1
|
Weber R, Weller M, Reifenberger G, Vasella F. Epigenetic modification and characterization of the MGMT promoter region using CRISPRoff in glioblastoma cells. Front Oncol 2024; 14:1342114. [PMID: 38357209 PMCID: PMC10864556 DOI: 10.3389/fonc.2024.1342114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024] Open
Abstract
The methylation status of the O6-methylguanine DNA methyltransferase (MGMT) promoter region is a critical predictor of response to alkylating agents in glioblastoma. However, current approaches to study the MGMT status focus on analyzing models with non-identical backgrounds. Here, we present an epigenetic editing approach using CRISPRoff to introduce site-specific CpG methylation in the MGMT promoter region of glioma cell lines. Sanger sequencing revealed successful introduction of methylation, effectively generating differently methylated glioma cell lines with an isogenic background. The introduced methylation resulted in reduced MGMT mRNA and protein levels. Furthermore, the cell lines with MGMT promoter region methylation exhibited increased sensitivity to temozolomide, consistent with the impact of methylation on treatment outcomes in patients with glioblastoma. This precise epigenome-editing approach provides valuable insights into the functional relevance of MGMT promoter regional methylation and its potential for prognostic and predictive assessments, as well as epigenetic-targeted therapies.
Collapse
Affiliation(s)
- Remi Weber
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University of Zurich, Zurich, Switzerland
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Flavio Vasella
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Wang Z, Liu Z, Wang PS, Lin HP, Rea M, Kondo K, Yang C. Epigenetic downregulation of O 6-methylguanine-DNA methyltransferase contributes to chronic hexavalent chromium exposure-caused genotoxic effect and cell transformation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122978. [PMID: 37995958 PMCID: PMC11372728 DOI: 10.1016/j.envpol.2023.122978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/07/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Hexavalent chromium [Cr(VI)] is a common environmental pollutant and chronic exposure to Cr(VI) causes lung cancer and other types of cancer in humans, although the mechanism of Cr(VI) carcinogenesis remains elusive. Cr(VI) has been considered as a genotoxic carcinogen, but accumulating evidence indicates that Cr(VI) also causes various epigenetic toxic effects that play important roles in Cr(VI) carcinogenesis. However, it is not clear how Cr(VI)-caused epigenetic dysregulations contributes to Cr(VI) carcinogenesis. This study investigates whether Cr(VI) epigenetic toxic effect has an impact on its genotoxic effect. It was found that chronic low dose of Cr(VI) exposure time-dependently down-regulates the expression of a critical DNA damage repair protein O6-methylguanine-DNA methyltransferase (MGMT), leading to the increases of the levels of the highly mutagenic and carcinogenic DNA lesion O6-methylguanine (O6-MeG) in human bronchial epithelial BEAS-2B cells. Moreover, the levels of MGMT and O6-MeG in chronic Cr(VI) exposure-caused human lung cancer tissues are also significantly lower and higher than that in the adjacent normal lung tissues, respectively. It was further determined that chronic low dose of Cr(VI) exposure-transformed BEAS-2B cells display impaired DNA damage repair capacity and a high sensitivity to the toxicity of the alkylating chemotherapeutic drug Temozolomide. In contrast, stably overexpressing MGMT in parental BEAS-2B cells reverses chronic low dose of Cr(VI) exposure-caused DNA damage repair deficiency and significantly reduces cell transformation by Cr(VI). Further mechanistical studies revealed that chronic low dose of Cr(VI) exposure down-regulates MGMT expression through epigenetic mechanisms by increasing DNA methylation and histone H3 repressive modifications. Taken together, these findings suggest that epigenetic down-regulation of a crucial DNA damage repair protein MGMT contributes significantly to the genotoxic effect and cell transformation caused by chronic low dose of Cr(VI) exposure.
Collapse
Affiliation(s)
- Zhishan Wang
- Stony Brook Cancer Center, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA; Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY 11794, USA.
| | - Zulong Liu
- Stony Brook Cancer Center, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Po-Shun Wang
- Stony Brook Cancer Center, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Hsuan-Pei Lin
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Matthew Rea
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Kazuya Kondo
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University Graduate School, Tokushima City 770-8509, Japan
| | - Chengfeng Yang
- Stony Brook Cancer Center, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA; Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY 11794, USA
| |
Collapse
|
3
|
Smok-Kalwat J, Mertowska P, Mertowski S, Smolak K, Kozińska A, Koszałka F, Kwaśniewski W, Grywalska E, Góźdź S. The Importance of the Immune System and Molecular Cell Signaling Pathways in the Pathogenesis and Progression of Lung Cancer. Int J Mol Sci 2023; 24:1506. [PMID: 36675020 PMCID: PMC9861992 DOI: 10.3390/ijms24021506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Lung cancer is a disease that in recent years has become one of the greatest threats to modern society. Every year there are more and more new cases and the percentage of deaths caused by this type of cancer increases. Despite many studies, scientists are still looking for answers regarding the mechanisms of lung cancer development and progression, with particular emphasis on the role of the immune system. The aim of this literature review was to present the importance of disorders of the immune system and the accompanying changes at the level of cell signaling in the pathogenesis of lung cancer. The collected results showed that in the process of immunopathogenesis of almost all subtypes of lung cancer, changes in the tumor microenvironment, deregulation of immune checkpoints and abnormalities in cell signaling pathways are involved, which contribute to the multistage and multifaceted carcinogenesis of this type of cancer. We, therefore, suggest that in future studies, researchers should focus on a detailed analysis of tumor microenvironmental immune checkpoints, and to validate their validity, perform genetic polymorphism analyses in a wide range of patients and healthy individuals to determine the genetic susceptibility to lung cancer development. In addition, further research related to the analysis of the tumor microenvironment; immune system disorders, with a particular emphasis on immunological checkpoints and genetic differences may contribute to the development of new personalized therapies that improve the prognosis of patients.
Collapse
Affiliation(s)
- Jolanta Smok-Kalwat
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Konrad Smolak
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Aleksandra Kozińska
- Student Research Group of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Filip Koszałka
- Student Research Group of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Wojciech Kwaśniewski
- Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Stanisław Góźdź
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| |
Collapse
|
4
|
Chen Z, Qi L, Fu H, Ma L. Long non-coding RNA X-inactive specific transcript suppresses the progression of hepatocellular carcinoma through microRNA-221-3p-targeted regulation of O6-methylguanine-DNA methyltransferase. Bioengineered 2022; 13:14013-14027. [PMID: 35723009 PMCID: PMC9275909 DOI: 10.1080/21655979.2022.2086382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
MicroRNA-221-3p (miR-221-3p) is an important regulator involved in the progression and prognosis of various cancers. In this study, we aimed to investigate the diagnostic and prognostic value of miR-221-3p expression along with long non-coding RNA X–inactive specific transcript (XIST), which was identified as its upstream regulator in hepatocellular carcinoma (HCC) by bioinformatics analysis, and further validated by RNA immunoprecipitation (RIP) and dual-luciferase reporter assays. Their expression was measured in tumor tissues and corresponding non-tumor tissues by quantitative real-time PCR (qRT-PCR), which revealed that XIST was weakly expressed in HCC cells and tumors, while miR-221-3p was overexpressed. Complete knockdown of XIST enhanced HCC cell proliferation and migration and inhibited apoptosis, as observed by MTT, transwell, and flow cytometry experiments, respectively. Animal studies validated that XIST knockdown induces tumor growth in vivo. In contrast, upregulation of XIST in HCC cells suppressed their proliferation and migration, stimulated apoptosis, and retarded the growth rate of tumors in vivo. These effects were partially reversed by upregulating miR-221-3p expression. Furthermore, we demonstrated that O6-methylguanine-DNA methyltransferase (MGMT) is a downstream target of miR-221-3p. It was weakly expressed in HCC cells and tumors and showed a negative correlation with miR-221-3p. Forced MGMT expression repressed proliferation and migration and enhanced apoptosis in HCC cells. Nevertheless, these anti-tumor effects induced by MGMT overexpression could be abolished by miR-221-3p upregulation. Collectively, our findings reveal that XIST blocks the development of HCC through miR-221-3p-targeted regulation of MGMT. This reveals a new mechanism involved in the development of HCC.
