1
|
McCall AS, Gutor S, Tanjore H, Burman A, Sherrill T, Chapman M, Calvi CL, Han D, Camarata J, Hunt RP, Nichols D, Banovich NE, Lawson WE, Gokey JJ, Kropski JA, Blackwell TS. Hypoxia-inducible factor 2 regulates alveolar regeneration after repetitive injury in three-dimensional cellular and in vivo models. Sci Transl Med 2025; 17:eadk8623. [PMID: 39772774 PMCID: PMC12051389 DOI: 10.1126/scitranslmed.adk8623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 09/23/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease in which repetitive epithelial injury and incomplete alveolar repair result in accumulation of profibrotic intermediate/transitional "aberrant" epithelial cell states. The mechanisms leading to the emergence and persistence of aberrant epithelial populations in the distal lung remain incompletely understood. By interrogating single-cell RNA sequencing (scRNA-seq) data from patients with IPF and a mouse model of repeated lung epithelial injury, we identified persistent activation of hypoxia-inducible factor (HIF) signaling in these aberrant epithelial cells. Using mouse genetic lineage-tracing strategies together with scRNA-seq, we found that these disease-emergent aberrant epithelial cells predominantly arose from airway-derived (Scgb1a1-CreER-traced) progenitors and exhibited transcriptional programs of Hif2a activation. In mice treated with repetitive intratracheal bleomycin, deletion of Epas1 (Hif2a) but not Hif1a, from airway-derived progenitors, or administration of the small-molecule HIF2 inhibitor PT-2385, using both prevention and rescue approaches, attenuated experimental lung fibrosis, reduced the appearance of aberrant epithelial cells, and promoted alveolar repair. In mouse alveolar organoids, genetic or pharmacologic inhibition of Hif2 promoted alveolar differentiation of airway-derived epithelial progenitors. In addition, treatment of human distal lung organoids with PT-2385 increased colony-forming efficiency, enhanced protein and transcriptional markers of alveolar type 2 epithelial cell maturation, and prevented the emergence of aberrant epithelial cells. Together, these studies showed that HIF2 activation drives the emergence of aberrant epithelial populations after repetitive injury and that targeted HIF2 inhibition may represent an effective therapeutic strategy to promote functional alveolar repair in IPF and other interstitial lung diseases.
Collapse
Affiliation(s)
- A. Scott McCall
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Sergey Gutor
- Department of Internal Medicine, University of Michigan Medical School, 48109
| | - Hari Tanjore
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Ankita Burman
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- University Health Network, Toronto Lung Transplant Program, Toronto, Ontario, Canada, M5G 2N2
| | - Taylor Sherrill
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Micah Chapman
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Carla L. Calvi
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - David Han
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jane Camarata
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Raphael P. Hunt
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - David Nichols
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | | | - William E. Lawson
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Veterans Affairs Medical Center, Nashville, TN, 37212
| | - Jason J. Gokey
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Translational Genomics Research Institute, Phoenix, AZ, 85004
- Department of Veterans Affairs Medical Center, Nashville, TN, 37212
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Timothy S. Blackwell
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Internal Medicine, University of Michigan Medical School, 48109
| |
Collapse
|
2
|
Warren R, Klinkhammer K, Lyu H, Knopp J, Yuan T, Yao C, Stripp B, De Langhe SP. Cell competition drives bronchiolization and pulmonary fibrosis. Nat Commun 2024; 15:10624. [PMID: 39639058 PMCID: PMC11621346 DOI: 10.1038/s41467-024-54997-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive respiratory scarring disease arising from the maladaptive differentiation of lung stem cells into bronchial epithelial cells rather than into alveolar type 1 (AT1) cells, which are responsible for gas exchange. Here, we report that healthy lungs maintain their stem cells through tonic Hippo and β-catenin signaling, which promote Yap/Taz degradation and allow for low-level expression of the Wnt target gene Myc. Inactivation of upstream activators of the Hippo pathway in lung stem cells inhibits this tonic β-catenin signaling and Myc expression and promotes their Taz-mediated differentiation into AT1 cells. Vice versa, increased Myc in collaboration with Yap promotes the differentiation of lung stem cells along the basal and myoepithelial-like lineages allowing them to invade and bronchiolize the lung parenchyma in a process reminiscent of submucosal gland development. Our findings indicate that stem cells exhibiting the highest Myc levels become supercompetitors that drive remodeling, whereas loser cells with lower Myc levels terminally differentiate into AT1 cells.
Collapse
Affiliation(s)
- Rachel Warren
- Department of Medicine, Division of Pulmonary and Critical Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kylie Klinkhammer
- Department of Medicine, Division of Pulmonary and Critical Medicine, Mayo Clinic, Rochester, MN, USA
| | - Handeng Lyu
- Department of Medicine, Division of Pulmonary and Critical Medicine, Mayo Clinic, Rochester, MN, USA
| | - Joseph Knopp
- Department of Medicine, Division of Pulmonary and Critical Medicine, Mayo Clinic, Rochester, MN, USA
| | - Tingting Yuan
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Changfu Yao
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Barry Stripp
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stijn P De Langhe
- Department of Medicine, Division of Pulmonary and Critical Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
3
|
Morris SB, Ocadiz-Ruiz R, Asai N, Malinczak CA, Rasky AJ, Lombardo GK, Velarde EM, Ptaschinski C, Zemans RL, Lukacs NW, Fonseca W. Long-term alterations in lung epithelial cells after EL-RSV infection exacerbate allergic responses through IL-1β-induced pathways. Mucosal Immunol 2024; 17:1072-1088. [PMID: 39069078 PMCID: PMC11610113 DOI: 10.1016/j.mucimm.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/21/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Early-life (EL) respiratory infections increase pulmonary disease risk, especially EL-Respiratory Syncytial Virus (EL-RSV) infections linked to asthma. Mechanisms underlying asthma predisposition remain unknown. In this study, we examined the long-term effects on the lung after four weeks post EL-RSV infection. We identified alterations in the lung epithelial cell, with a rise in the percentage of alveolar type 2 epithelial cells (AT2) and a decreased percentage of cells in the AT1 and AT2-AT1 subclusters, as well as upregulation of Bmp2 and Krt8 genes that are associated with AT2-AT1 trans-differentiation, suggesting potential defects in lung repair processes. We identified persistent upregulation of asthma-associated genes, including Il33. EL-RSV-infected mice allergen-challenged exhibited exacerbated allergic response, with significant upregulation of Il33 in the lung and AT2 cells. Similar long-term effects were observed in mice exposed to EL-IL-1β. Notably, treatment with IL-1ra during acute EL-RSV infection mitigated the long-term alveolar alterations and the allergen-exacerbated response. Finally, epigenetic modifications in the promoter of the Il33 gene were detected in AT2 cells harvested from EL-RSV and EL-IL1β groups, suggesting that long-term alteration in the epithelium after RSV infection is dependent on the IL-1β pathway. This study provides insight into the molecular mechanisms of asthma predisposition after RSV infection.
Collapse
Affiliation(s)
- Susan B Morris
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ramon Ocadiz-Ruiz
- Department of Bioengineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nobuhiro Asai
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Andrew J Rasky
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Grace K Lombardo
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Evan M Velarde
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Catherine Ptaschinski
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rachel L Zemans
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wendy Fonseca
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
4
|
Warren R, Klinkhammer K, Lyu H, Yao C, Stripp B, De Langhe SP. Cell competition drives bronchiolization and pulmonary fibrosis. RESEARCH SQUARE 2024:rs.3.rs-4177351. [PMID: 38746309 PMCID: PMC11092845 DOI: 10.21203/rs.3.rs-4177351/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disease arising from the maladaptive differentiation of lung stem cells into bronchial epithelial cells rather than into alveolar type 1 (AT1) cells, which are responsible for gas exchange. Here, we report that healthy lungs maintain their stem cells through tonic Hippo and β-catenin signaling, which promote Yap/Taz degradation and allow for low level expression of the Wnt target gene Myc. Inactivation of upstream activators of the Hippo pathway in lung stem cells inhibits this tonic β-catenin signaling and Myc expression and promotes their Taz mediated differentiation into AT1 cells. Vice versa, increased Myc in collaboration with Yap promotes the differentiation of lung stem cells along the basal and myoepithelial like lineages allowing them to invade and bronchiolize the lung parenchyma in a process reminiscent of submucosal gland development. Our findings indicate that stem cells exhibiting the highest Myc levels become supercompetitors that drive remodeling, whereas loser cells with lower Myc levels terminally differentiate into AT1 cells.
Collapse
Affiliation(s)
- Rachel Warren
- Department of Medicine, Division of Pulmonary and Critical Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Kylie Klinkhammer
- Department of Medicine, Division of Pulmonary and Critical Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Handeng Lyu
- Department of Medicine, Division of Pulmonary and Critical Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Changfu Yao
- Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Barry Stripp
- Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Stijn P. De Langhe
- Department of Medicine, Division of Pulmonary and Critical Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Martins LR, Sieverling L, Michelhans M, Schiller C, Erkut C, Grünewald TGP, Triana S, Fröhling S, Velten L, Glimm H, Scholl C. Single-cell division tracing and transcriptomics reveal cell types and differentiation paths in the regenerating lung. Nat Commun 2024; 15:2246. [PMID: 38472236 DOI: 10.1038/s41467-024-46469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Understanding the molecular and cellular processes involved in lung epithelial regeneration may fuel the development of therapeutic approaches for lung diseases. We combine mouse models allowing diphtheria toxin-mediated damage of specific epithelial cell types and parallel GFP-labeling of functionally dividing cells with single-cell transcriptomics to characterize the regeneration of the distal lung. We uncover cell types, including Krt13+ basal and Krt15+ club cells, detect an intermediate cell state between basal and goblet cells, reveal goblet cells as actively dividing progenitor cells, and provide evidence that adventitial fibroblasts act as supporting cells in epithelial regeneration. We also show that diphtheria toxin-expressing cells can persist in the lung, express specific inflammatory factors, and transcriptionally resemble a previously undescribed population in the lungs of COVID-19 patients. Our study provides a comprehensive single-cell atlas of the distal lung that characterizes early transcriptional and cellular responses to concise epithelial injury, encompassing proliferation, differentiation, and cell-to-cell interactions.
Collapse
Affiliation(s)
- Leila R Martins
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany.
| | - Lina Sieverling
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Translational Medical Oncology, DKFZ, Heidelberg, Germany
| | - Michelle Michelhans
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Translational Medical Oncology, DKFZ, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Chiara Schiller
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University Hospital and Heidelberg University, Heidelberg, Germany
| | - Cihan Erkut
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas G P Grünewald
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Translational Pediatric Sarcoma Research, DKFZ, Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Sergio Triana
- Structural and Computational Biology, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Broad Institute of Harvard and MIT, Cambridge, USA
- Department of Chemistry, Institute for Medical Engineering and Sciences (IMES), and Koch Institute for Integrative Cancer Research, MIT, Cambridge, USA
| | - Stefan Fröhling
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Translational Medical Oncology, DKFZ, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Lars Velten
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Hanno Glimm
- Department for Translational Medical Oncology, National Center for Tumor Diseases Dresden (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Translational Functional Cancer Genomics, DKFZ, Heidelberg, Germany
- DKTK, partner site Dresden, Dresden, Germany
| | - Claudia Scholl
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
6
|
Liu D, Xu C, Jiang L, Zhu X. Pulmonary endogenous progenitor stem cell subpopulation: Physiology, pathogenesis, and progress. JOURNAL OF INTENSIVE MEDICINE 2023; 3:38-51. [PMID: 36789358 PMCID: PMC9924023 DOI: 10.1016/j.jointm.2022.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/09/2022] [Accepted: 08/13/2022] [Indexed: 06/18/2023]
Abstract
Lungs are structurally and functionally complex organs consisting of diverse cell types from the proximal to distal axis. They have direct contact with the external environment and are constantly at risk of various injuries. Capable to proliferate and differentiate, pulmonary endogenous progenitor stem cells contribute to the maintenance of lung structure and function both under homeostasis and following injuries. Discovering candidate pulmonary endogenous progenitor stem cell types and underlying regenerative mechanisms provide insights into therapeutic strategy development for lung diseases. In this review, we reveal their compositions, roles in lung disease pathogenesis and injury repair, and the underlying mechanisms. We further underline the advanced progress in research approach and potential therapy for lung regeneration. We also demonstrate the feasibility and prospects of pulmonary endogenous stem cell transplantation for lung disease treatment.
