1
|
Cho W, Oh H, Choi SW, Abd El-Aty AM, Yeşilyurt F, Jeong JH, Jung TW. Musclin Mitigates the Attachment of HUVECs to THP-1 Monocytes in Hyperlipidemic Conditions through PPARα/HO-1-Mediated Attenuation of Inflammation. Inflammation 2024; 47:1-12. [PMID: 37737929 DOI: 10.1007/s10753-023-01904-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Musclin, a myokine, undergoes modulation during exercise and has demonstrated anti-inflammatory effects in cardiomyocytes and glomeruli. However, its role in atherosclerotic responses remains unclear. This study aimed to explore the impact of musclin on inflammatory responses and the interaction between endothelial cells and monocytes under hyperlipidemic conditions. The attachment levels of THP-1 monocytes on cultured HUVECs were examined. Inflammation and the expression of cell adhesion molecules were also evaluated. To explore the molecular mechanisms of musclin, PPARα or heme oxygenase 1 (HO-1) siRNA transfection was performed in HUVECs. The results revealed that treatment with recombinant musclin effectively suppressed the attachment of palmitate-induced HUVECs to THP-1 cells and reduced the expression of cell adhesion proteins (ICAM-1, VCAM-1, and E-selectin) in HUVECs. Furthermore, musclin treatment ameliorated the expression of inflammation markers (phosphorylated NFκB and IκB) in both HUVECs and THP-1 monocytes, as well as the release of TNFα and MCP-1 from HUVECs and THP-1 monocytes. Notably, musclin treatment augmented the expression levels of PPARα and HO-1. However, when PPARα or HO-1 siRNA was employed, the beneficial effects of musclin on inflammation, cell attachment, and adhesion molecule expression were abolished. These findings indicate that musclin exerts anti-inflammatory effects via the PPARα/HO-1 pathway, thereby mitigating the interaction between endothelial cells and monocytes. This study provides evidence supporting the important role of musclin in ameliorating obesity-related arteriosclerosis and highlights its potential as a therapeutic agent for treating arteriosclerosis.
Collapse
Affiliation(s)
- Wonjun Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, 221, Heuksuk-dong, Dongjak-gu, Seoul, 156-756, Republic of Korea
| | - Heeseung Oh
- Department of Pharmacology, College of Medicine, Chung-Ang University, 221, Heuksuk-dong, Dongjak-gu, Seoul, 156-756, Republic of Korea
| | - Sung Woo Choi
- Department of Pharmacology, College of Medicine, Chung-Ang University, 221, Heuksuk-dong, Dongjak-gu, Seoul, 156-756, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, 25240, Turkey
| | - Fatma Yeşilyurt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, 25240, Turkey
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, 221, Heuksuk-dong, Dongjak-gu, Seoul, 156-756, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, 221, Heuksuk-dong, Dongjak-gu, Seoul, 156-756, Republic of Korea.
| |
Collapse
|
2
|
He J, Wang B, Chen M, Song L, Li H. Machine learning-based metabolism-related genes signature, single-cell RNA sequencing, and experimental validation in hypersensitivity pneumonitis. Medicine (Baltimore) 2023; 102:e34940. [PMID: 37800807 PMCID: PMC10553120 DOI: 10.1097/md.0000000000034940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/04/2023] [Indexed: 10/07/2023] Open
Abstract
Metabolism is involved in the pathogenesis of hypersensitivity pneumonitis. To identify diagnostic feature biomarkers based on metabolism-related genes (MRGs) and determine the correlation between MRGs and M2 macrophages in patients with hypersensitivity pneumonitis (HP). We retrieved the gene expression matrix from the Gene Expression Omnibus database. The differentially expressed MRGs (DE-MRGs) between healthy control (HC) and patients with HP were identified using the "DESeq2" R package. The "clusterProfiler" R package was used to perform "Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses" on DE-MRGs. We used machine learning algorithms for screening diagnostic feature biomarkers for HP. The "receiver operating characteristic curve" was used to evaluate diagnostic feature biomarkers' discriminating ability. Next, we used the "Cell-type Identification by Estimating Relative Subsets of RNA Transcripts" algorithm to determine the infiltration status of 22 types of immune cells in the HC and HP groups. Single-cell sequencing and qRT-PCR were used to validate the diagnostic feature biomarkers. Furthermore, the status of macrophage polarization in the peripheral blood of patients with HP was determined using flow cytometry. Finally, the correlation between the proportion of M2 macrophages in peripheral blood and the diagnostic biomarker expression profile in HP patients was determined using Spearman analysis. We identified a total of 311 DE-MRGs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that DE-MRGs were primarily enriched in processes like steroid hormone biosynthesis, drug metabolism, retinol metabolism, etc. Finally, we identified NPR3, GPX3, and SULF1 as diagnostic feature biomarkers for HP using machine learning algorithms. The bioinformatic results were validated using the experimental results. The CIERSORT algorithm and flow cytometry showed a significant difference in the proportion of M2 macrophages in the HC and HP groups. The expression of SULF1 was positively correlated with the proportion of M2-type macrophages. In addition, a positive correlation was observed between SULF1 expression and M2 macrophage proportion. Finally, we identified NPR3, GPX3, and SULF1 as diagnostic feature biomarkers for HP. Further, a correlation between SULF1 and M2 macrophages was observed, providing a novel perspective for treating patients with HP and future studies.
