1
|
Yang F, He X, Wen X, Qu G, Zhang H, Luo Z, Sun S. Integrated lipidomics and microbiomics reveal the quality changes of fresh yak tenderloin during storage. Food Chem X 2024; 24:101984. [PMID: 39629284 PMCID: PMC11612822 DOI: 10.1016/j.fochx.2024.101984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
The changes in lipid and microbial during beef storage exert a substantial impact on the overall quality of beef. In this study, lipidomics and microbiomics were used to evaluate the effects of chilled storage (at 4 °C, CS) and superchilled storage (at -2 °C, SS) on the quality of yak tenderloin. The data revealed that TG, PS, PI, PE, and Car are the key factors contributing to the generation of undesirable odor during the storage of tenderloin. Macrococcus, Lactobacillus, Myroides, and Proteobacteria directly affect the storage quality of yak tenderloin. Integrated analysis revealed that microbial metabolites interact with lipids, resulting in a deterioration of meat quality. These changes are mediated by Myroides, Pseudomonas, and Lactobacillus, which regulate fatty oxidation and metabolism of PE, PI, PS, Cer, and SM. These findings have important implications for understanding the changes in quality and microbial activity of refrigerated meat and meat products.
Collapse
Affiliation(s)
- Feiyan Yang
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Xudong He
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Xin Wen
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Guangfan Qu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Hanzhi Zhang
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Zhang Luo
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, Tibet, China
| | - Shuguo Sun
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| |
Collapse
|
2
|
Haq S, Oyler BL, Williams E, Khan MM, Goodlett DR, Bachvaroff T, Place AR. Investigating A Multi-Domain Polyketide Synthase in Amphidinium carterae. Mar Drugs 2023; 21:425. [PMID: 37623706 PMCID: PMC10455422 DOI: 10.3390/md21080425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Dinoflagellates are unicellular organisms that are implicated in harmful algal blooms (HABs) caused by potent toxins that are produced through polyketide synthase (PKS) pathways. However, the exact mechanisms of toxin synthesis are unknown due to a lack of genomic segregation of fat, toxins, and other PKS-based pathways. To better understand the underlying mechanisms, the actions and expression of the PKS proteins were investigated using the toxic dinoflagellate Amphidinium carterae as a model. Cerulenin, a known ketosynthase inhibitor, was shown to reduce acetate incorporation into all fat classes with the toxins amphidinol and sulpho-amphidinol. The mass spectrometry analysis of cerulenin-reacted synthetic peptides derived from ketosynthase domains of A. carterae multimodular PKS transcripts demonstrated a strong covalent bond that could be localized using collision-induced dissociation. One multi-modular PKS sequence present in all dinoflagellates surveyed to date was found to lack an AT domain in toxin-producing species, indicating trans-acting domains, and was shown by Western blotting to be post-transcriptionally processed. These results demonstrate how toxin synthesis in dinoflagellates can be differentiated from fat synthesis despite common underlying pathway.
Collapse
Affiliation(s)
- Saddef Haq
- Institute for Marine and Environmental Technologies, University of Maryland Center for Environmental Science, 701 East Pratt St., Baltimore, MD 21202, USA; (S.H.); (E.W.); (T.B.)
| | - Benjamin L. Oyler
- University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA; (B.L.O.); (M.M.K.)
| | - Ernest Williams
- Institute for Marine and Environmental Technologies, University of Maryland Center for Environmental Science, 701 East Pratt St., Baltimore, MD 21202, USA; (S.H.); (E.W.); (T.B.)
| | - Mohd M. Khan
- University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA; (B.L.O.); (M.M.K.)
| | - David R. Goodlett
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8S 1P7, Canada;
| | - Tsvetan Bachvaroff
- Institute for Marine and Environmental Technologies, University of Maryland Center for Environmental Science, 701 East Pratt St., Baltimore, MD 21202, USA; (S.H.); (E.W.); (T.B.)
| | - Allen R. Place
- Institute for Marine and Environmental Technologies, University of Maryland Center for Environmental Science, 701 East Pratt St., Baltimore, MD 21202, USA; (S.H.); (E.W.); (T.B.)
| |
Collapse
|
3
|
Mashini AG, Oakley CA, Beepat SS, Peng L, Grossman AR, Weis VM, Davy SK. The Influence of Symbiosis on the Proteome of the Exaiptasia Endosymbiont Breviolum minutum. Microorganisms 2023; 11:292. [PMID: 36838257 PMCID: PMC9967746 DOI: 10.3390/microorganisms11020292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The cellular mechanisms responsible for the regulation of nutrient exchange, immune response, and symbiont population growth in the cnidarian-dinoflagellate symbiosis are poorly resolved. Here, we employed liquid chromatography-mass spectrometry to elucidate proteomic changes associated with symbiosis in Breviolum minutum, a native symbiont of the sea anemone Exaiptasia diaphana ('Aiptasia'). We manipulated nutrients available to the algae in culture and to the holobiont in hospite (i.e., in symbiosis) and then monitored the impacts of our treatments on host-endosymbiont interactions. Both the symbiotic and nutritional states had significant impacts on the B. minutum proteome. B. minutum in hospite showed an increased abundance of proteins involved in phosphoinositol metabolism (e.g., glycerophosphoinositol permease 1 and phosphatidylinositol phosphatase) relative to the free-living alga, potentially reflecting inter-partner signalling that promotes the stability of the symbiosis. Proteins potentially involved in concentrating and fixing inorganic carbon (e.g., carbonic anhydrase, V-type ATPase) and in the assimilation of nitrogen (e.g., glutamine synthase) were more abundant in free-living B. minutum than in hospite, possibly due to host-facilitated access to inorganic carbon and nitrogen limitation by the host when in hospite. Photosystem proteins increased in abundance at high nutrient levels irrespective of the symbiotic state, as did proteins involved in antioxidant defences (e.g., superoxide dismutase, glutathione s-transferase). Proteins involved in iron metabolism were also affected by the nutritional state, with an increased iron demand and uptake under low nutrient treatments. These results detail the changes in symbiont physiology in response to the host microenvironment and nutrient availability and indicate potential symbiont-driven mechanisms that regulate the cnidarian-dinoflagellate symbiosis.