Collapse
Affiliation(s)
- Di Liu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Chufan Xu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xiaoyan Zhu
- Department of Physiology, Navy Medical University, 800 Xiangyin Road, Shanghai 200433, China
| |
Collapse
|
7
|
Doğan G, Öztürk M, Karakulak DT, Karagenç L. Altered Expression of Pulmonary Epithelial Cell Markers in Fetal and Adult Mice Generated by in vitro Embryo Culture and Embryo Transfer. Cells Tissues Organs 2022; 213:1-16. [PMID: 36103849 DOI: 10.1159/000527044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 09/08/2022] [Indexed: 02/18/2024] Open
Abstract
Lung development is impaired in mice generated through transfer of in vitro-derived blastocysts. The main objective of the current study was to determine if the composition of epithelial cells in the fetal and adult lung tissue is altered in mice generated through transfer of in vitro-derived blastocysts. The study comprised two experimental (EGs) and two control (CGs) groups. Fetuses (18.5 d.p.c.) and adult mice (8 weeks old) of the EGs (EGfetus, n = 18; EGadult, n = 15) were produced by the transfer of day 5 F2 blastocysts to pseudo-pregnant females. F2 fetuses and adult mice derived from naturally ovulating females served as the CGs (CGfetus, n = 18; CGadult, n = 15). The expression of Tuba-1a (a marker of ciliated cells), Foxj-1 (a marker of motile ciliated cells), Uch-L1 (a marker of neuroendocrine cells), Cldn-10 (a marker of club cells), Aqp-5 (a marker of type I alveolar cells), and Sp-C (a marker of type II alveolar cells) was determined using Western blot, immunohistochemistry/immunofluorescence, and quantitative RT-PCR analyses. Weight of fetuses as well as adult mice is decreased in mice comprising the EGs. Impaired lung development observed in EGfetus was associated with altered expression of Tuba-1a, Foxj-1, Cldn-10, Uch-L1, Sp-C, and Aqp-5. Morphology of the adult lung tissue was similar between the groups except for a significant increase in the thickness of the epithelia in EGadult. The expression of Cldn-10 and Sp-C was also altered in EGadult. It remains to be determined whether altered expression of these genes has any long-term impact on epithelial cell functions in the adult lung tissue.
Collapse
Affiliation(s)
- Göksel Doğan
- Department of Histology-Embryology, Faculty of Veterinary Medicine, Adnan Menderes University, Aydın, Turkey
| | - Murat Öztürk
- Department of Histology-Embryology, Faculty of Veterinary Medicine, Adnan Menderes University, Aydın, Turkey
| | - Didar Tuğçe Karakulak
- Department of Histology-Embryology, Faculty of Veterinary Medicine, Adnan Menderes University, Aydın, Turkey
| | - Levent Karagenç
- Department of Histology-Embryology, Faculty of Veterinary Medicine, Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
8
|
Lin Y, Wang D, Zeng Y. A Maverick Review of Common Stem/Progenitor Markers in Lung Development. Stem Cell Rev Rep 2022; 18:2629-2645. [DOI: 10.1007/s12015-022-10422-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 10/16/2022]
|
9
|
Lin CR, Bahmed K, Kosmider B. Impaired Alveolar Re-Epithelialization in Pulmonary Emphysema. Cells 2022; 11:2055. [PMID: 35805139 PMCID: PMC9265977 DOI: 10.3390/cells11132055] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 01/24/2023] Open
Abstract
Alveolar type II (ATII) cells are progenitors in alveoli and can repair the alveolar epithelium after injury. They are intertwined with the microenvironment for alveolar epithelial cell homeostasis and re-epithelialization. A variety of ATII cell niches, transcription factors, mediators, and signaling pathways constitute a specific environment to regulate ATII cell function. Particularly, WNT/β-catenin, YAP/TAZ, NOTCH, TGF-β, and P53 signaling pathways are dynamically involved in ATII cell proliferation and differentiation, although there are still plenty of unknowns regarding the mechanism. However, an imbalance of alveolar cell death and proliferation was observed in patients with pulmonary emphysema, contributing to alveolar wall destruction and impaired gas exchange. Cigarette smoking causes oxidative stress and is the primary cause of this disease development. Aberrant inflammatory and oxidative stress responses result in loss of cell homeostasis and ATII cell dysfunction in emphysema. Here, we discuss the current understanding of alveolar re-epithelialization and altered reparative responses in the pathophysiology of this disease. Current therapeutics and emerging treatments, including cell therapies in clinical trials, are addressed as well.
Collapse
Affiliation(s)
- Chih-Ru Lin
- Department of Microbiology, Immunology and Inflammation, Temple University, Philadelphia, PA 19140, USA;
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA;
| | - Karim Bahmed
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA;
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA 19140, USA
| | - Beata Kosmider
- Department of Microbiology, Immunology and Inflammation, Temple University, Philadelphia, PA 19140, USA;
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA;
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
10
|
Harpur CM, Le Page MA, Tate MD. Too young to die? How aging affects cellular innate immune responses to influenza virus and disease severity. Virulence 2021; 12:1629-1646. [PMID: 34152253 PMCID: PMC8218692 DOI: 10.1080/21505594.2021.1939608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Influenza is a respiratory viral infection that causes significant morbidity and mortality worldwide. The innate immune cell response elicited during influenza A virus (IAV) infection forms the critical first line of defense, which typically is impaired as we age. As such, elderly individuals more commonly succumb to influenza-associated complications, which is reflected in most aged animal models of IAV infection. Here, we review the important roles of several major innate immune cell populations in influenza pathogenesis, some of which being deleterious to the host, and the current knowledge of how age-associated numerical, phenotypic and functional cell changes impact disease development. Further investigation into age-related modulation of innate immune cell responses, using appropriate animal models, will help reveal how immunity to IAV may be compromised by aging and inform the development of novel therapies, tailored for use in this vulnerable group.
Collapse
Affiliation(s)
- Christopher M Harpur
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Mélanie A Le Page
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Michelle D Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| |
Collapse
|
11
|
van der Vaart J, Clevers H. Airway organoids as models of human disease. J Intern Med 2021; 289:604-613. [PMID: 32350962 DOI: 10.1111/joim.13075] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022]
Abstract
Studies developing and applying organoid technology have greatly increased in volume and visibility over the past decade. Organoids are three-dimensional structures that are established from pluripotent stem cells (PSCs) or adult tissue stem cells (ASCs). They consist of organ-specific cell types that self-organize through cell sorting and spatially restricted lineage commitment to generate architectural and functional characteristics of the tissue of interest. The field of respiratory development and disease has been particularly productive in this regard. Starting from human cells (PSCs or ASCs), models of the two segments of the lung, the airways and the alveoli, can be built. Such organoids allow the study of development, physiology and disease and thus bridge the gap between animal models and clinical studies. This review discusses current developments in the pulmonary organoid field, highlighting the potential and limitations of current models.
Collapse
Affiliation(s)
- J van der Vaart
- From the, Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - H Clevers
- From the, Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Centre Utrecht, Utrecht, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
12
|
Meszaros M, Horvath P, Kis A, Kunos L, Tarnoki AD, Tarnoki DL, Lazar Z, Bikov A. Circulating levels of clusterin and complement factor H in patients with obstructive sleep apnea. Biomark Med 2021; 15:323-330. [PMID: 33666516 DOI: 10.2217/bmm-2020-0533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Obstructive sleep apnea (OSA) activates the complement system; however, the levels of membrane attack complex (MAC) are unaltered suggesting regulatory mechanisms. Our aim was to investigate complement factor H (CFH) and clusterin, two important complement regulators in OSA. Materials & methods: We analyzed clusterin and CFH levels in plasma of 86 patients with OSA and 33 control subjects. Results: There was no difference in CFH levels between patients (1099.4/784.6-1570.5/μg/ml) and controls (1051.4/652.0-1615.1/μg/ml, p = 0.72). Clusterin levels were higher in patients with OSA (309.7/217.2-763.2/μg/ml vs 276.1/131.0-424.3/μg/ml, p = 0.048) with a trend for a positive correlation with disease severity (p = 0.073). Conclusion: Increase in clusterin levels may be protective in OSA by blocking the MAC formation.
Collapse
Affiliation(s)
- Martina Meszaros
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Peter Horvath
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Adrian Kis
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Laszlo Kunos
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Adam D Tarnoki
- Department of Radiology, Oncologic Imaging Diagnostic Center, National Institute of Oncology, Budapest, Hungary.,Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - David L Tarnoki
- Department of Radiology, Oncologic Imaging Diagnostic Center, National Institute of Oncology, Budapest, Hungary.,Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Zsofia Lazar
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Andras Bikov
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK.,Division of Infection, Immunity & Respiratory Medicine, University of Manchester, UK
| |
Collapse
|
13
|
Xu M, Yang W, Wang X, Nayak DK. Lung Secretoglobin Scgb1a1 Influences Alveolar Macrophage-Mediated Inflammation and Immunity. Front Immunol 2020; 11:584310. [PMID: 33117399 PMCID: PMC7558713 DOI: 10.3389/fimmu.2020.584310] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/07/2020] [Indexed: 01/23/2023] Open
Abstract
Alveolar macrophage (AM) is a mononuclear phagocyte key to the defense against respiratory infections. To understand AM’s role in airway disease development, we examined the influence of Secretoglobin family 1a member 1 (SCGB1A1), a pulmonary surfactant protein, on AM development and function. In a murine model, high-throughput RNA-sequencing and gene expression analyses were performed on purified AMs isolated from mice lacking in Scgb1a1 gene and were compared with that from mice expressing the wild type Scgb1a1 at weaning (4 week), puberty (8 week), early adult (12 week), and middle age (40 week). AMs from early adult mice under Scgb1a1 sufficiency demonstrated a total of 37 up-regulated biological pathways compared to that at weaning, from which 30 were directly involved with antigen presentation, anti-viral immunity and inflammation. Importantly, these pathways under Scgb1a1 deficiency were significantly down-regulated compared to that in the age-matched Scgb1a1-sufficient counterparts. Furthermore, AMs from Scgb1a1-deficient mice showed an early activation of inflammatory pathways compared with that from Scgb1a1-sufficient mice. Our in vitro experiments with AM culture established that exogenous supplementation of SCGB1a1 protein significantly reduced AM responses to microbial stimuli where SCGB1a1 was effective in blunting the release of cytokines and chemokines (including IL-1b, IL-6, IL-8, MIP-1a, TNF-a, and MCP-1). Taken together, these findings suggest an important role for Scgb1a1 in shaping the AM-mediated inflammation and immune responses, and in mitigating cytokine surges in the lungs.