Collapse
Affiliation(s)
- Jie He
- Clinical Medical College of Chengdu Medical College, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Key Laboratory of Geriatric Respiratory Diseases of Sichuan Higher Education Institutes, Chengdu, China
| | - Bo Wang
- Clinical Medical College of Chengdu Medical College, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Key Laboratory of Geriatric Respiratory Diseases of Sichuan Higher Education Institutes, Chengdu, China
| | - Meifeng Chen
- Clinical Medical College of Chengdu Medical College, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Key Laboratory of Geriatric Respiratory Diseases of Sichuan Higher Education Institutes, Chengdu, China
| | - Lingmeng Song
- Clinical Medical College of Chengdu Medical College, Chengdu, China
- Medical Department, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Hezhi Li
- Clinical Medical College of Chengdu Medical College, Chengdu, China
- Department of Anesthesiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
3
|
Jin L, Han S, Lv X, Li X, Zhang Z, Kuang H, Chen Z, Lv CA, Peng W, Yang Z, Yang M, Mi L, Liu T, Ma S, Qiu X, Wang Q, Pan X, Shan P, Feng Y, Li J, Wang F, Xie L, Zhao X, Fu JF, Lin JD, Meng ZX. The muscle-enriched myokine Musclin impairs beige fat thermogenesis and systemic energy homeostasis via Tfr1/PKA signaling in male mice. Nat Commun 2023; 14:4257. [PMID: 37468484 PMCID: PMC10356794 DOI: 10.1038/s41467-023-39710-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/27/2023] [Indexed: 07/21/2023] Open
Abstract
Skeletal muscle and thermogenic adipose tissue are both critical for the maintenance of body temperature in mammals. However, whether these two tissues are interconnected to modulate thermogenesis and metabolic homeostasis in response to thermal stress remains inconclusive. Here, we report that human and mouse obesity is associated with elevated Musclin levels in both muscle and circulation. Intriguingly, muscle expression of Musclin is markedly increased or decreased when the male mice are housed in thermoneutral or chronic cool conditions, respectively. Beige fat is then identified as the primary site of Musclin action. Muscle-transgenic or AAV-mediated overexpression of Musclin attenuates beige fat thermogenesis, thereby exacerbating diet-induced obesity and metabolic disorders in male mice. Conversely, Musclin inactivation by muscle-specific ablation or neutralizing antibody treatment promotes beige fat thermogenesis and improves metabolic homeostasis in male mice. Mechanistically, Musclin binds to transferrin receptor 1 (Tfr1) and antagonizes Tfr1-mediated cAMP/PKA-dependent thermogenic induction in beige adipocytes. This work defines the temperature-sensitive myokine Musclin as a negative regulator of adipose thermogenesis that exacerbates the deterioration of metabolic health in obese male mice and thus provides a framework for the therapeutic targeting of this endocrine pathway.
Collapse
Affiliation(s)
- Lu Jin
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuang Han
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Department of Geriatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Chronic Disease Research Institute, Zhejiang University School of Public Health, Hangzhou, China
| | - Xue Lv
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Chronic Disease Research Institute, Zhejiang University School of Public Health, Hangzhou, China
| | - Xiaofei Li
- Department of Sport Medicine, The Lianyungang First People's Hospital, Affiliated Hospital of Xuzhou Medical University, Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Ziyin Zhang
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Chronic Disease Research Institute, Zhejiang University School of Public Health, Hangzhou, China
| | - Henry Kuang
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, USA
| | - Zhimin Chen
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, USA
| | - Cheng-An Lv
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Peng
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhuoying Yang
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Chronic Disease Research Institute, Zhejiang University School of Public Health, Hangzhou, China
| | - Miqi Yang
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Chronic Disease Research Institute, Zhejiang University School of Public Health, Hangzhou, China
| | - Lin Mi
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, USA
| | - Tongyu Liu
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, USA
| | - Shengshan Ma
- Department of Sport Medicine, The Lianyungang First People's Hospital, Affiliated Hospital of Xuzhou Medical University, Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Xinyuan Qiu
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, China
| | - Qintao Wang
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Chronic Disease Research Institute, Zhejiang University School of Public Health, Hangzhou, China
| | - Xiaowen Pan
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengfei Shan
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Feng
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin Li
- The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Liwei Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xuyun Zhao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Fen Fu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, USA
| | - Zhuo-Xian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Geriatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Chronic Disease Research Institute, Zhejiang University School of Public Health, Hangzhou, China.