Collapse
Affiliation(s)
- Zushun Chen
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Lunan Qi
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Hongyuan Fu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Liang Ma
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| |
Collapse
|
5
|
Chen YX, He LL, Xiang XP, Shen J, Qi HY. O 6-methylguanine DNA methyltransferase is upregulated in malignant transformation of gastric epithelial cells via its gene promoter DNA hypomethylation. World J Gastrointest Oncol 2022; 14:664-677. [PMID: 35321285 PMCID: PMC8919019 DOI: 10.4251/wjgo.v14.i3.664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/10/2021] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND O6-methylguanine-DNA methyltransferase (MGMT) is a suicide enzyme that repairs the mispairing base O6-methyl-guanine induced by environmental and experimental carcinogens. It can transfer the alkyl group to a cysteine residue in its active site and became inactive. The chemical carcinogen N-nitroso compounds (NOCs) can directly bind to the DNA and induce the O6-methylguanine adducts, which is an important cause of gene mutation and tumorigenesis. However, the underlying regulatory mechanism of MGMT involved in NOCs-induced tumorigenesis, especially in the initiation phase, remains largely unclear.
AIM To investigate the molecular regulatory mechanism of MGMT in NOCs-induced gastric cell malignant transformation and tumorigenesis.
METHODS We established a gastric epithelial cell malignant transformation model induced by N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) or N-methyl-N-nitroso-urea (MNU) treatment. Cell proliferation, colony formation, soft agar, cell migration, and xenograft assays were used to verify the malignant phenotype. By using quantitative real-time polymerase chain reaction (qPCR) and Western blot analysis, we detected the MGMT expression in malignant transformed cells. We also confirmed the MGMT expression in early stage gastric tumor tissues by qPCR and immunohistochemistry. MGMT gene promoter DNA methylation level was analyzed by methylation-specific PCR and bisulfite sequencing PCR. The role of MGMT in cell malignant transformation was analyzed by colony formation and soft agar assays.
RESULTS We observed a constant increase in MGMT mRNA and protein expression in gastric epithelial cell malignant transformation induced by MNNG or MNU treatment. Moreover, we found a reduction of MGMT gene promoter methylation level by methylation-specific PCR and bisulfite sequencing PCR in MNNG/MNU-treated cells. Inhibition of the MGMT expression by O6-benzylguanine promoted the MNNG/MNU-induced malignant phenotypes. Overexpression of MGMT partially reversed the cell malignant transformation process induced by MNNG/MNU. Clinical gastric tissue analysis showed that MGMT was upregulated in the precancerous lesions and metaplasia tissues, but downregulated in the gastric cancer tissues.
CONCLUSION Our finding indicated that MGMT upregulation is induced via its DNA promoter hypomethylation. The highly expressed MGMT prevents the NOCs-induced cell malignant transformation and tumorigenesis, which suggests a potential novel approach for chemical carcinogenesis intervention by regulating aberrant epigenetic mechanisms.
Collapse
Affiliation(s)
- Yue-Xia Chen
- Department of Pathology and Pathophysiology and Department of Radiation Oncology of the Second Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
- Department of Pathology, Third Hospital of Nanchang, Nanchang 330000, Jiangxi Province, China
| | - Lu-Lu He
- Department of Pathology and Pathophysiology and Department of Radiation Oncology of the Second Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Xue-Ping Xiang
- Department of Pathology, the Second Affiliated Hospital, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Jing Shen
- Department of Pathology and Pathophysiology andDepartment of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Hong-Yan Qi
- Department of Pathology and Pathophysiology and Department of Radiation Oncology of the Second Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| |
Collapse
|
6
|
Chen B, Ying X, Bao L. MGMT gene promoter methylation in humoral tissue as biomarker for lung cancer diagnosis: An update meta-analysis. Thorac Cancer 2021; 12:3194-3200. [PMID: 34651448 PMCID: PMC8636218 DOI: 10.1111/1759-7714.14186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 01/12/2023] Open
Abstract
Objective To investigate O‐6‐methylguanine‐DNA methyltransferase (MGMT) gene promoter methylation in humoral tissue as biomarker for lung cancer diagnosis by pooling relevant open published data. Methods Clinical studies relevant to MGMT gene promoter methylation and lung cancer were systematic electronic searched in the databases of Medline, EMBASE, Ovid, Web of Science, and CNKI. Data of true positive (tp), false positive (fp), false negative (fn), and true negative (tn) were extracted from the included studies and made combination. The diagnostic sensitivity, specificity, diagnostic odds ratio (DOR) and summary receiver operating characteristic (SROC) of MGMT gene methylation for lung cancer diagnosis were pooled. Results Twelve studies were included in the meta‐analysis. The diagnostic sensitivity, specificity, DOR were 0.39 (95% CI = 0.31–0.49) 0.92 (95% CI = 0.77–0.97), and 4.20 (95% CI = 2.09–8.44), respectively under random effect model. The SROC of MGMT gene methylation for lung cancer diagnosis was 0.58 (95% CI = 0.53–0.62). Conclusion MGMT methylation rate was higher in plasma and bronchoalveolar lavage fluid (BLAF) of lung cancer cases compared to controls. High diagnostic specificity indicated that MGMT methylation in plasma and BLAF can be applied as lung cancer confirmation test.
Collapse
Affiliation(s)
- Bizheng Chen
- Department of Radiotherapy, Lishui Central Hospital, Lishui, Zhejiang Province, China
| | - Xiaozhen Ying
- Department of Radiotherapy, Lishui Central Hospital, Lishui, Zhejiang Province, China
| | - Liming Bao
- Department of Radiotherapy, Lishui Central Hospital, Lishui, Zhejiang Province, China
| |
Collapse
|
7
|
Teuber-Hanselmann S, Worm K, Macha N, Junker A. MGMT-Methylation in Non-Neoplastic Diseases of the Central Nervous System. Int J Mol Sci 2021; 22:ijms22083845. [PMID: 33917711 PMCID: PMC8068191 DOI: 10.3390/ijms22083845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/05/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022] Open
Abstract
Quantifying O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation plays an essential role in assessing the potential efficacy of alkylating agents in the chemotherapy of malignant gliomas. MGMT promoter methylation is considered to be a characteristic of subgroups of certain malignancies but has also been described in various peripheral inflammatory diseases. However, MGMT promoter methylation levels have not yet been investigated in non-neoplastic brain diseases. This study demonstrates for the first time that one can indeed detect slightly enhanced MGMT promoter methylation in individual cases of inflammatory demyelinating CNS diseases such as multiple sclerosis and progressive multifocal leucencephalopathy (PML), as well as in other demyelinating diseases such as central pontine and exptrapontine myelinolysis, and diseases with myelin damage such as Wallerian degeneration. In this context, we identified a reduction in the expression of the demethylase TET1 as a possible cause for the enhanced MGMT promoter methylation. Hence, we show for the first time that MGMT hypermethylation occurs in chronic diseases that are not strictly associated to distinct pathogens, oncogenic viruses or neoplasms but that lead to damage of the myelin sheath in various ways. While this gives new insights into epigenetic and pathophysiological processes involved in de- and remyelination, which might offer new therapeutic opportunities for demyelinating diseases in the future, it also reduces the specificity of MGMT hypermethylation as a tumor biomarker.
Collapse
Affiliation(s)
- Sarah Teuber-Hanselmann
- Institute of Neuropathology, University Hospital Essen, D-45147 Essen, Germany; (S.T.-H.); (N.M.)
| | - Karl Worm
- Institute of Pathology, University Hospital Essen, D-45147 Essen, Germany;
| | - Nicole Macha
- Institute of Neuropathology, University Hospital Essen, D-45147 Essen, Germany; (S.T.-H.); (N.M.)
| | - Andreas Junker
- Institute of Neuropathology, University Hospital Essen, D-45147 Essen, Germany; (S.T.-H.); (N.M.)