Collapse
Affiliation(s)
- Min Xu
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Xuanchuan Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Deepak Kumar Nayak
- Interdisciplinary Oncology, University of Arizona College of Medicine, Phoenix, AZ, United States
| |
Collapse
|
14
|
Abstract
As one of the most common forms of cancer, lung cancers present as a collection of different histological subtypes. These subtypes are characterized by distinct sets of driver mutations and phenotypic appearance, and they often show varying degrees of heterogenicity, aggressiveness, and response/resistance to therapy. Intriguingly, lung cancers are also capable of showing features of multiple subtypes or converting from one subtype to another. The intertumoral and intratumoral heterogeneity of lung cancers as well as incidences of subtype transdifferentiation raise the question of to what extent the tumor characteristics are dictated by the cell of origin rather than the acquired driver lesions. We provide here an overview of the studies in experimental mouse models that try to address this question. These studies convincingly show that both the cell of origin and the genetic driver lesions play a critical role in shaping the phenotypes of lung tumors. However, they also illustrate that there is far from a direct one-to-one relationship between the cell of origin and the cancer subtype, as most epithelial cells can be reprogrammed toward diverse lung cancer fates when exposed to the appropriate set of driver mutations.
Collapse
Affiliation(s)
- Giustina Ferone
- Division of Molecular Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Myung Chang Lee
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Julien Sage
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Anton Berns
- Division of Molecular Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
15
|
Zhang H, Cui Y, Zhou Z, Ding Y, Nie H. Alveolar Type 2 Epithelial Cells as Potential Therapeutics for Acute Lung Injury/Acute Respiratory Distress Syndrome. Curr Pharm Des 2020; 25:4877-4882. [PMID: 31801451 DOI: 10.2174/1381612825666191204092456] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/28/2019] [Indexed: 12/15/2022]
Abstract
Acute lung injury/acute respiratory distress syndrome is a common clinical illness with high morbidity and mortality, which is still one of the medical problems urgently needed to be solved. Alveolar type 2 epithelial cells are an important component of lung epithelial cells and as a kind of stem cells, they can proliferate and differentiate into alveolar type 1 epithelial cells, thus contributing to lung epithelial repairment. In addition, they synthesize and secrete all components of the surfactant that regulates alveolar surface tension in the lungs. Moreover, alveolar type 2 epithelial cells play an active role in enhancing alveolar fluid clearance and reducing lung inflammation. In recent years, as more advanced approaches appear in the field of stem and progenitor cells in the lung, many preclinical studies have shown that the cell therapy of alveolar type 2 epithelial cells has great potential effects for acute lung injury/acute respiratory distress syndrome. We reviewed the recent progress on the mechanisms of alveolar type 2 epithelial cells involved in the damaged lung repairment, aiming to explore the possible therapeutic targets in acute lung injury/acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Honglei Zhang
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yong Cui
- Department of Anesthesiology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhiyu Zhou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
16
|
Noël A, Hansen S, Zaman A, Perveen Z, Pinkston R, Hossain E, Xiao R, Penn A. In utero exposures to electronic-cigarette aerosols impair the Wnt signaling during mouse lung development. Am J Physiol Lung Cell Mol Physiol 2020; 318:L705-L722. [PMID: 32083945 DOI: 10.1152/ajplung.00408.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Currently, more than 9 million American adults, including women of childbearing age, use electronic-cigarettes (e-cigs). Further, the prevalence of maternal vaping now approaching 10% is similar to that of maternal smoking. Little, however, is known about the effects of fetal exposures to nicotine-rich e-cig aerosols on lung development. In this study, we assessed whether in utero exposures to e-cig aerosols compromised lung development in mice. A third-generation e-cig device was used to expose pregnant BALB/c mice by inhalation to 36 mg/mL of nicotine cinnamon-flavored e-cig aerosols for 14-31 days. This included exposures for either 12 days before mating plus during gestation (preconception groups) or only during gestation (prenatal groups). Respective control mice were exposed to filtered air. Subgroups of offspring were euthanized at birth or at 4 wk of age. Compared with respective air-exposed controls, both preconception and prenatal exposures to e-cig aerosols significantly decreased the offspring birth weight and body length. In the preconception group, 7 inflammation-related genes were downregulated, including 4 genes common to both dams and fetuses, denoting an e-cig immunosuppressive effect. Lung morphometry assessments of preconception e-cig-exposed offspring showed a significantly increased tissue fraction at birth. This result was supported by the downregulation of 75 lung genes involved in the Wnt signaling, which is essential to lung organogenesis. Thus, our data indicate that maternal vaping impairs pregnancy outcomes, alters fetal lung structure, and dysregulates the Wnt signaling. This study provides experimental evidence for future regulations of e-cig products for pregnant women and developmentally vulnerable populations.
Collapse
Affiliation(s)
- Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Shannon Hansen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Anusha Zaman
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Zakia Perveen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Rakeysha Pinkston
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana.,Health Research Center, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, Louisiana
| | - Ekhtear Hossain
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Rui Xiao
- Department of Anesthesiology, Columbia University Medical Center, New York, New York
| | - Arthur Penn
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| |
Collapse
|
17
|
Garcia GL, Valenzuela A, Manzoni T, Vaughan AE, López CB. Distinct Chronic Post-Viral Lung Diseases upon Infection with Influenza or Parainfluenza Viruses Differentially Impact Superinfection Outcome. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:543-553. [PMID: 31866346 DOI: 10.1016/j.ajpath.2019.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 10/07/2019] [Accepted: 11/05/2019] [Indexed: 12/13/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and asthma remain prevalent human lung diseases. Variability in epithelial and inflammatory components that results in pathologic heterogeneity complicates the development of treatments for these diseases. Early childhood infection with parainfluenza virus or respiratory syncytial virus is strongly associated with the development of asthma and COPD later in life, and exacerbations of these diseases correlate with the presence of viral RNA in the lung. Well-characterized animal models of postviral chronic lung diseases are necessary to study the underlying mechanisms of viral-related COPD and asthma and to develop appropriate therapies. In this study, we cross-analyzed chronic lung disease caused by infection with Sendai virus (SeV) or influenza A virus in mice. Differences were observed in lesion composition and inflammatory profiles between SeV- and influenza A virus-induced long-term lung disease. In addition, a primary SeV infection led to worsened pathologic findings on secondary heterologous viral challenge, whereas the reversed infection scheme protected against disease in response to a secondary viral challenge >1 month after the primary infection. These data demonstrate the differential effect of primary viral infections in the susceptibility to disease exacerbation in response to a different secondary viral infection and highlight the usefulness of these viral models as tools to understand the underlying mechanisms that mediate distinct chronic postviral lung diseases.
Collapse
Affiliation(s)
- Geyon L Garcia
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alex Valenzuela
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tomaz Manzoni
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew E Vaughan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Carolina B López
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
18
|
Abstract
INTRODUCTION Lifelong maintenance of a healthy lung requires resident stem cells to proliferate according to tissue requirements. Once thought to be a quiescent tissue, evolving views of the complex differentiation landscape of lung stem and progenitor cells have broad implications for our understanding of how the lung is maintained, as well as the development of new therapies for promoting endogenous regeneration in lung disease. AREAS COVERED This review collates a large body of research relating to the hierarchical organization of epithelial stem cells in the adult lung and their role in tissue homeostasis and regeneration after injury. To identify relevant studies, PubMed was queried using one or a combination of the terms 'lung', 'airway', 'alveoli', 'stem cells', 'progenitor', 'repair' and 'regeneration'. EXPERT OPINION This review discusses how new technologies and injury models have challenged the demarcations between stem and progenitor cell populations.
Collapse
Affiliation(s)
- Jonathan L McQualter
- a School of Health and Biomedical Sciences , RMIT University , Melbourne , Australia
| |
Collapse
|
19
|
Demura SA, Kogan EA, Goryachkina VL. [Chronic diseases, precancer, and cancer of the lung, which are associated with pathology of the club cells of respiratory and terminal bronchioles]. Arkh Patol 2018; 80:63-68. [PMID: 30335064 DOI: 10.17116/patol20188005163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The review of the literature deals with the participation of Clara cells now called club cells (CCs) of the epithelium in the respiratory and terminal bronchioles in the pathogenesis and morphogenesis of chronic inflammatory diseases, precancer, and cancer of the lung, which develop in the respiratory segments. The review summarizes data on the histophysiology of CCs and their participation in the pathogenesis and morphogenesis of chronic interstitial lung diseases, pneumoconiosis, chronic obstructive diseases, adenomatosis, and adenocarcinoma of the lung. In this area, there is a bronchioloalveolar junction area (BAJA), one of the most important stem cell niches. CCs are located in the BAJA; they are progenitor tissue stem cells and play an important role in the regeneration of the epithelium of the respiratory bronchioles and alveoli. Pathology of CCs in the BAJA leads to the maintenance of chronic inflammation, to the destruction of the lung elastic frame, and to impaired epithelial regeneration, interstitial fibrosis, and adenomatosis. In this case, decompensated inflammation, pathological regeneration, and fibrosis develop, which, along with the action of carcinogenic agents, can contribute to the accumulation of mutations and epigenetic rearrangements in the CCs, which subsequently results in atypical adenomatous hyperplasia and adenocarcinoma of the lung.
Collapse
Affiliation(s)
- S A Demura
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow, Russia
| | - E A Kogan
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow, Russia
| | - V L Goryachkina
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
20
|
Chida J, Hara H, Yano M, Uchiyama K, Das NR, Takahashi E, Miyata H, Tomioka Y, Ito T, Kido H, Sakaguchi S. Prion protein protects mice from lethal infection with influenza A viruses. PLoS Pathog 2018; 14:e1007049. [PMID: 29723291 PMCID: PMC5953499 DOI: 10.1371/journal.ppat.1007049] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 05/15/2018] [Accepted: 04/23/2018] [Indexed: 11/18/2022] Open
Abstract
The cellular prion protein, designated PrPC, is a membrane glycoprotein expressed abundantly in brains and to a lesser extent in other tissues. Conformational conversion of PrPC into the amyloidogenic isoform is a key pathogenic event in prion diseases. However, the physiological functions of PrPC remain largely unknown, particularly in non-neuronal tissues. Here, we show that PrPC is expressed in lung epithelial cells, including alveolar type 1 and 2 cells and bronchiolar Clara cells. Compared with wild-type (WT) mice, PrPC-null mice (Prnp0/0) were highly susceptible to influenza A viruses (IAVs), with higher mortality. Infected Prnp0/0 lungs were severely injured, with higher inflammation and higher apoptosis of epithelial cells, and contained higher reactive oxygen species (ROS) than control WT lungs. Treatment with a ROS scavenger or an inhibitor of xanthine oxidase (XO), a major ROS-generating enzyme in IAV-infected lungs, rescued Prnp0/0 mice from the lethal infection with IAV. Moreover, Prnp0/0 mice transgenic for PrP with a deletion of the Cu-binding octapeptide repeat (OR) region, Tg(PrPΔOR)/Prnp0/0 mice, were also highly susceptible to IAV infection. These results indicate that PrPC has a protective role against lethal infection with IAVs through the Cu-binding OR region by reducing ROS in infected lungs. Cu content and the activity of anti-oxidant enzyme Cu/Zn-dependent superoxide dismutase, SOD1, were lower in Prnp0/0 and Tg(PrPΔOR)/Prnp0/0 lungs than in WT lungs. It is thus conceivable that PrPC functions to maintain Cu content and regulate SOD1 through the OR region in lungs, thereby reducing ROS in IAV-infected lungs and eventually protecting them from lethal infection with IAVs. Our current results highlight the role of PrPC in protection against IAV infection, and suggest that PrPC might be a novel target molecule for anti-influenza therapeutics. Influenza A virus (IAV) is an enveloped, negative sense, single-stranded RNA virus, causing seasonal epidemic outbreaks of influenza. Anti-influenza agents targeting viral molecules, such as neuraminidase inhibitors, are currently available. However, these agents have accelerated emergence of mutant IAVs that are resistant to these agents among human populations. Development of new types of anti-influenza agents is awaited. We show that the cellular prion protein PrPC has a protective role against lethal infection with IAVs through the octapeptide repeat (OR) region by abrogating lung epithelial cell apoptosis induced by reactive oxygen species (ROS) in infected lungs. We also show that PrPC could reduce ROS in IAV-infected lungs through the OR region by maintaining Cu ion homeostasis and thereby activating Cu/Zn-dependent superoxide dismutase, SOD1. These results highlight the protective role of PrPC in IAV infection. Elucidation of the exact mechanism underlying the PrPC-mediated protection against IAV infection would be important for further understanding the pathogenesis of IAV infection and could be useful for development of new types of anti-influenza therapeutics.
