1
|
Jin Z, Yi C, Zhou D, Wang X, Xie M, Zhou H, Zhang A. Chicken genome-wide CRISPR library screen identifies potential candidates associated with Avian influenza virus infection. Int J Biol Macromol 2025; 293:139267. [PMID: 39733882 DOI: 10.1016/j.ijbiomac.2024.139267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
The avian influenza virus (AIV) poses a significant threat to both the poultry industry and public health. Systematic identification of host factors involved in AIV infection in chicken is critical. In this study, we developed a comprehensive chicken genome-wide sgRNA library containing 76,350 sgRNAs, with 4-6 sgRNAs designed per gene. Then, we constructed a genome-wide CRISPR/Cas9 knockout chicken fibroblasts cells (DF-1 cells) library, covering 99.9 % of the total sgRNAs. Following multiple rounds of survival selection during AIV infection, 706 potential genes were identified, including 107 genes previously associated with AIV infection. These candidate genes were primarily involved in ubiquitin-related pathways, RNA transport, endocytosis, and other cellular processes. Among these, 18 novel hits were selected and confirmed to contribute to AIV-induced cell death, with eight genes specifically implicated in AIV proliferation. Notably, RNF2 was found to negatively regulate interferon-stimulated genes (ISGs), DCP1A was suggested to influence gene expression linked to AIV proliferation, and CREB3L3 may regulate membrane cholesterol levels during AIV invasion, further validating the screening results. This study identified 599 potential chicken genes involved in AIV infection, providing a foundation for a deeper understanding of the mechanisms underlying AIV infection in avian cells.
Collapse
Affiliation(s)
- Zehua Jin
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Chenyang Yi
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Dongyu Zhou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Xiaoping Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Mengli Xie
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Hongbo Zhou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Anding Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei 430070, China; International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei 430070, China; Guangdong Provincial Key Laboratory of Research on the Technology of Pig-breeding and Pig-disease prevention, Guangzhou, Guangdong 510000, China.
| |
Collapse
|
2
|
Macha NO, Komarasamy TV, Harun S, Adnan NAA, Hassan SS, Balasubramaniam VRMT. Cross Talk between MicroRNAs and Dengue Virus. Am J Trop Med Hyg 2024; 110:856-867. [PMID: 38579704 PMCID: PMC11066346 DOI: 10.4269/ajtmh.23-0546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/19/2023] [Indexed: 04/07/2024] Open
Abstract
Dengue fever (DF) is an endemic infectious tropical disease and is rapidly becoming a global problem. Dengue fever is caused by one of the four dengue virus (DENV) serotypes and is spread by the female Aedes mosquito. Clinical manifestations of DF may range from asymptomatic to life-threatening severe illness with conditions of hemorrhagic fever and shock. Early and precise diagnosis is vital to avoid mortality from DF. A different approach is required to combat DF because of the challenges with the vaccines currently available, which are nonspecific; each is capable of causing cross-reaction and disease-enhancing antibody responses against the residual serotypes. MicroRNAs (miRNAs) are known to be implicated in DENV infection and are postulated to be involved in most of the host responses. Thus, they might be a suitable target for new strategies against the disease. The involvement of miRNAs in cellular activities and pathways during viral infections has been explored under numerous conditions. Interestingly, miRNAs have also been shown to be involved in viral replication. In this review, we summarize the role of known miRNAs, specifically the role of miRNA Let-7c (miR-Let-7c), miR-133a, miR-30e, and miR-146a, in the regulation of DENV replication and their possible effects on the initial immune reaction.
