Cellular Biology, Karolinska Institutet, S-171 71, Stockholm, Sweden
| |
Collapse
|