Collapse
Affiliation(s)
- Junji Chida
- Division of Molecular Neurobiology, Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Hideyuki Hara
- Division of Molecular Neurobiology, Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Masashi Yano
- Division of Molecular Neurobiology, Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Keiji Uchiyama
- Division of Molecular Neurobiology, Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Nandita Rani Das
- Division of Molecular Neurobiology, Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Etsuhisa Takahashi
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Hironori Miyata
- Animal Research Center, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yukiko Tomioka
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Koyama-cho, Tottori, Japan
| | - Toshihiro Ito
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Koyama-cho, Tottori, Japan
| | - Hiroshi Kido
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Suehiro Sakaguchi
- Division of Molecular Neurobiology, Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| |
Collapse
|
21
|
Peix L, Evans IC, Pearce DR, Simpson JK, Maher TM, McAnulty RJ. Diverse functions of clusterin promote and protect against the development of pulmonary fibrosis. Sci Rep 2018; 8:1906. [PMID: 29382921 PMCID: PMC5789849 DOI: 10.1038/s41598-018-20316-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/16/2018] [Indexed: 01/06/2023] Open
Abstract
Pulmonary fibrosis is a progressive scarring disorder of the lung with dismal prognosis and no curative therapy. Clusterin, an extracellular chaperone and regulator of cell functions, is reduced in bronchoalveolar lavage fluid of patients with pulmonary fibrosis. However, its distribution and role in normal and fibrotic human lung are incompletely characterized. Immunohistochemical localization of clusterin revealed strong staining associated with fibroblasts in control lung and morphologically normal areas of fibrotic lung but weak or undetectable staining in fibrotic regions and particularly fibroblastic foci. Clusterin also co-localized with elastin in vessel walls and additionally with amorphous elastin deposits in fibrotic lung. Analysis of primary lung fibroblast isolates in vitro confirmed the down-regulation of clusterin expression in fibrotic compared with control lung fibroblasts and further demonstrated that TGF-β1 is capable of down-regulating fibroblast clusterin expression. shRNA-mediated down-regulation of clusterin did not affect TGF-β1-induced fibroblast-myofibroblast differentiation but inhibited fibroblast proliferative responses and sensitized to apoptosis. Down-regulation of clusterin in fibrotic lung fibroblasts at least partly due to increased TGF-β1 may therefore represent an appropriate but insufficient response to limit fibroproliferation. Reduced expression of clusterin in the lung may also limit its extracellular chaperoning activity contributing to dysregulated deposition of extracellular matrix proteins.
Collapse
Affiliation(s)
- Lizzy Peix
- UCL Respiratory Centre for Inflammation and Tissue Repair, Rayne Building, University College London, London, WC1E 6JF, UK
- GlaxoSmithKline, Stevenage, UK
| | - Iona C Evans
- UCL Respiratory Centre for Inflammation and Tissue Repair, Rayne Building, University College London, London, WC1E 6JF, UK
- UCL Institute for Woman's Health, University College London, London, UK
| | - David R Pearce
- UCL Respiratory Centre for Inflammation and Tissue Repair, Rayne Building, University College London, London, WC1E 6JF, UK
| | | | - Toby M Maher
- NIHR Respiratory Biomedical Research Unit, Royal Brompton Hospital, London, UK
- Fibrosis Research Group, National Heart and Lung Institute, Imperial College, London, UK
| | - Robin J McAnulty
- UCL Respiratory Centre for Inflammation and Tissue Repair, Rayne Building, University College London, London, WC1E 6JF, UK.
| |
Collapse
|
22
|
Uroplakin 3a + Cells Are a Distinctive Population of Epithelial Progenitors that Contribute to Airway Maintenance and Post-injury Repair. Cell Rep 2017; 19:246-254. [PMID: 28402849 DOI: 10.1016/j.celrep.2017.03.051] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/21/2016] [Accepted: 03/17/2017] [Indexed: 12/31/2022] Open
Abstract
There is evidence that certain club cells (CCs) in the murine airways associated with neuroepithelial bodies (NEBs) and terminal bronchioles are resistant to the xenobiotic naphthalene (Nap) and repopulate the airways after Nap injury. The identity and significance of these progenitors (variant CCs, v-CCs) have remained elusive. A recent screen for CC markers identified rare Uroplakin3a (Upk3a)-expressing cells (U-CCs) with a v-CC-like distribution. Here, we employ lineage analysis in the uninjured and chemically injured lungs to investigate the role of U-CCs as epithelial progenitors. U-CCs proliferate and generate CCs and ciliated cells in uninjured airways long-term and, like v-CCs, after Nap. U-CCs have a higher propensity to generate ciliated cells than non-U-CCs. Although U-CCs do not contribute to alveolar maintenance long-term, they generate alveolar type I and type II cells after Bleomycin (Bleo)-induced alveolar injury. Finally, we report that Upk3a+ cells exist in the NEB microenvironment of the human lung and are aberrantly expanded in conditions associated with neuroendocrine hyperplasias.
Collapse
|
23
|
Zheng D, Soh BS, Yin L, Hu G, Chen Q, Choi H, Han J, Chow VTK, Chen J. Differentiation of Club Cells to Alveolar Epithelial Cells In Vitro. Sci Rep 2017; 7:41661. [PMID: 28128362 PMCID: PMC5269679 DOI: 10.1038/srep41661] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/21/2016] [Indexed: 11/30/2022] Open
Abstract
Club cells are known to function as regional progenitor cells to repair the bronchiolar epithelium in response to lung damage. By lineage tracing in mice, we have shown recently that club cells also give rise to alveolar type 2 cells (AT2s) and alveolar type 1 cells (AT1s) during the repair of the damaged alveolar epithelium. Here, we show that when highly purified, anatomically and phenotypically confirmed club cells are seeded in 3-dimensional culture either in bulk or individually, they proliferate and differentiate into both AT2- and AT1-like cells and form alveolar-like structures. This differentiation was further confirmed by transcriptomic analysis of freshly isolated club cells and their cultured progeny. Freshly isolated club cells express Sca-1 and integrin α6, markers commonly used to characterize lung stem/progenitor cells. Together, current study for the first time isolated highly purified club cells for in vitro study and demonstrated club cells’ capacity to differentiate into alveolar epithelial cells at the single-cell level.
Collapse
Affiliation(s)
- Dahai Zheng
- Interdisciplinary Research Group in Infectious Diseases, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, Singapore.,A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore
| | - Boon-Seng Soh
- A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore.,Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Lu Yin
- Interdisciplinary Research Group in BioSystems and Micromechanics, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, Singapore
| | - Guangan Hu
- The Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Qingfeng Chen
- A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore
| | - Hyungwon Choi
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Jongyoon Han
- Interdisciplinary Research Group in BioSystems and Micromechanics, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, Singapore.,Department of Electrical Engineering and Computer Science, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Vincent T K Chow
- Host and Pathogen Interactivity Laboratory, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Health System, National University of Singapore, Singapore
| | - Jianzhu Chen
- Interdisciplinary Research Group in Infectious Diseases, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, Singapore.,The Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
24
|
Metabolomics Investigation Reveals Metabolite Mediators Associated with Acute Lung Injury and Repair in a Murine Model of Influenza Pneumonia. Sci Rep 2016; 6:26076. [PMID: 27188343 PMCID: PMC4870563 DOI: 10.1038/srep26076] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/25/2016] [Indexed: 11/23/2022] Open
Abstract
Influenza virus infection (IVI) can cause primary viral pneumonia, which may progress to acute lung injury (ALI) and respiratory failure with a potentially fatal outcome. At present, the interactions between host and influenza virus at molecular levels and the underlying mechanisms that give rise to IVI-induced ALI are poorly understood. We conducted a comprehensive mass spectrometry-based metabolic profiling of serum, lung tissue and bronchoalveolar lavage fluid (BALF) from a non-lethal mouse model with influenza A virus at 0, 6, 10, 14, 21 and 28 days post infection (dpi), representing the major stages of IVI. Distinct metabolite signatures were observed in mice sera, lung tissues and BALF, indicating the molecular differences between systematic and localized host responses to IVI. More than 100 differential metabolites were captured in mice sera, lung tissues and BALF, including purines, pyrimidines, acylcarnitines, fatty acids, amino acids, glucocorticoids, sphingolipids, phospholipids, etc. Many of these metabolites belonged to pulmonary surfactants, indicating IVI-induced aberrations of the pulmonary surfactant system might play an important role in the etiology of respiratory failure and repair. Our findings revealed dynamic host responses to IVI and various metabolic pathways linked to disease progression, and provided mechanistic insights into IVI-induced ALI and repair process.
Collapse
|
25
|
Deriu E, Boxx GM, He X, Pan C, Benavidez SD, Cen L, Rozengurt N, Shi W, Cheng G. Influenza Virus Affects Intestinal Microbiota and Secondary Salmonella Infection in the Gut through Type I Interferons. PLoS Pathog 2016; 12:e1005572. [PMID: 27149619 PMCID: PMC4858270 DOI: 10.1371/journal.ppat.1005572] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/23/2016] [Indexed: 12/22/2022] Open
Abstract
Human influenza viruses replicate almost exclusively in the respiratory tract, yet infected individuals may also develop gastrointestinal symptoms, such as vomiting and diarrhea. However, the molecular mechanisms remain incompletely defined. Using an influenza mouse model, we found that influenza pulmonary infection can significantly alter the intestinal microbiota profile through a mechanism dependent on type I interferons (IFN-Is). Notably, influenza-induced IFN-Is produced in the lungs promote the depletion of obligate anaerobic bacteria and the enrichment of Proteobacteria in the gut, leading to a “dysbiotic” microenvironment. Additionally, we provide evidence that IFN-Is induced in the lungs during influenza pulmonary infection inhibit the antimicrobial and inflammatory responses in the gut during Salmonella-induced colitis, further enhancing Salmonella intestinal colonization and systemic dissemination. Thus, our studies demonstrate a systemic role for IFN-Is in regulating the host immune response in the gut during Salmonella-induced colitis and in altering the intestinal microbial balance after influenza infection. Influenza is a respiratory illness. Symptoms of flu include fever, headache, extreme tiredness, dry cough, sore throat, runny or stuffy nose, and muscle aches. Some people, especially children, can have additional gastrointestinal symptoms, such as nausea, vomiting, and diarrhea. In humans, there is no evidence that the influenza virus replicates in the intestine. Using an influenza mouse model, we found that influenza infection alters the intestinal microbial community through a mechanism dependent on type I interferons induced in the pulmonary tract. Futhermore, we demonstrate that influenza-induced type I interferons increase the host susceptibility to Salmonella intestinal colonization and dissemination during secondary Salmonella-induced colitis through suppression of host intestinal immunity.