Collapse
Affiliation(s)
| | - Clinton A. Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Sandeep S. Beepat
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Lifeng Peng
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Arthur R. Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Simon K. Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| |
Collapse
|
4
|
Mayfield AB. Multi-macromolecular Extraction from Endosymbiotic Anthozoans. Methods Mol Biol 2023; 2625:17-56. [PMID: 36653630 DOI: 10.1007/978-1-0716-2966-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Obligately symbiotic associations between reef-building corals (anthozoan cnidarians) and photosynthetically active dinoflagellates of the family Symbiodiniaceae comprise the functional basis of all coral reef ecosystems. Given the existential threats of global climate change toward these thermo-sensitive entities, there is an urgent need to better understand the physiological implications of changes in the abiotic milieu of scleractinian corals and their mutualistic algal endosymbionts. Although initially slow to leverage the immense breakthroughs in molecular biotechnology that have benefited humankind, coral biologists are making up for lost time in exploiting an array of ever-advancing molecular tools for answering key questions pertaining to the survival of corals in an ever-changing world. In order to comprehensively characterize the multi-omic landscape of the coral holobiont-the cnidarian host, its intracellular dinoflagellates, and a plethora of other microbial constituents-I introduce a series of protocols herein that yield large quantities of high-quality RNA, DNA, protein, lipids, and polar metabolites from a diverse array of reef corals and endosymbiotic sea anemones. Although numerous published articles in the invertebrate zoology field feature protocols that lead to sufficiently high yield of intact host coral macromolecules, through using the approach outlined herein one may simultaneously acquire a rich, multi-compartmental biochemical pool that truly reflects the complex and dynamic nature of these animal-plant chimeras.
Collapse
|
5
|
de Azevedo-Martins AC, Ocaña K, de Souza W, de Vasconcelos ATR, Teixeira MMG, Camargo EP, Alves JMP, Motta MCM. The Importance of Glycerophospholipid Production to the Mutualist Symbiosis of Trypanosomatids. Pathogens 2021; 11:pathogens11010041. [PMID: 35055989 PMCID: PMC8779180 DOI: 10.3390/pathogens11010041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
The symbiosis in trypanosomatids is a mutualistic relationship characterized by extensive metabolic exchanges between the bacterium and the protozoan. The symbiotic bacterium can complete host essential metabolic pathways, such as those for heme, amino acid, and vitamin production. Experimental assays indicate that the symbiont acquires phospholipids from the host trypanosomatid, especially phosphatidylcholine, which is often present in bacteria that have a close association with eukaryotic cells. In this work, an in-silico study was performed to find genes involved in the glycerophospholipid (GPL) production of Symbiont Harboring Trypanosomatids (SHTs) and their respective bacteria, also extending the search for trypanosomatids that naturally do not have symbionts. Results showed that most genes for GPL synthesis are only present in the SHT. The bacterium has an exclusive sequence related to phosphatidylglycerol production and contains genes for phosphatidic acid production, which may enhance SHT phosphatidic acid production. Phylogenetic data did not indicate gene transfers from the bacterium to the SHT nucleus, proposing that enzymes participating in GPL route have eukaryotic characteristics. Taken together, our data indicate that, differently from other metabolic pathways described so far, the symbiont contributes little to the production of GPLs and acquires most of these molecules from the SHT.
Collapse
Affiliation(s)
- Allan C. de Azevedo-Martins
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 20000-000, RJ, Brazil; (A.C.d.A.-M.); (W.d.S.)
| | - Kary Ocaña
- Laboratório Nacional de Computação Científica, Petropolis 25600-000, RJ, Brazil; (K.O.); (A.T.R.d.V.)
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 20000-000, RJ, Brazil; (A.C.d.A.-M.); (W.d.S.)
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Rio de Janeiro 20000-000, RJ, Brazil
| | | | - Marta M. G. Teixeira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Sao Paulo 05508-000, SP, Brazil; (M.M.G.T.); (E.P.C.)
| | - Erney P. Camargo
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Sao Paulo 05508-000, SP, Brazil; (M.M.G.T.); (E.P.C.)
| | - João M. P. Alves
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Sao Paulo 05508-000, SP, Brazil; (M.M.G.T.); (E.P.C.)
- Correspondence: (J.M.P.A.); (M.C.M.M.)
| | - Maria Cristina M. Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 20000-000, RJ, Brazil; (A.C.d.A.-M.); (W.d.S.)
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Rio de Janeiro 20000-000, RJ, Brazil
- Correspondence: (J.M.P.A.); (M.C.M.M.)