| |
Collapse
|
4
|
Sarzani R, Allevi M, Di Pentima C, Schiavi P, Spannella F, Giulietti F. Role of Cardiac Natriuretic Peptides in Heart Structure and Function. Int J Mol Sci 2022; 23:ijms232214415. [PMID: 36430893 PMCID: PMC9697447 DOI: 10.3390/ijms232214415] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Cardiac natriuretic peptides (NPs), atrial NP (ANP) and B-type NP (BNP) are true hormones produced and released by cardiomyocytes, exerting several systemic effects. Together with C-type NP (CNP), mainly expressed by endothelial cells, they also exert several paracrine and autocrine activities on the heart itself, contributing to cardiovascular (CV) health. In addition to their natriuretic, vasorelaxant, metabolic and antiproliferative systemic properties, NPs prevent cardiac hypertrophy, fibrosis, arrhythmias and cardiomyopathies, counteracting the development and progression of heart failure (HF). Moreover, recent studies revealed that a protein structurally similar to NPs mainly produced by skeletal muscles and osteoblasts called musclin/osteocrin is able to interact with the NPs clearance receptor, attenuating cardiac dysfunction and myocardial fibrosis and promoting heart protection during pathological overload. This narrative review is focused on the direct activities of this molecule family on the heart, reporting both experimental and human studies that are clinically relevant for physicians.
Collapse
Affiliation(s)
- Riccardo Sarzani
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
- Correspondence: (R.S.); Tel.: +39-071-5964696
| | - Massimiliano Allevi
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Chiara Di Pentima
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
| | - Paola Schiavi
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Francesco Spannella
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Federico Giulietti
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
| |
Collapse
|
5
|
Li YX, Cheng KC, Liu IM, Niu HS. Myricetin Increases Circulating Adropin Level after Activation of Glucagon-like Peptide 1 (GLP-1) Receptor in Type-1 Diabetic Rats. Pharmaceuticals (Basel) 2022; 15:ph15020173. [PMID: 35215286 PMCID: PMC8877079 DOI: 10.3390/ph15020173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/16/2022] [Accepted: 01/22/2022] [Indexed: 02/05/2023] Open
Abstract
Myricetin is a common plant-derived flavonoid, considered an agonist of glucagon-like peptide 1 (GLP-1) receptor. It improves glycemic control and helps reduce body weight in diabetic subjects. The potential mechanisms of action of myricetin in this context might be enhancing the secretion of β-endorphin (BER) to activate peripheral μ-opioid receptors. Moreover, adropin is a nutritionally regulated peptide hormone, which regulates energy metabolism, and plays a role in ameliorating diabetes. Because their mechanisms of insulin sensitivity are closely related, we hypothesized that myricetin may interact with adropin and plasma BER. The present study investigated the glucose-lowering effect of acute and chronic treatments of myricetin in type-1 diabetic rats. Plasma BER and adropin levels were determined by enzyme-linked immunosorbent assay (ELISA). The secretion of BER was measured in rats who received adrenalectomy. The changes in adropin gene (Enho) or mRNA level of GLP-1 receptor were measured using qPCR analysis. The results showed that myricetin dose-dependently increased plasma BER and adropin levels like the reduction of hyperglycemia after bolus injection as acute treatment. In addition, these effects of myricetin were inhibited by the antagonist of GLP-1 receptor. Moreover, in HepG2 cell line, myricetin induced GLP-1 receptor activation, which modulated the expression of adropin. In diabetic rats, the plasma adropin increased by myricetin is mainly through endogenous β-endorphin after activation of GLP-1 receptor via bolus injection as acute treatment. Additionally, chronic treatment with myricetin increased adropin secretion in diabetic rats. In conclusion, our results provide a new finding that activation of opioid μ-receptor in the liver may enhance circulating adropin in animals.
Collapse
Affiliation(s)
- Ying-Xiao Li
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien 970302, Taiwan;
| | - Kai-Chun Cheng
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung County 90741, Taiwan; (K.-C.C.); (I.-M.L.)
| | - I-Min Liu
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung County 90741, Taiwan; (K.-C.C.); (I.-M.L.)