Collapse
Affiliation(s)
- Elisa Deriu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Gayle M. Boxx
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Xuesong He
- School of Dentistry, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Calvin Pan
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Sammy David Benavidez
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Lujia Cen
- School of Dentistry, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Nora Rozengurt
- Department of Pathology and Laboratory Medicine, CURE Imaging and Stem Cell Biology Core, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Wenyuan Shi
- School of Dentistry, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
26
|
Haque S, Whittaker MR, McIntosh MP, Pouton CW, Kaminskas LM. Disposition and safety of inhaled biodegradable nanomedicines: Opportunities and challenges. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1703-24. [PMID: 27033834 DOI: 10.1016/j.nano.2016.03.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/22/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
Abstract
The inhaled delivery of nanomedicines can provide a novel, non-invasive therapeutic strategy for the more localised treatment of lung-resident diseases and potentially also enable the systemic delivery of therapeutics that are otherwise administered via injection alone. However, the clinical translation of inhalable nanomedicine is being hampered by our lack of understanding about their disposition and clearance from the lungs. This review provides a comprehensive overview of the biodegradable nanomaterials that are currently being explored as inhalable drug delivery systems and our current understanding of their disposition within, and clearance from the lungs. The safety of biodegradable nanomaterials in the lungs is discussed and latest updates are provided on the impact of inflammation on the pulmonary pharmacokinetics of inhaled nanomaterials. Overall, the review provides an in-depth and critical assessment of the lung clearance mechanisms for inhaled biodegradable nanomedicines and highlights the opportunities and challenges for their translation into the clinic.
Collapse
Affiliation(s)
- Shadabul Haque
- Drug Delivery Disposition and Dynamics Group, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Michael R Whittaker
- Drug Delivery Disposition and Dynamics Group, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Michelle P McIntosh
- Drug Delivery Disposition and Dynamics Group, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Colin W Pouton
- Drug Delivery Disposition and Dynamics Group, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Lisa M Kaminskas
- Drug Delivery Disposition and Dynamics Group, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
27
|
Yang C, Jiang J, Yang X, Wang H, Du J. Stem/progenitor cells in endogenous repairing responses: new toolbox for the treatment of acute lung injury. J Transl Med 2016; 14:47. [PMID: 26865361 PMCID: PMC4750219 DOI: 10.1186/s12967-016-0804-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/27/2016] [Indexed: 02/07/2023] Open
Abstract
The repair of organs and tissues has stepped into a prospective era of regenerative medicine. However, basic research and clinical practice in the lung regeneration remains crawling. Owing to the complicated three dimensional structures and above 40 types of pulmonary cells, the regeneration of lung tissues becomes a great challenge. Compelling evidence has showed that distinct populations of intrapulmonary and extrapulmonary stem/progenitor cells can regenerate epithelia as well as endothelia in various parts of the respiratory tract. Recently, the discovery of human lung stem cells and their relevant studies has opened the door of hope again, which might put us on the path to repair our injured body parts, lungs on demand. Herein, we emphasized the role of endogenous and exogenous stem/progenitor cells in lungs as well as artificial tissue repair for the injured lungs, which constitute a marvelous toolbox for the treatment of acute lung injury. Finally, we further discussed the potential problems in the pulmonary remodeling and regeneration.
Collapse
Affiliation(s)
- Ce Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Zhilu, Daping, 400042, Chongqing, China.
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Zhilu, Daping, 400042, Chongqing, China.
| | - Xuetao Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Zhilu, Daping, 400042, Chongqing, China.
| | - Haiyan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Zhilu, Daping, 400042, Chongqing, China.
| | - Juan Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Zhilu, Daping, 400042, Chongqing, China.
| |
Collapse
|
28
|
Malanga D, Belmonte S, Colelli F, Scarfò M, De Marco C, Oliveira DM, Mirante T, Camastra C, Gagliardi M, Rizzuto A, Mignogna C, Paciello O, Papparella S, Fagman H, Viglietto G. AKT1E¹⁷K Is Oncogenic in Mouse Lung and Cooperates with Chemical Carcinogens in Inducing Lung Cancer. PLoS One 2016; 11:e0147334. [PMID: 26859676 PMCID: PMC4747507 DOI: 10.1371/journal.pone.0147334] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 01/01/2016] [Indexed: 11/19/2022] Open
Abstract
The hotspot AKT1E17K mutation in the pleckstrin homology domain of AKT1 occurs in approximately 0.6-2% of human lung cancers. Recently, we have demonstrated that AKT1E17K transforms immortalized human bronchial cells. Here by use of a transgenic Cre-inducible murine strain in the wild type Rosa26 (R26) locus (R26-AKT1E17K mice) we demonstrate that AKT1E17K is a bona-fide oncogene and plays a role in the development of lung cancer in vivo. In fact, we report that mutant AKT1E17K induces bronchial and/or bronchiolar hyperplastic lesions in murine lung epithelium, which progress to frank carcinoma at very low frequency, and accelerates tumor formation induced by chemical carcinogens. In conclusion, AKT1E17K induces hyperplasia of mouse lung epithelium in vivo and cooperates with urethane to induce the fully malignant phenotype.
Collapse
Affiliation(s)
- Donatella Malanga
- Dipartimento di Medicina Sperimentale e Clinica, Università Magna Graecia, Catanzaro, Italy
- BIOGEM-Istituto di Ricerche Genetiche, Ariano Irpino (AV), Italy
- * E-mail: (GV); (DM)
| | | | - Fabiana Colelli
- BIOGEM-Istituto di Ricerche Genetiche, Ariano Irpino (AV), Italy
| | - Marzia Scarfò
- BIOGEM-Istituto di Ricerche Genetiche, Ariano Irpino (AV), Italy
| | - Carmela De Marco
- Dipartimento di Medicina Sperimentale e Clinica, Università Magna Graecia, Catanzaro, Italy
- BIOGEM-Istituto di Ricerche Genetiche, Ariano Irpino (AV), Italy
| | - Duarte Mendes Oliveira
- Dipartimento di Medicina Sperimentale e Clinica, Università Magna Graecia, Catanzaro, Italy
| | - Teresa Mirante
- Dipartimento di Medicina Sperimentale e Clinica, Università Magna Graecia, Catanzaro, Italy
| | - Caterina Camastra
- Dipartimento di Scienze della Salute, Unità di Anatomia Patologica, Università Magna Graecia, Catanzaro, Italy
| | | | - Antonia Rizzuto
- Dipartimento di Scienze Mediche e Chirurgiche, Università Magna Graecia, Catanzaro, Italy
| | - Chiara Mignogna
- Dipartimento di Scienze della Salute, Unità di Anatomia Patologica, Università Magna Graecia, Catanzaro, Italy
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Productions, Università Federico II, Napoli, Italy
| | - Serenella Papparella
- Department of Veterinary Medicine and Animal Productions, Università Federico II, Napoli, Italy
| | - Henrik Fagman
- Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Giuseppe Viglietto
- Dipartimento di Medicina Sperimentale e Clinica, Università Magna Graecia, Catanzaro, Italy
- BIOGEM-Istituto di Ricerche Genetiche, Ariano Irpino (AV), Italy
- * E-mail: (GV); (DM)
| |
Collapse
|
29
|
Karnati S, Graulich T, Oruqaj G, Pfreimer S, Seimetz M, Stamme C, Mariani TJ, Weissmann N, Mühlfeld C, Baumgart-Vogt E. Postnatal development of the bronchiolar club cells of distal airways in the mouse lung: stereological and molecular biological studies. Cell Tissue Res 2016; 364:543-557. [PMID: 26796206 DOI: 10.1007/s00441-015-2354-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 12/17/2015] [Indexed: 01/15/2023]
Abstract
Club (Clara) cells are nonciliated secretory epithelial cells present in bronchioles of distal pulmonary airways. So far, no information is available on the postnatal differentiation of club cells by a combination of molecular biological, biochemical, and stereological approaches in the murine lung. Therefore, the present study was designed to investigate the changes in the club cell secretory proteins (CC10, surfactant proteins A, B and D) and club cell abundance within the epithelium of bronchioles of distal airways during the postnatal development of the mouse lung. Perfusion-fixed murine lungs of three developmental stages (newborn, 15-day-old and adult) were used. Frozen, unfixed lungs were used for cryosectioning and subsequent laser-assisted microdissection of bronchiolar epithelial cells and RT-PCR analyses. High resolution analyses of the three-dimensional structures and composition of lung airways were obtained by scanning electron microscopy. Finally, using design-based stereology, the total and average club cell volume and the volume of secretory granules were quantified by light and transmission electron microscopy. Our results reveal that murine club cells are immature at birth and differentiate postnatally. Further, increase of the club cell volume and number of intracellular granules are closely correlated to the total lung volume enlargement. However, secretory granule density was only increased within the first 15 days of postnatal development. The differentiation is accompanied by a decrease in glycogen content, and a close positive relationship between CC10 expression and secretory granule abundance. Taken together, our data are consistent with the concept that the morphological and functional differentiation of club cells is a postnatal phenomenon.
Collapse
Affiliation(s)
- Srikanth Karnati
- Institute for Anatomy and Cell Biology II, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, D-35385, Giessen, Germany.
| | - Tilman Graulich
- Department of Trauma, Hannover Medical School, Hannover, Germany
| | - Gani Oruqaj
- Institute for Anatomy and Cell Biology II, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, D-35385, Giessen, Germany
| | - Susanne Pfreimer
- Institute for Anatomy and Cell Biology II, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, D-35385, Giessen, Germany
| | - Michael Seimetz
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, Giessen, Germany
| | - Cordula Stamme
- Division of Cellular Pneumology, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany and Department of Anesthesiology, University of Lübeck, Lübeck, Germany
| | - Thomas J Mariani
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, Giessen, Germany
| | - Christian Mühlfeld
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Eveline Baumgart-Vogt
- Institute for Anatomy and Cell Biology II, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, D-35385, Giessen, Germany.
| |
Collapse
|
30
|
|
31
|
Diverse profiles of ricin-cell interactions in the lung following intranasal exposure to ricin. Toxins (Basel) 2015; 7:4817-31. [PMID: 26593946 PMCID: PMC4663535 DOI: 10.3390/toxins7114817] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/02/2015] [Accepted: 11/11/2015] [Indexed: 01/05/2023] Open
Abstract
Ricin, a plant-derived exotoxin, inhibits protein synthesis by ribosomal inactivation. Due to its wide availability and ease of preparation, ricin is considered a biothreat, foremost by respiratory exposure. We examined the in vivo interactions between ricin and cells of the lungs in mice intranasally exposed to the toxin and revealed multi-phasic cell-type-dependent binding profiles. While macrophages (MΦs) and dendritic cells (DCs) displayed biphasic binding to ricin, monophasic binding patterns were observed for other cell types; epithelial cells displayed early binding, while B cells and endothelial cells bound toxin late after intoxication. Neutrophils, which were massively recruited to the intoxicated lung, were refractive to toxin binding. Although epithelial cells bound ricin as early as MΦs and DCs, their rates of elimination differed considerably; a reduction in epithelial cell counts occurred late after intoxication and was restricted to alveolar type II cells only. The differential binding and cell-elimination patterns observed may stem from dissimilar accessibility of the toxin to different cells in the lung and may also reflect unequal interactions of the toxin with different cell-surface receptors. The multifaceted interactions observed in this study between ricin and the various cells of the target organ should be considered in the future development of efficient post-exposure countermeasures against ricin intoxication.