| |
Collapse
|
6
|
Host and Symbiont Cell Cycle Coordination Is Mediated by Symbiotic State, Nutrition, and Partner Identity in a Model Cnidarian-Dinoflagellate Symbiosis. mBio 2020; 11:mBio.02626-19. [PMID: 32156819 PMCID: PMC7064764 DOI: 10.1128/mbio.02626-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biomass regulation is critical to the overall health of cnidarian-dinoflagellate symbioses. Despite the central role of the cell cycle in the growth and proliferation of cnidarian host cells and dinoflagellate symbionts, there are few studies that have examined the potential for host-symbiont coregulation. This study provides evidence for the acceleration of host cell proliferation when in local proximity to clusters of symbionts within cnidarian tentacles. The findings suggest that symbionts augment the cell cycle of not only their enveloping host cells but also neighboring cells in the epidermis and gastrodermis. This provides a possible mechanism for rapid colonization of cnidarian tissues. In addition, the cell cycles of symbionts differed depending on nutritional regime, symbiotic state, and species identity. The responses of cell cycle profiles to these different factors implicate a role for species-specific regulation of symbiont cell cycles within host cnidarian tissues. The cell cycle is a critical component of cellular proliferation, differentiation, and response to stress, yet its role in the regulation of intracellular symbioses is not well understood. To explore host-symbiont cell cycle coordination in a marine symbiosis, we employed a model for coral-dinoflagellate associations: the tropical sea anemone Aiptasia (Exaiptasia pallida) and its native microalgal photosymbionts (Breviolum minutum and Breviolum psygmophilum). Using fluorescent labeling and spatial point-pattern image analyses to characterize cell population distributions in both partners, we developed protocols that are tailored to the three-dimensional cellular landscape of a symbiotic sea anemone tentacle. Introducing cultured symbiont cells to symbiont-free adult hosts increased overall host cell proliferation rates. The acceleration occurred predominantly in the symbiont-containing gastrodermis near clusters of symbionts but was also observed in symbiont-free epidermal tissue layers, indicating that the presence of symbionts contributes to elevated proliferation rates in the entire host during colonization. Symbiont cell cycle progression differed between cultured algae and those residing within hosts; the endosymbiotic state resulted in increased S-phase but decreased G2/M-phase symbiont populations. These phenotypes and the deceleration of cell cycle progression varied with symbiont identity and host nutritional status. These results demonstrate that host and symbiont cells have substantial and species-specific effects on the proliferation rates of their mutualistic partners. This is the first empirical evidence to support species-specific regulation of the symbiont cell cycle within a single cnidarian-dinoflagellate association; similar regulatory mechanisms likely govern interpartner coordination in other coral-algal symbioses and shape their ecophysiological responses to a changing climate.
Collapse
|
7
|
Genome-Wide Analysis of Cell Cycle-Regulating Genes in the Symbiotic Dinoflagellate Breviolum minutum. G3-GENES GENOMES GENETICS 2019; 9:3843-3853. [PMID: 31551286 PMCID: PMC6829154 DOI: 10.1534/g3.119.400363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A delicate relationship exists between reef-building corals and their photosynthetic endosymbionts. Unfortunately, this relationship can be disrupted, with corals expelling these algae when temperatures rise even marginally above the average summer maximum. Interestingly, several studies indicate that failure of corals to regulate symbiont cell divisions at high temperatures may underlie this disruption; increased proliferation of symbionts may stress host cells by over-production of reactive oxygen species or by disrupting the flow of nutrients. This needs to be further investigated, so to begin deciphering the molecular mechanisms controlling the cell cycle in these organisms, we used a computational approach to identify putative cell cycle-regulating genes in the genome of the dinoflagellate Breviolum minutum. This species is important as an endosymbiont of Aiptasia pallida—an anemone that is used as a model for studying coral biology. We then correlated expression of these putative cell cycle genes with cell cycle phase in diurnally growing B. minutum in culture. This approach allowed us to identify a cyclin/cyclin-dependent kinase pair that may function in the G1/S transition—a likely point for coral cells to exert control over algal cell divisions.
Collapse
|
8
|
Hill LJ, Paradas WC, Willemes MJ, Pereira MG, Salomon PS, Mariath R, Moura RL, Atella GC, Farina M, Amado-Filho GM, Salgado LT. Acidification-induced cellular changes in Symbiodinium isolated from Mussismilia braziliensis. PLoS One 2019; 14:e0220130. [PMID: 31381568 PMCID: PMC6681953 DOI: 10.1371/journal.pone.0220130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/09/2019] [Indexed: 01/27/2023] Open
Abstract
Dinoflagellates from the Symbiodiniaceae family and corals have an ecologically important endosymbiotic relationship. Scleractinian corals cannot survive for long periods without their symbionts. These algae, also known as zooxanthellae, on the other hand, thrives outside the coral cells. The free-living populations of zooxanthellae are essential for the resilience of the coral to environmental stressors such as temperature anomalies and ocean acidification. Yet, little is known about how ocean acidification may affect the free-living zooxanthellae. In this study we aimed to test morphological, physiological and biochemical responses of zooxanthellae from the Symbiodinium genus isolated from the coral Mussismilia braziliensis, endemic to the Brazilian coast, to acidification led by increased atmospheric CO2. We tested whether photosynthetic yield, cell ultrastructure, cell density and lipid profile would change after up to 16 days of exposure to pH 7.5 in an atmospheric pCO2 of 1633 μatm. Photosynthetic yield and cell density were negatively affected and chloroplasts showed vesiculated thylakoids, indicating morphological damage. Moreover, Symbiodinium fatty acid profile drastically changed in acidified condition, showing lower polyunsaturated fatty acids and higher saturated fatty acids contents, when compared to the control, non-acidified condition. These results show that seawater acidification as an only stressor causes significant changes in the physiology, biochemistry and ultrastructure of free-living Symbiodinium.
Collapse
Affiliation(s)
- Lilian J Hill
- Diretoria de Pesquisas, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wladimir C Paradas
- Diretoria de Pesquisas, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Julia Willemes
- Diretoria de Pesquisas, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Miria G Pereira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Paulo S Salomon
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Rodrigo Mariath
- Diretoria de Pesquisas, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo L Moura
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Georgia C Atella
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marcos Farina
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Gilberto M Amado-Filho
- Diretoria de Pesquisas, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo T Salgado
- Diretoria de Pesquisas, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Abstract
Herein we propose an ambitious confrontation of the current coral reef crisis through the establishment of a "Coral Hospital." In an analogous manner to a human hospital, "sick" corals will first be diagnosed either in situ or in the hospital's diagnostic "clinic" such that the root cause of illness can be discerned (e.g., disease, high temperatures, or pollutant stress). Then, corals will be "treated" (when necessary) and allowed to "convalesce" in precisely controlled coral husbandry facilities. Upon "rehabilitation," the recovered corals will be returned to their home reef (if this reef was not found to have degraded), or, alternatively, to a site featuring oceanographic conditions favoring a high level of health, as determined by husbandry experiments performed in other hospital "wards." When possible, diagnostic data from the sick corals (i.e., the underlying cause of sickness) will be used to guide environmental remediation schemes aimed at promoting coral resilience in the ocean. If the home reef improves to an appreciable extent during the time the corals are "hospitalized," these corals could be replanted there upon rehabilitation. Regardless of the site of outplanting, recuperated corals will be monitored over time to validate the "quality of care" in the hospital. In the event that the home reefs suffer to such an extent that environmental mitigation is no longer possible, coral gametes will be collected and cryopreserved such that they may be fertilized, reared in officinarum, and later reseeded once/if global marine conditions again permit coral survival.