Collapse
Affiliation(s)
- Nur Omar Macha
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Thamil Vaani Komarasamy
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Sarahani Harun
- Institute of Systems Biology Malaysia, National University of Malaysia, Selangor, Malaysia
| | - Nur Amelia Azreen Adnan
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Sharifah Syed Hassan
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Vinod R. M. T. Balasubramaniam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
3
|
Yang X, Tian Y, Zhao X, Jiang L, Chen Y, Hu S, MacFarlane S, Chen J, Lu Y, Yan F. NbALY916 is involved in potato virus X P25-triggered cell death in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2020; 21:1495-1501. [PMID: 32893420 PMCID: PMC7549001 DOI: 10.1111/mpp.12986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Systemic necrosis often occurs during viral infection of plants and is thought mainly to be the result of long-term stress induced by viral infection. Potato virus X (PVX) encodes the P25 pathogenicity factor that triggers a necrotic reaction during PVX-potato virus Ysynergistic coinfection. In this study, we discovered that NbALY916, a multifunctional nuclear protein, could interact with P25. When NbALY916 expression was reduced by tobacco rattle virus (TRV)-based virus-induced gene silencing, the accumulation of P25 was increased, which would be expected to cause more severe necrosis. However, silencing of NbALY916 reduced the extent of cell death caused by P25. Furthermore, we found that overexpression of NbALY916 increased the accumulation of H2 O2 and triggered more extensive cell death when coexpressed with P25, even though accumulation of P25 was itself reduced by the increased expression of NbALY916. Furthermore, transient expression of P25 specifically induced the expression of NbALY916 mRNA, but not the mRNAs of three other ALYs in Nicotiana benthamiana. In addition, we showed that silencing of NbALY916 or transient overexpression of NbALY916 affected the infection of PVX in N. benthamiana. Our results reveal that NbALY916 has an antiviral role that, in the case of PVX, operates by inducing the accumulation of H2 O2 and mediating the degradation of P25.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsKey Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang ProvinceInstitute of Plant VirologyNingbo UniversityNingboChina
- College of Plant ProtectionHenan Agriculture UniversityZhengzhouChina
| | - Yanzhen Tian
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xing Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsKey Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang ProvinceInstitute of Plant VirologyNingbo UniversityNingboChina
| | - Liangliang Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsKey Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang ProvinceInstitute of Plant VirologyNingbo UniversityNingboChina
| | - Ying Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsKey Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang ProvinceInstitute of Plant VirologyNingbo UniversityNingboChina
| | - Shuzhen Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsKey Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang ProvinceInstitute of Plant VirologyNingbo UniversityNingboChina
| | - Stuart MacFarlane
- The James Hutton Institute, Cell and Molecular Sciences GroupInvergowrie, DundeeUK
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsKey Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang ProvinceInstitute of Plant VirologyNingbo UniversityNingboChina
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsKey Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang ProvinceInstitute of Plant VirologyNingbo UniversityNingboChina
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsKey Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang ProvinceInstitute of Plant VirologyNingbo UniversityNingboChina
| |
Collapse
|
4
|
Bong SM, Bae SH, Song B, Gwak H, Yang SW, Kim S, Nam S, Rajalingam K, Oh SJ, Kim TW, Park S, Jang H, Lee BI. Regulation of mRNA export through API5 and nuclear FGF2 interaction. Nucleic Acids Res 2020; 48:6340-6352. [PMID: 32383752 PMCID: PMC7293033 DOI: 10.1093/nar/gkaa335] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 01/13/2023] Open
Abstract
API5 (APoptosis Inhibitor 5) and nuclear FGF2 (Fibroblast Growth Factor 2) are upregulated in various human cancers and are correlated with poor prognosis. Although their physical interaction has been identified, the function related to the resulting complex is unknown. Here, we determined the crystal structure of the API5–FGF2 complex and identified critical residues driving the protein interaction. These findings provided a structural basis for the nuclear localization of the FGF2 isoform lacking a canonical nuclear localization signal and identified a cryptic nuclear localization sequence in FGF2. The interaction between API5 and FGF2 was important for mRNA nuclear export through both the TREX and eIF4E/LRPPRC mRNA export complexes, thus regulating the export of bulk mRNA and specific mRNAs containing eIF4E sensitivity elements, such as c-MYC and cyclin D1. These data show the newly identified molecular function of API5 and nuclear FGF2, and provide a clue to understanding the dynamic regulation of mRNA export.