Collapse
|
32
|
Yang C, Yang X, Du J, Wang H, Li H, Zeng L, Gu W, Jiang J. Retinoic acid promotes the endogenous repair of lung stem/progenitor cells in combined with simvastatin after acute lung injury: a stereological analysis. Respir Res 2015; 16:140. [PMID: 26561298 PMCID: PMC4642746 DOI: 10.1186/s12931-015-0300-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 11/03/2015] [Indexed: 11/10/2022] Open
Abstract
Background The treatment of acute respiratory distress syndrome (ARDS), most commonly seen during the organ dysfunction remains unsatisfied. Presently, the stem/progenitor cell-based endogenous repair has been aroused attention enormously. This report investigated the effects of retinoic acid (RA) plus simvastatin (SS) with respect to dynamics of lung repair cells as well as to elucidate the underlying mechanism. Materials and methods The experimental Sprague–Dawley rats were divided randomly into normal control (control), sham operated (sham), ARDS, ARDS + vehicle and ARDS + RA + SS groups. ARDS was reproduced through hemorrhagic shock/resuscitation (shock) and subsequent intratracheal LPS (4.5 mg/kg, Escherichia coli serotype O55: B5) injection. The rats were treated by intragastric administration of RA (2 mg/kg/day) and SS (2 mg/kg/day) for 5 days in the ARDS + RA + SS group. Seven days after the first RA-SS injection, a right lower lobe of lung was sampled for histological analysis concerning systemic uniform random sampling method. Immunohistochemistry of inflation-fixed lungs for alveolar type 1 (AT1), alveolar type 2 (AT2) and Clara cells was measured by AQP5, Pro-SPC and CCSP staining respectively. The alveolar cell proliferation and apoptosis were analyzed with Ki67 staining and terminal deoxylnucleotidyl transferase mediated-dUTP nick end labeling (TUNEL) method. Meanwhile, the alveolar cell numerical and surface density (alveolar cells, AT1, AT2, Clara, proliferating and apoptotic cells) were evaluated by stereology. Results RA-SS compound exerted anti-inflammatory and pro-repairing effects on respiratory tracts in ARDS induced by hemorrhagic-endotoxin shock. The numerical density and surface density of alveolar cells, AT1 cell fraction, and numerical density of AT2 and Clara cells were significantly increased after treatment with RA-SS compound in ARDS. Concurrently, the Ki67+ alveolar cells were obviously increased while the TUNEL+ alveolar cells were reduced, which was correlated with the attenuation of inflammatory injury and functional repair in injured lung tissues. Conclusions Our data convincingly indicated that the prophylactic and therapeutic treatment of RA plus SS had obvious beneficial effect on the remodeling/regeneration of injured pulmonary tissues, suggesting that the underlying mechanisms are related to the re-balance between regeneration and apoptosis in lung stem/progenitor cells.
Collapse
Affiliation(s)
- Ce Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China. .,Research Institute of Surgery, Daping Hospital, Third Military Medical University, Changjiang Zhilu, Daping, Chongqing, 400042, China.
| | - Xuetao Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Juan Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Haiyan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Haisheng Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Ling Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Wei Gu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China. .,Research Institute of Surgery, Daping Hospital, Third Military Medical University, Changjiang Zhilu, Daping, Chongqing, 400042, China.
| |
Collapse
|
33
|
Abstract
Influenza A virus (IAV) is a serious global health problem worldwide due to frequent and severe outbreaks. IAV causes significant morbidity and mortality in the elderly population, due to the ineffectiveness of the vaccine and the alteration of T cell immunity with ageing. The cellular and molecular link between ageing and virus infection is unclear and it is possible that damage associated molecular patterns (DAMPs) may play a role in the raised severity and susceptibility of virus infections in the elderly. DAMPs which are released from damaged cells following activation, injury or cell death can activate the immune response through the stimulation of the inflammasome through several types of receptors found on the plasma membrane, inside endosomes after endocytosis as well as in the cytosol. In this review, the detriment in the immune system during ageing and the links between influenza virus infection and ageing will be discussed. In addition, the role of DAMPs such as HMGB1 and S100/Annexin in ageing, and the enhanced morbidity and mortality to severe influenza infection in ageing will be highlighted.
Collapse
|
34
|
Domm W, Misra RS, O'Reilly MA. Affect of Early Life Oxygen Exposure on Proper Lung Development and Response to Respiratory Viral Infections. Front Med (Lausanne) 2015; 2:55. [PMID: 26322310 PMCID: PMC4530667 DOI: 10.3389/fmed.2015.00055] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/27/2015] [Indexed: 12/22/2022] Open
Abstract
Children born preterm often exhibit reduced lung function and increased severity of response to respiratory viruses, suggesting that premature birth has compromised proper development of the respiratory epithelium and innate immune defenses. Increasing evidence suggests that premature birth promotes aberrant lung development likely due to the neonatal oxygen transition occurring before pulmonary development has matured. Given that preterm infants are born at a point of time where their immune system is also still developing, early life oxygen exposure may also be disrupting proper development of innate immunity. Here, we review current literature in hopes of stimulating research that enhances understanding of how the oxygen environment at birth influences lung development and host defense. This knowledge may help identify those children at risk for disease and ideally culminate in the development of novel therapies that improve their health.
Collapse
Affiliation(s)
- William Domm
- Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester , Rochester, NY , USA ; Department of Environmental Medicine, School of Medicine and Dentistry, The University of Rochester , Rochester, NY , USA
| | - Ravi S Misra
- Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester , Rochester, NY , USA
| | - Michael A O'Reilly
- Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester , Rochester, NY , USA ; Department of Environmental Medicine, School of Medicine and Dentistry, The University of Rochester , Rochester, NY , USA
| |
Collapse
|
35
|
Li N, Parrish M, Chan TK, Yin L, Rai P, Yoshiyuki Y, Abolhassani N, Tan KB, Kiraly O, Chow VTK, Engelward BP. Influenza infection induces host DNA damage and dynamic DNA damage responses during tissue regeneration. Cell Mol Life Sci 2015; 72:2973-88. [PMID: 25809161 PMCID: PMC4802977 DOI: 10.1007/s00018-015-1879-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/18/2015] [Accepted: 03/02/2015] [Indexed: 12/19/2022]
Abstract
Influenza viruses account for significant morbidity worldwide. Inflammatory responses, including excessive generation of reactive oxygen and nitrogen species (RONS), mediate lung injury in severe influenza infections. However, the molecular basis of inflammation-induced lung damage is not fully understood. Here, we studied influenza H1N1 infected cells in vitro, as well as H1N1 infected mice, and we monitored molecular and cellular responses over the course of 2 weeks in vivo. We show that influenza induces DNA damage to both, when cells are directly exposed to virus in vitro (measured using the comet assay) and also when cells are exposed to virus in vivo (estimated via γH2AX foci). We show that DNA damage, as well as responses to DNA damage persist in vivo until long after virus has been cleared, at times when there are inflammation associated RONS (measured by xanthine oxidase activity and oxidative products). The frequency of lung epithelial and immune cells with increased γH2AX foci is elevated in vivo, especially for dividing cells (Ki-67-positive) exposed to oxidative stress during tissue regeneration. Additionally, we observed a significant increase in apoptotic cells as well as increased levels of DNA double strand break (DSB) repair proteins Ku70, Ku86 and Rad51 during the regenerative phase. In conclusion, results show that influenza induces DNA damage both in vitro and in vivo, and that DNA damage responses are activated, raising the possibility that DNA repair capacity may be a determining factor for tissue recovery and disease outcome.
Collapse
Affiliation(s)
- Na Li
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-10/11 Innovation Wing, #03-12/13/14 Enterprise Wing, Singapore, 138602 Singapore
- Department of Microbiology, National University of Singapore, 5 Science Drive 2, Blk MD4, Level 3, Singapore, 117545 Singapore
| | - Marcus Parrish
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., 16-743, Cambridge, MA 02139 USA
| | - Tze Khee Chan
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-10/11 Innovation Wing, #03-12/13/14 Enterprise Wing, Singapore, 138602 Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Clinical Research Center, MD11, 10 Medical Drive, Level 5, #05-09, Singapore, 117597 Singapore
| | - Lu Yin
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-10/11 Innovation Wing, #03-12/13/14 Enterprise Wing, Singapore, 138602 Singapore
| | - Prashant Rai
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-10/11 Innovation Wing, #03-12/13/14 Enterprise Wing, Singapore, 138602 Singapore
- Department of Microbiology, National University of Singapore, 5 Science Drive 2, Blk MD4, Level 3, Singapore, 117545 Singapore
| | - Yamada Yoshiyuki
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-10/11 Innovation Wing, #03-12/13/14 Enterprise Wing, Singapore, 138602 Singapore
| | - Nona Abolhassani
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., 16-743, Cambridge, MA 02139 USA
| | - Kong Bing Tan
- Department of Pathology, Yong loo Lin School of Medicine, National University Health System and National University of Singapore, Lower Kent Ridge Road, Singapore, 119074 Singapore
| | - Orsolya Kiraly
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-10/11 Innovation Wing, #03-12/13/14 Enterprise Wing, Singapore, 138602 Singapore
| | - Vincent T. K. Chow
- Department of Microbiology, National University of Singapore, 5 Science Drive 2, Blk MD4, Level 3, Singapore, 117545 Singapore
| | - Bevin P. Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., 16-743, Cambridge, MA 02139 USA
| |
Collapse
|
36
|
Cai Y, Yoneda M, Tomita T, Kurotani R, Okamoto M, Kido T, Abe H, Mitzner W, Guha A, Kimura S. Transgenically-expressed secretoglobin 3A2 accelerates resolution of bleomycin-induced pulmonary fibrosis in mice. BMC Pulm Med 2015; 15:72. [PMID: 26178733 PMCID: PMC4504078 DOI: 10.1186/s12890-015-0065-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 06/28/2015] [Indexed: 02/02/2023] Open
Abstract
Background Secretoglobin (SCGB) 3A2, a cytokine-like secretory protein of small molecular weight, is predominantly expressed in airway epithelial cells. While SCGB3A2 is known to have anti-inflammatory, growth factor, and anti-fibrotic activities, whether SCGB3A2 has any other roles, particularly in lung homeostasis and disease has not been demonstrated in vivo. The aim of this study was to address these questions in mice. Methods A transgenic mouse line that expresses SCGB3A2 in the lung using the human surfactant protein-C promoter was established. Detailed histological, immunohistochemical, physiological, and molecular characterization of the Scgb3a2-transgenic mouse lungs were carried out. Scgb3a2-transgenic and wild-type mice were subjected to bleomycin-induced pulmonary fibrosis model, and their lungs and bronchoalveolar lavage fluids were collected at various time points during 9 weeks post-bleomycin treatment for further analysis. Results Adult Scgb3a2-transgenic mouse lungs expressed approximately five-fold higher levels of SCGB3A2 protein in comparison to wild-type mice as determined by western blotting of lung tissues. Immunohistochemistry showed that expression was localized to alveolar type II cells in addition to airway epithelial cells, thus accurately reflecting the site of surfactant protein-C expression. Scgb3a2-transgenic mice showed normal lung development and histology, and no overt gross phenotypes. However, when subjected to a bleomycin-induced pulmonary fibrosis model, they initially exhibited exacerbated fibrosis at 3 weeks post-bleomycin administration that was more rapidly resolved by 6 weeks as compared with wild-type mice, as determined by lung histology, Masson Trichrome staining and hydroxyproline content, inflammatory cell numbers, expression of collagen genes, and proinflammatory cytokine levels. The decrease of fibrosis coincided with the increased expression of SCGB3A2 in Scgb3a2-transgenic lungs. Conclusions These results demonstrate that SCGB3A2 is an anti-fibrotic agent, and suggest a possible therapeutic use of recombinant SCGB3A2 in the treatment of pulmonary fibrosis. Electronic supplementary material The online version of this article (doi:10.1186/s12890-015-0065-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Cai
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA. .,Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Mitsuhiro Yoneda
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Takeshi Tomita
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA. .,Department of Pharmacology, Tokyo Women's Medical University, Tokyo, 162-8666, Japan.