| | - Ho-Shan Niu
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien 970302, Taiwan;
- Correspondence:
| |
Collapse
|
6
|
Xiao P, Cheng H, Yan Y, Liu J, Zhao X, Li H, Mi J. High BMI with Adequate Lean Mass Is Not Associated with Cardiometabolic Risk Factors in Children and Adolescents. J Nutr 2021; 151:1213-1221. [PMID: 33245131 DOI: 10.1093/jn/nxaa328] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/30/2020] [Accepted: 10/04/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Despite an increasing number of studies investigating the links between increased BMI and a better prognosis of cardiovascular disease, which has been termed the "obesity paradox," few of them take the lean mass into consideration. OBJECTIVES This study aimed to explore the associations of body composition compartments, especially the lean mass, with cardiometabolic abnormalities in children and adolescents. METHODS In a nationwide cross-sectional study of 6- to 18-y-old children (n = 8967, 50.1% boys), we measured body composition using DXA scan, and calculated BMI, fat mass index (FMI), and lean mass index (LMI). The exploratory outcomes were cardiometabolic abnormalities, including hypertension, dyslipidemia, hyperglycemia, and insulin resistance. Adjusted linear regression coefficients and ORs were calculated to assess the associations between body composition indicators and cardiometabolic abnormalities. RESULTS Unlike BMI and FMI, LMI was inversely associated with homeostasis model assessment of insulin resistance (β: -0.06; 95% CI: -0.09, -0.03; P < 0.001), fasting plasma glucose (β: -0.08; 95% CI: -0.11, -0.05; P < 0.001), non-HDL cholesterol (β: -0.10; 95% CI: -0.13, -0.08; P < 0.001), LDL cholesterol (β: -0.12; 95% CI: -0.14, -0.09; P < 0.001), and total cholesterol (TC) (β: -0.16; 95% CI: -0.19, -0.14; P < 0.001). After multivariable adjustment, all the odds of cardiometabolic abnormalities were increased from the lowest quartile to the highest quartile of BMI and FMI (P-trend < 0.05); however, the odds of high TC, high LDL cholesterol, hyperglycemia, and insulin resistance were decreased with LMI (P-trend < 0.05). Obese children with high LMI did not have significantly increased odds of high TC, high LDL cholesterol, and high non-HDL cholesterol compared with normal-weight children without high LMI. CONCLUSIONS Greater lean mass may have a protective impact on high TC, high LDL cholesterol, hyperglycemia, and insulin resistance in children and adolescents. This finding suggests that the "obesity paradox" may be partly explained by high lean mass.
Collapse
Affiliation(s)
- Pei Xiao
- Department of Non-Communicable Disease Management, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Hong Cheng
- Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
| | - Yinkun Yan
- Department of Non-Communicable Disease Management, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Junting Liu
- Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
| | - Xiaoyuan Zhao
- Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
| | - Haibo Li
- Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
| | - Jie Mi
- Department of Non-Communicable Disease Management, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
7
|
Zhong Y, Zhang J, Tang K, Kou W, Xu S, Yang H, Liu L, Luan P, Mohammed AQ, Abdu FA, Zhao D, Li H, Peng W, Xu Y. Decreased plasma musclin levels are associated with potential atrial fibrillation in non-diabetic patients. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:203. [PMID: 33708830 PMCID: PMC7940914 DOI: 10.21037/atm-20-3259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Musclin is involved in the regulation of natriuretic peptide (NP) clearance and may affect the concentration of atrial natriuretic peptide (ANP). It has also been found to play an important role in several diseases, such as diabetes mellitus and hypertension. Both abnormalities in ANP and associated medical history are involved in the pathogenesis of atrial fibrillation (AF). However, plasma concentration of musclin as a biomarker for risk stratification in patients with AF has not been fully investigated. Methods Plasma musclin levels were measured in 290 patients with AF (including 199 paroxysmal AF patients and 91 persistent AF patients) and 120 control subjects. The association between plasma musclin levels and AF onset, as well as its predictive effects on clinical outcomes after cryoballoon ablation were analyzed. Results AF patients were found to have a lower concentration of plasma musclin than healthy controls. Moreover, in the non-diabetic group and normal N-terminal pro-brain natriuretic peptide (NT-proBNP) level group, the association between lower plasma concentration of musclin and AF remained significant. According to receiver operating characteristic (ROC) curve analysis, the optimal cut-off point of musclin for predicting AF onset was 54.94 ng/mL, which had a sensitivity of 81.67% and a specificity of 31.47% [area under the ROC curve (AUC) =60.71%]. In follow-up studies, both diabetes and left atrial size were independent predictors of AF recurrence after ablation, while musclin showed only a modest relationship with the outcome of cryoballoon ablation. Conclusions Our data indicated that decreased musclin was associated with the onset of AF. Moreover, lower plasma levels of musclin were an independent risk factor of AF in non-diabetic patients. Our studies suggest that musclin could be a predictive factor for the onset of AF.
Collapse
Affiliation(s)
- Yuan Zhong
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jingying Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kai Tang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenxin Kou
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shaojie Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haotian Yang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peipei Luan
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Abdul-Quddus Mohammed
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fuad A Abdu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dongdong Zhao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hailing Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenhui Peng
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Chen W, Wang L, You W, Shan T. Myokines mediate the cross talk between skeletal muscle and other organs. J Cell Physiol 2020; 236:2393-2412. [PMID: 32885426 DOI: 10.1002/jcp.30033] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022]
Abstract
Myokines are muscle-derived cytokines and chemokines that act extensively on organs and exert beneficial metabolic functions in the whole-body through specific signal networks. Myokines as mediators provide the conceptual basis for a whole new paradigm useful for understanding how skeletal muscle communicates with other organs. In this review, we summarize and discuss classes of myokines and their physiological functions in mediating the regulatory roles of skeletal muscle on other organs and the regulation of the whole-body energy metabolism. We review the mechanisms involved in the interaction between skeletal muscle and nonmuscle organs through myokines. Moreover, we clarify the connection between exercise, myokines and disease development, which may contribute to the understanding of a potential mechanism by which physical inactivity affects the process of metabolic diseases via myokines. Based on the current findings, myokines are important factors that mediate the effect of skeletal muscle on other organ functions and whole-body metabolism.