Collapse
Affiliation(s)
- Seoung Min Bong
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea
| | - Seung-Hyun Bae
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea.,Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi 10408, Republic of Korea
| | - Bomin Song
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea
| | - HyeRan Gwak
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea
| | - Seung-Won Yang
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea
| | - Sunshin Kim
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea
| | - Seungyoon Nam
- Department of Life Sciences, College of BioNano Technology and Department of Genome Medicine and Science, Graduate School of Medicine, Gachon University, Incheon 21565, Republic of Korea
| | | | - Se Jin Oh
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Tae Woo Kim
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - SangYoun Park
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Hyonchol Jang
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea.,Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi 10408, Republic of Korea
| | - Byung Il Lee
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea.,Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi 10408, Republic of Korea
| |
Collapse
|
5
|
Chua SCJH, Tan HQ, Engelberg D, Lim LHK. Alternative Experimental Models for Studying Influenza Proteins, Host-Virus Interactions and Anti-Influenza Drugs. Pharmaceuticals (Basel) 2019; 12:E147. [PMID: 31575020 PMCID: PMC6958409 DOI: 10.3390/ph12040147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022] Open
Abstract
Ninety years after the discovery of the virus causing the influenza disease, this malady remains one of the biggest public health threats to mankind. Currently available drugs and vaccines only partially reduce deaths and hospitalizations. Some of the reasons for this disturbing situation stem from the sophistication of the viral machinery, but another reason is the lack of a complete understanding of the molecular and physiological basis of viral infections and host-pathogen interactions. Even the functions of the influenza proteins, their mechanisms of action and interaction with host proteins have not been fully revealed. These questions have traditionally been studied in mammalian animal models, mainly ferrets and mice (as well as pigs and non-human primates) and in cell lines. Although obviously relevant as models to humans, these experimental systems are very complex and are not conveniently accessible to various genetic, molecular and biochemical approaches. The fact that influenza remains an unsolved problem, in combination with the limitations of the conventional experimental models, motivated increasing attempts to use the power of other models, such as low eukaryotes, including invertebrate, and primary cell cultures. In this review, we summarized the efforts to study influenza in yeast, Drosophila, zebrafish and primary human tissue cultures and the major contributions these studies have made toward a better understanding of the disease. We feel that these models are still under-utilized and we highlight the unique potential each model has for better comprehending virus-host interactions and viral protein function.
Collapse
Affiliation(s)
- Sonja C J H Chua
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
- NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.
- CREATE-NUS-HUJ Molecular Mechanisms of Inflammatory Diseases Programme, National University of Singapore, Singapore 138602, Singapore.
| | - Hui Qing Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
- NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.
| | - David Engelberg
- CREATE-NUS-HUJ Molecular Mechanisms of Inflammatory Diseases Programme, National University of Singapore, Singapore 138602, Singapore.
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Lina H K Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
- NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.
| |
Collapse
|
6
|
Mechanism and Regulation of Co-transcriptional mRNP Assembly and Nuclear mRNA Export. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:1-31. [DOI: 10.1007/978-3-030-31434-7_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Chen L, Wang C, Luo J, Li M, Liu H, Zhao N, Huang J, Zhu X, Ma G, Yuan G, He H. Amino Acid Substitution K470R in the Nucleoprotein Increases the Virulence of H5N1 Influenza A Virus in Mammals. Front Microbiol 2017; 8:1308. [PMID: 28744280 PMCID: PMC5504190 DOI: 10.3389/fmicb.2017.01308] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/28/2017] [Indexed: 12/21/2022] Open
Abstract
H5N1 is a highly pathogenic influenza A virus (IAV) and poses a major threat to the public health. The nucleoprotein (NP) has a multiple functions during the viral life cycle, however, the precise role of NP mutants in viral replication and pathogenicity is not completely understood. Here, we attempted to identify five residues in NP that may contribute to viral replication or pathogenicity. Of these, K227R, K229R, and K470R viruses were successfully rescued by reverse genetic, but the K91R and K198R viruses were not viable. A mini-genome assay demonstrated that the NP mutations K91R and K198R significantly decreased the polymerase activity. Moreover, these two mutations resulted in disrupted cellular localization in mammalian cells. Importantly, mutation at position 470 of NP significantly increased its virulence in vitro and in vivo. These findings demonstrated that the NP protein plays a major role in influenza virulence and pathogenicity, which adds to the knowledge of IAV virulence determinants and may benefit IAV surveillance.