| | - Reiko Kurotani
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA. .,Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, 992-8510, Japan.
| | - Minoru Okamoto
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA. .,Department of Veterinary Immunopathology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, 069-8501, Japan.
| | - Taketomo Kido
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA. .,Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan.
| | - Hiroyuki Abe
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, 992-8510, Japan.
| | - Wayne Mitzner
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Arjun Guha
- Department of Medicine, Pulmonary Center, Boston University School of Medicine, Boston, MA, 02118, USA.
| | - Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
37
|
Yamada T, Chen F, Sakamoto J, Nakajima D, Ohsumi A, Bando T, Date H. Impact of the cardiac arrest mode on cardiac death donor lungs. J Surg Res 2015; 195:596-603. [DOI: 10.1016/j.jss.2015.02.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/26/2015] [Accepted: 02/13/2015] [Indexed: 10/24/2022]
|
38
|
Cheresh P, Morales-Nebreda L, Kim SJ, Yeldandi A, Williams DB, Cheng Y, Mutlu GM, Budinger GRS, Ridge K, Schumacker PT, Bohr VA, Kamp DW. Asbestos-induced pulmonary fibrosis is augmented in 8-oxoguanine DNA glycosylase knockout mice. Am J Respir Cell Mol Biol 2015; 52:25-36. [PMID: 24918270 DOI: 10.1165/rcmb.2014-0038oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Asbestos causes asbestosis and malignancies by mechanisms that are not fully established. Alveolar epithelial cell (AEC) injury and repair are crucial determinants of the fibrogenic potential of noxious agents such as asbestos. We previously showed that mitochondrial reactive oxygen species mediate asbestos-induced AEC intrinsic apoptosis and that mitochondrial human 8-oxoguanine-DNA glycosylase 1 (OGG1), a DNA repair enzyme, prevents oxidant-induced AEC apoptosis. We reasoned that OGG1 deficiency augments asbestos-induced pulmonary fibrosis. Compared with intratracheal instillation of PBS (50 μl) or titanium dioxide (100 μg/50 μl), crocidolite or Libby amphibole asbestos (100 μg/50 μl) each augmented pulmonary fibrosis in wild-type C57BL/6J (WT) mice after 3 weeks as assessed by histology, fibrosis score, lung collagen via Sircol, and type 1 collagen expression; these effects persisted at 2 months. Compared with WT mice, Ogg1 homozygous knockout (Ogg1(-/-)) mice exhibit increased pulmonary fibrosis after crocidolite exposure and apoptosis in cells at the bronchoalveolar duct junctions as assessed via cleaved caspase-3 immunostaining. AEC involvement was verified by colocalization studies using surfactant protein C. Asbestos increased endoplasmic reticulum stress in the lungs of WT and Ogg1(-/-) mice. Compared with WT, alveolar type 2 cells isolated from Ogg1(-/-) mice have increased mtDNA damage, reduced mitochondrial aconitase expression, and increased P53 and cleaved caspase-9 expression, and these changes were enhanced 3 weeks after crocidolite exposure. These findings suggest an important role for AEC mtDNA integrity maintained by OGG1 in the pathogenesis of pulmonary fibrosis that may represent a novel therapeutic target.
Collapse
Affiliation(s)
- Paul Cheresh
- 1 Department of Medicine, Division of Pulmonary and Critical Care Medicine, Jesse Brown VA Medical Center, Chicago, Illinois
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Li F, He J, Wei J, Cho WC, Liu X. Diversity of epithelial stem cell types in adult lung. Stem Cells Int 2015; 2015:728307. [PMID: 25810726 PMCID: PMC4354973 DOI: 10.1155/2015/728307] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 02/13/2015] [Accepted: 02/13/2015] [Indexed: 01/10/2023] Open
Abstract
Lung is a complex organ lined with epithelial cells. In order to maintain its homeostasis and normal functions following injuries caused by varied extraneous and intraneous insults, such as inhaled environmental pollutants and overwhelming inflammatory responses, the respiratory epithelium normally undergoes regenerations by the proliferation and differentiation of region-specific epithelial stem/progenitor cells that resided in distinct niches along the airway tree. The importance of local epithelial stem cell niches in the specification of lung stem/progenitor cells has been recently identified. Studies using cell differentiating and lineage tracing assays, in vitro and/or ex vivo models, and genetically engineered mice have suggested that these local epithelial stem/progenitor cells within spatially distinct regions along the pulmonary tree contribute to the injury repair of epithelium adjacent to their respective niches. This paper reviews recent findings in the identification and isolation of region-specific epithelial stem/progenitor cells and local niches along the airway tree and the potential link of epithelial stem cells for the development of lung cancer.
Collapse
Affiliation(s)
- Feng Li
- Center of Medical Laboratory of the General Hospital, Ningxia Medical University, Yinchuan 750004, China
| | - Jinxi He
- Department of Thoracic Surgery of the General Hospital, Ningxia Medical University, Yinchuan 750004, China
| | - Jun Wei
- Center of Medical Laboratory of the General Hospital, Ningxia Medical University, Yinchuan 750004, China
- Human Stem Cell Institute of the General Hospital, Ningxia Medical University, Yinchuan 750004, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Xiaoming Liu
- Center of Medical Laboratory of the General Hospital, Ningxia Medical University, Yinchuan 750004, China
- Human Stem Cell Institute of the General Hospital, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of the Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
40
|
Yin L, Zheng D, Limmon GV, Leung NH, Xu S, Rajapakse JC, Yu H, Chow VT, Chen J. Aging exacerbates damage and delays repair of alveolar epithelia following influenza viral pneumonia. Respir Res 2014; 15:116. [PMID: 25265939 PMCID: PMC4189598 DOI: 10.1186/s12931-014-0116-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/15/2014] [Indexed: 11/15/2022] Open
Abstract
Background Influenza virus infection causes significantly higher levels of morbidity and mortality in the elderly. Studies have shown that impaired immunity in the elderly contributes to the increased susceptibility to influenza virus infection, however, how aging affects the lung tissue damage and repair has not been completely elucidated. Methods Aged (16–18 months old) and young (2–3 months old) mice were infected with influenza virus intratracheally. Body weight and mortality were monitored. Different days after infection, lung sections were stained to estimate the overall lung tissue damage and for club cells, pro-SPC+ bronchiolar epithelial cells, alveolar type I and II cells to quantify their frequencies using automated image analysis algorithms. Results Following influenza infection, aged mice lose more weight and die from otherwise sub-lethal influenza infection in young mice. Although there is no difference in damage and regeneration of club cells between the young and the aged mice, damage to alveolar type I and II cells (AT1s and AT2s) is exacerbated, and regeneration of AT2s and their precursors (pro-SPC-positive bronchiolar epithelial cells) is significantly delayed in the aged mice. We further show that oseltamivir treatment reduces virus load and lung damage, and promotes pulmonary recovery from infection in the aged mice. Conclusions These findings show that aging increases susceptibility of the distal lung epithelium to influenza infection and delays the emergence of pro-SPC positive progenitor cells during the repair process. Our findings also shed light on possible approaches to enhance the clinical management of severe influenza pneumonia in the elderly. Electronic supplementary material The online version of this article (doi:10.1186/s12931-014-0116-z) contains supplementary material, which is available to authorized users.
Collapse
|
41
|
Dietert K, Mundhenk L, Erickson NA, Reppe K, Hocke AC, Kummer W, Witzenrath M, Gruber AD. Murine CLCA5 is uniquely expressed in distinct niches of airway epithelial cells. Histochem Cell Biol 2014; 143:277-87. [PMID: 25212661 PMCID: PMC4317516 DOI: 10.1007/s00418-014-1279-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2014] [Indexed: 11/30/2022]
Abstract
The murine mCLCA5 protein is a member of the chloride channel regulators, calcium-activated (CLCA) family and is suspected to play a role in airway mucus cell differentiation. Although mCLCA5 mRNA was previously found in total lung extracts, the expressing cells and functions in the naive murine respiratory tract are unknown. Therefore, mCLCA5 protein expression was identified by immunohistochemistry and confocal laser scanning microscopy using entire lung sections of naive mice. Moreover, we determined mRNA levels of functionally related genes (mClca3, mClca5, Muc5ac and Muc5b) and quantified mCLCA5-, mCLCA3- and CC10-positive cells and periodic acid-Schiff-positive mucus cells in naive, PBS-treated or Staphylococcus aureus-infected mice. We also investigated mCLCA5 protein expression in Streptococcus pneumoniae and influenza virus lung infection models. Finally, we determined species-specific differences in the expression patterns of the murine mCLCA5 and its human and porcine orthologs, hCLCA2 and pCLCA2. The mCLCA5 protein is uniquely expressed in highly select bronchial epithelial cells and submucosal glands in naive mice, consistent with anatomical locations of progenitor cell niches. Under conditions of challenge (PBS, S. aureus, S. pneumoniae, influenza virus), mRNA and protein expression strongly declined with protein recovery only in models retaining intact epithelial cells. In contrast to mice, human and porcine bronchial epithelial cells do not express their respective mCLCA5 orthologs and submucosal glands had fewer expressing cells, indicative of fundamental differences in mice versus humans and pigs.
Collapse
Affiliation(s)
- Kristina Dietert
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Kapere Ochieng J, Schilders K, Kool H, Buscop-van Kempen M, Boerema-De Munck A, Grosveld F, Wijnen R, Tibboel D, Rottier RJ. Differentiated type II pneumocytes can be reprogrammed by ectopic Sox2 expression. PLoS One 2014; 9:e107248. [PMID: 25210856 PMCID: PMC4161395 DOI: 10.1371/journal.pone.0107248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 08/12/2014] [Indexed: 12/24/2022] Open
Abstract
The adult lung contains several distinct stem cells, although their properties and full potential are still being sorted out. We previously showed that ectopic Sox2 expression in the developing lung manipulated the fate of differentiating cells. Here, we addressed the question whether fully differentiated cells could be redirected towards another cell type. Therefore, we used transgenic mice to express an inducible Sox2 construct in type II pneumocytes, which are situated in the distal, respiratory areas of the lung. Within three days after the induction of the transgene, the type II cells start to proliferate and form clusters of cuboidal cells. Prolonged Sox2 expression resulted in the reversal of the type II cell towards a more embryonic, precursor-like cell, being positive for the stem cell markers Sca1 and Ssea1. Moreover, the cells started to co-express Spc and Cc10, characteristics of bronchioalveolar stem cells. We demonstrated that Sox2 directly regulates the expression of Sca1. Subsequently, these cells expressed Trp63, a marker for basal cells of the trachea. So, we show that the expression of one transcription factor in fully differentiated, distal lung cells changes their fate towards proximal cells through intermediate cell types. This may have implications for regenerative medicine, and repair of diseased and damaged lungs.