Collapse
Affiliation(s)
- Wentao Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Wenjing You
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
| |
Collapse
|
9
|
Clark A, Huebinger RM, Carlson DL, Wolf SE, Song J. Serum Level of Musclin Is Elevated Following Severe Burn. J Burn Care Res 2019; 40:535-540. [DOI: 10.1093/jbcr/irz101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
Muscle wasting induced by severe burn worsens clinical outcomes is associated with hyperglycemia. A novel muscle-specific secretory factor, musclin, was reported to regulate glucose metabolism with a homologous sequence of natriuretic peptides. The purpose of the study was to investigate musclin expression in response to burn injury in both human and animal models. Serum was collected from 13 adult burn patients and circulating levels of musclin protein were measured via elisa. The cytokine profile was measured by Bio-Plex multiple immunoassay. Following the clinical study, we used a burn rat model with 40% TBSA to study the time course of musclin expression till day 14. Rat serum and muscle tissue sample were harvested. Finally, an in vitro study was applied to investigate whether the muscle cell C2C12 myoblast expressed musclin under 10% burn serum stimulation. Pearson analysis showed that there was a significant positive correlation of musclin expression to total body surface area of burn in patients (P &= .038). Musclin expression was significantly positively correlated with IL-4, IL-7, IL-12, and IL-13 in burn patients’ serum (P < .05). In the animal study, we found that the musclin level evaluated at 6 hours and 1 day in burn rat serum (P < .05). In vitro, musclin mRNA expression significantly increased with burn serum stimulation at 24 hours (P < .05). In conclusion, serum level of musclin elevated both in human patients and burn animals; musclin was correlated with the severity of burn injury as well as with an elevated cytokine profile in patients; burn serum-stimulated musclin expression in vitro further identified the resource of musclin expression after burn.
Collapse
Affiliation(s)
- Audra Clark
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ryan M Huebinger
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Deborah L Carlson
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Steven E Wolf
- Department of Surgery, University of Texas Medical Branch, and Shriners Hospitals for Children, Galveston, Texas
| | - Juquan Song
- Department of Surgery, University of Texas Medical Branch, and Shriners Hospitals for Children, Galveston, Texas
| |
Collapse
|
10
|
Moyes AJ, Hobbs AJ. C-type Natriuretic Peptide: A Multifaceted Paracrine Regulator in the Heart and Vasculature. Int J Mol Sci 2019; 20:E2281. [PMID: 31072047 PMCID: PMC6539462 DOI: 10.3390/ijms20092281] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
C-type natriuretic peptide (CNP) is an autocrine and paracrine mediator released by endothelial cells, cardiomyocytes and fibroblasts that regulates vital physiological functions in the cardiovascular system. These roles are conveyed via two cognate receptors, natriuretic peptide receptor B (NPR-B) and natriuretic peptide receptor C (NPR-C), which activate different signalling pathways that mediate complementary yet distinct cellular responses. Traditionally, CNP has been deemed the endothelial component of the natriuretic peptide system, while its sibling peptides, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), are considered the endocrine guardians of cardiac function and blood volume. However, accumulating evidence indicates that CNP not only modulates vascular tone and blood pressure, but also governs a wide range of cardiovascular effects including the control of inflammation, angiogenesis, smooth muscle and endothelial cell proliferation, atherosclerosis, cardiomyocyte contractility, hypertrophy, fibrosis, and cardiac electrophysiology. This review will focus on the novel physiological functions ascribed to CNP, the receptors/signalling mechanisms involved in mediating its cardioprotective effects, and the development of therapeutics targeting CNP signalling pathways in different disease pathologies.
Collapse
Affiliation(s)
- Amie J Moyes
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
11
|
Cheng KC, Li Y, Chang WT, Kuo FY, Chen ZC, Cheng JT. Telmisartan is effective to ameliorate metabolic syndrome in rat model - a preclinical report. Diabetes Metab Syndr Obes 2018; 11:901-911. [PMID: 30584345 PMCID: PMC6290862 DOI: 10.2147/dmso.s187092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Metabolic syndrome (MS) is known to be associated with hypertension, insulin resistance, and dyslipidemia, and it raises the risk for cardiovascular diseases and diabetes mellitus. Telmisartan is used in clinic as an angiotensin II receptor blocker and it is also identified as activating peroxisome proliferator-activated receptors δ (PPARδ). Activation of PPARδ produced beneficial effects on fatty acid metabolism and glucose metabolism. This study aims to investigate the effects of telmisartan on the modulation of MS in rats fed a high-fat/high-sodium diet. METHODS Rats were fed with a high-fat/high-sodium diet and received injections of streptozotocin at low dose to induce MS. Then, rats with MS were treated with telmisartan. The weight, glucose tolerance, and insulin sensitivity were measured. The lipid profiles were also obtained. The weights of retroperitoneal and epididymal fat pads were determined. The role of PPARδ in telmisartan treatment was identified in rats pretreated with the specific antagonist GSK0660. RESULTS The results showed that telmisartan, but not losartan, significantly reduced plasma glucose and plasma insulin, and improved insulin resistance in rats with MS. Telmisartan also decreased blood pressure and lipids more significantly than losartan. Moreover, GSK0660 effectively reversed the effects of telmisartan in the MS rats. In the MS group, telmisartan activated PPARδ to enhance the levels of phosphorylated GLUT4 in muscle or the expression of phosphoenolpyruvate carboxykinase (PEPCK) in the liver, which was also abolished by GSK0660. Telmisartan is useful to ameliorate hypertension and insulin resistance in rats with MS. Telmisartan improves the insulin resistance through increased expression of GLUT4 and down-regulation of PEPCK via PPARδ-dependent mechanisms. CONCLUSION Telmisartan has been proven to ameliorate MS, particularly in the prediabetes state. Therefore, telmisartan is suitable to develop for the management of MS in clinics.