Collapse
Affiliation(s)
- Anderson B Mayfield
- 1Taiwan Coral Research Center, National Museum of Marine Biology and Aquarium, Checheng, Taiwan
| | - Sujune Tsai
- 2Department of Post-Modern Agriculture, Ming-Dao University, Beidou, Taiwan
| | - Chiahsin Lin
- 1Taiwan Coral Research Center, National Museum of Marine Biology and Aquarium, Checheng, Taiwan.,3Graduate Institute of Marine Biology, National Dong-Hwa University, Checheng, Taiwan
| |
Collapse
|
10
|
Farag MA, Meyer A, Ali SE, Salem MA, Giavalisco P, Westphal H, Wessjohann LA. Comparative Metabolomics Approach Detects Stress-Specific Responses during Coral Bleaching in Soft Corals. J Proteome Res 2018; 17:2060-2071. [PMID: 29671321 DOI: 10.1021/acs.jproteome.7b00929] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic exposure to ocean acidification and elevated sea-surface temperatures pose significant stress to marine ecosystems. This in turn necessitates costly acclimation responses in corals in both the symbiont and host, with a reorganization of cell metabolism and structure. A large-scale untargeted metabolomics approach comprising gas chromatography mass spectrometry (GC-MS) and ultraperformance liquid chromatography coupled to high resolution mass spectrometry (UPLC-MS) was applied to profile the metabolite composition of the soft coral Sarcophyton ehrenbergi and its dinoflagellate symbiont. Metabolite profiling compared ambient conditions with response to simulated climate change stressors and with the sister species, S. glaucum. Among ∼300 monitored metabolites, 13 metabolites were modulated. Incubation experiments providing four selected upregulated metabolites (alanine, GABA, nicotinic acid, and proline) in the culturing water failed to subside the bleaching response at temperature-induced stress, despite their known ability to mitigate heat stress in plants or animals. Thus, the results hint to metabolite accumulation (marker) during heat stress. This study provides the first detailed map of metabolic pathways transition in corals in response to different environmental stresses, accounting for the superior thermal tolerance of S. ehrenbergi versus S. glaucum, which can ultimately help maintain a viable symbiosis and mitigate against coral bleaching.
Collapse
Affiliation(s)
- Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy , Cairo University , Kasr el Aini st. P.B. , 11562 Cairo , Egypt.,Department of Chemistry, School of Sciences & Engineering , The American University in Cairo (AUC) , New Cairo 11835 , Egypt
| | - Achim Meyer
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheit Str. 6 , D-28359 Bremen , Germany
| | - Sara E Ali
- Department of Pharmaceutical Biology, Faculty of Pharmacy & Biotechnology , The German University in Cairo , New Cairo 11432 , Egypt
| | - Mohamed A Salem
- Pharmacognosy Department, College of Pharmacy , Cairo University , Kasr el Aini st. P.B. , 11562 Cairo , Egypt.,Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1 , Golm, Potsdam 14476 , Germany
| | - Patrick Giavalisco
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1 , Golm, Potsdam 14476 , Germany
| | - Hildegard Westphal
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheit Str. 6 , D-28359 Bremen , Germany.,Department of Geosciences , University of Bremen , 28359 Bremen , Germany
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry , Leibniz Institute of Plant Biochemistry , Weinberg 3 , D-06120 Halle (Saale) , Germany
| |
Collapse
|
11
|
Fujise L, Nitschke MR, Frommlet JC, Serôdio J, Woodcock S, Ralph PJ, Suggett DJ. Cell Cycle Dynamics of Cultured Coral Endosymbiotic Microalgae (
Symbiodinium
) Across Different Types (Species) Under Alternate Light and Temperature Conditions. J Eukaryot Microbiol 2018; 65:505-517. [DOI: 10.1111/jeu.12497] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/17/2017] [Accepted: 12/19/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Lisa Fujise
- Climate Change Cluster University of Technology Sydney Broadway New South Wales 2007 Australia
| | - Matthew R. Nitschke
- Climate Change Cluster University of Technology Sydney Broadway New South Wales 2007 Australia
- Department of Biology and Center for Environmental and Marine Studies University of Aveiro Aveiro 3810‐193 Portugal
| | - Jörg C. Frommlet
- Department of Biology and Center for Environmental and Marine Studies University of Aveiro Aveiro 3810‐193 Portugal
| | - João Serôdio
- Department of Biology and Center for Environmental and Marine Studies University of Aveiro Aveiro 3810‐193 Portugal
| | - Stephen Woodcock
- Climate Change Cluster University of Technology Sydney Broadway New South Wales 2007 Australia
| | - Peter J. Ralph
- Climate Change Cluster University of Technology Sydney Broadway New South Wales 2007 Australia
| | - David J. Suggett
- Climate Change Cluster University of Technology Sydney Broadway New South Wales 2007 Australia
| |
Collapse
|
12
|
Mayfield AB, Chen YJ, Lu CY, Chen CS. The proteomic response of the reef coral Pocillopora acuta to experimentally elevated temperatures. PLoS One 2018; 13:e0192001. [PMID: 29385204 PMCID: PMC5792016 DOI: 10.1371/journal.pone.0192001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/15/2018] [Indexed: 12/12/2022] Open
Abstract
Although most reef-building corals live near the upper threshold of their thermotolerance, some scleractinians are resilient to temperature increases. For instance, Pocillopora acuta specimens from an upwelling habitat in Southern Taiwan survived a nine-month experimental exposure to 30°C, a temperature hypothesized to induce stress. To gain a greater understanding of the molecular pathways underlying such high-temperature acclimation, the protein profiles of experimental controls incubated at 27°C were compared to those of conspecific P. acuta specimens exposed to 30°C for two, four, or eight weeks, and differentially concentrated proteins (DCPs) were removed from the gels and sequenced with mass spectrometry. Sixty unique DCPs were uncovered across both eukaryotic compartments of the P. acuta-dinoflagellate (genus Symbiodinium) mutualism, and Symbiodinium were more responsive to high temperature at the protein-level than the coral hosts in which they resided at the two-week sampling time. Furthermore, proteins involved in the stress response were more likely to be documented at different cellular concentrations across temperature treatments in Symbiodinium, whereas the temperature-sensitive host coral proteome featured numerous proteins involved in cytoskeletal structure, immunity, and metabolism. These proteome-scale data suggest that the coral host and its intracellular dinoflagellates have differing strategies for acclimating to elevated temperatures.