- Correspondence: ; Tel.: +49-201-723-3315
| |
Collapse
|
8
|
Chen Z, Xiang B, Qi L, Zhu S, Li L. miR-221-3p promotes hepatocellular carcinogenesis by downregulating O6-methylguanine-DNA methyltransferase. Cancer Biol Ther 2020; 21:915-926. [PMID: 33023393 DOI: 10.1080/15384047.2020.1806642] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
This study aimed to investigate the influence of miR-221-3p and O6-methylguanine-DNA methyltransferase (MGMT) interaction in human hepatocellular carcinoma (HCC), thereby revealing a novel molecular mechanism of hepatic carcinogenesis involving miR-221-3p and MGMT. Fluorescence qPCR and immunoblot assays were performed to determine the expression of RNA and protein in HCC tissues and cell lines. We also employed the firefly and Renilla luciferase assay to verify the target relationship between miR-221-3p and MGMT mRNA. Assessments including the MTT assay, wound-healing assay, transwell assay, colony foci formation experiment, and flow cytometric experiment were carried out to determine the viability, migration, invasion, proliferation, cell cycle progression, and apoptosis of SMMC-7721 and BEL-7404 cell lines with the modulated expression of miR-221-3p and MGMT. Compared to healthy tissues and cell line HL7702, miR-221-3p was significantly upregulated but MGMT was significantly downregulated in carcinomas and cancerous cell lines. Forced miR-221-3p overexpression was found to enhance the proliferation, migration, invasion, and clonogenicity of cell lines, but it suppressed cell apoptosis. Findings also revealed that forced miR-221-3p overexpression had little effect on cell cycle progression. After MGMT was confirmed to be atarget gene of miR-221-3p, it was found that the forced upregulation of miR-221-3p downregulated MGMT mRNA and protein levels significantly. MiR-221-3p was identified as an HCC promoting factor, and it specifically inhibited the expression of the MGMT. Besides, the upregulation of miR-221-3p had apositive influence on HCC pathogenesis by inhibiting MGMT expression.
Collapse
Affiliation(s)
- Zushun Chen
- Department of Hepatobiliary Surgery, Guangxi Medical University Affiliated Tumor Hospital , Nanning, Guangxi, China
| | - Bangde Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Affiliated Tumor Hospital , Nanning, Guangxi, China
| | - Lunan Qi
- Department of Hepatobiliary Surgery, Guangxi Medical University Affiliated Tumor Hospital , Nanning, Guangxi, China
| | - Shaoliang Zhu
- Department of Hepatobiliary Surgery, Guangxi Medical University Affiliated Tumor Hospital , Nanning, Guangxi, China
| | - Lequn Li
- Department of Hepatobiliary Surgery, Guangxi Medical University Affiliated Tumor Hospital , Nanning, Guangxi, China
| |
Collapse
|
9
|
Hu Z, Bi G, Sui Q, Bian Y, Du Y, Liang J, Li M, Zhan C, Lin Z, Wang Q. Analyses of multi-omics differences between patients with high and low PD1/PDL1 expression in lung squamous cell carcinoma. Int Immunopharmacol 2020; 88:106910. [PMID: 32829091 DOI: 10.1016/j.intimp.2020.106910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Immunotherapy has achieved excellent results in patients with lung squamous cell carcinoma. However, in which population it can exert the greatest effect is still unknown. Some studies have suggested that its effect is related to the expression level of PD1. Analyzing the relationship between PD1 expression level and genetic differences in lung squamous cell carcinoma patients will be helpful in understanding the underlying causes of this immunotherapy effect and provide a reference for clinical practice. METHODS In this study, we used RNA-seq, miRNA-seq, methylation array, mutation profiles, and copy number variation data from the TCGA database and RNA-seq data from the GEO database to analyze the distinctive genomic patterns associated with PD1 and PDL1 expression. RNA-seq data from 44 LUSC patients who underwent surgery at Zhongshan Hospital were also included in the study. RESULTS After grouping LUSC patients according to the expression levels of PD1 and PDL1, we found no significant difference in survival between the two groups. However, 178 genes, including IL-21, KLRC3, and KLRC4, were significantly upregulated in both the TCGA and GEO databases in the high expression group, and there was a precise correlation between gene expression and epigenetic changes in the two groups. At the same time, the overall level of somatic mutations was not significantly different between the two groups. It is worth noting that the gene enrichment results showed that the differential pathways were mainly enriched in immune regulation, especially T cell-related immune activities. CONCLUSION We found that the differences in gene expression between the two groups were related to immunity, which may affect the effectiveness of immunotherapy. We hope our results can provide a reference for further research and help in finding other targets to improve the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Qihai Sui
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Yunyi Bian
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Yajing Du
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Ming Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.
| | - Zongwu Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
10
|
Wang Y, Wang Y, Wang Y, Zhang Y. Identification of prognostic signature of non-small cell lung cancer based on TCGA methylation data. Sci Rep 2020; 10:8575. [PMID: 32444802 PMCID: PMC7244759 DOI: 10.1038/s41598-020-65479-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 04/29/2020] [Indexed: 12/28/2022] Open
Abstract
Non–small lung cancer (NSCLC) is a common malignant disease with very poor outcome. Accurate prediction of prognosis can better guide patient risk stratification and treatment decision making, and could optimize the outcome. Utilizing clinical and methylation/expression data in The Cancer Genome Atlas (TCGA), we conducted comprehensive evaluation of early-stage NSCLC to identify a methylation signature for survival prediction. 349 qualified cases of NSCLC with curative surgery were included and further grouped into the training and validation cohorts. We identified 4000 methylation loci with prognostic influence on univariate and multivariate regression analysis in the training cohort. KEGG pathway analysis was conducted to identify the key pathway. Hierarchical clustering and WGCNA co-expression analysis was performed to classify the sample phenotype and molecular subtypes. Hub 5′-C-phosphate-G-3′ (CpG) loci were identified by network analysis and then further applied for the construction of the prognostic signature. The predictive power of the prognostic model was further validated in the validation cohort. Based on clustering analysis, we identified 6 clinical molecular subtypes, which were associated with different clinical characteristics and overall survival; clusters 4 and 6 demonstrated the best and worst outcomes. We identified 17 hub CpG loci, and their weighted combination was used for the establishment of a prognostic model (RiskScore). The RiskScore significantly correlated with post-surgical outcome; patients with a higher RiskScore have worse overall survival in both the training and validation cohorts (P < 0.01). We developed a novel methylation signature that can reliably predict prognosis for patients with NSCLC.
Collapse
Affiliation(s)
- Yifan Wang
- Institute of Cancer and Basic medicine (ICBM), Chinese Academy of Sciences, Zhejiang, China.,Ultrasonic Department, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang, China.,Ultrasonic Department, Zhejiang Cancer Hospital, Zhejiang, China
| | - Ying Wang
- Department of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Wang
- Institute of Cancer and Basic medicine (ICBM), Chinese Academy of Sciences, Zhejiang, China.,Department of Gynecological Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang, China.,Department of Gynecological Oncology, Zhejiang Cancer Hospital, Zhejiang, China
| | - Yongjun Zhang
- Institute of Cancer and Basic medicine (ICBM), Chinese Academy of Sciences, Zhejiang, China. .,Department of Integration of Traditional Chinese and Western Medicine, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang, China. .,Department of Integration of Traditional Chinese and Western Medicine, Zhejiang Cancer Hospital, Zhejiang, China.
