1
|
Identification of the Antigens Recognised by Colorectal Cancer Patients Using Sera from Patients Who Exhibit a Crohn's-like Lymphoid Reaction. Biomolecules 2022; 12:biom12081058. [PMID: 36008952 PMCID: PMC9406176 DOI: 10.3390/biom12081058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
A Crohn’s-like lymphoid reaction (CLR) is observed in about 15% of colorectal cancer (CRC) patients and is associated with favourable outcomes. To identify the immune targets recognised by CRC CLR patient sera, we immunoscreened a testes cDNA library with sera from three patients. Immunoscreening of the 18 antigens identified by SEREX with sera from normal donors showed that only the heavy chain of IgG3 (IGHG3) and a novel antigen we named UOB-COL-7, were solely recognised by sera from CRC CLR patients. ELISA showed an elevation in IgG3 levels in patients with CRC (p = 0.01). To extend our studies we analysed the expression of our SEREX-identified antigens using the RNA-sequencing dataset (GSE5206). We found that the transcript levels of multiple IGHG probesets were highly significant (p < 0.001) in their association with clinical features of CRC while above median levels of DAPK1 (p = 0.005) and below median levels of GTF2H5 (p = 0.004) and SH3RF2 (p = 0.02) were associated with improved overall survival. Our findings demonstrate the potential of SEREX-identified CRC CLR antigens to act as biomarkers for CRC and provide a rationale for their further characterization and validation.
Collapse
|
2
|
Monroy-Iglesias MJ, Crescioli S, Beckmann K, Le N, Karagiannis SN, Van Hemelrijck M, Santaolalla A. Antibodies as biomarkers for cancer risk: a systematic review. Clin Exp Immunol 2022; 209:46-63. [PMID: 35380164 PMCID: PMC9307228 DOI: 10.1093/cei/uxac030] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/11/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence has linked the humoral immune response with the development of various cancers. Therefore, there is growing interest in investigating the predictive value of antibodies to assess overall and tissue site-specific cancer risk. Given the large amount of antibody types and the broad scope of the search (i.e. cancer risk), the primary aim of this systematic review was to present an overview of the most researched antibodies (i.e. immunoglobulin (Ig) isotypes (IgG, IgM, IgA, and IgE), tumour and self-antigen-reactive antibodies, infection-related antibodies) in relation to overall and site-specific cancer risk. We identified various antibody types that have been associated with the risk of cancer. While no significant associations were found for IgM serum levels, studies found an inconsistent association among IgE, IgA, and IgG serum levels in relation to cancer risk. When evaluating antibodies against infectious agents, most studies reported a positive link with specific cancers known to be associated with the specific agent recognized by serum antibodies (i.e. helicobacter pylori and gastric cancer, hepatitis B virus and hepatocellular carcinoma, and human papillomavirus and cervical cancer). Several reports identified autoantibodies, as single biomarkers (e.g. anti-p53, anti-MUC1, and anti-CA125) but especially in panels of multiple autoantibodies, to have potential as diagnostic biomarkers for specific cancer types. Overall, there is emerging evidence associating certain antibodies to cancer risk, especially immunoglobulin isotypes, tumour-associated antigen-specific, and self-reactive antibodies. Further experimental studies are necessary to assess the efficacy of specific antibodies as markers for the early diagnosis of cancer.
Collapse
Affiliation(s)
| | | | - Kerri Beckmann
- Higher Degree by Research, University of South Australia, Adelaide, Australia
- Cancer Epidemiology and Population Health Research Group, University of South Australia, Adelaide, SE, Australia
| | - Nga Le
- Higher Degree by Research, University of South Australia, Adelaide, Australia
| | - Sophia N Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London SE1 9RT, UK
| | - Mieke Van Hemelrijck
- Translational Oncology and Urology Research (TOUR), Centre for Cancer, Society, and Public Health, School of Cancer and Pharmaceutical Sciences, King’s College London, London, UK
| | - Aida Santaolalla
- Correspondence: Aida Santaolalla, Translational Oncology and Urology Research (TOUR), Centre for Cancer, Society, and Public Health, School of Cancer and Pharmaceutical Sciences, King’s College London, London, UK.