Collapse
Affiliation(s)
- Anderson B. Mayfield
- Khaled bin Sultan Living Oceans Foundation, Annapolis, MD, United States of America
- Taiwan Coral Research Center, Checheng, Pingtung, Taiwan
- * E-mail:
| | - Yi-Jyun Chen
- Taiwan Coral Research Center, Checheng, Pingtung, Taiwan
| | - Chi-Yu Lu
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Research Resources and Development, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chii-Shiarng Chen
- Taiwan Coral Research Center, Checheng, Pingtung, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Graduate Institute of Marine Biotechnology, National Dong-Hwa University, Checheng, Pingtung, Taiwan
| |
Collapse
|
13
|
Rey F, Costa ED, Campos AM, Cartaxana P, Maciel E, Domingues P, Domingues MRM, Calado R, Cruz S. Kleptoplasty does not promote major shifts in the lipidome of macroalgal chloroplasts sequestered by the sacoglossan sea slug Elysia viridis. Sci Rep 2017; 7:11502. [PMID: 28904377 PMCID: PMC5597624 DOI: 10.1038/s41598-017-12008-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/31/2017] [Indexed: 01/19/2023] Open
Abstract
Sacoglossan sea slugs, also known as crawling leaves due to their photosynthetic activity, are highly selective feeders that incorporate chloroplasts from specific macroalgae. These “stolen” plastids - kleptoplasts - are kept functional inside animal cells and likely provide an alternative source of energy to their host. The mechanisms supporting the retention and functionality of kleptoplasts remain unknown. A lipidomic mass spectrometry-based analysis was performed to study kleptoplasty of the sacoglossan sea slug Elysia viridis fed with Codium tomentosum. Total lipid extract of both organisms was fractionated. The fraction rich in glycolipids, exclusive lipids from chloroplasts, and the fraction rich in betaine lipids, characteristic of algae, were analysed using hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-LC-MS). This approach allowed the identification of 81 molecular species, namely galactolipids (8 in both organisms), sulfolipids (17 in C. tomentosum and 13 in E. viridis) and betaine lipids (51 in C. tomentosum and 41 in E. viridis). These lipid classes presented similar lipidomic profiles in C. tomentosum and E. viridis, indicating that the necessary mechanisms to perform photosynthesis are preserved during the process of endosymbiosis. The present study shows that there are no major shifts in the lipidome of C. tomentosum chloroplasts sequestered by E. viridis.
Collapse
Affiliation(s)
- Felisa Rey
- Departamento de Biologia & CESAM & ECOMARE, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Elisabete da Costa
- Centro de Espetrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Ana M Campos
- Centro de Espetrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Paulo Cartaxana
- Departamento de Biologia & CESAM & ECOMARE, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Elisabete Maciel
- Departamento de Biologia & CESAM & ECOMARE, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.,Centro de Espetrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Pedro Domingues
- Centro de Espetrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - M Rosário M Domingues
- Centro de Espetrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Ricardo Calado
- Departamento de Biologia & CESAM & ECOMARE, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Sónia Cruz
- Departamento de Biologia & CESAM & ECOMARE, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
14
|
Zhang Y, Zhang SF, Lin L, Wang DZ. Whole Transcriptomic Analysis Provides Insights into Molecular Mechanisms for Toxin Biosynthesis in a Toxic Dinoflagellate Alexandrium catenella (ACHK-T). Toxins (Basel) 2017; 9:E213. [PMID: 28678186 PMCID: PMC5535160 DOI: 10.3390/toxins9070213] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/30/2017] [Accepted: 07/01/2017] [Indexed: 11/25/2022] Open
Abstract
Paralytic shellfish toxins (PSTs), a group of neurotoxic alkaloids, are the most potent biotoxins for aquatic ecosystems and human health. Marine dinoflagellates and freshwater cyanobacteria are two producers of PSTs. The biosynthesis mechanism of PSTs has been well elucidated in cyanobacteria; however, it remains ambiguous in dinoflagellates. Here, we compared the transcriptome profiles of a toxin-producing dinoflagellate Alexandrium catenella (ACHK-T) at different toxin biosynthesis stages within the cell cycle using RNA-seq. The intracellular toxin content increased gradually in the middle G1 phase and rapidly in the late G1 phase, and then remained relatively stable in other phases. Samples from four toxin biosynthesis stages were selected for sequencing, and finally yielded 110,370 unigenes, of which 66,141 were successfully annotated in the known databases. An analysis of differentially expressed genes revealed that 2866 genes altered significantly and 297 were co-expressed throughout the four stages. These genes participated mainly in protein metabolism, carbohydrate metabolism, and the oxidation-reduction process. A total of 138 homologues of toxin genes were identified, but they altered insignificantly among different stages, indicating that toxin biosynthesis might be regulated translationally or post-translationally. Our results will serve as an important transcriptomic resource to characterize key molecular processes underlying dinoflagellate toxin biosynthesis.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Shu-Fei Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
15
|
Gierz SL, Forêt S, Leggat W. Transcriptomic Analysis of Thermally Stressed Symbiodinium Reveals Differential Expression of Stress and Metabolism Genes. FRONTIERS IN PLANT SCIENCE 2017; 8:271. [PMID: 28293249 PMCID: PMC5328969 DOI: 10.3389/fpls.2017.00271] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/14/2017] [Indexed: 05/29/2023]
Abstract