| |
Collapse
|
11
|
He Z, Zhang R, Chen S, Chen L, Li H, Ye L, Li Q, Wang Z, Wang Q, Duan H, Niu Y, Xiao Y, Dong G, Li D, Yu D, Zheng Y, Xing X, Chen W. FLT1 hypermethylation is involved in polycyclic aromatic hydrocarbons-induced cell transformation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:607-615. [PMID: 31185349 DOI: 10.1016/j.envpol.2019.05.137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/14/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
Coke oven emissions (COEs) are common particle pollutants in occupational environment and the major constituents of COEs are polycyclic aromatic hydrocarbons (PAHs). Previously, we identified aberrant methylation of the fms related tyrosine kinase 1 (FLT1) gene over the course of benzo(a)pyrene (BaP)-induced cell transformation via genome-wide methylation array. To quantify FLT1 methylation, we established a bisulfite pyrosequencing assay and examined the FLT1 hypermethylation in several human cancers. The results revealed that 70.0% (21/30 pairs) of lung cancers harbored hypermethylated FLT1 and concomitant suppression of gene expression compared to the adjacent tissues. This implies that FLT1 hypermethylation might play a role in malignant cell transformation. In addition, FLT1 hypermethylation and gene suppression appeared in primary human lymphocytes in a dose-response manner following COEs treatment. To explore whether FLT1 methylation is correlated with COEs exposure and DNA damage, we recruited 144 male subjects who had been exposed to high levels of COEs and 84 male control subjects. Notably, the FLT1 methylation in peripheral blood lymphocytes (PBLCs) of the COEs-exposed group (19.8 ± 3.2%) was enhanced by 17.9% compared to that of the control group (16.8 ± 2.8%) (P < 0.001). The FLT1 methylation status was positively correlated with urinary 1-hydroxypyrene (1-OHP) levels, an internal exposure marker of PAHs (β = 0.029, 95% CI = 0.010-0.048, P = 0.003) and positively correlated with DNA damage (βOTM = 0.024, 95% CI = 0.007-0.040, P = 0.005; βTail DNA = 0.035, 95% CI = 0.0017-0.054, P < 0.001) indicated by comet assay. Taken together, these findings indicate that FLT1 might be a tumor suppressor, and its hypermethylation might contribute to PAHs-induced carcinogenicity.
Collapse
Affiliation(s)
- Zhini He
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Rui Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Liping Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Huiyao Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lizhu Ye
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qiong Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ziwei Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qing Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yong Niu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yongmei Xiao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Guanghui Dong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Daochuan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiumei Xing
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Wen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Bouras E, Karakioulaki M, Bougioukas KI, Aivaliotis M, Tzimagiorgis G, Chourdakis M. Gene promoter methylation and cancer: An umbrella review. Gene 2019; 710:333-340. [PMID: 31202904 DOI: 10.1016/j.gene.2019.06.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022]
Abstract
Gene promoter methylation is a common epigenetic event, taking place in the early phase of tumorigenesis, which has a great potential as a diagnostic and prognostic cancer biomarker. In this umbrella review, we provide an overview on the association between gene-promoter methylation of protein-coding genes and cancer risk based on currently available meta-analyses data on gene promoter methylation. We searched MEDLINE via PubMed and the Cochrane Database of Systematic Reviews for meta-analyses that examine the association between gene-promoter methylation and cancer, published until January 2019 in English. We used AMSTAR to assess the quality of the included studies and applied a set of pre-specified criteria to evaluate the magnitude of each association. We provide a comprehensive overview of 80 unique combinations between 22 different genes and 18 cancer outcomes, all of which indicated a positive association between promoter hypermethylation and cancer. In total, the 70 meta-analyses produced significant results under a random-effects model with odds ratios that ranged from 1.94 to 26.60, with the summary effect being in favor of the unmethylated group in all cases. Three of the strong evidence associations involve RASSF1 methylation on bladder cancer risk (OR = 18.46; 95% CI: 12.69-26.85; I2 = 0%), MGMT methylation on NSCLC (OR = 4.25; 95% CI: 2.83-6.38; I2 = 22.4%) and RARB methylation on prostate cancer (OR = 6.87; 95% CI: 4.68-10.08; I2 = 0%). Meta-analyses showed a moderate quality, AMSTAR score ranging from 4 to 9 (Mdn = 8; IQR: 7.0 to 8.0). As primary studies and meta-analyses on the subject accumulate, more genetic loci may be found to be highly associated with specific cancer types and hence the biomarker sets will become wider.
Collapse
Affiliation(s)
- Emmanouil Bouras
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Meropi Karakioulaki
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Konstantinos I Bougioukas
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Michalis Aivaliotis
- Laboratory of Biochemistry, Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece; Functional Proteomics and Systems Biology (FunPATh), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, Greece; Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, Greece
| | - Georgios Tzimagiorgis
- Laboratory of Biochemistry, Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Greece; Functional Proteomics and Systems Biology (FunPATh), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, Greece; Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, Greece
| | - Michael Chourdakis
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Greece.
| |
Collapse
|
13
|
Martínez-Ramírez OC, Pérez-Morales R, Castro-Hernández C, Gonsebatt ME, Casas-Ávila L, Valdés-Flores M, Petrosyan P, de León-Suárez VP, Rubio J. Association of the Promoter Methylation and the rs12917 Polymorphism of MGMT with Formation of DNA Bulky Adducts and the Risk of Lung Cancer in Mexican Mestizo Population. DNA Cell Biol 2019; 38:307-313. [DOI: 10.1089/dna.2018.4526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
| | - Rebeca Pérez-Morales
- Departamento de Biología Molecular, Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Clementina Castro-Hernández
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Maria Eugenia Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Leonora Casas-Ávila
- Departamento de Genética, Instituto Nacional de Rehabilitación, Ciudad de México, Mexico
| | | | - Pavel Petrosyan
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Julieta Rubio
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
14
|
Nguyen QN, Vuong LD, Truong VL, Ta TV, Nguyen NT, Nguyen HP, Chu HH. Genetic and epigenetic alterations of the EGFR and mutually independent association with BRCA1, MGMT, and RASSF1A methylations in Vietnamese lung adenocarcinomas. Pathol Res Pract 2019; 215:885-892. [PMID: 30723053 DOI: 10.1016/j.prp.2019.01.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/05/2019] [Accepted: 01/25/2019] [Indexed: 11/25/2022]
Abstract
Genetic and epigenetic alterations importantly contribute to the pathogenesis of lung cancer. In the study, we measured the frequency and distribution of molecular abnormalities of EGFR as well as the aberrant promoter methylations of BRCA1, MGMT, MLH1, and RASSF1A in Vietnamese lung adenocarcinomas. We investigated the association between genetic and epigenetic alteration, and between each abnormality with clinicopathologic parameters. Somatic EGFR mutation that was found in 49/139 (35.3%) lung adenocarcinomas showed a significant association with young age, female gender, and non-smokers. EGFR overexpression was identified in 82 tumors (59.0%) and statistical relationships with EGFR or BRCA1 methylation but not EGFR mutation. In addition, EGFR, BRCA1, MGMT, MLH1, and RASSF1A methylations were found in 33 (23.7%), 41 (29.5%), 46 (33.1%), 28 (20.1%), and 41 (29.5%) cases of a total of 139 lung adenocarcinomas, respectively. The RASSF1A methylation was found to be linked to the smoking habit. Methylations in MGMT and RASSF1A were also found to correlate with metastasis status. Furthermore, the distribution of EGFR mutation and that of BRCA1, MGMT or RASSF1A methylation were significantly exclusive in lung adenocarcinomas. The main finding of our study demonstrate that epigenetic abnormalities might play a critical role for the lung tumorigenesis in patients with smoking history and metastasis, and partly affect the predictive value of EGFR mutations through blocking expression due to promoter EGFR hypermethylation. Mutually exclusive distribution of genetic and epigenetic alterations reflects differently biological characteristics in the etiology of lung adenocarcinomas.
Collapse
Affiliation(s)
- Quang Ngoc Nguyen
- Pathology and Molecular Biology Center, National Cancer Hospital K, 30 Cau Buou Street, Thanh Tri, Hanoi, Viet Nam; Biotechnology Department, Graduate University of Science and Technology, Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Hanoi, Viet Nam.
| | - Linh Dieu Vuong
- Pathology and Molecular Biology Center, National Cancer Hospital K, 30 Cau Buou Street, Thanh Tri, Hanoi, Viet Nam
| | - Van-Long Truong
- Department of Smart Food and Drug, College of BNIT, Inje University, Gimhae, 50834, South Korea
| | - To Van Ta
- Pathology and Molecular Biology Center, National Cancer Hospital K, 30 Cau Buou Street, Thanh Tri, Hanoi, Viet Nam
| | - Nam Trung Nguyen
- National Key Laboratory of Gene Technology, Institute Vietnam, Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Hanoi, Viet Nam; Biotechnology Department, Graduate University of Science and Technology, Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Hanoi, Viet Nam
| | - Hung Phi Nguyen
- Pathology and Molecular Biology Center, National Cancer Hospital K, 30 Cau Buou Street, Thanh Tri, Hanoi, Viet Nam.