| |
Collapse
|
3
|
Carey RN, Pfau JC, Fritzler MJ, Creaney J, de Klerk N, Musk AW(B, Franklin P, Sodhi-Berry N, Brims F, Reid A. Autoantibodies and cancer among asbestos-exposed cohorts in Western Australia. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:475-483. [PMID: 33678145 PMCID: PMC10726378 DOI: 10.1080/15287394.2021.1889424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Asbestos exposure is associated with many adverse health conditions including malignant mesothelioma and lung cancer as well as production of autoantibodies. Autoantibodies may serve as biomarkers for asbestos exposure in patients with cancer, and autoimmune dysfunction has been linked to increased rates of various cancers. The aim of this study was to examine the hypothesis that autoantibodies are more frequent in asbestos-exposed individuals with either lung cancer or mesothelioma than those without these conditions. Asbestos-exposed individuals from Western Australia who had lung cancer (n = 24), malignant mesothelioma (n = 24), or no malignancy (n = 51) were tested for antinuclear autoantibodies (ANA) using indirect immunofluorescence and specific extractable nuclear autoantibodies (ENA) employing a multiplexed addressable laser bead immunoassay. Contrary to the hypothesis, data demonstrated that individuals without malignancy were more likely to be positive for ANA compared to those with cancer. However, autoantibodies to histone and Ro-60 were found to be associated with lung cancer. These results support a possible predictive value for specific autoantibodies in the early detection of lung cancer and/or in our understanding of the role of autoimmune processes in cancer. However, further studies are needed to identify specific target antigens for the antibodies.
Collapse
Affiliation(s)
- Renee N Carey
- School of Public Health, Curtin University, Bentley, Australia
| | - Jean C Pfau
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| | | | - Jenette Creaney
- National Centre for Asbestos Related Diseases, University of Western Australia, Nedlands, Australia
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Nicholas de Klerk
- Telethon Kids Institute, University of Western Australia, Nedlands, Australia
- School of Population and Global Health, University of Western Australia, Nedlands, Australia
| | - Arthur W (Bill) Musk
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, Australia
- School of Population and Global Health, University of Western Australia, Nedlands, Australia
| | - Peter Franklin
- School of Population and Global Health, University of Western Australia, Nedlands, Australia
| | - Nita Sodhi-Berry
- School of Population and Global Health, University of Western Australia, Nedlands, Australia
| | - Fraser Brims
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, Australia
- Curtin Medical School, Curtin University, Bentley, Australia
| | - Alison Reid
- School of Public Health, Curtin University, Bentley, Australia
| |
Collapse
|
4
|
Wang JY, Zhang W, Roehrl MW, Roehrl VB, Roehrl MH. An Autoantigen Profile of Human A549 Lung Cells Reveals Viral and Host Etiologic Molecular Attributes of Autoimmunity in COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.02.21.432171. [PMID: 33655248 PMCID: PMC7924268 DOI: 10.1101/2021.02.21.432171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We aim to establish a comprehensive COVID-19 autoantigen atlas in order to understand autoimmune diseases caused by SARS-CoV-2 infection. Based on the unique affinity between dermatan sulfate and autoantigens, we identified 348 proteins from human lung A549 cells, of which 198 are known targets of autoantibodies. Comparison with current COVID data identified 291 proteins that are altered at protein or transcript level in SARS-CoV-2 infection, with 191 being known autoantigens. These known and putative autoantigens are significantly associated with viral replication and trafficking processes, including gene expression, ribonucleoprotein biogenesis, mRNA metabolism, translation, vesicle and vesicle-mediated transport, and apoptosis. They are also associated with cytoskeleton, platelet degranulation, IL-12 signaling, and smooth muscle contraction. Host proteins that interact with and that are perturbed by viral proteins are a major source of autoantigens. Orf3 induces the largest number of protein alterations, Orf9 affects the mitochondrial ribosome, and they and E, M, N, and Nsp proteins affect protein localization to membrane, immune responses, and apoptosis. Phosphorylation and ubiquitination alterations by viral infection define major molecular changes in autoantigen origination. This study provides a large list of autoantigens as well as new targets for future investigation, e.g., UBA1, UCHL1, USP7, CDK11A, PRKDC, PLD3, PSAT1, RAB1A, SLC2A1, platelet activating factor acetylhydrolase, and mitochondrial ribosomal proteins. This study illustrates how viral infection can modify host cellular proteins extensively, yield diverse autoantigens, and trigger a myriad of autoimmune sequelae.