Endosymbioses between dinoflagellate algae (Symbiodinium sp.) and scleractinian coral species form the foundation of coral reef ecosystems. The coral symbiosis is highly susceptible to elevated temperatures, resulting in coral bleaching, where the algal symbiont is released from host cells. This experiment aimed to determine the transcriptional changes in cultured Symbiodinium, to better understand the response of cellular mechanisms under future temperature conditions. Cultures were exposed to elevated temperatures (average 31°C) or control conditions (24.5°C) for a period of 28 days. Whole transcriptome sequencing of Symbiodinium cells on days 4, 19, and 28 were used to identify differentially expressed genes under thermal stress. A large number of genes representing 37.01% of the transcriptome (∼23,654 unique genes, FDR < 0.05) with differential expression were detected at no less than one of the time points. Consistent with previous studies of Symbiodinium gene expression, fold changes across the transcriptome were low, with 92.49% differentially expressed genes at ≤2-fold change. The transcriptional response included differential expression of genes encoding stress response components such as the antioxidant network and molecular chaperones, cellular components such as core photosynthesis machinery, integral light-harvesting protein complexes and enzymes such as fatty acid desaturases. Differential expression of genes encoding glyoxylate cycle enzymes were also found, representing the first report of this in Symbiodinium. As photosynthate transfer from Symbiodinium to coral hosts provides up to 90% of a coral's daily energy requirements, the implications of altered metabolic processes from exposure to thermal stress found in this study on coral-Symbiodinium associations are unknown and should be considered when assessing the stability of the symbiotic relationship under future climate conditions.
Collapse
Affiliation(s)
- Sarah L. Gierz
- College of Public Health, Medical and Veterinary Sciences, James Cook University, TownsvilleQLD, Australia
- Comparative Genomics Centre, James Cook University, TownsvilleQLD, Australia
| | - Sylvain Forêt
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, TownsvilleQLD, Australia
- Evolution, Ecology and Genetics, Research School of Biology, Australian National University, CanberraACT, Australia
| | - William Leggat
- College of Public Health, Medical and Veterinary Sciences, James Cook University, TownsvilleQLD, Australia
- Comparative Genomics Centre, James Cook University, TownsvilleQLD, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, TownsvilleQLD, Australia
| |
Collapse
|
16
|
Chen WNU, Hsiao YJ, Mayfield AB, Young R, Hsu LL, Peng SE. Transmission of a heterologous clade C Symbiodinium in a model anemone infection system via asexual reproduction. PeerJ 2016; 4:e2358. [PMID: 27635330 PMCID: PMC5012276 DOI: 10.7717/peerj.2358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 07/22/2016] [Indexed: 12/15/2022] Open
Abstract
Anemones of genus Exaiptasia are used as model organisms for the study of cnidarian-dinoflagellate (genus Symbiodinium) endosymbiosis. However, while most reef-building corals harbor Symbiodinium of clade C, Exaiptasia spp. anemones mainly harbor clade B Symbiodinium (ITS2 type B1) populations. In this study, we reveal for the first time that bleached Exaiptasia pallida anemones can establish a symbiotic relationship with a clade C Symbiodinium (ITS2 type C1). We further found that anemones can transmit the exogenously supplied clade C Symbiodinium cells to their offspring by asexual reproduction (pedal laceration). In order to corroborate the establishment of stable symbiosis, we used microscopic techniques and genetic analyses to examine several generations of anemones, and the results of these endeavors confirmed the sustainability of the system. These findings provide a framework for understanding the differences in infection dynamics between homologous and heterologous dinoflagellate types using a model anemone infection system.
Collapse
Affiliation(s)
- Wan-Nan U. Chen
- Department of Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Ya-Ju Hsiao
- National Museum of Marine Biology and Aquarium, Checheng, Pingtung, Taiwan
| | - Anderson B. Mayfield
- National Museum of Marine Biology and Aquarium, Checheng, Pingtung, Taiwan
- Living Oceans Foundation, Landover, MD, United States of America
| | - Ryan Young
- University of California, Davis, United States
| | - Ling-Lan Hsu
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shao-En Peng
- National Museum of Marine Biology and Aquarium, Checheng, Pingtung, Taiwan
- Graduate Institute of Marine Biology, National Dong Hwa University, Checheng, Pingtung, Taiwan
| |
Collapse
|
17
|
Ferrier-Pagès C, Godinot C, D'Angelo C, Wiedenmann J, Grover R. Phosphorus metabolism of reef organisms with algal symbionts. ECOL MONOGR 2016. [DOI: 10.1002/ecm.1217] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Claire Godinot
- Centre Scientifique de Monaco; 8 Quai Antoine 1er Monaco
| | - Cecilia D'Angelo
- Coral Reef Laboratory; University of Southampton (Waterfront Campus); European Way SO143ZH Southampton United Kingdom
| | - Jörg Wiedenmann
- Coral Reef Laboratory; University of Southampton (Waterfront Campus); European Way SO143ZH Southampton United Kingdom
| | - Renaud Grover
- Centre Scientifique de Monaco; 8 Quai Antoine 1er Monaco
| |
Collapse
|
18
|
Hillyer KE, Tumanov S, Villas-Bôas S, Davy SK. Metabolite profiling of symbiont and host during thermal stress and bleaching in a model cnidarian-dinoflagellate symbiosis. ACTA ACUST UNITED AC 2015; 219:516-27. [PMID: 26685173 DOI: 10.1242/jeb.128660] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/25/2015] [Indexed: 02/03/2023]
Abstract
Bleaching (dinoflagellate symbiont loss) is one of the greatest threats facing coral reefs. The functional cnidarian-dinoflagellate symbiosis, which forms coral reefs, is based on the bi-directional exchange of nutrients. During thermal stress this exchange breaks down; however, major gaps remain in our understanding of the roles of free metabolite pools in symbiosis and homeostasis. In this study we applied gas chromatography-mass spectrometry (GC-MS) to explore thermally induced changes in intracellular pools of amino and non-amino organic acids in each partner of the model sea anemone Aiptasia sp. and its dinoflagellate symbiont. Elevated temperatures (32 °C for 6 days) resulted in symbiont photoinhibition and bleaching. Thermal stress induced distinct changes in the metabolite profiles of both partners, associated with alterations to central metabolism, oxidative state, cell structure, biosynthesis and signalling. Principally, we detected elevated pools of polyunsaturated fatty acids (PUFAs) in the symbiont, indicative of modifications to lipogenesis/lysis, membrane structure and nitrogen assimilation. In contrast, reductions of multiple PUFAs were detected in host pools, indicative of increased metabolism, peroxidation and/or reduced translocation of these groups. Accumulations of glycolysis intermediates were also observed in both partners, associated with photoinhibition and downstream reductions in carbohydrate metabolism. Correspondingly, we detected accumulations of amino acids and intermediate groups in both partners, with roles in gluconeogenesis and acclimation responses to oxidative stress. These data further our understanding of cellular responses to thermal stress in the symbiosis and generate hypotheses relating to the secondary roles of a number of compounds in homeostasis and heat-stress resistance.