Collapse
Affiliation(s)
- Joshua Kapere Ochieng
- Department of Pediatric Surgery of the Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Kim Schilders
- Department of Pediatric Surgery of the Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Heleen Kool
- Department of Pediatric Surgery of the Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Marjon Buscop-van Kempen
- Department of Pediatric Surgery of the Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Anne Boerema-De Munck
- Department of Pediatric Surgery of the Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Frank Grosveld
- Department of Cell Biology of the Erasmus MC, Rotterdam, the Netherlands
| | - Rene Wijnen
- Department of Pediatric Surgery of the Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery of the Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Robbert J. Rottier
- Department of Pediatric Surgery of the Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
- Department of Cell Biology of the Erasmus MC, Rotterdam, the Netherlands
- * E-mail:
| |
Collapse
|
43
|
Xu X, Dai H, Wang C. Epithelium-dependent profibrotic milieu in the pathogenesis of idiopathic pulmonary fibrosis: current status and future directions. CLINICAL RESPIRATORY JOURNAL 2014; 10:133-41. [PMID: 25047066 DOI: 10.1111/crj.12190] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/24/2014] [Accepted: 07/20/2014] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIM Idiopathic pulmonary fibrosis (IPF) is characterized by hyperplasia of type II alveolar epithelial cells, aggregation of activated (myo)fibroblasts and excessive deposition of extracellular matrix, which will ultimately lead to lung architecture destruction with no proven effective therapies. Despite a significant increase in our understanding on the etiology and pathogenesis of IPF, the real triggers that initiate epithelial cell injury and promote fibrosis evolution are still elusive. We wanted to discuss the evolution of hypothesis on IPF pathogenesis and to suggest some new directions which need to be further elucidated. METHODS We have done a literature search in PubMed database by using the term 'idiopathic pulmonary fibrosis' AND (pathogenesis OR inflammation OR wound healing OR apoptosis OR extracellular matrix OR animal model). RESULTS Inflammatory hypothesis had been the dominant idea for several decades which suggests that chronic inflammation drives the onset and advance of the fibrotic process. However, it is seriously challenged nowadays because lung tissues from IPF patients exhibit little inflammatory lesions. Also, anti-inflammation therapy failed to exert a beneficial effect to IPF patients. Furthermore, experimental lung fibrosis can be realized independent of inflammation. Today, modern paradigm suggests that IPF is mainly driven by the profibtic milieu formed by epithelial injury/ disability and dysregulated epithelial mesenchymal interaction. CONCLUSIONS Epithelium-dependent profibrotic milieu formation and mesenchymal activation is the current view on the pathogenesis of IPF. New evidence from more analogous animal models may emerge and shift our thinking to a new and more faithful concept in the future.
Collapse
Affiliation(s)
- Xuefeng Xu
- National Clinical Research Centre for Respiratory Medicine, Beijing Hospital, Beijing, China
| | - Huaping Dai
- Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, China
| | - Chen Wang
- National Clinical Research Centre for Respiratory Medicine, Beijing Hospital, Beijing, China.,Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
44
|
Abstract
Lung cancer is the biggest cancer killer in the UK and despite recent therapeutic advances there is a desperate need for new therapies to improve outcomes from this devastating disease. Through defining the spatial location of the airway epithelial stem or progenitor cell populations and their mechanisms of maintenance and repair of the epithelium it is becoming clear that these populations are situated at areas corresponding to those involved in lung cancer initiation. We explore the evidence for stem cells being the cancer initiator cell and for a 'lung cancer stem cell' within tumours that may be the cause of resistance to current therapies.
Collapse
Affiliation(s)
- L Succony
- From the Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, Rayne Building, University College London, 5 University Street, London WC1E 6JF, UK
| | - S M Janes
- From the Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, Rayne Building, University College London, 5 University Street, London WC1E 6JF, UK
| |
Collapse
|
45
|
Carrier interactions with the biological barriers of the lung: advanced in vitro models and challenges for pulmonary drug delivery. Adv Drug Deliv Rev 2014; 75:129-40. [PMID: 24880145 DOI: 10.1016/j.addr.2014.05.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/15/2014] [Accepted: 05/23/2014] [Indexed: 11/22/2022]
Abstract
In recent years significant progress has been made to improve particle deposition in the lung. However, the development of strategies to overcome the air-blood lung barrier is still needed. The combination of complex in vitro models and sophisticated particulate carriers is promising as a strategy by which that goal could be achieved. In this review we discuss currently available in vitro lung models, including some recent tissue-engineering approaches, as well as the challenges associated to implement such complex in vitro systems. Furthermore, we discuss available carrier technologies, often based on nanotechnology, to target specific regions of the lungs and to overcome the respective biological barriers, ideally resulting in safe and effective delivery to the desired pulmonary destination.
Collapse
|
46
|
Chiappara G, Gjomarkaj M, Sciarrino S, Vitulo P, Pipitone L, Pace E. Altered expression of p21, activated caspase-3, and PCNA in bronchiolar epithelium of smokers with and without chronic obstructive pulmonary disease. Exp Lung Res 2014; 40:343-53. [DOI: 10.3109/01902148.2014.928836] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
47
|
Micro-RNAs in regenerating lungs: an integrative systems biology analysis of murine influenza pneumonia. BMC Genomics 2014; 15:587. [PMID: 25015185 PMCID: PMC4108790 DOI: 10.1186/1471-2164-15-587] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 06/27/2014] [Indexed: 12/20/2022] Open
Abstract
Background Tissue regeneration in the lungs is gaining increasing interest as a potential influenza management strategy. In this study, we explored the role of microRNAs, short non-coding RNAs involved in post-transcriptional regulation, during pulmonary regeneration after influenza infection. Results We profiled miRNA and mRNA expression levels following lung injury and tissue regeneration using a murine influenza pneumonia model. BALB/c mice were infected with a sub-lethal dose of influenza A/PR/8(H1N1) virus, and their lungs were harvested at 7 and 15 days post-infection to evaluate the expression of ~300 miRNAs along with ~36,000 genes using microarrays. A global network was constructed between differentially expressed miRNAs and their potential target genes with particular focus on the pulmonary repair and regeneration processes to elucidate the regulatory role of miRNAs in the lung repair pathways. The miRNA arrays revealed a global down-regulation of miRNAs. TargetScan analyses also revealed specific miRNAs highly involved in targeting relevant gene functions in repair such as miR-290 and miR-505 at 7 dpi; and let-7, miR-21 and miR-30 at 15 dpi. Conclusion The significantly differentially regulated miRNAs are implicated in the activation or suppression of cellular proliferation and stem cell maintenance, which are required during the repair of the damaged lungs. These findings provide opportunities in the development of novel repair strategies in influenza-induced pulmonary injury. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-587) contains supplementary material, which is available to authorized users.
Collapse
|
48
|
Zheng D, Yin L, Chen J. Evidence for Scgb1a1(+) cells in the generation of p63(+) cells in the damaged lung parenchyma. Am J Respir Cell Mol Biol 2014; 50:595-604. [PMID: 24134540 DOI: 10.1165/rcmb.2013-0327oc] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Transformation-related protein 63-expressing (p63(+)) basal cells are confined to the trachea in the mouse lung. However, after influenza virus infection or bleomycin treatment, patches of p63(+) cells were observed in the damaged lung parenchyma. To address whether the newly induced p63(+) cells are derived from the p63(+) basal cells, we performed lineage tracing. In a keratin 5 promoter-driven CreER system, although preexisting p63(+) basal cells were labeled by enhanced green fluorescent protein (EGFP) after tamoxifen treatment, none or only a small fraction (∼ 15%) of the p63(+) patches was labeled by EGFP after bleomycin treatment or influenza virus infection, respectively. In contrast, > 60% of p63(+) patches contained EGFP(+) cells in Scgb1a1-CreER transgenic system where club cells are labeled. Many p63(+) cells were found in bronchiole-like lumen structures with columnar cells at the lumen side. The columnar cells were positive for club cell marker Cyp2f2 and could be traced to the newly induced p63(+) cells. These results suggest that most of the newly induced p63(+) cells in the damaged parenchyma are likely derived from club cells rather than from p63(+) basal cells and that newly induced p63(+) cells may be involved in the regeneration of bronchioles.
Collapse
Affiliation(s)
- Dahai Zheng
- 1 Interdisciplinary Research Group in Infectious Diseases, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, Singapore; and
| | | | | |
Collapse
|
49
|
Barkauskas CE, Noble PW. Cellular mechanisms of tissue fibrosis. 7. New insights into the cellular mechanisms of pulmonary fibrosis. Am J Physiol Cell Physiol 2014; 306:C987-96. [PMID: 24740535 DOI: 10.1152/ajpcell.00321.2013] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by severe and progressive scar formation in the gas-exchange regions of the lung. Despite years of research, therapeutic treatments remain elusive and there is a pressing need for deeper mechanistic insights into the pathogenesis of the disease. In this article, we review our current knowledge of the triggers and/or perpetuators of pulmonary fibrosis with special emphasis on the alveolar epithelium and the underlying mesenchyme. In doing so, we raise a number of questions highlighting critical voids and limitations in our current understanding and study of this disease.
Collapse
Affiliation(s)
- Christina E Barkauskas
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University, Durham, North Carolina; and
| | - Paul W Noble
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
50
|
Thane K, Ingenito EP, Hoffman AM. Lung regeneration and translational implications of the postpneumonectomy model. Transl Res 2014; 163:363-76. [PMID: 24316173 DOI: 10.1016/j.trsl.2013.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/30/2013] [Accepted: 11/18/2013] [Indexed: 10/26/2022]
Abstract
Lung regeneration research is yielding data with increasing translational value. The classical models of lung development, postnatal alveolarization, and postpneumonectomy alveolarization have contributed to a broader understanding of the cellular participants including stem-progenitor cells, cell-cell signaling pathways, and the roles of mechanical deformation and other physiologic factors that have the potential to be modulated in human and animal patients. Although recent information is available describing the lineage fate of lung fibroblasts, genetic fate mapping, and clonal studies are lacking in the study of lung regeneration and deserve further examination. In addition to increasing knowledge concerning classical alveolarization (postnatal, postpneumonectomy), there is increasing evidence for remodeling of the adult lung after partial pneumonectomy. Though limited in scope, compelling data have emerged describing restoration of lung tissue mass in the adult human and in large animal models. The basis for this long-term adaptation to pneumonectomy is poorly understood, but investigations into mechanisms of lung regeneration in older animals that have lost their capacity for rapid re-alveolarization are warranted, as there would be great translational value in modulating these mechanisms. In addition, quantitative morphometric analysis has progressed in conjunction with developments in advanced imaging, which allow for longitudinal and nonterminal evaluation of pulmonary regenerative responses in animals and humans. This review focuses on the cellular and molecular events that have been observed in animals and humans after pneumonectomy because this model is closest to classical regeneration in other mammalian systems and has revealed several new fronts of translational research that deserve consideration.
Collapse
Affiliation(s)
- Kristen Thane
- Department of Clinical Sciences, Regenerative Medicine Laboratory, Tufts University Cummings School of Veterinary Medicine, North Grafton, Mass
| | - Edward P Ingenito
- Division of Pulmonary, Critical Care, and Sleep Medicine, Brigham and Women's Hospital, Boston, Mass
| | - Andrew M Hoffman
- Department of Clinical Sciences, Regenerative Medicine Laboratory, Tufts University Cummings School of Veterinary Medicine, North Grafton, Mass.
| |
Collapse
|