Collapse
Affiliation(s)
- Lin Chen
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China.,University of the Chinese Academy of SciencesBeijing, China
| | - Chengmin Wang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| | - Jing Luo
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| | - Meng Li
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China.,University of the Chinese Academy of SciencesBeijing, China
| | - Huimin Liu
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China.,University of the Chinese Academy of SciencesBeijing, China
| | - Na Zhao
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China.,University of the Chinese Academy of SciencesBeijing, China
| | - Jingjing Huang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| | - Xili Zhu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of ScienceBeijing, China
| | - Guoyao Ma
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China.,University of the Chinese Academy of SciencesBeijing, China
| | - Guohui Yuan
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
8
|
Abstract
TRanscription and EXport (TREX) is a conserved multisubunit complex essential for embryogenesis, organogenesis and cellular differentiation throughout life. By linking transcription, mRNA processing and export together, it exerts a physiologically vital role in the gene expression pathway. In addition, this complex prevents DNA damage and regulates the cell cycle by ensuring optimal gene expression. As the extent of TREX activity in viral infections, amyotrophic lateral sclerosis and cancer emerges, the need for a greater understanding of TREX function becomes evident. A complete elucidation of the composition, function and interactions of the complex will provide the framework for understanding the molecular basis for a variety of diseases. This review details the known composition of TREX, how it is regulated and its cellular functions with an emphasis on mammalian systems.
Collapse
|
9
|
Björk P, Wieslander L. Integration of mRNP formation and export. Cell Mol Life Sci 2017; 74:2875-2897. [PMID: 28314893 PMCID: PMC5501912 DOI: 10.1007/s00018-017-2503-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/13/2022]
Abstract
Expression of protein-coding genes in eukaryotes relies on the coordinated action of many sophisticated molecular machineries. Transcription produces precursor mRNAs (pre-mRNAs) and the active gene provides an environment in which the pre-mRNAs are processed, folded, and assembled into RNA–protein (RNP) complexes. The dynamic pre-mRNPs incorporate the growing transcript, proteins, and the processing machineries, as well as the specific protein marks left after processing that are essential for export and the cytoplasmic fate of the mRNPs. After release from the gene, the mRNPs move by diffusion within the interchromatin compartment, making up pools of mRNPs. Here, splicing and polyadenylation can be completed and the mRNPs recruit the major export receptor NXF1. Export competent mRNPs interact with the nuclear pore complex, leading to export, concomitant with compositional and conformational changes of the mRNPs. We summarize the integrated nuclear processes involved in the formation and export of mRNPs.
Collapse
Affiliation(s)
- Petra Björk
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Lars Wieslander
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
10
|
Schumann S, Whitehouse A. Targeting the human TREX complex to prevent herpesvirus replication: what is new? Future Virol 2017. [DOI: 10.2217/fvl-2017-0006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sophie Schumann
- School of Molecular & Cellular Biology, & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Adrian Whitehouse
- School of Molecular & Cellular Biology, & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
11
|
Human Heat shock protein 40 (Hsp40/DnaJB1) promotes influenza A virus replication by assisting nuclear import of viral ribonucleoproteins. Sci Rep 2016; 6:19063. [PMID: 26750153 PMCID: PMC4707480 DOI: 10.1038/srep19063] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 10/26/2015] [Indexed: 01/11/2023] Open
Abstract
A unique feature of influenza A virus (IAV) life cycle is replication of the viral genome in the host cell nucleus. The nuclear import of IAV genome is an indispensable step in establishing virus infection. IAV nucleoprotein (NP) is known to mediate the nuclear import of viral genome via its nuclear localization signals. Here, we demonstrate that cellular heat shock protein 40 (Hsp40/DnaJB1) facilitates the nuclear import of incoming IAV viral ribonucleoproteins (vRNPs) and is important for efficient IAV replication. Hsp40 was found to interact with NP component of IAV RNPs during early stages of infection. This interaction is mediated by the J domain of Hsp40 and N-terminal region of NP. Drug or RNAi mediated inhibition of Hsp40 resulted in reduced nuclear import of IAV RNPs, diminished viral polymerase function and attenuates overall viral replication. Hsp40 was also found to be required for efficient association between NP and importin alpha, which is crucial for IAV RNP nuclear translocation. These studies demonstrate an important role for cellular chaperone Hsp40/DnaJB1 in influenza A virus life cycle by assisting nuclear trafficking of viral ribonucleoproteins.