Collapse
Affiliation(s)
- Kai-Chun Cheng
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Yingxiao Li
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
- Department of Medical Research, Chi-Mei Medical Center, Yong Kang, Tainan City 71003, Taiwan,
| | - Wei-Ting Chang
- Department of Medical Research, Chi-Mei Medical Center, Yong Kang, Tainan City 71003, Taiwan,
- Department of Cardiology, Chi-Mei Medical Center, Yong Kang, Tainan City 71003, Taiwan
| | - Feng Yu Kuo
- Cardiovascular Center, Kaohsiung Veterans General Hospital, Kaohsiung City 81362, Taiwan
| | - Zhih-Cherng Chen
- Department of Cardiology, Chi-Mei Medical Center, Yong Kang, Tainan City 71003, Taiwan
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Jean-Tae, Tainan City 71701, Taiwan
| | - Juei-Tang Cheng
- Department of Medical Research, Chi-Mei Medical Center, Yong Kang, Tainan City 71003, Taiwan,
- Institute of Medical Sciences, Chang Jung Christian University, Gueiren, Tainan City 71101, Taiwan,
| |
Collapse
|
12
|
|
13
|
Li W, Zhang H, Qi S, Qin J, Guan H, Li J, An X, Du R. Molecular Cloning and Motif Identification of the Sheep Musclin Gene Promoter. DNA Cell Biol 2017; 36:1093-1098. [PMID: 28981327 DOI: 10.1089/dna.2017.3762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Musclin is a bioactive factor that functions in regulating the muscle growth and metabolism. To investigate the transcriptional regulatory mechanism of the gene, the 1.4 kb musclin promoter in sheep was cloned (GenBank accession: JX966391) and the sequence was analyzed to predict the motifs associated with muscle growth. Next the enhanced green fluorescent protein (EGFP) was selected as the reporter gene and various wild-type and motif-mutant vectors were constructed. The transcriptional regulatory activities were compared by observing the fluorescence strength and detecting the EGFP mRNA expression in C2C12 myoblasts transfected with the vectors. The results showed that the different lengths of promoters could drive the transcription of EGFP and the mutation of some motifs up- or downregulated the activity of the promoter. Furthermore, the electrophoresis mobility shift assay showed that these motifs regulated the musclin gene transcription through binding to the corresponding transcriptional factors in sheep muscle tissue.
Collapse
Affiliation(s)
- Weizhen Li
- 1 College of Animal Science and Veterinary Medicine, Shanxi Agricultural University , Shanxi, People's Republic of China
| | - Hongqiang Zhang
- 1 College of Animal Science and Veterinary Medicine, Shanxi Agricultural University , Shanxi, People's Republic of China
| | - Shuai Qi
- 1 College of Animal Science and Veterinary Medicine, Shanxi Agricultural University , Shanxi, People's Republic of China
| | - Jian Qin
- 2 Centre of Experiment Teaching, Shanxi Agricultural University , Shanxi, People's Republic of China .,3 College of Life Science, Shanxi Agricultural University , Shanxi, People's Republic of China
| | - Hong Guan
- 4 State Key Laboratory for Agrobiotechnology, College of Biological Science, China Agricultural University , Beijing, People's Republic of China
| | - Jianwei Li
- 4 State Key Laboratory for Agrobiotechnology, College of Biological Science, China Agricultural University , Beijing, People's Republic of China
| | - Xiaorong An
- 4 State Key Laboratory for Agrobiotechnology, College of Biological Science, China Agricultural University , Beijing, People's Republic of China
| | - Rong Du
- 1 College of Animal Science and Veterinary Medicine, Shanxi Agricultural University , Shanxi, People's Republic of China
| |
Collapse
|
14
|
Giudice J, Taylor JM. Muscle as a paracrine and endocrine organ. Curr Opin Pharmacol 2017; 34:49-55. [PMID: 28605657 PMCID: PMC5808999 DOI: 10.1016/j.coph.2017.05.005] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 01/05/2023]
Abstract
Skeletal muscle cells are highly abundant and metabolically active and are known to 'communicate' their energy demands to other organs through active secretion. Muscle-derived secretory proteins include a variety of cytokines and peptides collectively referred to as 'myokines' that exert autocrine, paracrine or endocrine effects. Analyses of the skeletal muscle secretome revealed that numerous myokines are secreted in response to contraction or strength training, and that these factors not only regulate energy demand but also contribute to the broad beneficial effects of exercise on cardiovascular, metabolic, and mental health. Herein we review recent studies on the myokines that regulate muscle function and those that mediate cross talk between skeletal muscle and other organs including adipose tissue, liver, pancreas, the cardiovascular system, brain, bones, and skin.