Collapse
Affiliation(s)
- Katie E Hillyer
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Sergey Tumanov
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Silas Villas-Bôas
- Metabolomics Laboratory, School of Biological Sciences, The University of Auckland, Private Bag 92019 Auckland Mail Centre, Auckland 1142, New Zealand
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| |
Collapse
|
19
|
Wang LH, Chen HK, Jhu CS, Cheng JO, Fang LS, Chen CS. Different strategies of energy storage in cultured and freshly isolated Symbiodinium sp. JOURNAL OF PHYCOLOGY 2015; 51:1127-1136. [PMID: 26987007 DOI: 10.1111/jpy.12349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/04/2015] [Indexed: 06/05/2023]
Abstract
The endosymbiotic relationship between cnidarians and Symbiodinium is critical for the survival of coral reefs. In this study, we developed a protocol to rapidly and freshly separate Symbiodinium from corals and sea anemones. Furthermore, we compared these freshly-isolated Symbiodinium with cultured Symbiodinium to investigate host and Symbiodinium interaction. Clade B Symbiodinium had higher starch content and lower lipid content than those of clades C and D in both freshly isolated and cultured forms. Clade C had the highest lipid content, particularly when associated with corals. Moreover, the coral-associated Symbiodinium had higher protein content than did cultured and sea anemone-associated Symbiodinium. Regarding fatty acid composition, cultured Symbiodinium and clades B, C, and D shared similar patterns, whereas sea anemone-associated Symbiodinium had a distinct pattern compared coral-associated Symbiodinium. Specifically, the levels of monounsaturated fatty acids were lower than those of the saturated fatty acids, and the level of polyunsaturated fatty acids (PUFAs) were the highest in all examined Symbiodinium. Furthermore, PUFAs levels were higher in coral-associated Symbiodinium than in cultured Symbiodinium. These results altogether indicated that different Symbiodinium clades used different energy storage strategies, which might be modified by hosts.
Collapse
Affiliation(s)
- Li-Hsueh Wang
- National Museum of Marine Biology and Aquarium, 2 Houwan Road, Checheng, Pingtung, 944, Taiwan
- Graduate Institute of Marine Biology, National Dong Hwa University, Hualien, 974, Taiwan
| | - Hung-Kai Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 704, Taiwan
| | - Chu-Sian Jhu
- Graduate Institute of Marine Biology, National Dong Hwa University, Hualien, 974, Taiwan
| | - Jing-O Cheng
- National Museum of Marine Biology and Aquarium, 2 Houwan Road, Checheng, Pingtung, 944, Taiwan
| | - Lee-Shing Fang
- Department of Sports, Health and Leisure, Cheng Shiu University, Kaohsiung, 833, Taiwan
| | - Chii-Shiarng Chen
- National Museum of Marine Biology and Aquarium, 2 Houwan Road, Checheng, Pingtung, 944, Taiwan
- Graduate Institute of Marine Biology, National Dong Hwa University, Hualien, 974, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 704, Taiwan
| |
Collapse
|
20
|
Chen HK, Song SN, Wang LH, Mayfield AB, Chen YJ, Chen WNU, Chen CS. A Compartmental Comparison of Major Lipid Species in a Coral-Symbiodinium Endosymbiosis: Evidence that the Coral Host Regulates Lipogenesis of Its Cytosolic Lipid Bodies. PLoS One 2015. [PMID: 26218797 PMCID: PMC4517871 DOI: 10.1371/journal.pone.0132519] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The lipid body (LB) formation in the host coral gastrodermal cell cytoplasm is a hallmark of the coral-Symbiodinium endosymbiosis, and such lipid-based entities are not found in endosymbiont-free cnidarian cells. Therefore, the elucidation of lipogenesis regulation in LBs and how it is related to the lipid metabolism of the host and endosymbiont could provide direct insight to understand the symbiosis mechanism. Herein, the lipid composition of host cells of the stony coral Euphyllia glabrescens, as well as that of their cytoplasmic LBs and in hospite Symbiodinium populations, was examined by high performance liquid chromatography (HPLC) and gas chromatography/mass spectrometry (GC/MS), and six major lipid species were identified: wax esters, sterol esters, triacylglycerols, cholesterols, free fatty acids, and phospholipids. Their concentrations differed significantly between host coral cells, LBs, and Symbiodinium, suggesting compartmental regulation. WE were only present in the host coral and were particularly highly concentrated in LBs. Amongst the four species of WE, the monoene R = C18:1/R = C16 was found to be LB-specific and was not present in the host gastrodermal cell cytoplasm. Furthermore, the acyl pool profiles of the individual LB lipid species were more similar, but not equal to, those of the host gastrodermal cells in which they were located, indicating partially autonomous lipid metabolism in these LBs. Nevertheless, given the overall similarity in the host gastrodermal cell and LB lipid profiles, these data suggest that a significant portion of the LB lipids may be of host coral origin. Finally, lipid profiles of the in hospite Symbiodinium populations were significantly distinct from those of the cultured Symbiodinium, potentially suggesting a host regulation effect that may be fundamental to lipid metabolism in endosymbiotic associations involving clade C Symbiodinium.