Collapse
Affiliation(s)
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | | | | | - Michael H. Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
5
|
Prediagnostic detection of mesothelioma by circulating calretinin and mesothelin - a case-control comparison nested into a prospective cohort of asbestos-exposed workers. Sci Rep 2018; 8:14321. [PMID: 30254313 PMCID: PMC6156219 DOI: 10.1038/s41598-018-32315-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022] Open
Abstract
Malignant mesothelioma (MM) is strongly associated with a previous asbestos exposure. To improve timely detection of MM in asbestos workers, better screening tools – like minimally-invasive biomarkers – are desirable. Between 2008 and 2018 2,769 patients with benign asbestos-related diseases were recruited to participate in annual screens. Using a nested case-control design the protein markers calretinin and mesothelin were determined by enzyme-linked immunosorbent assays in prediagnostic plasma samples of 34 MM cases as well as 136 matched controls from the cohort. Conditional on a pre-defined specificity of 98% for calretinin and 99% for mesothelin the markers reached individual sensitivities of 31% and 23%, respectively, when including the incident cases with samples taken between one and 15 months before diagnosis. The combination of both markers increased the sensitivity to 46% at 98% specificity. Marker complementation increased with earlier sampling. The marker combination improves the sensitivity of the individual markers, indicating a useful complementation and suggesting that additional markers may further improve the performance. This is the first prospective cohort study to evaluate a detection of MM by calretinin and its combination with mesothelin up to about a year before clinical diagnosis. Whether an earlier diagnosis will result in reduced mortality has yet to be demonstrated.
Collapse
|
6
|
Malignant Mesothelioma Biomarkers: From Discovery to Use in Clinical Practice for Diagnosis, Monitoring, Screening, and Treatment. Chest 2016; 152:143-149. [PMID: 28007619 DOI: 10.1016/j.chest.2016.12.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/22/2016] [Accepted: 12/08/2016] [Indexed: 12/22/2022] Open
Abstract
Malignant pleural mesothelioma is a highly aggressive tumor associated with asbestos exposure. There are few effective treatment options for mesothelioma, and patients have a very poor prognosis with a median survival of < 12 months from diagnosis. Biomarkers have been proposed as a cost-effective means of cancer management, and the search for a mesothelioma biomarker has been ongoing for the last 30 years. Many traditional soluble (glyco)protein biomarkers have been evaluated over this time, and an ever-increasing list of new biomarkers, including messenger RNA, DNA, microRNA, and antibodies, is being reported from biomarker discovery projects. To date, soluble mesothelin is the only tumor biomarker to receive US Food and Drug Administration approval for clinical use in mesothelioma. Mesothelin is a glycoprotein normally expressed on the surface of mesothelial cells, and in the cancerous state it can be present in circulation. Mesothelin has a limited expression on normal, nonmalignant tissue and is thus an attractive therapeutic target for mesothelin-positive tumors. In this review we will focus on the discovery and clinical usages of mesothelin and provide an update on other mesothelioma biomarkers and show how such biomarker studies might impact on the management of this deadly tumor in the future.
Collapse
|
7
|
Franks SE, Briah R, Jones RA, Moorehead RA. Unique roles of Akt1 and Akt2 in IGF-IR mediated lung tumorigenesis. Oncotarget 2016; 7:3297-316. [PMID: 26654940 PMCID: PMC4823107 DOI: 10.18632/oncotarget.6489] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/16/2015] [Indexed: 01/22/2023] Open
Abstract
AKT is a serine-threonine kinase that becomes hyperactivated in a number of cancers including lung cancer. Based on AKT's association with malignancy, molecules targeting AKT have entered clinical trials for solid tumors including lung cancer. However, the AKT inhibitors being evaluated in clinical trials indiscriminately inhibit all three AKT isoforms (AKT1-3) and it remains unclear whether AKT isoforms have overlapping or divergent functions. Using a transgenic mouse model where IGF-IR overexpression drives lung tumorigenesis, we found that loss of Akt1 inhibited while loss of Akt2 enhanced lung tumor development. Lung tumors that developed in the absence of Akt2 were less likely to appear as discrete nodules and more frequently displayed a dispersed growth pattern. RNA sequencing revealed a number of genes differentially expressed in lung tumors lacking Akt2 and five of these genes, Actc1, Bpifa1, Mmp2, Ntrk2, and Scgb3a2 have been implicated in human lung cancer. Using 2 human lung cancer cell lines, we observed that a selective AKT1 inhibitor, A-674563, was a more potent regulator of cell survival than the pan-AKT inhibitor, MK-2206. This study suggests that compounds selectively targeting AKT1 may prove more effective than compounds that inhibit all three AKT isoforms at least in the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- S Elizabeth Franks