Collapse
Affiliation(s)
- Jimena Giudice
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Joan M Taylor
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
15
|
Ost M, Coleman V, Kasch J, Klaus S. Regulation of myokine expression: Role of exercise and cellular stress. Free Radic Biol Med 2016; 98:78-89. [PMID: 26898145 DOI: 10.1016/j.freeradbiomed.2016.02.018] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/12/2016] [Accepted: 02/15/2016] [Indexed: 12/26/2022]
Abstract
Exercise training is well known to improve physical fitness and to combat chronic diseases and aging related disorders. Part of this is thought to be mediated by myokines, muscle derived secretory proteins (mainly cytokines) that elicit auto/paracrine but also endocrine effects on organs such as liver, adipose tissue, and bone. Today, several hundred potential myokines have been identified most of them not exclusive to muscle cells. Strenuous exercise is associated with increased production of free radicals and reactive oxidant species (ROS) as well as endoplasmic reticulum (ER)-stress which at an excessive level can lead to muscle damage and cell death. On the other hand, transient elevations in oxidative and ER-stress are thought to be necessary for adaptive improvements by regular exercise through a hormesis action termed mitohormesis since mitochondria are essential for the generation of energy and tightly connected to ER- and oxidative stress. Exercise induced myokines have been identified by various in vivo and in vitro approaches and accumulating evidence suggests that ROS and ER-stress linked pathways are involved in myokine induction. For example, interleukin (IL)-6, the prototypic exercise myokine is also induced by oxidative and ER-stress. Exercise induced expression of some myokines such as irisin and meteorin-like is linked to the transcription factor PGC-1α and apparently not related to ER-stress whereas typical ER-stress induced cytokines such as FGF-21 and GDF-15 are not exercise myokines under normal physiological conditions. Recent technological advances have led to the identification of numerous potential new myokines but for most of them regulation by oxidative and ER-stress still needs to be unraveled.
Collapse
Affiliation(s)
- Mario Ost
- Research Group Physiology of Energy Metabolism, German Institute of Human Nutrition in Potsdam Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Verena Coleman
- Research Group Physiology of Energy Metabolism, German Institute of Human Nutrition in Potsdam Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Juliane Kasch
- Research Group Physiology of Energy Metabolism, German Institute of Human Nutrition in Potsdam Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Susanne Klaus
- Research Group Physiology of Energy Metabolism, German Institute of Human Nutrition in Potsdam Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| |
Collapse
|
16
|
Niu HS, Chang CH, Niu CS, Cheng JT, Lee KS. Erythropoietin ameliorates hyperglycemia in type 1-like diabetic rats. Drug Des Devel Ther 2016; 10:1877-1884. [PMID: 27350742 PMCID: PMC4902144 DOI: 10.2147/dddt.s105867] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Erythropoietin (EPO) is widely used in diabetic patients receiving hemodialysis. The role of EPO in glucose homeostasis remains unclear. Therefore, we investigated the effect of EPO on hyperglycemia in rats with type 1-like diabetes. METHODS Rats with streptozotocin-induced type 1-like diabetes (STZ rats) were used to estimate the blood glucose-lowering effects of EPO, and changes in the expression levels of glucose transporter 4 (GLUT4) and the hepatic enzyme phosphoenolpyruvate carboxykinase (PEPCK) were identified by Western blot analysis. RESULTS EPO attenuated the hyperglycemia in the STZ rats in a dose-dependent manner without altering the hematopoietic parameters, including the hematocrit and number of red blood cells. The involvement of the EPO receptor (EPOR) was identified using EPOR-specific antibodies. In addition, injection of EPO enhanced the glucose utilization, which was assessed using an intravenous glucose tolerance test in rats. However, blood insulin was not changed by EPO in this assay, showing the insulinotropic action of EPO. Moreover, EPO treatment increased the insulin sensitivity. Western blots indicated that the phosphorylation of AMP-activated protein kinase was enhanced by EPO to support the signaling caused by EPOR activation. Furthermore, the decrease in the GLUT4 level in skeletal muscle was reversed by EPO, and the increase in the PEPCK expression in liver was reduced by EPO, as shown in STZ rats. CONCLUSION Taken together, the results show that EPO injection may reduce hyperglycemia in diabetic rats through activation of EPO receptors. Therefore, EPO is useful for managing diabetic disorders, particularly hyperglycemia-associated changes. In addition, EPO receptor will be a good target for the development of antihyperglycemic agent(s) in the future.