| | - Ha Hoang Chu
- National Key Laboratory of Gene Technology, Institute Vietnam, Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Hanoi, Viet Nam; Biotechnology Department, Graduate University of Science and Technology, Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Hanoi, Viet Nam.
| |
Collapse
|
15
|
Sears CR. DNA repair as an emerging target for COPD-lung cancer overlap. Respir Investig 2019; 57:111-121. [PMID: 30630751 DOI: 10.1016/j.resinv.2018.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/14/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023]
Abstract
Cigarette smoking is the leading cause of lung cancer and chronic obstructive pulmonary disease (COPD). Many of the detrimental effects of cigarette smoke have been attributed to the development of DNA damage, either directly from chemicals contained in cigarette smoke or as a product of cigarette smoke-induced inflammation and oxidative stress. In this review, we discuss the environmental, epidemiological, and physiological links between COPD and lung cancer and the likely role of DNA damage and repair in COPD and lung cancer development. We explore alterations in DNA damage repair by DNA repair proteins and pathways. We discuss emerging data supporting a key role for the DNA repair protein, xeroderma pigmentosum group C (XPC), in cigarette smoke-induced COPD and early lung cancer development. Understanding the interplay between cigarette smoke, DNA damage repair, COPD, and lung cancer may lead to prognostic tools and new, potentially targetable, pathways for lung cancer prevention and treatment.
Collapse
Affiliation(s)
- Catherine R Sears
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana; The Richard L. Roudebush Veterans Affairs Medical Center; 980W, Walnut Street, Walther Hall, C400, Indianapolis, IN, 46202, USA.
| |
Collapse
|
16
|
Huang X, Wu C, Fu Y, Guo L, Kong X, Cai H. Methylation analysis for multiple gene promoters in non-small cell lung cancers in high indoor air pollution region in China. Bull Cancer 2018; 105:746-754. [PMID: 30126609 DOI: 10.1016/j.bulcan.2018.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/08/2018] [Accepted: 05/11/2018] [Indexed: 12/13/2022]
Abstract
AIM The prevalence and mortality rates of lung cancer in Xuanwei, Yunnan, China, are the highest in the world. The severe indoor air pollution caused by smoky coals with high benzo (a)pyrene (BaP) and quartz levels is the main environmental factor. The aim of this study was to investigate methylation profiles of promoters in eight genes in primary non-small cell lung cancers (NSCLC) exposed to smoky coals. MATERIALS AND METHODS Candidate genes including CDKN2A, DLEC1, CDH1, DAPK, RUNX3, APC, WIF1 and MGMT were determined for the promoter methylation status using Nested methylation-specific PCR (nMSP) in primary 23NSCLC tissues and in circulating tumor DNA (ctDNA) isolated from 42plasma samples (9matched to tissues) as well as 10healthy plasma samples, using Sanger sequencing to verify the results. RESULTS Seven of the 8genes, except MGMT, had relatively high methylation frequencies ranging from 39%-74% in tissues. Moreover, methylation frequencies in five genes identified in lung cancer plasma were 45% for CDKN2A, 48% for DLEC1, 76% for CDH1, 14% for DAPK, 29% for RUNX3, with a relatively good concordance of methylation among 9 tissues and paired plasma. However, the genes from all healthy plasma showed no methylation. CONCLUSIONS A panel of genes including CDKN2A, DLEC1, CDH1, DAPK and RUNX3 may be used as potential epigenetic biomarkers for early lung cancer detection. CDH1 promoter methylation was associated with lung cancer metastasis in areas of air pollution from buring of smoky coals. DLEC1 and CDH1 exhibited specific high methylation frequencies, different from previous reports.
Collapse
Affiliation(s)
- Xinwei Huang
- Kunming University of Science and Technology, Faculty of Environmental Science and Engineering, 650500 Kunming, Yunnan province, China; Kunming University of Science and Technology, Medical school, 650500 Kunming, Yunnan province, China; Kunming University of Science and Technology, Genetics and Pharmacogenomics Laboratory, 650500 Kunming, Yunnan province, China
| | - Chaoqun Wu
- Kunming University of Science and Technology, Medical school, 650500 Kunming, Yunnan province, China; Kunming University of Science and Technology, Genetics and Pharmacogenomics Laboratory, 650500 Kunming, Yunnan province, China
| | - Yu Fu
- Kunming University of Science and Technology, Medical school, 650500 Kunming, Yunnan province, China; Kunming University of Science and Technology, Genetics and Pharmacogenomics Laboratory, 650500 Kunming, Yunnan province, China
| | - Liqiong Guo
- Kunming University of Science and Technology, Medical school, 650500 Kunming, Yunnan province, China; Kunming University of Science and Technology, Genetics and Pharmacogenomics Laboratory, 650500 Kunming, Yunnan province, China
| | - Xiangyang Kong
- Kunming University of Science and Technology, Medical school, 650500 Kunming, Yunnan province, China; Kunming University of Science and Technology, Genetics and Pharmacogenomics Laboratory, 650500 Kunming, Yunnan province, China.
| | - Haibo Cai
- Yunfeng Hospital, Department of Oncology, 655400 Xuanwei City, Yunnan Province, China.
| |
Collapse
|
17
|
Tuo L, Sha S, Huayu Z, Du K. P16 INK4a gene promoter methylation as a biomarker for the diagnosis of non-small cell lung cancer: An updated meta-analysis. Thorac Cancer 2018; 9:1032-1040. [PMID: 29927090 PMCID: PMC6068431 DOI: 10.1111/1759-7714.12783] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND This meta-analysis was conducted to investigate the diagnostic performance of P16INK4a gene promoter methylation as a biomarker of non-small cell lung cancer (NSCLC). METHODS Two reviewers independently searched the Web of Science, PubMed, Cochrane, Embase, China National Knowledge Infrastructure, and Chinese Biomedical Literature databases. Publications relevant to P16INK4a gene promoter methylation in serum or bronchoalveolar fluid/sputum were screened and included in this meta-analysis. Pooled diagnostic sensitivity, specificity, and symmetric receiver operating characteristic curve were calculated. RESULTS Twenty-six publications with 1768 lung cancer cases and 1323 controls were included. The pooled sensitivity, specificity, positive and negative likelihood ratios, and diagnostic odds ratio were 0.46 (95% confidence interval [CI] 0.43-0.48), 0.90 (95% CI 0.88-0.91), 6.33 (95% CI 3.89-10.30), 0.57 (95% CI 0.50-0.65) and 10.72 (95% CI 6.94-16.56), respectively, for P16INK4a gene promoter methylation as a biomarker for the diagnosis of NSCLC. The area under the symmetric receiver operating characteristic curve was 0.75 with a standard error of 0.004. No publication bias was detected via line regression test (t = 0.95; P = 0.35) and Begg's funnel plot. CONCLUSION P16INK4a gene promoter methylation detection in serum or bronchoalveolar fluid/sputum may be a potential biomarker for NSCLC diagnosis; however, the sensitivity was relatively low, which is not suitable for NSCLC screening.