Collapse
Affiliation(s)
- Hung-Kai Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Shin-Ni Song
- Graduate Institute of Marine Biology, National Dong-Hwa University, Pingtung, 944, Taiwan
| | - Li-Hsueh Wang
- Graduate Institute of Marine Biology, National Dong-Hwa University, Pingtung, 944, Taiwan
- Taiwan Coral Research Center, National Museum of Marine Biology and Aquarium, Pingtung, 944, Taiwan
| | - Anderson B. Mayfield
- Taiwan Coral Research Center, National Museum of Marine Biology and Aquarium, Pingtung, 944, Taiwan
- Living Oceans Foundation, Landover, MD, 20785, United States of America
| | - Yi-Jyun Chen
- Taiwan Coral Research Center, National Museum of Marine Biology and Aquarium, Pingtung, 944, Taiwan
| | - Wan-Nan U. Chen
- Department of Biological Science and Technology, I-Shou University, Kaohsiung, 805, Taiwan
- * E-mail: (CSC); (WNC)
| | - Chii-Shiarng Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Graduate Institute of Marine Biology, National Dong-Hwa University, Pingtung, 944, Taiwan
- Taiwan Coral Research Center, National Museum of Marine Biology and Aquarium, Pingtung, 944, Taiwan
- * E-mail: (CSC); (WNC)
| |
Collapse
|
21
|
Mayfield AB, Wang YB, Chen CS, Lin CY, Chen SH. Compartment-specific transcriptomics in a reef-building coral exposed to elevated temperatures. Mol Ecol 2015; 23:5816-30. [PMID: 25354956 PMCID: PMC4265203 DOI: 10.1111/mec.12982] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 12/27/2022]
Abstract
Although rising ocean temperatures threaten scleractinian corals and the reefs they construct, certain reef corals can acclimate to elevated temperatures to which they are rarely exposed in situ. Specimens of the model Indo-Pacific reef coral Pocillopora damicornis collected from upwelling reefs of Southern Taiwan were previously found to have survived a 36-week exposure to 30°C, a temperature they encounter infrequently and one that can elicit the breakdown of the coral–dinoflagellate (genus Symbiodinium) endosymbiosis in many corals of the Pacific Ocean. To gain insight into the subcellular pathways utilized by both the coral hosts and their mutualistic Symbiodinium populations to acclimate to this temperature, mRNAs from both control (27°C) and high (30°C)-temperature samples were sequenced on an Illumina platform and assembled into a 236 435-contig transcriptome. These P. damicornis specimens were found to be ∼60% anthozoan and 40% microbe (Symbiodinium, other eukaryotic microbes, and bacteria), from an mRNA-perspective. Furthermore, a significantly higher proportion of genes from the Symbiodinium compartment were differentially expressed after two weeks of exposure. Specifically, at elevated temperatures, Symbiodinium populations residing within the coral gastrodermal tissues were more likely to up-regulate the expression of genes encoding proteins involved in metabolism than their coral hosts. Collectively, these transcriptome-scale data suggest that the two members of this endosymbiosis have distinct strategies for acclimating to elevated temperatures that are expected to characterize many of Earth's coral reefs in the coming decades.
Collapse
Affiliation(s)
- Anderson B Mayfield
- National Museum of Marine Biology and Aquarium, 2 Houwan Rd., Checheng, Pingtung, 944, Taiwan; Living Oceans Foundation, 8181 Professional Place, Suite 215, Landover, MD, 20785, USA
| | | | | | | | | |
Collapse
|
22
|
Wang P, Ouyang L, Zheng L, Wang Z. Identifying hepatocellular carcinoma-related genes and pathways by system biology analysis. Ir J Med Sci 2014; 184:357-64. [PMID: 24744259 DOI: 10.1007/s11845-014-1119-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/31/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND Previous researches have been focused on revealing the functions of each individual gene and/or pathway in the initiation, progression and maintenance of hepatocellular carcinoma (HCC). However, the mechanistic relationships among different genes and/or pathways are largely unknown. AIMS In this study, we tended to uncover the potential molecular networks and critical genes which play important roles in HCC progression. METHODS The transcriptional profiles from normal and HCC patient samples were analyzed and compared using bioinformatic methods, including differentially expressed gene (DEG) analysis, hierarchical clustering, construction of protein-protein interaction (PPI) network and GO-Elite analysis. RESULTS Initially, the normal and HCC sample data were processed and 679 most dramatic DEGs were identified. The PPI network analysis indicates the significance of multiple biological processes as well as signaling pathways in affecting liver function and HCC progression. In addition, hierarchical clustering analysis showed the most significant modules and identified the relationship between different genes, and some important genes such as FOS, IGF1, ADH4, ITGA2 and LEF1 were found to be hubs which master each individual module. CONCLUSION Our study greatly improves the understanding of the HCC development in a systematic manner and provides the potential clue for exploiting drugs which might target the most significant genes and/or signaling pathways.
Collapse
Affiliation(s)
- P Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, Hunan, China
| | | | | | | |
Collapse
|