Collapse
Affiliation(s)
- Ho-Shan Niu
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien City, Taiwan, Republic of China
| | - Chin-Hong Chang
- Department of Neurosurgery, Chi-Mei Medical Center, Yong Kang, Tainan City, Taiwan, Republic of China
- Department of Medical Research, Chi-Mei Medical Center, Yong Kang, Tainan City, Taiwan, Republic of China
| | - Chiang-Shan Niu
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien City, Taiwan, Republic of China
| | - Juei-Tang Cheng
- Department of Medical Research, Chi-Mei Medical Center, Yong Kang, Tainan City, Taiwan, Republic of China
- Institute of Medical Sciences, Chang Jung Christian University, Gueiren, Tainan City, Taiwan, Republic of China
| | - Kung-Shing Lee
- Department of Surgery, Division of Neurosurgery, Pingtung Hospital, Pingtung, Taiwan, Republic of China
- Department of Surgery, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung City, Taiwan, Republic of China
- School of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan, Republic of China
| |
Collapse
|
17
|
Rai M, Demontis F. Systemic Nutrient and Stress Signaling via Myokines and Myometabolites. Annu Rev Physiol 2016; 78:85-107. [DOI: 10.1146/annurev-physiol-021115-105305] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mamta Rai
- Division of Developmental Biology, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105;
| | - Fabio Demontis
- Division of Developmental Biology, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105;
| |
Collapse
|
18
|
Liantonio A, Camerino GM, Scaramuzzi A, Cannone M, Pierno S, De Bellis M, Conte E, Fraysse B, Tricarico D, Conte Camerino D. Calcium homeostasis is altered in skeletal muscle of spontaneously hypertensive rats: cytofluorimetric and gene expression analysis. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2803-15. [PMID: 25084345 DOI: 10.1016/j.ajpath.2014.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 06/11/2014] [Accepted: 06/17/2014] [Indexed: 11/25/2022]
Abstract
Hypertension is often associated with skeletal muscle pathological conditions related to function and metabolism. The mechanisms underlying the development of these pathological conditions remain undefined. Because calcium homeostasis is a biomarker of muscle function, we assessed whether it is altered in hypertensive muscles. We measured resting intracellular calcium and store-operated calcium entry (SOCE) in fast- and slow-twitch muscle fibers from normotensive Wistar-Kyoto rats and spontaneously hypertensive rats (SHRs) by cytofluorimetric technique and determined the expression of SOCE gene machinery by real-time PCR. Hypertension caused a phenotype-dependent dysregulation of calcium homeostasis; the resting intracellular calcium of extensor digitorum longus and soleus muscles of SHRs were differently altered with respect to the related muscle of normotensive animals. In addition, soleus muscles of SHR showed reduced activity of the sarcoplasmic reticulum and decreased sarcolemmal calcium permeability at rest and after SOCE activation. Accordingly, we found an alteration of the expression levels of some SOCE components, such as stromal interaction molecule 1, calcium release-activated calcium modulator 1, and transient receptor potential canonical 1. The hypertension-induced alterations of calcium homeostasis in the soleus muscle of SHRs occurred with changes of some functional outcomes as excitability and resting chloride conductance. We provide suitable targets for therapeutic interventions aimed at counterbalancing muscle performance decline in hypertension, and propose the reported calcium-dependent parameters as indexes to predict how the antihypertensive drugs could influence muscle function.
Collapse
Affiliation(s)
- Antonella Liantonio
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy.
| | - Giulia M Camerino
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Antonia Scaramuzzi
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Maria Cannone
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Sabata Pierno
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Michela De Bellis
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Elena Conte
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Bodvael Fraysse
- INRA UMR703, LUNAM Université, Oniris, École Nationale Vétérinaire, Agro-Alimentaire et de l'Alimentation Nantes-Atlantique, Nantes, France
| | - Domenico Tricarico
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Diana Conte Camerino
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| |
Collapse
|
19
|
Characterization of musclin as a new target for treatment of hypertension. BIOMED RESEARCH INTERNATIONAL 2014; 2014:354348. [PMID: 24734231 PMCID: PMC3966495 DOI: 10.1155/2014/354348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 02/01/2014] [Indexed: 11/19/2022]
Abstract
Musclin is a novel skeletal muscle-derived factor found in the signal sequence trap of mouse skeletal muscle cDNAs. Recently, it has been demonstrated that musclin is involved in the pathogenesis of spontaneously hypertensive rats (SHRs). However, it is known as a genetic hypertension model. In the present study, we aim to investigate the role of musclin in another animal model of hypertension and characterize the direct effect of musclin on vascular contraction. The results show that expression of musclin was increased in arterial tissues isolated from DOCA-salt induced hypertensive rats or the normal rats received repeated vasoconstriction with phenylephrine. Additionally, direct incubation with phenylephrine did not modify the expression of musclin in the in vitro studies. Also, the direct effect of musclin on the increase of intracellular calcium was observed in a concentration-dependent manner. These results provide the evidence to support that musclin is involved in hypertension. Thus, musclin is suitable to be considered as a novel target for treatment of hypertension.
Collapse
|