Collapse
Affiliation(s)
- Lei Tuo
- Department of Thoracic and Cardiovascular SurgeryWeifang Yidu Central Hospital QingzhouWeifangChina
| | - Sha Sha
- Department of Thoracic and Cardiovascular SurgeryWeifang Yidu Central Hospital QingzhouWeifangChina
| | - Zhang Huayu
- Department of Spine and TraumaWeifang Yidu Central Hospital QingzhouWeifangChina
| | - Ke Du
- Department of Thoracic SurgeryLiaocheng People's Hospital Liaocheng Clinical School of Taishan Medical UniversityLiaochengChina
| |
Collapse
|
18
|
Chen L, Wang Y, Liu F, Xu L, Peng F, Zhao N, Fu B, Zhu Z, Shi Y, Liu J, Wu R, Wang C, Yao S, Li Y. A systematic review and meta-analysis: Association between MGMT hypermethylation and the clinicopathological characteristics of non-small-cell lung carcinoma. Sci Rep 2018; 8:1439. [PMID: 29362385 PMCID: PMC5780517 DOI: 10.1038/s41598-018-19949-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 01/10/2018] [Indexed: 12/21/2022] Open
Abstract
The relationship between O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation and clinicopathological characteristics of non-small-cell lung carcinoma (NSCLC) has remained controversial and unclear. Therefore, in this study we have undertaken a systematic review and meta-analysis of relevant studies to quantitatively investigate this association. We identified 30 eligible studies investigating 2714 NSCLC patients. The relationship between MGMT hypermethylation and NSCLC was identified based on 20 studies, including 1539 NSCLC patient tissue and 1052 normal and adjacent tissue samples (OR = 4.60, 95% CI = 3.46~6.11, p < 0.00001). MGMT methylation varied with ethnicity (caucasian: OR = 4.56, 95% CI = 2.63~7.92, p < 0.00001; asian: OR = 5.18, 95% CI = 2.03~13.22, p = 0.0006) and control style (autologous: OR = 4.44, 95% CI = 3.32~5.92, p < 0.00001; heterogeneous: OR = 9.05, 95% CI = 1.79~45.71, p = 0.008). In addition, MGMT methylation was observed to be specifically associated with NSCLC clinical stage, and not with age, sex, smoking, pathological types, and differentiation status. Also MGMT methylation did not impact NSCLC patients survival (HR = 1.32, 95% CI = 0.77~2.28, p = 0.31). Our study provided clear evidence about the association of MGMT hypermethylation with increased risk of NSCLC.
Collapse
Affiliation(s)
- Lin Chen
- Department of Internal Neurology, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou People's Hospital), Ganzhou, Jiangxi, 341000, China
| | - Yong Wang
- Department of Medical Oncology, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou People's Hospital), Ganzhou, Jiangxi, 341000, China
| | - Fen Liu
- Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchan, Jiangxi, 330000, China
| | - Liyao Xu
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchan, Jiangxi, 330000, China
| | - Feifei Peng
- Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchan, Jiangxi, 330000, China
| | - Ning Zhao
- Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchan, Jiangxi, 330000, China
| | - Biqi Fu
- Department of Rheumatology, The First Affiliated Hospital of Nanchang University, Nanchan, Jiangxi, 330000, China
| | - Zijie Zhu
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchan, Jiangxi, 330000, China
| | - Yu Shi
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchan, Jiangxi, 330000, China
| | - Jiansheng Liu
- Department of Medical Oncology, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou People's Hospital), Ganzhou, Jiangxi, 341000, China
| | - Renrui Wu
- Department of Internal Neurology, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou People's Hospital), Ganzhou, Jiangxi, 341000, China
| | - Chen Wang
- Department of Internal Neurology, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou People's Hospital), Ganzhou, Jiangxi, 341000, China
| | - Shengmin Yao
- Department of Internal Neurology, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou People's Hospital), Ganzhou, Jiangxi, 341000, China
| | - Yong Li
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchan, Jiangxi, 330000, China.
| |
Collapse
|
19
|
Association between MGMT Promoter Methylation and Risk of Breast and Gynecologic Cancers: A Systematic Review and Meta-Analysis. Sci Rep 2017; 7:12783. [PMID: 28986566 PMCID: PMC5630583 DOI: 10.1038/s41598-017-13208-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 09/21/2017] [Indexed: 12/27/2022] Open
Abstract
The role of the promoter methylation of O6-methylguanine-DNA methyltransferase (MGMT) remains controversial for breast and gynecologic cancers. We conducted a meta-analysis to assess the association between hypermethylation of MGMT promoter and the risk of breast and gynecologic cancers. A comprehensive search was conducted in PubMed and Embase electronic databases up to 19th August 2017 for studies about the association between MGMT promoter hypermethylation and breast and gynecologic cancers. A total of 28 articles including 2,171 tumor tissues and 1,191 controls were involved in the meta-analysis. The pooled results showed that MGMT promoter methylation status was significantly associated with an increased risk of breast and gynecologic cancers (OR = 4.37, 95% CI: 2.68–7.13, P < 0.05). The associations were robust in subgroup analysis based on ethnicity, cancer type, methylation detection method, and control source. This meta-analysis indicated that MGMT hypermethylation was significantly associated with the risk of breast and gynecological cancers, and it may be utilized as a valuable biomarker in early diagnostics and prognostication of these cancers. Further efforts are needed to identify and validate this finding in prospective studies, especially in situation with new methylation testing methods and samples from plasma circulating DNA.
Collapse
|
20
|
Tian J, Luo Y, Xiang J, Tang J. Combined treatment for non-small cell lung cancer and breast cancer patients with brain metastases with whole brain radiotherapy and temozolomide: a systematic review and meta-analysis. J Neurooncol 2017; 135:217-227. [PMID: 28726172 DOI: 10.1007/s11060-017-2572-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/13/2017] [Indexed: 12/25/2022]
Abstract
Brain metastasis is the leading cause of death among advanced non-small cell lung cancer (NSCLC) and breast cancer patients. The standard treatment for brain metastases is radiotherapy. The combination of radiotherapy and chemotherapy has been tested. However, the management of brain metastases has yet to be successful. Here, we aimed to determine the efficacy and safety of whole brain radiotherapy (WBRT) alone or in combination with temozolomide (TMZ) in NSCLC and breast cancer patients with brain metastases. A systematic review of PubMed, CNKI (China National Knowledge Infrastructure) and WANFANG (WANGFANG data) involving 870 patients were conducted. Fourteen randomized controlled trials (RCTs) were independently identified by two reviewers. The primary outcome measures were objective response rate (ORR), overall survival (OS), progression-free survival (PFS) and toxicity. The ORR was better with combination therapy of WBRT and TMZ than with WBRT alone (RR = 1.34, p < 0.00001) and subgroup analysis showed a significantly superior ORR in NSCLC patients (RR = 1.38, p < 0.00001), but not in breast cancer patients (RR = 1.03, p = 0.86). OS and PFS did not significantly differ between combination therapy and WBRT alone. A higher rate of toxicity was observed in combination therapy than in WBRT alone (RR = 1.83, p = 0.0006). No advantages of concurrent WBRT and TMZ were observed in breast cancer patients with brain metastases. Combination therapy was associated with improved ORR in NSCLC patients, especially in Chinese patients. As a "surrogate endpoint" for OS, ORR may allow a conclusion to be made about the management of NSCLC with brain metastases with the combination of WBRT and TMZ. However, it needs to be validated to show that improved ORR predicts the treatment effects on the clinical benefit. The ORR may be valid for a particular indication such as status of MGMT promoter methylation.
Collapse
Affiliation(s)
- Jingru Tian
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410013, China.,Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Key Laboratory of Carcinogenesis of Ministry of Health, Central South University, Changsha, 410078, Hunan, China
| | - Yien Luo
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410013, China.,Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Key Laboratory of Carcinogenesis of Ministry of Health, Central South University, Changsha, 410078, Hunan, China
| | - Juanjuan Xiang
- Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Key Laboratory of Carcinogenesis of Ministry of Health, Central South University, Changsha, 410078, Hunan, China
| | - Jingqun Tang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410013, China.
| |
Collapse
|
21
|
Liu D, Peng H, Sun Q, Zhao Z, Yu X, Ge S, Wang H, Fang H, Gao Q, Liu J, Wu L, Song M, Wang Y. The Indirect Efficacy Comparison of DNA Methylation in Sputum for Early Screening and Auxiliary Detection of Lung Cancer: A Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017. [PMID: 28644424 PMCID: PMC5551117 DOI: 10.3390/ijerph14070679] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background: DNA methylation in sputum has been an attractive candidate biomarker for the non-invasive screening and detection of lung cancer. Materials and Methods: Databases including PubMed, Ovid, Cochrane library, Web of Science databases, Chinese Biological Medicine (CBM), Chinese National Knowledge Infrastructure (CNKI), Wanfang, Vip Databases and Google Scholar were searched to collect the diagnostic trials on aberrant DNA methylation in the screening and detection of lung cancer published until 1 December 2016. Indirect comparison meta-analysis was used to evaluate the diagnostic value of the included candidate genes. Results: The systematic literature search yielded a total of 33 studies including a total of 4801 subjects (2238 patients with lung cancer and 2563 controls) and covering 32 genes. We identified that methylated genes in sputum samples for the early screening and auxiliary detection of lung cancer yielded an overall sensitivity of 0.46 (0.41–0.50) and specificity of 0.83 (0.80–0.86). Combined indirect comparisons identified the superior gene of SOX17 (sensitivity: 0.84, specificity: 0.88), CDO1 (sensitivity: 0.78, specificity: 0.67), ZFP42 (sensitivity: 0.87, specificity: 0.63) and TAC1 (sensitivity: 0.86, specificity: 0.75). Conclusions: The present meta-analysis demonstrates that methylated SOX17, CDO1, ZFP42, TAC1, FAM19A4, FHIT, MGMT, p16, and RASSF1A are potential superior biomarkers for the screening and auxiliary detection of lung cancer.