Collapse
|
12
|
Generous A, Thorson M, Barcus J, Jacher J, Busch M, Sleister H. Identification of putative interactions between swine and human influenza A virus nucleoprotein and human host proteins. Virol J 2014; 11:228. [PMID: 25547032 PMCID: PMC4297426 DOI: 10.1186/s12985-014-0228-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 12/15/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Influenza A viruses (IAVs) are important pathogens that affect the health of humans and many additional animal species. IAVs are enveloped, negative single-stranded RNA viruses whose genome encodes at least ten proteins. The IAV nucleoprotein (NP) is a structural protein that associates with the viral RNA and is essential for virus replication. Understanding how IAVs interact with host proteins is essential for elucidating all of the required processes for viral replication, restrictions in species host range, and potential targets for antiviral therapies. METHODS In this study, the NP from a swine IAV was cloned into a yeast two-hybrid "bait" vector for expression of a yeast Gal4 binding domain (BD)-NP fusion protein. This "bait" was used to screen a Y2H human HeLa cell "prey" library which consisted of human proteins fused to the Gal4 protein's activation domain (AD). The interaction of "bait" and "prey" proteins resulted in activation of reporter genes. RESULTS Seventeen positive bait-prey interactions were isolated in yeast. All of the "prey" isolated also interact in yeast with a NP "bait" cloned from a human IAV strain. Isolation and sequence analysis of the cDNAs encoding the human prey proteins revealed ten different human proteins. These host proteins are involved in various host cell processes and structures, including purine biosynthesis (PAICS), metabolism (ACOT13), proteasome (PA28B), DNA-binding (MSANTD3), cytoskeleton (CKAP5), potassium channel formation (KCTD9), zinc transporter function (SLC30A9), Na+/K+ ATPase function (ATP1B1), and RNA splicing (TRA2B). CONCLUSIONS Ten human proteins were identified as interacting with IAV NP in a Y2H screen. Some of these human proteins were reported in previous screens aimed at elucidating host proteins relevant to specific viral life cycle processes such as replication. This study extends previous findings by suggesting a mechanism by which these host proteins associate with the IAV, i.e., physical interaction with NP. Furthermore, this study revealed novel host protein-NP interactions in yeast.
Collapse
Affiliation(s)
- Alex Generous
- Biology Department, Drake University, 1344 27th St., Des Moines, IA, 50311, USA.
| | - Molly Thorson
- Biology Department, Drake University, 1344 27th St., Des Moines, IA, 50311, USA.
| | - Jeff Barcus
- Biology Department, Drake University, 1344 27th St., Des Moines, IA, 50311, USA.
| | - Joseph Jacher
- Biology Department, Drake University, 1344 27th St., Des Moines, IA, 50311, USA.
| | - Marc Busch
- Biology Department, Drake University, 1344 27th St., Des Moines, IA, 50311, USA.
| | - Heidi Sleister
- Biology Department, Drake University, 1344 27th St., Des Moines, IA, 50311, USA.