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Ritesh Briah
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Robert A Jones
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Roger A Moorehead
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
8
|
Atak A, Mukherjee S, Jain R, Gupta S, Singh VA, Gahoi N, K P M, Srivastava S. Protein microarray applications: Autoantibody detection and posttranslational modification. Proteomics 2016; 16:2557-2569. [PMID: 27452627 DOI: 10.1002/pmic.201600104] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 07/09/2016] [Accepted: 07/19/2016] [Indexed: 12/18/2022]
Abstract
The discovery of DNA microarrays was a major milestone in genomics; however, it could not adequately predict the structure or dynamics of underlying protein entities, which are the ultimate effector molecules in a cell. Protein microarrays allow simultaneous study of thousands of proteins/peptides, and various advancements in array technologies have made this platform suitable for several diagnostic and functional studies. Antibody arrays enable researchers to quantify the abundance of target proteins in biological fluids and assess PTMs by using the antibodies. Protein microarrays have been used to assess protein-protein interactions, protein-ligand interactions, and autoantibody profiling in various disease conditions. Here, we summarize different microarray platforms with focus on its biological and clinical applications in autoantibody profiling and PTM studies. We also enumerate the potential of tissue microarrays to validate findings from protein arrays as well as other approaches, highlighting their significance in proteomics.
Collapse
Affiliation(s)
- Apurva Atak
- Proteomics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Shuvolina Mukherjee
- Proteomics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Rekha Jain
- Proteomics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Shabarni Gupta
- Proteomics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Vedita Anand Singh
- Proteomics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Nikita Gahoi
- Proteomics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Manubhai K P
- Proteomics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Sanjeeva Srivastava
- Proteomics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| |
Collapse
|
9
|
Creaney J, Dick IM, Musk AW(B, Olsen NJ, Robinson BWS. Immune response profiling of malignant pleural mesothelioma for diagnostic and prognostic biomarkers. Biomarkers 2016; 21:551-61. [DOI: 10.3109/1354750x.2016.1160429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Comparison of mesothelin and fibulin-3 in pleural fluid and serum as markers in malignant mesothelioma. Curr Opin Pulm Med 2016; 21:352-6. [PMID: 26016578 DOI: 10.1097/mcp.0000000000000167] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Malignant mesothelioma is an asbestos-induced, aggressive tumour, which frequently presents with pleural effusion. There are over 60 reported causes that can result in the development of a pleural effusion. Currently, there are no tumour biomarkers in widespread clinical use for the differential diagnosis of mesothelioma from other diseases. With the incidence of mesothelioma expected to continue to increase, it is timely to review the current status of effusion-based biomarkers for mesothelioma diagnosis. RECENT FINDINGS The majority of recent studies have evaluated soluble mesothelin in effusions in a diagnostic setting for mesothelioma. However, at high specificity, the sensitivity of the assay is limited to approximately 60% at the time of diagnosis. There is considerable research effort directed toward the identification of new markers for mesothelioma through a variety of genomic, proteomic and immunomic based platforms. One of the few new biomarkers to be identified through a biomarker discovery pipeline and evaluated in pleural effusions is fibulin-3. Preliminary results on the diagnostic accuracy of fibulin-3 have been inconsistent. SUMMARY To date, soluble mesothelin remains the best available biomarker for mesothelioma and a positive result is clinically useful in patients with pleural effusions in whom the diagnosis is uncertain.
Collapse
|
11
|
Abstract
Malignant mesothelioma is an asbestos-induced, aggressive tumour with limited treatment options and very poor outcome. Currently, there are no tumour biomarkers in widespread clinical use for this disease. Soluble mesothelin is the most intensively investigated mesothelioma biomarker and has been approved by the US FDA primarily as a tool for monitoring patient response and progression. Mesothelin is elevated in the blood and effusions of patients with mesothelioma, and is rarely elevated in people with benign disease with normal renal function. However, the sensitivity of mesothelin limits its use as a stand-alone tool for the screening of the asymptomatic asbestos-exposed population—one of the primary aims of mesothelioma biomarker studies. Thus, there is an intense research effort focused on the identification of new and/or novel biomarkers for mesothelioma. Some of the challenges associated with biomarker discovery in mesothelioma are discussed.
Collapse
|