Collapse
Affiliation(s)
- Di Liu
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Hongli Peng
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Qi Sun
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Zhongyao Zhao
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Xinwei Yu
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia.
| | - Siqi Ge
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia.
| | - Hao Wang
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Honghong Fang
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Qing Gao
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Jiaonan Liu
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Lijuan Wu
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Manshu Song
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Youxin Wang
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia.
| |
Collapse
|
22
|
O 6 -Methylguanine-DNA methyltransferase (MGMT): A drugable target in lung cancer? Lung Cancer 2017; 107:91-99. [DOI: 10.1016/j.lungcan.2016.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/07/2016] [Accepted: 07/17/2016] [Indexed: 01/01/2023]
|
23
|
Yuan X, Xu J, Fang W, Zhao Z, Wang F, Tong Z. The Association Between MGMT Promoter Methylation and Patients with Gastric Cancer: A Meta-Analysis. Genet Test Mol Biomarkers 2017; 21:213-221. [PMID: 28384044 DOI: 10.1089/gtmb.2016.0284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Xiaolong Yuan
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Jifei Xu
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Weiyang Fang
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Zhenfeng Zhao
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Fan Wang
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Zhuting Tong
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
24
|
Yu D, Cao T, Han YD, Huang FS. Relationships between MGMT promoter methylation and gastric cancer: a meta-analysis. Onco Targets Ther 2016; 9:6049-6057. [PMID: 27785051 PMCID: PMC5063565 DOI: 10.2147/ott.s114052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A DNA repair enzyme, O6-methylguanine-DNA methyltransferase (MGMT), plays an important role in the development of gastric cancers. However, the role of MGMT promoter methylation in the occurrence of gastric cancer and its relationships with clinicopathologic characteristics has not been fully clarified. Thus, we performed a meta-analysis to evaluate the associations between MGMT promoter methylation and gastric cancer. Electronic databases, including PubMed and Web of Science, were used to systematically search related clinical studies published in English until April 1, 2016. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated to evaluate the associations between MGMT promoter methylation and gastric cancer risk or clinicopathologic characteristics. A total of 16 studies including 1,935 patients and 1,948 control persons were included in the analysis. Our study suggested that MGMT promoter methylation frequency was associated with gastric cancer (OR=3.46, 95% CI: 2.13–5.61, P<0.001). Moreover, the frequency of MGMT promoter methylation in the no lymph node metastasis group was lower than that in lymph node metastasis group, with marginal significance (OR=0.65, 95% CI: 0.42–1.01, P=0.05). Additionally, the methylation rate of the MGMT promoter was much lower in patients without distant metastases than in those with metastases (OR=0.27, 95% CI: 0.18–0.40, P<0.001). No significant association of MGMT promoter methylation with Lauren classification, tumor location, tumor invasion, or Helicobacter pylori infection was found. In conclusion, the methylation status of the MGMT promoter was related to gastric cancer risk, distant metastasis, and lymph node metastasis, which indicates that MGMT promoter methylation may play an important role in gastric cancer development.
Collapse
Affiliation(s)
- Dan Yu
- Department of Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Tao Cao
- Department of Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Ya-Di Han
- Department of Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Fu-Sheng Huang
- Department of Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
25
|
Powrózek T, Krawczyk P, Kuźnar-Kamińska B, Batura-Gabryel H, Milanowski J. Analysis of RTEL1 and PCDHGB6 promoter methylation in circulating-free DNA of lung cancer patients using liquid biopsy: A pilot study. Exp Lung Res 2016; 42:307-13. [DOI: 10.1080/01902148.2016.1214191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Tomasz Powrózek
- Department of Pneumonology, Oncology, and Allergology, Medical University of Lublin, Lublin, Poland
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology, and Allergology, Medical University of Lublin, Lublin, Poland
| | - Barbara Kuźnar-Kamińska
- Department of Pulmonology, Allergology, and Respiratory Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - Halina Batura-Gabryel
- Department of Pulmonology, Allergology, and Respiratory Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - Janusz Milanowski
- Department of Pneumonology, Oncology, and Allergology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
26
|
Powrózek T, Krawczyk P, Nicoś M, Kuźnar-Kamińska B, Batura-Gabryel H, Milanowski J. Methylation of the DCLK1 promoter region in circulating free DNA and its prognostic value in lung cancer patients. Clin Transl Oncol 2015; 18:398-404. [PMID: 26311076 DOI: 10.1007/s12094-015-1382-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/05/2015] [Indexed: 01/28/2023]
Abstract
INTRODUCTION The possibility of detection of suppressor genes methylation in circulating free DNA (cf-DNA) of cancer patients and the lack of methylation in healthy individuals makes this epigenetic alternation an ideal diagnostic marker of neoplastic processes. Moreover, hypermethylation in several genes promoter was described as a biomarker of lung cancer. Methylation in the gene encoding doublecortin-like kinase 1 (DCLK1) is observed in patients with colorectal cancer and cholangiocarcinoma. However, there are no studies concerning DCLK1 methylation in lung cancer patients. The aims of the study was to evaluate the frequency of DCLK1 promoter methylation in cf-DNA of lung cancer patients and of healthy persons as well as the usefulness of this test for predicting the lung cancer course. MATERIALS AND METHODS DCLK1 methylation status was evaluated in DNA isolated from peripheral blood plasma from 65 lung cancer patients and 95 healthy individuals. After DNA bisulfitation, DCLK1 methylation was determined using the qMSP-PCR technique. Moreover, the presence of DCLK1 methylation was correlated with the overall survival (OS) probability of lung cancer patients. RESULTS DCLK1 promoter methylation was detected in 32 lung cancer patients (49.2 %) and 8 healthy individuals (8.4 %). The methylation of the region before transcription start site (TSS) and the region after TSS of DCLK1 gene was detected in 28 and 11 patients, respectively. In seven cases (10.8 %), the DCLK1 promoter methylation in both regions was reported simultaneously. The methylation was observed slightly frequently in patients with small cell lung cancer (75 % of SCLC patients). The median overall survival of patients with DCLK1 promoter methylation was lower than that of patients without DCLK1 gene modification (p = <0.001, HR = 4.235). CONCLUSIONS The evaluation of DCLK1 promoter region methylation may be useful in both early diagnosis and prediction of the course of lung cancer.
Collapse
MESH Headings
- Adenocarcinoma/blood
- Adenocarcinoma/genetics
- Adenocarcinoma/pathology
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Carcinoma, Large Cell/blood
- Carcinoma, Large Cell/genetics
- Carcinoma, Large Cell/pathology
- Carcinoma, Non-Small-Cell Lung/blood
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Squamous Cell/blood
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Case-Control Studies
- DNA Methylation
- Doublecortin-Like Kinases
- Female
- Follow-Up Studies
- Humans
- Intracellular Signaling Peptides and Proteins/blood
- Intracellular Signaling Peptides and Proteins/genetics
- Lung Neoplasms/blood
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Male
- Middle Aged
- Neoplasm Staging
- Neoplastic Cells, Circulating/metabolism
- Neoplastic Cells, Circulating/pathology
- Polymerase Chain Reaction
- Prognosis
- Promoter Regions, Genetic/genetics
- Protein Serine-Threonine Kinases/blood
- Protein Serine-Threonine Kinases/genetics
- Small Cell Lung Carcinoma/blood
- Small Cell Lung Carcinoma/genetics
- Small Cell Lung Carcinoma/pathology
- Survival Rate
Collapse
Affiliation(s)
- T Powrózek
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-954, Lublin, Poland.