| |
Collapse
|
13
|
Jain S, Gitter A, Bar-Joseph Z. Multitask learning of signaling and regulatory networks with application to studying human response to flu. PLoS Comput Biol 2014; 10:e1003943. [PMID: 25522349 PMCID: PMC4270428 DOI: 10.1371/journal.pcbi.1003943] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/28/2014] [Indexed: 01/04/2023] Open
Abstract
Reconstructing regulatory and signaling response networks is one of the major goals of systems biology. While several successful methods have been suggested for this task, some integrating large and diverse datasets, these methods have so far been applied to reconstruct a single response network at a time, even when studying and modeling related conditions. To improve network reconstruction we developed MT-SDREM, a multi-task learning method which jointly models networks for several related conditions. In MT-SDREM, parameters are jointly constrained across the networks while still allowing for condition-specific pathways and regulation. We formulate the multi-task learning problem and discuss methods for optimizing the joint target function. We applied MT-SDREM to reconstruct dynamic human response networks for three flu strains: H1N1, H5N1 and H3N2. Our multi-task learning method was able to identify known and novel factors and genes, improving upon prior methods that model each condition independently. The MT-SDREM networks were also better at identifying proteins whose removal affects viral load indicating that joint learning can still lead to accurate, condition-specific, networks. Supporting website with MT-SDREM implementation: http://sb.cs.cmu.edu/mtsdrem To understand why some flu strains are more virulent than others, researchers attempt to profile and model the molecular human response to these strains and identify similarities and differences between the resulting models. So far, the modeling and analysis part has been done independently for each strain and the results contrasted in a post-processing step. Here we present a new method, termed MT-SDREM, that simultaneously models the response to all strains allowing us to identify both, the core response elements that are shared among the strains, and factors that are uniquely activated or repressed by individual strains. We applied this method to study the human response to three flu strains: H1N1, H3N2 and H5N1. As we show, the method was able to correctly identify several common and known factors regulating immune response to such strains and also identified unique factors for each of the strains. The models reconstructed by the simultaneous analysis method improved upon those generated by methods that model each strain response separately. Our joint models can be used to identify strain specific treatments as well as treatments that are likely to be effective against all three strains.
Collapse
Affiliation(s)
- Siddhartha Jain
- Computer Science Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Anthony Gitter
- Microsoft Research, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Ziv Bar-Joseph
- Lane Center for Computational Biology and Machine Learning Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
14
|
Tham HW, Balasubramaniam VRMT, Tejo BA, Ahmad H, Hassan SS. CPB1 of Aedes aegypti interacts with DENV2 E protein and regulates intracellular viral accumulation and release from midgut cells. Viruses 2014; 6:5028-46. [PMID: 25521592 PMCID: PMC4276941 DOI: 10.3390/v6125028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/24/2014] [Accepted: 12/11/2014] [Indexed: 11/21/2022] Open
Abstract
Aedes aegypti is a principal vector responsible for the transmission of dengue viruses (DENV). To date, vector control remains the key option for dengue disease management. To develop new vector control strategies, a more comprehensive understanding of the biological interactions between DENV and Ae. aegypti is required. In this study, a cDNA library derived from the midgut of female adult Ae. aegypti was used in yeast two-hybrid (Y2H) screenings against DENV2 envelope (E) protein. Among the many interacting proteins identified, carboxypeptidase B1 (CPB1) was selected, and its biological interaction with E protein in Ae. aegypti primary midgut cells was further validated. Our double immunofluorescent assay showed that CPB1-E interaction occurred in the endoplasmic reticulum (ER) of the Ae. aegypti primary midgut cells. Overexpression of CPB1 in mosquito cells resulted in intracellular DENV2 genomic RNA or virus particle accumulation, with a lower amount of virus release. Therefore, we postulated that in Ae. aegypti midgut cells, CPB1 binds to the E protein deposited on the ER intraluminal membranes and inhibits DENV2 RNA encapsulation, thus inhibiting budding from the ER, and may interfere with immature virus transportation to the trans-Golgi network.
Collapse
Affiliation(s)
- Hong-Wai Tham
- Virus-Host Interaction Research Group, Infectious Disease Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Vinod R M T Balasubramaniam
- Virus-Host Interaction Research Group, Infectious Disease Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Bimo Ario Tejo
- Department of Biotechnology and Neuroscience, Faculty of Life Science, Surya University, 15810 Tangerang, Banten, Indonesia.
| | - Hamdan Ahmad
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia.
| | - Sharifah Syed Hassan
- Virus-Host Interaction Research Group, Infectious Disease Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|