| | - P Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-954, Lublin, Poland
| | - M Nicoś
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-954, Lublin, Poland
| | - B Kuźnar-Kamińska
- Department of Pulmonology, Allergology and Respiratory Oncology, Poznań University of Medical Sciences, Poznań, Poland
| | - H Batura-Gabryel
- Department of Pulmonology, Allergology and Respiratory Oncology, Poznań University of Medical Sciences, Poznań, Poland
| | - J Milanowski
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-954, Lublin, Poland
| |
Collapse
|
27
|
Füller M, Klein M, Schmidt E, Rohde C, Göllner S, Schulze I, Qianli J, Berdel WE, Edemir B, Müller-Tidow C, Tschanter P. 5-azacytidine enhances efficacy of multiple chemotherapy drugs in AML and lung cancer with modulation of CpG methylation. Int J Oncol 2014; 46:1192-204. [PMID: 25501798 DOI: 10.3892/ijo.2014.2792] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/12/2014] [Indexed: 11/06/2022] Open
Abstract
The DNA methyltransferase (DNMT) inhibitory drugs such as 5-azacytidine induce DNA hypomethylation by inhibiting DNA methyltransferases. While clinically effective, DNMT inhibitors are not curative. A combination with cytotoxic drugs might be beneficial, but this is largely unexplored. In the present study, we analyzed potential synergisms between cytotoxic drugs and 5-azacytidine in acute myeloid leukemia (AML) and non-small cell lung cancer (NSCLC) cells. Lung cancer and leukemia cell lines were exposed to low doses of 5-azacytidine with varying doses of cytarabine or etoposide for AML cells (U937 and HL60) as well as cisplatin or gemcitabine for NSCLC cells (A549 and HTB56) for 48 h. Drug interaction and potential synergism was analyzed according to the Chou-Talalay algorithm. Further analyses were based on soft agar colony formation assays, active caspase-3 staining and BrdU incorporation flow cytometry. To identify effects on DNA methylation patterns, we performed genome wide DNA methylation analysis using 450K bead arrays. Azacytidine at low doses was synergistic with cytotoxic drugs in NSCLC and in AML cell lines. Simultaneous exposure to 5-azacytidine with cytotoxic drugs showed strong synergistic activity. In colony formation assays these synergisms were repeatedly verified for 5-azacytidine (25 nM) with low doses of anticancer agents. 5-azacytidine neither affected the cell cycle nor increased apoptosis. 450K methylation bead arrays revealed 1,046 CpG sites in AML and 1,778 CpG sites in NSCLC cells with significant DNA hypomethylation (24-h exposure) to 5-azacytidine combined with the cytotoxic drugs. These CpG-sites were observed in the candidate tumor-suppressor genes MGMT and THRB. Additional incubation time after 24-h treatment led to a 4.1-fold increase of significant hypomethylated CpG-sites in NSCLC cells. These results suggest that the addition of DNA demethylating agents to cytotoxic anticancer drugs exhibits synergistic activity in AML and NSCLC. Dysregulation of an equilibrium of DNA methylation in cancer cells might increase the susceptibility for cytotoxic drugs.
Collapse
Affiliation(s)
- Mathias Füller
- Department of Medicine A, Hematology and Oncology, University of Münster, Münster, Germany
| | - Miriam Klein
- Department of Medicine A, Hematology and Oncology, University of Münster, Münster, Germany
| | - Eva Schmidt
- Department of Medicine A, Hematology and Oncology, University of Münster, Münster, Germany
| | - Christian Rohde
- Department of Medicine IV, Hematology and Oncology, University of Halle, Halle, Germany
| | - Stefanie Göllner
- Department of Medicine IV, Hematology and Oncology, University of Halle, Halle, Germany
| | - Isabell Schulze
- Department of Medicine IV, Hematology and Oncology, University of Halle, Halle, Germany
| | - Jiang Qianli
- Department of Medicine A, Hematology and Oncology, University of Münster, Münster, Germany
| | - Wolfgang E Berdel
- Department of Medicine A, Hematology and Oncology, University of Münster, Münster, Germany
| | - Bayram Edemir
- Department of Medicine IV, Hematology and Oncology, University of Halle, Halle, Germany
| | - Carsten Müller-Tidow
- Department of Medicine IV, Hematology and Oncology, University of Halle, Halle, Germany
| | - Petra Tschanter
- Department of Medicine IV, Hematology and Oncology, University of Halle, Halle, Germany
| |
Collapse
|
28
|
Barrow TM, Michels KB. Epigenetic epidemiology of cancer. Biochem Biophys Res Commun 2014; 455:70-83. [PMID: 25124661 DOI: 10.1016/j.bbrc.2014.08.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 07/15/2014] [Accepted: 08/01/2014] [Indexed: 02/06/2023]
Abstract
Epigenetic epidemiology includes the study of variation in epigenetic traits and the risk of disease in populations. Its application to the field of cancer has provided insight into how lifestyle and environmental factors influence the epigenome and how epigenetic events may be involved in carcinogenesis. Furthermore, it has the potential to bring benefit to patients through the identification of diagnostic markers that enable the early detection of disease and prognostic markers that can inform upon appropriate treatment strategies. However, there are a number of challenges associated with the conduct of such studies, and with the identification of biomarkers that can be applied to the clinical setting. In this review, we delineate the challenges faced in the design of epigenetic epidemiology studies in cancer, including the suitability of blood as a surrogate tissue and the capture of genome-wide DNA methylation. We describe how epigenetic epidemiology has brought insight into risk factors associated with lung, breast, colorectal and bladder cancer and review relevant research. We discuss recent findings on the identification of epigenetic diagnostic and prognostic biomarkers for these cancers.
Collapse
Affiliation(s)
- Timothy M Barrow
- Institute for Prevention and Tumor Epidemiology, Freiburg Medical Center, University of Freiburg, 79106, Germany; German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Karin B Michels
- Institute for Prevention and Tumor Epidemiology, Freiburg Medical Center, University of Freiburg, 79106, Germany; Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Constitutive androstane receptor ligands modulate the anti-tumor efficacy of paclitaxel in non-small cell lung cancer cells. PLoS One 2014; 9:e99484. [PMID: 24959746 PMCID: PMC4069004 DOI: 10.1371/journal.pone.0099484] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 05/15/2014] [Indexed: 12/21/2022] Open
Abstract
Background Lung tumors are the leading cause of cancer deaths worldwide and paclitaxel has proven to be useful for patients with lung cancer, however, acquired resistance is a major problem. To overcome this problem, one promising option is the use of Constitutive Androstane Receptor (CAR) ligands in combination with chemotherapeutics against cancer cells. Therefore, we wish to elucidate the effects of CAR ligands on the antineoplastic efficacy of paclitaxel in lung cancer cells. Methodology/Principal Findings Our results from cell viability assays exposing CAR agonist or inverse-agonist to mouse and human lung cancer cells modulated the antineoplastic effect of paclitaxel. The CAR agonists increased the effect of Paclitaxel in 6 of 7 lung cancer cell lines, whereas the inverse-agonist had no effect on paclitaxel cytotoxicity. Interestingly, the mCAR agonist TCPOBOP enhanced the expression of two tumor suppressor genes, namely WT1 and MGMT, which were additively enhanced in cells treated with CAR agonist in combination with paclitaxel. Also, in silico analysis showed that both paclitaxel and CAR agonist TCPOBOP docked into the mCAR structure but not the inverse agonist androstenol. Paclitaxel per se increases the expression of CAR in cancer cells. At last, we analyzed the expression of CAR in two public independent studies from The Cancer Genome Atlas (TCGA) of Non Small Cell Lung Cancer (NSCLC). CAR is expressed in variable levels in NSCLC samples and no association with overall survival was noted. Conclusions/Significance Taken together, our results demonstrated that CAR agonists modulate the antineoplastic efficacy of paclitaxel in mouse and human cancer cell lines. This effect was probably related by the enhanced expression of two tumor suppressor genes, viz. WT1 and MGMT. Most of NSCLC cases present CAR gene expression turning it possible to speculate the use of CAR modulation by ligands along with Paclitaxel in NSCLC therapy.
Collapse
|